
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/136597/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Neis, Paulo and Lewis, Rhydian 2020. Evaluating the influence of parameter setup on the performance of
heuristics for the graph colouring problem. International Journal of Metaheuristics 7 (4) , pp. 352-378.

Publishers page: https://www.inderscience.com/info/ingeneral/forthc...

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Int. J. Metaheuristics, Vol. x, No. x, 1–24 1

Evaluating the influence of parameter setup on the
performance of heuristics for the graph colouring
problem

Paulo Neis
Universidade Tecnológica Federal do Paraná (UTFPR),
Curitiba, PR, Brazil
Tel: +55 45 3027 7403 E-mail: neis@neis.com.br

Rhyd Lewis

School of Mathematics,
Cardiff University,
Cardiff, CF24 4AG, WALES
Tel: +44(0)29 208 74856 E-mail: LewisR9@cf.ac.uk

Abstract: This paper aims to analyse the influence of parameter setup over
a set of five heuristic methods applied to the graph colouring problem.
Each heuristic is applied to a considerable set of problem instances, using a
range of different parameter values. Multidimensional analysis is applied to
extract and express knowledge about the performance of heuristic methods
according to problem instance feature values, highlighting the effect of different
parameter setups. The dynamic behaviour of the heuristics is also evaluated at
different stages of execution (runtime), providing additional knowledge about
speed of convergence/stagnation. Results demonstrate that it is possible to
associate regions of the instance space in which problem instances exhibit
particular features with specific parameter values yielding superior performance.
Information relating runtime with average rate of solution improvement also
suggests that certain instance features can be used to determine for how long the
heuristics need to run before they converge or stagnate.

Keywords: Parameter tuning; Algorithm performance; Heuristics; Graph
colouring.

1 Introduction

The idea of choosing the best algorithm for solving a given problem (or a particular problem
instance) before actually solving it has been around for some time. The work of Rice (1976)
has laid down the theoretical framework for algorithm selection. This abstract framework,
known as “the Rice Model”, describes the mapping between a collection P of problems (or
problem instances) and a collection A of candidate algorithms applicable to the problems
in P . The mapping is established based on a function S that, for a given problem in P ,
establishes the best algorithm in A, according to some performance criteria and based on

Copyright © 201X Inderscience Enterprises Ltd.

2 P. Neis and R. Lewis

a set of features F of the problems of P . Although appealing, this idea is purely abstract
and Rice himself was sceptical that it could lead directly to a superior selection procedure.
Recently, in the work of Smith-Miles (2009), this idea has been revisited and actually put
into practise for combinatorial optimisation problems (Smith-Miles et al, 2014).

The No Free Lunch Theorems (NFL) proposed by Wolpert and Macready (1997) suggest
that there is no approach with superior performance in all problem classes. Although the
hypothesis of uniformly distributed objective functions assumed by the NFL probably will
not hold for a limited number of instances of one particular problem, it has been observed
that a set of algorithms rank differently on different problem instances (Lewis et al, 2012;
Smith-Miles et al, 2014), therefore suggesting that each algorithm may have strengths or
weaknesses in certain subclasses of instances. As pointed out by Rice (1976), problem
features can be viewed as a way to introduce the concept of subclasses into the selection
model. In this context, the key to the problem characterisation is to determine a set of
relevant features, which can be obtained without excessive computational effort, and relate
them to expected algorithm performance.

Despite the challenge that algorithm selection represents by itself, finding the most
effective set of parameters for a given algorithm could be considered as an algorithm
selection problem on its own. Hence in this work we use the term “method” to define the
general steps performed by each heuristic method under consideration, and “algorithm” to
a specific combination of a method and its parameter setting.

The very definition of “the best parameters” may depend on various criteria. Suppose a
methodM ∈M, with two possible parameter values θA1

M and θA2

M , is applied to a sufficiently
large set of problem instances. Suppose further that running M with θA1

M results in better
solution performance for a certain subset of the problem instances, while runs using θA2

M

perform better in a slightly different subset of instances (possibly including some ties). A
naive approach would be to declare the “winner” as the parameter that achieves the best
performance more frequently, ruling out the alternative. But what if the two combined runs
of M perform better than each individual one? In this case, θA2

M may be more appropriate
for instances where θA1

M fails, and vice versa. In this case it would be interesting to know
whether it is possible to obtain the combined performance of θA1

M and θA2

M without having
to execute the method twice. To answer this question it is necessary to know in which
instances M produces better solutions using parameter value θA1

M , and in which ones θA2

M

works better. If the variants of M using the two different parameter values are considered
as different algorithms (e.g., A1 and A2), therefore composing a new set A of methods
and specific parameter values, then this problem fits the exact definition of the “Algorithm
Selection Problem” over the set A = {A1, A2}.

The focus of this work is on stochastic search heuristic methods based on metaheuristics,
applied to the graph colouring problem. These are methods in which randomisation plays
a prominent role in generating or selecting candidate solutions for a given optimisation
problem instance (Hoos and Stützle, 2005). Greedy constructive and iterative improvement
procedures are the base of most of these methods. They usually terminate when a complete
solution has been generated, a local optimum of a given evaluation function is reached or a
computational limit has been exceeded.

This paper aims to discuss three important issues regarding the influence of parameter
setups on algorithm performance: (i) Is it possible to identify a subset of instance
features strongly influencing the heuristic methods’ performance when different parameter
configurations are considered? (ii) Is there a way of linking certain regions of the instance
space with specific parameter values of heuristic methods yielding superior performance?

Evaluating the influence of parameter setup on performance of heuristics 3

(iii) Is it possible, based on instance features, to determine at what point in the execution the
incumbent solutions1 will stop improving (i.e. the optimum has been found, or the search
has stagnated)?

The main contributions of this work are:

• We have applied multidimensional database analysis concepts and tools to extract,
visualise and compare information about algorithm performance according to the
dimensions (features) of the instance space.

• We have systematically evaluated the influence of parameter setup on the behaviour
of heuristic methods. Features of the problem instances have been taken into account
for determining the appropriate parameters, producing evidence that an instance-wise
tuning of heuristics can lead to improved performance.

• We have investigated the runtime behaviour of algorithms according to features of the
instance space, making an assessment of the necessary time to converge or stagnate.

• We have compiled a database about performance of heuristic methods along several
dimensions, which includes: problem instance features, resource usage and parameter
combination. That information could be further used to select and tune the methods.

The remainder of this paper is organised as follows. Section 2 presents the related work.
In Section 3, we describe the methodology adopted in this paper. Section 4 presents the
experiments and algorithm setup. Results are presented and discussed in Section 5, with
Section 6 concluding the paper and discussing directions for future work.

2 Related Work

This section briefly discusses existing research related to algorithm selection and heuristics
parameter tuning. Although this current work should not be considered a study of parameter
tuning or an application of algorithm selection, it is closely related to both areas, since
it provides a thorough comparison of performance for a set of heuristic methods and a
combination of different parameters.

One of the first experimental results establishing a relation between characteristics of
instances, search-space and algorithm performance was conducted by Stützle and Fernandes
(2004), using the Quadratic Allocation Problem (QAP). In that article the authors evaluated
different heuristic methods in a series of QAP instances. Smith-Miles (2008) has extended
the results of Stützle and Fernandes (2004) proposing a platform inspired by metalearning
to analyse the methods applied to the same optimisation problem. That platform has been
applied to a collection of QAP instances using instance features (size of arrays, sparsity,
etc.) as the inputs of a supervised learning system with two possible goals: performance
prediction or selection of the most suitable method for the problem instance.

Performance assessment of various heuristics methods for the graph colouring problem
(GCP) has been tackled by Lewis et al (2012). That paper presented a broad comparison
over a considerable set of instances with different features. Later Smith-Miles et al (2014)
re-evaluated the same methods over an even larger set of GCP instances using a metalearning
approach. The authors concluded that a bespoke hybrid evolutionary algorithm (HEA)
proposed by Galinier and Hao (1999) has the best average performance. However, they also

4 P. Neis and R. Lewis

demonstrated that in certain regions of the instance space HEA is definitely not the best
algorithm.

None of these works, however, conducted a specific analysis regarding the effect
of parameter tuning on the heuristic methods’ performance. Indeed the comparisons of
different methods and the actual selection rarely mentions the parameter configuration being
used, leaving a gap to be filled. In essence, parameter tuning consists of selecting the best
configuration of an algorithm (Birattari, 2009). Eiben and Smit (2011) have formalised the
parameter tuning problem and given an overview of existing parameter tuning strategies
for evolutionary algorithms. Different strategies can be classified as on-line and off-line
approaches (Birattari, 2009; Eiben and Smit, 2011; Talbi, 2009).

The main idea behind on-line tuning is to modify some parameters of the search
algorithm while performing the search itself. In other words, the parameters are controlled
and dynamically or adaptively updated during the execution of the heuristic method. A
recent work presented by Andersson et al (2016) discusses the advantages of using different
parameter sets in different stages of optimisation.

