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ABSTRACT 20 

The lack of distinct morphological features of cryptic species is a hard problem for 21 

taxonomy, especially when the taxa are closely related with considerable amounts of 22 

ancestral polymorphism. Lately, intensive coalescent-based analyses involving 23 

multiple loci have become the preferred method to assess the extent of genetic 24 

distinctivness in otherwise phenotypically similar populations. Previously, 25 

phylogenetic studies on Pachyhynobius shangchengensis uncovered five extremely 26 

deeply divergent clades, which suggested that this species may be a cryptic species 27 

complex. In this study, we used the complete mitochondrial genome data and samples 28 

from the entire range of stout salamander (Pachyhynobius), as well as publicly 29 

available mitochondrial genomes to assess species boundaries within this genus using 30 

a suite of diverse methodologies (e.g. general mixed Yule coalescent model, 31 

Automatic Barcode Gap Discovery). The phylogenetic relationships recovered two 32 

major groups within P. shangchengensis, with one group formed by four of the six 33 

extant populations and corresponding to the central and eastern range of the Dabie 34 

mountains, while the other group encompassed two other lineages in the north west of 35 

the Dabie mountain range. The species delimitation comparison within 36 

Pachyhynobius supported the presence of recognized species within the genus, and 37 

consensus was observed across methods for the existence of up to five cryptic species 38 

within what has been traditionally considered to be P. shangchengensis. While this 39 

implies the existence of four taxa in addition to the described P. shangchengensis 40 

species, morphological data and life history information are further required to 41 



contribute to the species definition. The observed pattern of genetic variation is likely 42 

the outcome of a discontinuous habitat combined with niche conservatism, which 43 

produced the sky-island effect observed in Pachyhynobius, and which led to 44 

formation of a hidden species diversity in this genus. 45 

 46 
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 49 

1. Introduction 50 

There is ongoing debate regarding numerous species concepts that emphasize 51 

different criteria for delimiting species (Aldhebiani, 2018; Hausdorf, 2011). 52 

Regardless of definition, accurate and objective species delimitation is extremely 53 

important as species are considered the fundamental unit in many fields such as 54 

biogeography, macroevolution, ecology and conservation biology (Agapow et al., 55 

2004; Sites and Marshall, 2003, 2004). Traditionally, species have been identified and 56 

described using qualitative or quantitative morphological features (Aldhebiani, 2018; 57 

Hausdorf, 2011). For some organisms, the description of independent evolutionary 58 

lineages appears to be straightforward due to the existence of diagnostic 59 

morphological features that represent different selection trajectories or differences 60 

that may have resulted from genetic drift after long-term isolation (Lande, 1976). 61 

However, for many organisms, especially those with non-visual mating approaches 62 

(Bickford et al., 2007), if the diagnostic morphological features are subtle or even 63 



non-existent, species identification based solely on morphological differences may be 64 

problematic (Kajtoch et al., 2017; Kotsakiozi et al., 2018; Shirley et al., 2014). In 65 

addition, for some organisms, similar selection pressures or extreme environments 66 

may result in morphological features experiencing convergent evolution (Nevo, 2001). 67 

Morphological variation may be the result of phenotypic plasticity or short-term 68 

adaptation to local conditions (Dowle et al., 2015; Svanback and Eklov, 2006; 69 

Wagner et al., 2013), a process that further makes species delimitation by 70 

morphological differences challenging. Therefore, morphology-based taxonomy may 71 

relatively underestimate species number due to the presence of cryptic species, which 72 

provide opportunities and challenges for species delimitation based on phylogenetic 73 

data (Catarina et al., 2016; Giarla et al., 2014; Kotsakiozi et al., 2018; Sheridan and 74 

Stuart, 2018).  75 

With the development of species genetic delimitation, various methods have 76 

recently been proposed to assess the putative hidden species with evolutionary 77 

independence using phylogenetic data. The Bayes factor (BF) approach (Grummer et 78 

al., 2013) is based on the marginal-likelihood estimates (MLE) via path-sampling (PS) 79 

or stepping-stone sampling (SS) analyses to identify the most suitable species 80 

delimitation model across multiple simulated hypotheses (Fan et al., 2011; Li and 81 

Drummond, 2012; Xie et al., 2011). Similarly, the Bayesian Phylogenetics and 82 

Phylogeography (BPP) is a species-delimitation approach that simultaneously takes 83 

into account the phylogenetic uncertainty and stochastic lineage sorting in a dataset to 84 

estimate the posterior probability of species assignment, however, conditioning the 85 



species assignment to a single user-defined species tree (Yang and Rannala, 2010). 86 