In off-line parameter tuning, the values of different parameters are determined before the
execution of the heuristic method (Talbi, 2009). According to Birattari (2009), in most cases
heuristics are tuned off-line, by hand in a trial-and-error procedure. Factorial design (which
consists in defining the factors to consider and then understanding the relative importance
of each parameter) and response surface (described as an iterative search in the space of the
parameters (Birattari, 2009)) are other off-line tuning examples. The main disadvantage of
the latter is the dependence on a distance metric between each pair of configurations of the
heuristic to be tuned (which does not hold in the case of categorical parameters).

Off-line tuning is usually performed one parameter at a time, and in this case
no interaction between parameters is taken into account, providing no guarantees that
an optimal setting is found (Talbi, 2009). To overcome this problem, the concept of
experimental design (Box et al, 2005) can be used. It consists in defining: (i) factors, i.e.
the parameters to vary, and (ii) levels, i.e. the different values each parameter can take. In
the case of an experiment with j factors in which each factor has k levels, a full factorial
design needs kj executions. Then, the “best” level is identified for each factor. The main
drawback of experimental design is the high computational cost, especially when the number
of parameters and different values are large, meaning a large number of executions must be
performed.

Most works regarding the above strategies do not consider the possibility of tuning
parameters according to problem instance features. In the work of Hutter et al (2013) a
model-based approach is applied for identifying a set of algorithm parameters and instance
features capable of predicting algorithm performance. The approach is then applied to a
set of mixed integer solvers and SAT heuristics using a high dimensional parameter space.
The results suggest that tuning only a few of the several available parameters, according to
certain instance features, is enough to achieve good algorithm performance.

In this paper an experimental design is employed, using a small set of different factors
for different heuristic methods, with a maximum of 5 levels for some of the considered
parameters. The experiments are conducted with a large number of problem instances
exhibiting different features, aiming to identify relationships between instance features and
the performance of different parameter setups.

Evaluating the influence of parameter setup on performance of heuristics 5

3 Methodology

As mentioned earlier, this work deals with heuristic methods applied to the graph colouring
problem. Generally speaking, the adopted methodology consists of:

1. producing a significantly large set of problem instancesP , composed of instances with
considerable dissimilarity, and calculating each instance’s features F ∈ F ;

2. determining the whole set of candidate methodsM and configuration parameters Θ
to be evaluated, therefore defining the set of candidate algorithms A;

3. applying each algorithm inA to each instance in P , keeping track of the results using
measures of solution quality and computational resource usage;

4. evaluating the performance of each A ∈ A according to the instance features F and
its parameter values θA

M with regard to solution quality and computational effort.

For the set of problem instances used in this study a considerable level of variation is
enforced by sampling the instance space, using instances obtained from different sources
and generated by different methods. The resulting instance set exhibits a wide range of
feature values, spanning a wide region in the instance space (see Section 4.1 for more
details).

A set of heuristic methods for tackling with the GCP is employed, along with a grid
search on a reasonable range of different parameter configurations for each method. The
evaluated parameter values are intended to span a reasonably wide range in the parameter
space, capable of bringing forth diverse behaviour of each method in the instance space. At
the same time, the number of possible combinations of different parameter values needs to be
kept under control, since it can excessively increase the number of executions, rendering the
experiments unfeasible due to the resource demand. Performance of the heuristic methods
applied to the GCP is measured with respect to the best known solution for each graph G
in P .

4 Experiments’ Description and Setup

The experiments conducted in this work consist in applying the methodology described in
Section 3. First, a large set of instancesP of a particular combinatorial optimisation problem
are obtained, the correspondent features are calculated and stored in a database. After that,
a collection of well established heuristic methods M is chosen, along with the appropriate
parameters θA

M , composing the set of candidate algorithmsA. Each algorithm inA is then
used to process all the instances in P , collecting performance measures for every single
execution. Finally, the resulting database can be processed and analysed in order to extract
statistical information about the algorithm’s performance.

4.1 Problem and problem instances

The graph colouring optimisation problem can be stated as (Lewis, 2015): given a graph
G = (V,E) consisting of sets V andE of n vertexes andm edges respectively, assign each
vertex v ∈ V an integer c(v) ∈ {1, 2, . . . , k} representing a specific colour such that: (a)
c(v) 6= c(u)∀{u, v} ∈ E; and (b) the number of colours k is minimal.

6 P. Neis and R. Lewis

Table 1 Graph colouring problem instances.

Family Source Number of instances

C1 Culberson’s Generator (Culberson, 2002) 1,000
C2 From authors of (Smith-Miles et al, 2014) 965
C3 Culberson’s Generator 1,000
C4 Culberson’s Generator 1,000
C5 From authors of (Smith-Miles et al, 2014) 1,000
D DIMACS competition and Networkx Generator 792
E From authors of (Lewis et al, 2012) 20
F From authors of (Lewis et al, 2012) 80
G From authors of (Lewis et al, 2012) 13
H Culberson’s Generator 103
I Culberson’s Generator 57
Total: 6030

Given an instance of this problem, a candidate solution that assigns colours to all vertexes
V is called “complete”, the opposite being a “partial” solution. A candidate solution that
assigns different colours to every pair of vertexes joined by an edge (also said to contain no
clashes) is called “proper”, the opposite being an “improper” solution. In order to be feasible,
the candidate solution needs to be both complete and proper. The problem statement requires
the optimal solution to be feasible and to use the smallest possible number of colours χ(G),
called the graph’s “chromatic number”.

In terms of computational complexity the general form of the GCP is considered to be
intractable (NP-hard), with its decision variant belonging to the class of the NP-complete
problems. Therefore in practise approximation algorithms and heuristics are used to obtain
acceptable, possibly sub-optimal solutions. These compromise solutions may not reach the
true minimum number of colours χ(G) for a given instance, but they are obtained using a
reasonable amount of computational resources. More importantly, they are valuable for the
many practical applications based on the GCP (Hardy et al, 2017; Lewis, 2015).

The set of problem instances used in this experiment is composed of 6030 graphs2. The
instances are grouped into subsets or “families” of instances, according to the source from
which they were obtained or the method employed to generate them3. A summary of the
instances is provided in Table 1.

4.2 Heuristic methods and candidate algorithms

The set of methodsM evaluated in this work is a subset of those described by Lewis (2015)4,
particularly the ones exhibiting externally configurable parameters. This subset consists of
the following methods:

• HillClimber (HC): The hill climbing strategy proposed by Lewis (2009) for grouping
problems. HC operates on a single feasible candidate solution using a constructive
heuristic, and iteratively improving it by applying a specialised local search (LS)
operator. At the beginning of each cycle, the method takes the initial proper solution
S = {S1, S2, . . . , S|S|}, where S is a partition of the vertex set, and each Si ∈ S is
an independent set. It then removes a small number of these independent sets (colour
classes) and places them into a second set T , resulting in two partial proper solutions.

Evaluating the influence of parameter setup on performance of heuristics 7

The LS operator is then applied for IHC iterations, attempting to transfer vertexes from
colour classes in T into colour classes in S, such that both S and T remain proper,
thus increasing the cardinality of the classes in S and possibly emptying some classes
in T , reducing the total number of colours. At the end of the cycle, all remaining
non-empty classes in T are moved back into S, and its independent sets are re-ordered
and modified using greedy heuristics before the LS operator is repeated. IHC is the
parameter available for configuration, and assumes integer values. The experiment has
been conducted varying the parameter around the default value configured in the source
code (Lewis, 2015), as described in Table 2.

• TabuCol: A local search heuristic implementing a simple tabu search paradigm applied
to the graph colouring problem (Galinier and Hao, 1999). TabuCol operates in the
space of complete improper solutions (solutions that assign colours to all vertexes of
the graph, possibly containing clashes), defining a cost function that is proportional to
the number of clashes produced. This method is also used as local search subroutine
in some of the hybrid heuristics listed below. TabuCol has a categorical parameter
called the “tenure type”, simply referred to as TTC . The tabu tenure t, which is the
number of iterations that a particular vertex is forbidden from being reassigned to a
particular colour, is determined according to TTC . There are two possible strategies: (i)
“dynamic”, which consists of making t = UNIFORM(a, b) + α · C, with a = 0,
b = 9 and α = 0.6 (in other words, making t a random variable proportional to the
incumbent solution’s cost C); or (ii) “reactive” (default), which consists in tuning5

the tenure based on the variation ∆ between the maximum and minimum values of
the objective function calculated every φ iterations, and making t = t+ η (if ∆ ≤ 1
or t = 0) or t = t− 1 otherwise6 (Blöchliger and Zufferey, 2008).

• PartialCol: the scheme proposed by Blöchliger and Zufferey (2008) is also based
on tabu search, but considering only feasible partial solutions. That is, clashes are
forbidden but some vertexes may remain uncoloured. The same categorical parameter
used in the TabuCol method is available here, being referred to as TPC , and also takes
either of the “reactive” (default) or “dynamic” strategies.

• AntCol: is a population-based method inspired by the Ant Colony metaheuristic that has
been enhanced by Dowsland and Thompson (2008) for the GCP. At the completion of
each cycle, the TabuCol heuristic is applied to each candidate solution. The parameter
available for configuration is referred to as IAC , and controls the number of iterations of
the tabu search per cycle, assuming integer values. The default setup is IAC = 2× |V |
iterations, thus being proportional to a graph’s order.

• HEA: the Hybrid Evolutionary Algorithm for the GCP was originally proposed by
Galinier and Hao (1999), and is considered to be one of the best performing methods for
this problem (Lewis et al, 2012; Smith-Miles et al, 2014). HEA operates on a population
of candidate solutions which are evolved using a recombination (crossover) operator,
interlaced with a local (tabu) search procedure. Being a more sophisticated procedure,
HEA has a larger set of control parameters. In this work, we evaluate three of them: (i)
PHE , the “Population Size”, which is an integer parameter assuming a default of 10
individuals; (ii) IHE , an integer parameter that controls the number of iterations of the
tabu search per cycle, being the parameter value internally multiplied by the graph’s
order |V | to obtain the actual iteration limit; and (iii) XHE , the “Crossover Type”,
a categorical parameter that controls how the recombination of candidate solutions

8 P. Neis and R. Lewis

Table 2 Methods and parameters used.

Method (M) Parameters Values (ΘM) Comb.

AntCol IAC (iteration limit) {1, 2, 16, 32, 64} 5
TabuCol TTC (tenure type) {Dynamic, Reactive} 2
PartialCol TPC (tenure type) {Dynamic, Reactive} 2
HillClimber IHC (iteration limit) {100, 500, 1000, 5000, 10000} 5

HybridEA
IHE (iteration limit) {1, 8, 16, 32, 64}

30PHE (population size) {4, 10, 40}
XHE (crossover type) {GPX, GPX+Kempe}

Total number of resulting algorithms: 44

(parents) into new candidate solutions (offspring) is carried out. Two different options
ofXHE have been experimented with: the default Greedy Partition Crossover (XHE =
GPX) of Galinier and Hao (1999), which constructs offspring using large colour
classes from both parents, not necessarily leading to proper solutions; and a refined
version ofGPX described by Lewis (2015), which first removes any clashing vertexes
from each parent, making the offspring proper, before altering this proper solution by
means of Kempe chain interchanges.

Table 2 presents the sets of parameters used with each heuristic method M ∈M. The
default values used in the source code are shown in bold. The combination of the five
methods with every respective parameter values results in a set A with |A|= 44 different
algorithms. Although we acknowledge the existence of other high performance heuristic
methods for the GCP (Aranha et al, 2018; Hertz et al, 2008; Malaguti et al, 2008; Moalic
and Gondran, 2017; Porumbel et al, 2010; Titiloye and Crispin, 2011; Wu and Hao, 2012),
our analysis is restricted to the algorithms implemented in the particular software package
we used. Moreover, we emphasise that the objective of this study is not to benchmark
heuristics. We also acknowledge that other parameters inherent to each of these heuristic
methods could be explored, however that would involve making changes to the software
package, which is beyond the scope of this study. Given the objectives of this work is not to
establish a rank of best performing heuristics, the insights obtained by studying this subset
of methods can provide guidelines for extending the analysis to other heuristics and even
other problems.

4.3 Measuring performance

The performance metrics, with respect to solution quality, are evaluated relative to an upper
bound on χ(G), denoted by χ(G). This upper bound consists in the solution with fewer
colours among the set of all solutions produced by the algorithms in A for each graph G
We consider three different metrics of solution quality: (i) The frequency (or proportion)
with which a given algorithm reaches χ(G) for instances in a given subset of P; (ii) the
frequency with which a given algorithm fails to produce proper solutions for instances in a
given subset ofP; (iii) a measure of relative deviation of solution quality (Hoos and Stützle,
2005). The latter can be interpreted as a “distance” DB(G), proportional to the difference

Evaluating the influence of parameter setup on performance of heuristics 9

between the number of colours χc(G) of a given candidate solution for graph G and χ(G),
defined by Eq. (1):

DB =
χc(G)− χ(G)

χ(G)
(1)

The concept of “distance” can be used to compare the performance of algorithms
on graphs with very different chromatic numbers, for instance: Consider two graphs G1

with χ(G1) = 5 andG2 with χ(G2) = 100, and two respective candidate solutions having
χc(G1) = 6 and χc(G2) = 101 colours. They are both off by one colour from the global
optimum, however it seems reasonable to assume that χc(G2) is relatively “closer” to the
global optimum thanχc(G1), considering the chromatic number of each graph. Performance
measures are required to be in the same “base”, so results can be aggregated over a large
number of varied problem instances and heuristic methods. DefiningDB values in this way
make it independent of graph size and chromatic number, facilitating direct comparison
and averaging of results over any subset of P . Another advantage of this measure is the
possibility of using it to study the dynamic behaviour of algorithms, such as stagnation
during execution.

4.4 Data analysis and performance comparison

For our experiments, results are organised into a database containing: problem instance
data (name, features), algorithm data (M ,ΘM) and execution data (number of colours,
computational effort and time spent), along with some other derived information. The
analysis is performed using concepts of multidimensional database analysis (Pedersen and
Jensen, 2001), i.e., we associate dimensions in the database with performance measures.
Continuous numerical features are discretized into ranges in order to define dimensions,
along with categorical data. Dimensions are used for selecting and aggregating results at
the desired level of detail, for example: taking a subset of P based on certain feature values
and averaging the solution distance metric.

The features chosen for problem instance characterisation are among the ones described
in the work of Smith-Miles et al (2014). Initially 14 features were calculated for the problem
instances. Those features were then filtered using the concept of information gain (IG)
(Liu and Motoda, 1998) based on the Shannon’s entropy measure, in order to determine
the most “influential” ones. To apply this concept, each problem instance/algorithm pair is
considered as a data point, and a quality measure of the solution produced by that algorithm
at the end of its execution cycle is discretized into one of the three following classes: (i)
solutions whose DB = 0 are attributed to the class “best”; (ii) solutions whose DB is less
or equal to average are attributed to class “good”; (iii) the remaining are attributed to class
“poor”. By calculating IG with respect to this classification for each of the 14 features, and
ranking them, the first two more relevant were chosen (1 and 2 listed below), in order to
restrict the dimensions in the analysis and allow us to visualise 2D plots of the instance
space. After further interactive analysis of the database, it was verified that the metric of
algorithm failures is strongly influenced by a third feature (3 listed below), ranked low in
the measure of IG. This third feature is included in some of the analysis performed in the
following sections. Therefore, the set of problem instance features is composed of:

1. Standard deviation of betweenness centrality σCB : Betweenness centrality CB(v)
offers a measure of how central a given vertex v is to the graph, being defined as the

10 P. Neis and R. Lewis

0K 1K 2K

< 0.1
[0.1,0.2)
[0.2,0.3)
[0.3,0.4)
[0.4,0.5)
[0.5,0.6)
[0.6,0.7)
[0.7,0.8)
[0.8,0.9)
> 0.9 786

294
262
542
594
569
590

328
439

1,626

(c) Instances by Density

0 500 1000

[0,1)
[1,5)
[5,10)
[10,20)
[20,50)
[50,100)
100+ 961

557
1,034
978

794
757
949

(a) Instances by Std. Dev. of Betweenness
Centrality

0 500 1000

[0,1)
[1,2)
[2,3)
[3,4)
[4,5)
[5,6)
[6,7)
[7,8)
[8,9)
[9,10)
[10,11)
[11,12)
[12,13)
[13,14) 173

252
314
309
328
336
331
424
537
494

772
906

687
167

(b) Instances by Energy

0 500

Under 100
[100, 200)
[200, 300)
[300, 400)
[400, 500)
[500, 600)
[600, 700)
[700, 800)
[800, 900)
[900, 1000)

1000+ 45
576
510
559
597
666

564
539

697
773

504

(d) Instances by Graph Order

Figure 1 Distribution of instances by feature value.

number of shortest paths that pass through v. Therefore the standard deviation of this
measure over the whole set V represents the dispersion of this property within the
graph.

2. Energy E(G): The term “energy” has its origins in theoretical chemistry, and is defined
as the mean of the absolute values of the eigenvalues of the adjacency matrix7.

3. Graph density ρ(G): This is defined as the ratio of the number of edges to the number
of possible edges (ρ = 2m/n(n− 1)).

Fig. 1 depicts the distribution of the problem instances used in our experiment, according
to each of these features. The graph order is also included to provide a more intuitive
measure of “instance size”.

To compare the performance of different algorithms in A on subsets of P , statistical
significance tests are applied with a significance level of α = 0.01. If the measure being
compared is the proportion of best known solutions found by two algorithms, the chi-square
test for differences among proportions is applied (Levine et al, 2007). This is the case when
two algorithms are compared according to the number of times each one has found χ(G).
If more than two algorithms are being compared, a pairwise comparison is performed with
Holm-Bonferroni correction for multiple hypothesis testing. If the measure being compared
is the solution distance, the Friedman test (Demšar, 2006) is applied. For cases where more
than two algorithms are compared among themselves, the Friedman test is initially applied
to determine if the null hypothesis can be rejected (at least one of the algorithms obtains
significantly distinct results). Given that the null hypothesis is rejected, a post-hoc Nemenyi
test is applied to determine which algorithms have significantly superior performance.