BPP estimates the distribution of genealogies for each locus and by testing multiple 87 

permutations of the species tree it enables identifying the optimal species delimitation. 88 

Coalescent-based methods like the general mixed Yule coalescent model (GMYC) 89 

have become an important tree-based species-delimitation approach, although they are 90 

often applied to barcoding data, which may not be the most suitable loci for 91 

phylogenetic reconstruction (e.g. mitochondrial DNA genes) (Fujisawa and 92 

Barraclough, 2013; Fujita and Al, 2012; Leaché and Fujita, 2010; Pons et al., 2006). 93 

In GMYC models a maximum likelihood and an ultrametric gene tree is used to 94 

simulate the transition threshold between inter- and intra-specific branching patterns, 95 

with branching events older than the inferred threshold indicating speciation event, 96 

while younger ones represent coalescences within species. For GMYC the putative 97 

species number equals the number of lineages crossing the threshold. Similar to 98 

GMYC, the Poisson tree processes (PTP/bPTP) model is used to estimate the 99 

transition in branch lengths between versus within species (Zhang et al., 2013). PTP 100 

calculates the branching process by estimating the expected number of substitutions 101 

based on a nonparametric phylogenetic tree. Lastly, Automatic Barcode Gap 102 

Discovery (ABGD) employs a different approach, which distinguishes the partitions 103 

of the genetic distances among a group of individuals based on clustering algorithms 104 

and then infers a final array of putative species (Puillandre et al., 2012a). These 105 

species-delimitation methods have been successfully used to identify boundaries for 106 

species complexes of morphologically undistinguishable species suggesting that they 107 



are fairly robust to model assumptions (Blair and Bryson, 2017; Giarla et al., 2014; 108 

Kajtoch et al., 2017; Kotsakiozi et al., 2018; Sheridan and Stuart, 2018; Shirley et al., 109 

2014). 110 

The Shangcheng stout salamander (Pachyhynobius shangchengensis) 111 

(Hynobiidae, Caudata) is a stream salamander, narrowly distributed in high elevation 112 

areas in the Dabie Mountains in Eastern China, at the junction of Henan, Hunan and 113 

Anhui provinces (Fei et al., 2012). It is endemic to the cool and oxygen-rich mountain 114 

streams above 500 meters in elevation. Previously, the subadult of P. 115 

shangchengensis had been recognized as Hynobius yunanicus due to the different 116 

morphological characters (e.g. white spots on the back and smaller body size)  117 

(Nishikawa et al., 2010; Xiong et al., 2007). Currently, P. shangchengensis had been 118 

classified as Vulnerable (B1ab) by the IUCN 119 

(http://www.iucnredlist.org/details/59109/0) because of population decline resulting 120 

mainly from over-collection for human consumption and habitat loss driven by 121 

farming activities and human settlements (Fei et al., 2012). Previous phylogeographic 122 

studies of P. shangchengensis revealed strong evidence that deep genetic divergences 123 

existed among different lineages and that the divergence between clades occurred 124 

over one million years ago (Pan et al., 2014; Pan et al., 2019; Zhao et al., 2013). 125 

These findings strongly suggest that Pachyhynobius may represent a multispecies 126 

complex. Consequently, a comprehensive assessment of the species number 127 

contextualized with evolutionary history is necessary to disclose the species 128 

conservation status, which will contribute to the development of an effective 129 



management plan. 130 

Here, we sequenced the complete mitochondrial genomes of individuals from six 131 

regional populations across the entire range of P. shangchengensis, and used them to 132 

generate phylogenetic reconstructions of the mitochondrial gene tree. Beyond 133 

resolving the phylogenetic relationships in Pachyhynobius, the availability of 134 

complete mitochondrial genomes can provide sufficient information to reconstruct the 135 

evolution and timescale of changes in this genus. In addition, a series of 136 

species-delimitation methods were used to clarify species boundaries and to identify 137 

candidate species within the genus, Pachyhynobius.  138 

 139 

2. Materials and methods 140 

2.1. Ethics Statements 141 

In this study, the sample collection was performed by a long-term investigation 142 

project on amphibians of Dabie Mountains. This investigation project and the sample 143 

collection were approved by Anhui Tianma National Nature Reserve, Anhui Province, 144 