The amount of resources needed to achieve a certain performance (averaged for a subset
of instances with similar features) can be an important factor in determining the most
appropriate algorithm to be used with a given instance. As a machine-independent measure
of resource usage and an attempt to perform a fair comparison, the concept of “constraint

Evaluating the influence of parameter setup on performance of heuristics 11

check” (Lewis, 2015) is employed by defining the same budget of solution evaluations for
all the compared algorithms. This strategy was chosen to give algorithms a fair chance of
achieving a good solution while keeping the computational time within acceptable limits.

Summarising, the experiment setup encompasses a set of over six thousand problem
instances and 44 algorithms, resulting in more than 260,000 independent executions8. The
experiments have been conducted using a heterogeneous cluster equipped with “Intel Core
i5” and “Intel Core i7” processors, capable of running a total of 64 parallel and independent
threads. Computers in the cluster run the Debian/Linux operating system9. Job management
is performed through scripts and the GNU Parallel tool10. To complete its execution, each
algorithm is allowed to run for a maximum of 5× 1010 constraint checks. This value is a the
same employed in the work of Smith-Miles et al (2014), and a compromise compared to those
used by Lewis et al (2012), which have employed a limit of 5× 1011 constraint checks. The
constraint checks counter is incremented globally in each individual algorithm’s execution,
meaning that it never decreases or gets reset, even on hybrid methods and heuristics using
“restarts”. A hard limit of 20 minutes of processor time is also set for each individual
algorithm execution, in order to prevent hung processes from clogging the cluster. Individual
executions that violate this hard limit are forcefully terminated. If a particular algorithm
does not produce a proper solution for a given problem instance after using up its resource
limit it is said to have failed for that instance, and its solution distance is defined as one.
Under these conditions, the overall time to complete the experiment in the cluster was about
14 days. Roughly speaking, if the experiment were executed in a single core machine, we
estimate that it would have taken about 896 days (approximately 2 1

2 years) to complete.

5 Results

In this section the performance measures proposed in Section 4.3 are presented both overall
and along each of the feature values considered for analysis. Multidimensional database
analysis concepts and tools are applied in order to extract, visualise and compare information
about algorithm performance. A simple method of “slicing” the instance space is applied
to determine the best performing algorithm in each region.

5.1 Overall algorithm performance across all problem instances

This section focuses on analysing performance across the entire space of problem instances,
whilst the next section analyses performance of algorithms in specific regions of the
instance space. A summary of performance metrics for each of the methods using various
parameter values is given in Table 3. The number and percentage of best known solutions
found are presented, along with the percentage of algorithm failures, and the average and
standard deviation of solution distance DB(G). Only the default, the best and the worst
performing parameter configurations for each method are shown. The best results among
all the algorithms are shown in bold.

The results in Table 3 emphasise the importance of using a proper parameter setup. For
the AntCol and HEA methods there is a considerable difference in performance between
the best, default and worst performing parameter configurations. For both these methods
we performed a statistical comparison of the two populations composed of the results
obtained respectively by the default and the best global performer parameters. The pairwise
comparison of proportions on the number of best solutions found in each population lead

12 P. Neis and R. Lewis

Table 3 Overall results: Performance metrics over the whole instance space.

Method param values # best % best % fail Avg dist Std dist

AntCol (IAC=)
1 (worst) 1,408 23.2 33.2 0.3524 0.4584

2 (default) 1,741 28.7 25.6 0.2771 0.4255
32 (best) 3,309 54.6 6.8 0.0881 0.2503

TabuCol (TTC=) Reactive (default/best) 3,682 60.2 3.38 0.0468 0.1807
Dynamic (worst) 3,525 58.1 4.74 0.0614 0.2110

PartialCol (TPC=) Reactive (default/best) 3,330 54.9 4.78 0.0637 0.2114
Dynamic (worst) 3,203 52.8 4.79 0.0662 0.2117

HillClimber (IHC=)
100 (worst) 2,776 45.8 1.72 0.0935 0.1523

1,000 (default) 2,865 47.2 1.71 0.0866 0.1469
10,000 (best) 2,925 48.2 1.87 0.0785 0.1477

HEA {16/10/GPX} (default) 4,301 70.1 1.49 0.0239 0.1221

(IHE /PHE /XHE=) {8/4/GPX} (best) 4,780 78.8 1.39 0.0214 0.1189
{1/4/GPX} (worst) 3,228 53.2 1.56 0.0358 0.1279

to the rejection of the null hypothesis. In other words, there is strong evidence that some
parameter configurations perform better than others when the whole set of available problem
instances is considered.

For the HillClimber method the performance seems to be affected by the parameter
controlling the local search iteration limit, favouring longer iteration cycles. However the
pairwise comparison of proportions is inconclusive at the 0.01 significance level.

Regarding PartialCol and TabuCol, the default parameter configuration performed better
than the alternative one when the whole instance space is considered, suggesting that the
default reactive mechanism proposed by Blöchliger and Zufferey (2008) does bring a benefit
in general.

From a global perspective, the HEA method performed better than the other methods,
particularly when using a parameter configuration different from the default. Regarding the
two crossover operators tested, the default (GPX) has overall performance marginally better
than the alternative (GPX + Kempe).

5.2 Performance according to regions of the instance space

In this section a multidimensional analysis is conducted on the experimental data in order to
verify the hypothesis that selecting and tuning the heuristic methods according to features of
the problem instance can yield superior performance than the overall best results described
in Section 5.1.

5.2.1 Proportion of best solutions found

Tables 4 and 5 present the number of best solutions found by each algorithm in “slices” of the
instance space according to the dimensions (problem features) σCB and E(G) respectively.
The best result in each column is highlighted in red, and light grey cells indicate the results
that were not significantly different from the best result, based on the pairwise comparison
of proportions, relative to the total number of instances in that column.

The distribution of the grey cells along these two dimensions suggest the existence
of specific regions of the instance space where parameter tuning may yield superior
performance. Analysing the data in Table 4, it seems that the HillClimber method performs

Evaluating the influence of parameter setup on performance of heuristics 13

AntCol/2 AntCol/32

0.001 0.1 10 1,000 0.001 0.1 10 1,000

0

5

10

(a) AntCol

HillClimber/1000 HillClimber/10000

0.001 0.1 10 1,000 0.001 0.1 10 1,000

0

5

10

(c) HillClimber

HEA/8/4/GPX HEA/16/10/GPX

0.001 0.1 10 1,000 0.001 0.1 10 1,000

0

5

10

(d) HEA

PartialCol/Reactive TabuCol/Reactive

0.001 0.1 10 1,000 0.001 0.1 10 1,000

0

5

10

(b) PartialCol & TabuCol

Distance

0 (0,0.01] (0.01,0.1] >0.1

Figure 2 Performance of some algorithms, in terms of solution distance, compared in a
two-dimensional space.

well on extremely low values of σCB (< 1). In this particular range of σCB , HillClimber
seems to be relatively insensitive to the IHC parameter, with a small advantage for IHC =
100. Although several parameter configurations of HEA show a performance similar to
HillClimber, the former is more sensitive to parameter configuration changes, since some
of its configurations (including the best overall performer) are significantly worst than any
variant of HillClimber.

Table 4 shows that HEA clearly has an advantage over a wide range of values of the
σCB dimension. For some ranges of this dimension, clear favourable parameter values
can be pointed to. However, at higher values of σCB both TabuCol and HEA show good
performance for some parameter values.

In contrast, Table 5 shows that HEA performance becomes more sensitive to parameter
tuning as E(G) increases, with specific parameter values being favoured. This advantage
on high energy instances (E(G) > 8) is also clear when comparing HEA to other methods.

5.2.2 Spatial distribution of solution distances

Fig. 2 shows the distribution of problem instances in a two dimensional space determined by
the featuresσCB (horizontal axis, log scale) and E(G) (vertical axis, linear scale). In this two
dimensional space each problem instance is colour-coded according to the performance of
the algorithms to obtain a “footprint” indicating where each one performs best. The colour
code represents ranges of solution distances, as defined by Eq. 1. Green colour means that
χ(G) has been reached. Only the default and overall best performing parameters for each
method are shown.

Fig. 2 (a) compares AntCol’s default parameter with its best observed parameter setup.
We see that its footprint is extended to a larger portion of the instance space using parameter
values different to the default ones. Similarly, HEA footprint is also stretched relatively to
the default, as shown in Fig. 2 (d). Indeed the alternative parameter configuration shows

14 P. Neis and R. Lewis

Table 4 Number of best solutions found, broken down by different ranges of σCB

σCB

Method Params [0,1) [1,5) [5,10) [10,20) [20,50) [50,100) [100,+)

1 647 350 163 100 53 31 64
2 657 401 222 174 144 62 81
16 667 491 415 471 460 296 364
32 673 509 410 461 449 317 490

AntCol

64 669 501 389 392 432 328 584
Reactive 692 508 376 360 505 417 824TabuCol
Dynamic 599 513 354 346 508 418 787
Reactive 631 436 310 312 467 392 782PartialCol
Dynamic 604 422 273 282 460 393 769
100 838 461 215 187 238 240 597
500 826 453 203 202 248 258 638
1000 816 446 208 201 260 271 663
5000 808 428 209 211 273 291 694

HC

10000 815 428 202 206 275 291 708
1/4/GPX 741 464 253 275 377 336 782
1/4/GPX+ 801 498 269 269 397 348 782
1/10/GPX 755 469 305 373 551 388 791
1/10/GPX+ 797 505 309 361 563 409 796
1/40/GPX 749 465 331 367 530 411 810
1/40/GPX+ 776 496 341 383 533 388 752
8/4/GPX 763 572 587 746 825 468 819
8/4/GPX+ 823 597 547 669 656 416 806
8/10/GPX 778 569 499 598 712 456 829
8/10/GPX+ 806 586 509 572 639 401 792
8/40/GPX 775 524 401 435 559 410 834
8/40/GPX+ 800 540 405 437 524 372 806
16/4/GPX 772 602 543 646 734 449 824
16/4/GPX+ 818 615 484 520 573 396 806
16/10/GPX 779 575 480 542 657 441 827
16/10/GPX+ 814 586 461 503 566 389 805
16/40/GPX 790 544 383 417 530 408 832
16/40/GPX+ 802 542 378 393 490 372 811
32/4/GPX 783 602 481 530 638 430 824
32/4/GPX+ 821 599 427 442 517 386 818
32/10/GPX 783 573 438 472 598 416 837
32/10/GPX+ 810 587 409 421 501 382 818
32/40/GPX 792 548 366 377 500 394 842
32/40/GPX+ 810 553 353 358 459 367 834
64/4/GPX 787 582 436 450 566 417 824
64/4/GPX+ 816 599 399 377 508 391 827
64/10/GPX 786 561 406 405 537 413 831
64/10/GPX+ 805 566 376 379 491 384 832
64/40/GPX 795 547 359 357 487 391 849

HEA

64/40/GPX+ 804 551 342 342 460 380 843

Total Instances 949 757 794 978 1034 557 961

Evaluating the influence of parameter setup on performance of heuristics 15

Table 5 Number of best solutions found, broken down by different ranges of E(G)

E(G)
Method Params [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,10) [10,11) [11,12) [12,13) [13,14)

1 106 264 246 209 171 171 127 43 26 18 9 4 4 10
2 106 265 303 275 225 234 157 75 32 21 10 7 10 21
16 106 351 575 547 334 343 245 185 154 113 66 53 50 42
32 108 408 621 576 342 368 273 206 181 130 64 21 8 3

AntCol

64 115 460 650 583 356 385 277 208 154 72 22 8 3 2
Reactive 59 595 875 641 388 416 306 191 110 56 28 14 3 0TabuCol
Dynamic 56 583 853 585 351 390 302 172 97 62 37 20 14 3
Reactive 56 580 859 624 349 370 259 131 53 37 10 2 0 0PartialCol
Dynamic 56 575 852 601 335 347 239 97 43 34 12 5 4 3
100 159 661 846 557 218 166 83 38 18 16 8 3 1 2
500 160 659 858 600 243 154 73 35 18 14 9 3 0 2
1000 158 661 859 613 246 171 76 40 16 13 9 2 0 1
5000 159 660 853 645 273 176 78 34 13 13 7 2 0 1

HC

10000 160 656 850 656 285 175 76 33 12 12 7 2 0 1
1/4/GPX 161 671 854 598 306 286 167 64 31 29 16 7 12 26
1/4/GPX+ 159 667 856 649 339 315 200 81 35 27 13 4 6 13
1/10/GPX 159 670 851 610 309 319 204 115 66 56 40 62 99 72
1/10/GPX+ 159 673 856 640 335 340 252 125 78 58 42 60 79 43
1/40/GPX 162 670 855 635 328 329 239 128 104 112 90 11 0 0
1/40/GPX+ 162 671 860 615 334 360 253 133 122 102 57 0 0 0
8/4/GPX 163 673 858 631 347 377 300 205 206 197 202 249 220 152
8/4/GPX+ 163 673 865 673 358 388 314 209 193 168 189 167 94 60
8/10/GPX 162 676 866 643 356 403 320 231 232 242 209 90 11 0
8/10/GPX+ 162 673 865 654 361 399 315 236 233 218 159 30 0 0
8/40/GPX 163 673 866 659 361 406 307 214 187 87 14 1 0 0
8/40/GPX+ 161 674 869 654 366 395 294 219 170 69 12 1 0 0
16/4/GPX 162 674 862 631 357 393 313 230 233 217 185 172 94 47
16/4/GPX+ 161 672 867 668 374 398 317 224 197 148 112 56 15 3
16/10/GPX 164 674 867 642 364 409 332 239 248 212 120 28 2 0
16/10/GPX+ 163 675 873 657 366 398 322 232 210 155 63 10 0 0
16/40/GPX 164 675 872 658 379 411 316 217 149 49 11 3 0 0
16/40/GPX+ 163 672 870 658 369 385 304 205 121 28 10 3 0 0
32/4/GPX 163 671 864 641 369 404 323 233 210 182 134 64 21 9
32/4/GPX+ 163 676 871 670 378 410 315 201 138 106 63 15 3 1
32/10/GPX 165 676 871 648 376 417 327 238 200 137 52 8 1 1
32/10/GPX+ 165 673 871 665 373 396 306 210 149 87 25 6 1 1
32/40/GPX 164 672 873 658 384 404 313 194 108 32 12 3 1 1
32/40/GPX+ 164 675 871 664 381 392 292 169 80 29 12 3 1 1
64/4/GPX 165 675 866 639 374 401 328 217 175 124 66 26 4 2
64/4/GPX+ 164 673 874 673 394 402 310 199 118 72 27 8 2 1
64/10/GPX 162 674 869 654 377 407 315 205 150 92 25 7 1 1
64/10/GPX+ 160 673 874 670 389 397 299 187 106 51 20 5 1 1
64/40/GPX 163 673 872 664 387 410 302 180 80 32 15 5 1 1

HEA

64/40/GPX+ 165 673 875 666 392 392 288 157 63 31 13 5 1 1

Total Instances 167 687 906 772 494 537 424 331 336 328 309 314 252 173

16 P. Neis and R. Lewis

[0
,1
)

[1
,2
)

[2
,3
)

[3
,4
)

[4
,5
)

[5
,6
)

[6
,7
)

[7
,8
)

[8
,9
)

[9
,1
0)

[1
0,
11
)

[1
1,
12
)

[1
2,
13
)

[1
3,
14
)

0

20

40

60

Fa
ilu
re
 ra
te
 (%
)

61.43 %

0.00 %

(a) AntCol failures by energy

<
0.
1

[0
.1
,0
.2
)

[0
.2
,0
.3
)

[0
.3
,0
.4
)

[0
.4
,0
.5
)

[0
.5
,0
.6
)

[0
.6
,0
.7
)

[0
.7
,0
.8
)

[0
.8
,0
.9
)

>
0.
9

0

50

100

Fa
ilu
re
 ra
te
 (%
)

89.11 %

0.00 %

(b) AntCol failures by density

[0
,1
)

[1
,2
)

[2
,3
)

[3
,4
)

[4
,5
)

[5
,6
)

[6
,7
)

[7
,8
)

[8
,9
)

[9
,1
0)

[1
0,
11
)

[1
1,
12
)

[1
2,
13
)

[1
3,
14
)

0

20

40

60

Fa
ilu
re
 ra
te
 (%
)

66.47 %

0.00 %

(c) TabuCol/PartialCol failures by energy

<
0.
1

[0
.1
,0
.2
)

[0
.2
,0
.3
)

[0
.3
,0
.4
)

[0
.4
,0
.5
)

[0
.5
,0
.6
)

[0
.6
,0
.7
)

[0
.7
,0
.8
)

[0
.8
,0
.9
)

>
0.
9

0

5

10

Fa
ilu
re
 ra
te
 (%
)

12.85 %

0.00 %

(d) TabuCol/PartialCol failures by density

LS Iterations
1

2

16

32

64

PartialCol/Dynamic

PartialCol/Reactive

TabuCol/Dynamic

TabuCol/Reactive

Figure 3 AntCol, TabuCol and PartialCol algorithm failures according to instance properties

a clear advantage in the high E(G) and medium σCB region, consistently with the results
reported in Tables 4 and 5.

HillClimber on the other hand has no visual improvement, since the gain relative to the
default parameter is less than one per cent, according to Table 3. Similarly TabuCol and
PartialCol also showed no improvement under the alternative parameter setups, therefore
Fig. 2 (b) shows the footprints of both using the default tabu strategy.

5.2.3 Algorithm failures

The algorithm failure rate may be an important performance measure, particularly if it
could be linked to problem instances showing specific features. A given algorithm may
show high failure rates, and therefore a “weakness”, in certain regions of the instance space
where some other algorithm may be more successful. Therefore, this measure might also be
used as a “tie breaker” in case other performance measures cannot conclusively point to a
favourable algorithm. Additionally, identifying particular feature values that lead to a poor
performance of a given method provides the algorithm’s designer or developer with hints of
where to start looking for improvements or bug fixes to his/her design or implementation.
In this section only the features E(G) (energy) and ρ(G) (density) are shown, since they
provide a better separation into regions of high failure rates.

Fig. 3 (a) and (b) show the failure rate of AntCol along the dimensions E(G) and ρ(G),
respectively. The data suggests that AntCol has a surprisingly high failure rate with instances
of low energy and low density. The reasons for the high failure rate observed with this
AntCol implementation requires further investigation.

Fig. 3 (c) and (d) show the failure rate of TabuCol and PartialCol. TabuCol shows high
failure rate on problem instances whose E(G) range is below 2, regardless of TTC value.
However, with instances above this threshold the failure rate is very low. Along the ρ(G)
dimension the separation is not so good; however it can be seen that both high and low
density regions show high failure rate. PartialCol behaves similarly to TabuCol.

Evaluating the influence of parameter setup on performance of heuristics 17

[0
,1
)

[1
,2
)

[2
,3
)

[3
,4
)

[4
,5
)

[5
,6
)

[6
,7
)

[7
,8
)

[8
,9
)

[9
,1
0)

[1
0,
11
)

[1
1,
12
)

[1
2,
13
)

[1
3,
14
)

0

2

4

Fa
ilu
re
 ra
te
 (%
)

4.790 %

0.000 %

HEA/1/4/GPX+Kmp

 HEA/32/10/GPX

HEA/16/10/GPX

(c) HEA failures by energy

<
0.
1

[0
.1
,0
.2
)

[0
.2
,0
.3
)

[0
.3
,0
.4
)

[0
.4
,0
.5
)

[0
.5
,0
.6
)

[0
.6
,0
.7
)

[0
.7
,0
.8
)

[0
.8
,0
.9
)

>
0.
9

0

1

2

3

4

Fa
ilu
re
 ra
te
 (%
)

4.198 %

0.185 %

(d) HEA failures by density

[0
,1
)

[1
,2
)

[2
,3
)

[3
,4
)

[4
,5
)

[5
,6
)

[6
,7
)

[7
,8
)

[8
,9
)

[9
,1
0)

[1
0,
11
)

[1
1,
12
)

[1
2,
13
)

[1
3,
14
)

0

2

4

6

Fa
ilu
re
 ra
te
 (%
)

5.389 %

0.000 %

(a) HillClimber failures by energy

<
0.
1

[0
.1
,0
.2
)

[0
.2
,0
.3
)

[0
.3
,0
.4
)

[0
.4
,0
.5
)

[0
.5
,0
.6
)

[0
.6
,0
.7
)

[0
.7
,0
.8
)

[0
.8
,0
.9
)

>
0.
9

0

2

4

6

Fa
ilu
re
 ra
te
 (%
)

5.725 %

0.176 %

(b) HillClimber failures by density

LS Iterations
100

500

1000

5000

10000

Figure 4 HillClimber and HEA algorithm failures according to instance properties

Fig. 4 compares the failure rate of HEA and HillClimber. These methods show fairly
low failure rate of less than 6% in the worst case, regardless of the parameter tuning. Along
the ρ(G) dimension the separation is not so clear; however, the extremely low values of
ρ(G) that were associated with high failure of the previous three methods seem to present
no problems for HEA and HillClimber.

5.2.4 Dynamic behaviour

We now consider the behaviour of the algorithms during execution. Fig. 5 depicts the
average solution distance (DB) according to the number of constraint checks performed.
Here the instance space is partitioned into four energy ranges, and the averageDB across all
instances in each range is represented. Each line corresponds to one algorithm, and different
colours correspond to different heuristic methods. Logarithmic scales are used in both axes
to reinforce the differences.

Apparently, for low energy instances (E(G) < 2, Fig. 5 (a)), the algorithms converge
quickly with little improvement after the 107 constraint checks limit. In particular, AntCol,
TabuCol and PartialCol are completely stagnated beyond 108 checks, suggesting that
they could have been executed using 100 times less resources and yet reach the same
results. These three methods show considerably larger average distance in this energy
range. This can be traced back to the high failure rate of these algorithms in this
energy range, shown in Fig. 3. At the final stage of execution, HEA with the parameter
combination {IHE=32,PHE=10,XHE=GPX} has reached the smallest average distance
for instances below the energy threshold of 2, suggesting that this combination has the
best average performance for this set of problem instances. The grey band in Fig. 5 (a)
shows the interval where the Friedman pairwise comparison was inconclusive at 0.01
significance level. The comparison is performed using the set of distances reached by each
algorithm in every problem instance after 5× 1010 constraint checks. In other words, the
performance of HEA using parameter setting {IHE=32,PHE=10,XHE=GPX} cannot be
conclusively distinguished from any other setting of the HEA or HillClimber methods

18 P. Neis and R. Lewis

1e5 1e6 1e7 1e8 1e9 1e10 1e10+

0.02

0.05

0.1

0.2

0.5

1

D
is
ta
nc
e

Min(HEA 32/10/GPX):0.0144

Significance (0.01)

Min(HEA 32/10/GPX):0.0144

Significance (0.01)

(a) Energy [0,2)

1e5 1e6 1e7 1e8 1e9 1e10 1e10+

0.01

0.02

0.05

0.1

0.2

0.5

1

D
is
ta
nc
e

Min(TabuCol Reactive):0.0099

Significance (0.01)

Min(TabuCol Reactive):0.0099

Significance (0.01)

(b) Energy [2,7)

1e5 1e6 1e7 1e8 1e9 1e10 1e10+

0.02

0.05

0.1

0.2

0.5

1

D
is
ta
nc
e

Min(AntCol 32):0.0183

Significance (0.01)

Min(AntCol 32):0.0183

Significance (0.01)

(c) Energy [7,10)

1e5 1e6 1e7 1e8 1e9 1e10 1e10+

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

D
is
ta
nc
e

Min(HEA 8/4/GPX):0.0044

Significance (0.01)

Min(HEA 8/4/GPX):0.0044

Significance (0.01)

(d) Energy [10,14)

AntCol HEA HillClimberPartialCol TabuCol

Figure 5 Average solution distance along algorithm execution for different energy ranges

and the corresponding parameters experimented with. However HEA’s performance is
significantly different from the performance of AntCol, TabuCol and PartialCol, regardless
of their parameter tuning.

In the energy range E(G) ∈ [2, 7), shown in Fig 5 (b), there are some signs of search
stagnation for some algorithms. TabuCol with the default TTC=Reactive tabu strategy
reaches the smallest average distance. The grey band represents the region where the
Friedman pairwise comparison was inconclusive, suggesting that, for some parameter
configurations, HEA may have similar performance to TabuCol. However, the smallest
distance reached by TabuCol can be linked, at least partially, to the higher success rate of
TabuCol in this region when compared to other methods, as demonstrated in Figs. 3 and 4.

In the region shown in Fig. 5 (c), where graph energy ranges from [7, 10), there is no
sign of search stagnation, suggesting that perhaps better solutions would be obtained if
these instances were granted further execution time. At the end of the 5× 1010 constraint
checks AntCol reaches the smallest average distance using the IAC=32 iteration limit. The
Friedman pairwise comparison is inconclusive in the grey band, suggesting that TabuCol
with TTC=Reactive, some configurations of HEA parameters, and other AntCol parameters
may have similar performance. It is, however, interesting to notice that the default AntCol
parameter (IAC=2) falls outside the band, presenting good evidence that, for this method,
parameters different from the default one perform better in this region.

At the highest energy region shown in Fig. 5 (d), which comprises instances for which
E(G) > 10, there are no signs of stagnation, once again suggesting the possibility of
improving solution quality via increased run times. This upper energy region clearly favours
HEA, using parameter set {IHE=8, PHE=4, XHE=GPX}. The grey band illustrates the
region where the Friedman pairwise comparison is inconclusive. In this case, only two
other configurations of HEA parameters, namely {IHE=8,PHE=4,XHE=GPX+Kmp} and
{IHE=16, PHE=4, XHE=GPX}, fall inside the band, none of them being the default.

Other problem instance features like σCB and ρ(G) also appear to have influence on
the dynamic behaviour of the algorithms. Extreme values of both σCB and ρ(G) (low and

Evaluating the influence of parameter setup on performance of heuristics 19

high) apparently require less runtime than intermediate values. On the other hand, E(G)
appears to have a more linear influence (i.e.: low E(G) requires less resources, while high
E(G) requires more), therefore the analysis presented here is focused solely on the energy.

In summary, it seems that the necessary runtime demanded by the algorithms in order
to converge or stagnate can be estimated based on instance features, particularly the
energy. For extremely low energy graphs (E(G) < 2) it seems that a runtime limit as low
as 108 constraint checks would suffice, since little improvement is observed after that.
Intermediate values of this feature (E(G) ∈ [2, 7)) suggest that most algorithms would be
already stagnating at 1010 constraint checks. However, the appropriate runtime required
by higher energy instances (E(G) > 7) cannot be determined from the data collected in
the experiments described here. Further experiments, possibly requiring high volumes of
computational resources would have to be conducted to clarify this point.

5.3 Making an informed decision on the best algorithm for each problem instance

The combination of the σCB and E(G) dimensions may reveal even more information about
which specific instance pockets are more favourable to certain parameter configurations. In
this section a simple methodology for selecting the best performing algorithm for specific
regions of the instance space is adopted. It consists of slicing the two dimensional instance
space defined by σCB and E(G), arbitrarily creating a 3× 4 grid composed of 12 regions.
For each region, shown in Fig. 6, the best performing algorithm is chosen based on the
frequency of the best known solutions found. These frequencies are then shown in Fig.
6, represented as the number of problem instances for which the algorithm associated to
the respective region reached χ(G) over the total instances in that region. Occasional ties
between algorithms are resolved by looking at the distance and algorithm failure metrics.

Summarising, the best overall performing method shown in Table 3, considering only
default parameters, was HEA, reaching χ(G) for 70.1% of the instances. If tuned parameter
configurations are taken into account, then the best overall choice (HEA, IHE = 8, PHE =
4, XHE = GPX) would have reached χ(G) in 78.8% of the instances. On the other hand,
if the algorithms were selected based on problem instance features according to Fig. 6,
the best known solution would have been reached for 83.2% of the instances. That would
amount to about 13% of the graphs being coloured using fewer colours, compared to the
best overall method using the default parameters.

For the sake of comparison, in the work of Smith-Miles et al (2014) a powerful machine
learning technique is used to predict the regions of the instance space where each heuristic
method would perform best. That approach is reported to have an accuracy ranging from
73% to 90%, depending on the method under consideration, being 82% for HEA specifically.
The simple slicing approach described here has pointed to an algorithm that would have
reached χ(G) for 98% of the instances in some regions (E(G) < 2), but would have fairly
poor performance (38%) in extreme regions ({E(G) > 10} ∩ {σCB < 5}). Since only 50
instances of those available actually fall in that region (less than 1% of the total), this may
not be enough to actually point to a clear favourite algorithm.

On the other hand, the remaining higher energy region ({E(G) > 10} ∩ {σCB ≥ 5},
containing around 1,000 instances) is dominated by the HEA method with a specific
parameter set, reachingχ(G) in more than 80% of the instances. This result seems to conflict
with the findings of Smith-Miles et al (2014), which stated that extreme values of energy
are more favourable to the AntCol method, outperforming HEA – at least when the default

20 P. Neis and R. Lewis

0.001 0.01 0.1 1 10 100 1,000 10,000
Standard deviation of betweeness centrality

0

2

4

6

8

10

12

14

E
ne
rg
y

2

7

5 100

10

19/50
HEA/8/4/GPX

804/998
HEA/8/4/GPX

8/11
HEA/8/4/GPX

121/212
AntCol/32

577/772
HEA

16/10/GPX

1,291/1,479
HEA

16/10/GPX

112/114
HEA

16/10/GPX

853/1,029
HillClimber/100

407/415
HEA/16/10/GPX

508/625
TabuCol/Reactive

319/325
HEA/16/10/GPX

AntCol/32

HEA/8/4/GPX

HEA/16/10/GPX

HillClimber/100

TabuCol/Reactive

Algorithm

Figure 6 Distribution of the best performing algorithms based on two proposed features of the
instance space.

parameters are used. The results of this experiment however suggest that a proper parameter
setup can circumvent the apparent weakness of HEA in that particular region.

One important consideration is that the association of algorithms with regions of the
instance space proposed here is valid for the particular computational resource budget
(iteration limit) used in this experiment. As shown in Fig. 5, evidence suggests that, at least
for certain regions of the instance space, the algorithms would exhibit further improvement
in solution quality if allowed to run longer. In this case, it is also possible that the rank of
best performers would be affected, but this issue requires further investigation.

6 Conclusions and Future Work

This paper has evaluated the effects of parameter tuning on a collection of heuristic
methods for the graph colouring problem. Specific values of problem instance features have
been associated with specific parameter configurations exhibiting superior performance.
Three relevant features of the graphs influencing the heuristics performance under different
parameter configurations have been identified: standard deviation of betweenness centrality,
energy, and graph density.

Over 6,000 problem instances with diverse feature values were used to evaluate the
performance of five heuristic methods and different parameter configurations, resulting in
over 260,000 algorithm executions. The results strongly suggest that selecting and tuning
the heuristics according to the features of problem instances leads to an average superior

Evaluating the influence of parameter setup on performance of heuristics 21

performance when compared to any single algorithm applied to the whole instance space.
Applying simple criteria for partitioning the instance space into regions and associating
one specific method and parameter values to each region has lead to a 13% increase in the
number of best solutions found when compared to the default setup of HEA, which is the
method regarded as the best overall performer among the set of heuristics used in this work
(Lewis et al, 2012; Smith-Miles et al, 2014).

Concerning the particular region of the instance space composed of high energy graphs,
a considerably superior performance is obtained by using HEA under a specific parameter
configuration different from the default one. In a previous work (Smith-Miles et al, 2014)
HEA has been regarded as relatively weak in this region of the instance space, at least
when using the default setup. We may also conclude that HEA shows a more robust overall
performance when using one particular set of parameters among those we have experimented
with. The "8/4/GPX" combination appears to be superior to any other single combination
of HEA parameters. Our observation highlights the powerful effect of parameter tuning in
heuristic methods, which has not been thoroughly explored by those previous works.

The performance of other methods has also been strongly influenced by parameter
tuning, potentially increasing manyfold the performance measure values relative to the
default parameter configuration (like the case of AntCol method). A similar conclusion has
been previously reported for linear solvers (Hutter et al, 2013). On the other hand, the tabu
search and hill climbing-based heuristics have been shown to be more robust regarding
parameter tuning, at least with respect to the features considered in this work.

Additionally, a metric of algorithm failure rate has been applied to identify regions of
the instance space where the algorithms fail to produce feasible candidate solutions. The
AntCol method shows surprisingly high failure rates with low density instances (ρ(G) <
0.3), particularly when using low iteration limits. TabuCol and PartialCol show high failure
rates with low energy instances (E(G) < 2), regardless of the tabu strategy adopted.

Another important contribution of this work is the assessment of the
convergence/stagnation speed of the heuristic methods and the computational burden
required to solve a given problem instance. We have presented evidence that this strongly
depends on certain problem instance features, especially the energy, regardless of the
heuristic method being used. We believe that an approach for estimating resource budget
demanded by a given GCP instance based on its features could be established; however,
detailing and validating that approach would demand additional research.

In summary, the human-interpretable knowledge extracted from the experimental results
described in this paper can be promptly used by practitioners to fine tune their methods.
It can also help algorithm designers to identify and address weaknesses in their designs or
implementations, like the high algorithm failure rates observed for certain methods when
applied to problem instances exhibiting very specific features.

Regarding future work, it would be useful to investigate: (i) The tuning of other
parameters not externally accessible in the software suite used in this work, but inherent to
the underlying metaheuristics like Ant Colony (e.g. α and β, etc.), which could improve
even further the performance in specific regions of the instance space; (ii) The issue of high
failure rate of some algorithms in specific regions of the instance space, which may point
to either pitfalls in the algorithm design or to problems in the software implementation;
(iii) The application of machine learning techniques to extract models that could be useful
for selecting and tuning the heuristic methods applied to the GCP; (iv) An extension of the
analysis to other combinatorial optimisation problems and associated heuristic methods.

22 P. Neis and R. Lewis

Note

1Incumbent solution, as defined by Hoos and Stützle (2005), is the best candidate solution found at
a given execution stage of an algorithm.

2We tried to reproduce an instance set as similar as possible to the one used in the experiments
of Smith-Miles et al (2014). Some of the instances were downloaded from the web, some were
generated following the descriptions provided in (Smith-Miles et al, 2014) and (Lewis et al, 2012),
while others were provided to us by the corresponding authors of these two papers.

3The scrips used for instance generation can be downloaded from http://www.rhydlewis.
eu/resources/gColParam.zip. They are meant to be used with the Culberson’s Generator
(Culberson, 2002) and Networkx (https://networkx.github.io/)

4The software suite is available at http://www.rhydlewis.eu/resources/gCol.zip.
5Both these strategies consist in on-line parameter tuning techniques already built into the original
implementation.

6Values of φ and η are are alternated during the search in the range of [500; 10, 000] and [5; 15]
respectively.

7This is the definition used by Smith-Miles et al (2014). Other references define it as “the sum of the
absolute values of the eigenvalues of the adjacency matrix”(Balakrishnan, 2004).

8A dataset containing the experimental data is available at http://www.rhydlewis.eu/
resources/gColParam.zip

9https://www.debian.org/
10https://www.gnu.org/software/parallel/

References

Andersson M, Bandaru S, Ng AH (2016) Tuning of multiple parameter sets in evolutionary
algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference
2016, GECCO ’16, pp 533–540

Aranha C, Junior J, Kanoh H (2018) Comparative study on discrete si approaches to the graph
coloring problem. In: GECCO âŁ™18: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, Association for Computing Machinery, New York,
NY, USA, pp 81–82, DOI 10.1145/3205651.3205664

Balakrishnan R (2004) The energy of a graph. Linear Algebra and its Applications
387:287 – 295, DOI http://dx.doi.org/10.1016/j.laa.2004.02.038, URL http://www.
sciencedirect.com/science/article/pii/S0024379504001259

Birattari M (2009) Tuning Metaheuristics: A Machine Learning Perspective, 1st edn.
Springer Publishing Company, Incorporated

Blöchliger I, Zufferey N (2008) A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Comput Oper Res 35(3):960–975, DOI 10.1016/j.cor.2006.05.014,
URL http://dx.doi.org/10.1016/j.cor.2006.05.014

Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters : design, innovation,
and discovery. Wiley series in probability and statistics, Wiley-Interscience

Culberson J (2002) A Graph Generator for Various Classes of k-Colorable Graphs.
URL http://webdocs.cs.ualberta.ca/~joe/Coloring/Generators/
generate.html

http://www.rhydlewis.eu/resources/gColParam.zip
http://www.rhydlewis.eu/resources/gColParam.zip
https://networkx.github.io/
http://www.rhydlewis.eu/resources/gCol.zip
http://www.rhydlewis.eu/resources/gColParam.zip
http://www.rhydlewis.eu/resources/gColParam.zip
http://www.sciencedirect.com/science/article/pii/S0024379504001259
http://www.sciencedirect.com/science/article/pii/S0024379504001259
http://dx.doi.org/10.1016/j.cor.2006.05.014
http://webdocs.cs.ualberta.ca/~joe/Coloring/Generators/generate.html
http://webdocs.cs.ualberta.ca/~joe/Coloring/Generators/generate.html

Evaluating the influence of parameter setup on performance of heuristics 23

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research 7:1–30

Dowsland KA, Thompson JM (2008) An improved ant colony optimisation heuristic
for graph colouring. Discrete Applied Mathematics 156(3):313 – 324, DOI http://dx.
doi.org/10.1016/j.dam.2007.03.025, URL http://www.sciencedirect.com/
science/article/pii/S0166218X07001321, combinatorial Optimization
2004CO2004

Eiben AE, Smit SK (2011) Evolutionary algorithm parameters and methods to tune them.
In: Autonomous search, Springer, pp 15–36, DOI 10.1007/978-3-642-21434-9_2, URL
http://dx.doi.org/10.1007/978-3-642-21434-9_2

Galinier P, Hao JK (1999) Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3(4):379–397, DOI 10.1023/A:1009823419804, URL
http://dx.doi.org/10.1023/A%3A1009823419804

Hardy B, Lewis R, Thompson J (2017) Tackling the edge dynamic graph
colouring problem with and without future adjacency information. Journal of
Heuristics DOI 10.1007/s10732-017-9327-z, URL https://doi.org/10.1007/
s10732-017-9327-z

Hertz A, Plumettaz M, Zufferey N (2008) Variable space search for graph coloring. Discrete
Appl Math 156(13):2551–2560, DOI 10.1016/j.dam.2008.03.022, URL http://dx.
doi.org/10.1016/j.dam.2008.03.022

Hoos H, Stützle T (2005) Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann Series in Artificial Intelligence, Morgan Kaufmann Publishers

Hutter F, Hoos H, Leyton-Brown K (2013) Identifying key algorithm parameters and
instance features using forward selection. In: Nicosia G, Pardalos P (eds) Learning and
Intelligent Optimization, Lecture Notes in Computer Science, vol 7997, Springer Berlin
Heidelberg, pp 364–381

Levine DM, Berenson ML, Stephan D, Krehbiel TC, Ng PT (2007) Statistics for Managers
Using Microsoft Excel (5th Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA

Lewis R (2009) A general-purpose hill-climbing method for order independent minimum
grouping problems: A case study in graph colouring and bin packing. Comput Oper Res
36(7):2295–2310, DOI 10.1016/j.cor.2008.09.004, URL http://dx.doi.org/10.
1016/j.cor.2008.09.004

Lewis R (2015) A Guide to Graph Colouring: Algorithms and Applications. Springer
International Publishing

Lewis R, Thompson J, Mumford C, Gillard J (2012) A wide-ranging computational
comparison of high-performance graph colouring algorithms. Comput Oper Res
39(9):1933–1950, DOI {10.1016/j.cor.2011.08.010}

Liu H, Motoda H (1998) Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, Norwell, MA, USA

http://www.sciencedirect.com/science/article/pii/S0166218X07001321
http://www.sciencedirect.com/science/article/pii/S0166218X07001321
http://dx.doi.org/10.1007/978-3-642-21434-9_2
http://dx.doi.org/10.1023/A%3A1009823419804
https://doi.org/10.1007/s10732-017-9327-z
https://doi.org/10.1007/s10732-017-9327-z
http://dx.doi.org/10.1016/j.dam.2008.03.022
http://dx.doi.org/10.1016/j.dam.2008.03.022
http://dx.doi.org/10.1016/j.cor.2008.09.004
http://dx.doi.org/10.1016/j.cor.2008.09.004

24 P. Neis and R. Lewis

Malaguti E, Monaci M, Toth P (2008) A metaheuristic approach for the vertex coloring
problem. INFORMS J on Computing 20(2):302–316, DOI 10.1287/ijoc.1070.0245, URL
http://dx.doi.org/10.1287/ijoc.1070.0245

Moalic L, Gondran A (2017) Variations on memetic algorithms for graph coloring problems.
Journal of Heuristics DOI 10.1007/s10732-017-9354-9, URL https://doi.org/
10.1007/s10732-017-9354-9

Pedersen TB, Jensen CS (2001) Multidimensional database technology. Computer
34(12):40–46, DOI 10.1109/2.970558, URL http://dx.doi.org/10.1109/2.
970558

Porumbel DC, Hao JK, Kuntz P (2010) An evolutionary approach with diversity guarantee
and well-informed grouping recombination for graph coloring. Comput Oper Res
37(10):1822–1832, DOI 10.1016/j.cor.2010.01.015, URL http://dx.doi.org/
10.1016/j.cor.2010.01.015

Rice JR (1976) The Algorithm Selection Problem. Advances in Computers 15:65–118

Smith-Miles K, Baatar D, Wreford B, Lewis R (2014) Towards objective measures of
algorithm performance across instance space. Comput Oper Res 45:12–24

Smith-Miles KA (2008) Towards insightful algorithm selection for optimisation using meta-
learning concepts. In: 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), pp 4118–4124

Smith-Miles KA (2009) Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput Surv 41(1):6:1–6:25, DOI 10.1145/1456650.1456656, URL
http://doi.acm.org/10.1145/1456650.1456656

Stützle T, Fernandes S (2004) New benchmark instances for the qap and the experimental
analysis of algorithms. In: Gottlieb J, Raidl G (eds) Evolutionary Computation in
Combinatorial Optimization, Lecture Notes in Computer Science, vol 3004, Springer
Berlin Heidelberg, pp 199–209, DOI 10.1007/978-3-540-24652-7_20, URL http://
dx.doi.org/10.1007/978-3-540-24652-7_20

Talbi EG (2009) Metaheuristics: From Design to Implementation. Wiley Publishing

Titiloye O, Crispin A (2011) Quantum annealing of the graph coloring problem. Discret
Optim 8(2):376–384, DOI 10.1016/j.disopt.2010.12.001, URL http://dx.doi.
org/10.1016/j.disopt.2010.12.001

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. Trans Evol
Comp 1(1):67–82

Wu Q, Hao JK (2012) Coloring large graphs based on independent set extraction. Comput
Oper Res 39(2):283–290, DOI 10.1016/j.cor.2011.04.002, URL http://dx.doi.
org/10.1016/j.cor.2011.04.002

http://dx.doi.org/10.1287/ijoc.1070.0245
https://doi.org/10.1007/s10732-017-9354-9
https://doi.org/10.1007/s10732-017-9354-9
http://dx.doi.org/10.1109/2.970558
http://dx.doi.org/10.1109/2.970558
http://dx.doi.org/10.1016/j.cor.2010.01.015
http://dx.doi.org/10.1016/j.cor.2010.01.015
http://doi.acm.org/10.1145/1456650.1456656
http://dx.doi.org/10.1007/978-3-540-24652-7_20
http://dx.doi.org/10.1007/978-3-540-24652-7_20
http://dx.doi.org/10.1016/j.disopt.2010.12.001
http://dx.doi.org/10.1016/j.disopt.2010.12.001
http://dx.doi.org/10.1016/j.cor.2011.04.002
http://dx.doi.org/10.1016/j.cor.2011.04.002

	Introduction
	Related Work
	Methodology
	Experiments' Description and Setup
	Problem and problem instances
	Heuristic methods and candidate algorithms
	Measuring performance
	Data analysis and performance comparison

	Results
	Overall algorithm performance across all problem instances
	Performance according to regions of the instance space
	Proportion of best solutions found
	Spatial distribution of solution distances
	Algorithm failures
	Dynamic behaviour

	Making an informed decision on the best algorithm for each problem instance

	Conclusions and Future Work