China. The relevant document of field permit is provided in the supplementary 145 

material. 146 

 147 

2.2. Sampling 148 

Samples of 35 individuals were collected from 16 locations during 2012-2015 in 149 

six isolated geographic areas representing the distribution range of P. 150 

shangchengensis: Jiaoyuan-Tanghui-Xiaolongtan (JTX, 7 individuals), 151 



Kangwangzhai- Huangbaishan-Jiufengjian (KHJ, 6 individuals), 152 

Mazongling-Wochuan (MW, 6 individuals), Tiantangzhai (TTZ, 8 individuals), 153 

Baimajian-Yaoluoping-Mingtangshan (BYM, 7 individuals) and Kujingyuan (KJY, 1 154 

individual; Fig. 1). We captured P. shangchengensis adults using dip nets and cut the 155 

tip of the tail (about 1 cm) prior to releasing them. All samples were preserved in 100% 156 

ethanol in the wild and then stored at -80°C until use. Total DNA was extracted from 157 

samples using a standard proteinase K/phenol-chloroform protocol (Sambrook et al., 158 

1989). The DNA extraction used EasyPure Purification Kit (TransGene Biotech, 159 

Beijing, China) to purify. 160 

 161 

2.3. PCR amplification 162 

The complete mitochondrial genomes were amplified with PCR using 163 

mitochondrial primers designed with Primer Premier version 5.0 based on the 164 

mitochondrial genomes of P. shangchengensis (NC008080) and Ranodon sibiricus 165 

(NC004021) (Table S1) (Clarke and Gorley, 2001). PCR reaction mixtures (25 μL) 166 

for each gene consisted of 1 μL total DNA (concentration 10-50 ng/μL), 2.5 μL 10× 167 

buffer, 1 μL of 2.5 mM MgSO4, 2 μL of 2 mM dNTPs, 1 U Taq polymerase 168 

(TransGene Biotech, Beijing, China), 0.3 mM of each primer and sufficient pure 169 

molecular biology grade water. The amplification protocol consisted of the following 170 

steps: an initial denaturation step of 95°C for 5 min, 32 cycles of denaturation at 95°C 171 

for 30 s, primer annealing at 53°C for 30 s and an extension at 72°C for 90 s, and a 172 

final extension at 72°C for 10 min. All PCR products were purified with a EasyPure 173 



Purification Kit, and sequenced on an ABI Prism 3730 automated sequencer using the 174 

BigDye Terminator v3.0 Ready Reaction Cycle Sequencing Kit (Applied 175 

Biosystems).  176 

 177 

2.4. Sequence data preparation 178 

Sequences were assembled with Seqman II (DNAStar, Madison, WI, USA) and 179 

visually inspected to ensure the accuracy of variable sites (Burland, 2000). BLAST 180 

search and translation test methods were employed to exclude the potential nuclear 181 

mitochondrial pseudogenes (Yao et al., 2008). Sequences were aligned using Clustal 182 

X version 2.0 (Larkin et al., 2007). The known complete mtDNA sequences of P. 183 

shangchengensis (NC008080) were used to identify protein-coding genes, and the 22 184 

tRNA genes were identified by tRNA Scan-SE version 1.21 185 

(http://lowelab.ucsc.edu/tRNAscan-SE 1.2.1). All assembled and annotated 186 

mitochondrial genomes were submitted to GenBank (MK890366-MK890400, Table 187 

S2). 188 

The complete mitochondrial genomes generated in this study and those of 189 

Hynobiidae publicly available in NCBI were used to reconstruct the phylogenetic tree 190 

between taxa without partitions using Bayesian methods and Maximum Likelihood 191 

(ML), with Andrias davidianus and A. japonicus as outgroups (Fig. 2). All 192 

alignment-ambiguous regions were removed to avoid erroneous phylogenetic 193 

hypotheses, and alignment gaps were analyzed as missing data. 194 

 195 



2.5. Mitochondrial phylogeny 196 

The best-fit DNA sequence evolution model of our dataset was estimated with 197 

jModeltest.0.1 using the Bayesian Information Criterion (BIC) to choose the most 198 

suitable model (Darriba et al., 2012). The Bayesian phylogenetic tree was inferred 199 

using MrBayes version 3.1.2 (http://mrbayes.csit.fsu.edu/index.php) (Huelsenbeck 200 

and Ronquist, 2001) and the best-fit model identified with jModeltest. Two 201 

independent runs of MrBayes’ Markov Chain Monte Carlo (MCMC) algorithm were 202 

performed to assess convergence of posterior probability distributions. The run 203 

parameters used were set 1 × 107 iterations of the MCMC algorithm sampled every 204 

1,000 iterations, and discarding the first 10% of the iterations as burn-in. An average 205 

standard deviation of split frequencies of 0.01 was used for checking model stability.  206 

RaxML version 8 (Stamatakis, 2014) was used to perform ML analyses with a 207 

general time reversible model of nucleotide substitution under the Gamma model of 208 

rate heterogeneity (i.e., GTRCAT), with 1000 bootstrap iterations to determine 209 

internal branch support of the best-scoring tree. 210 

 211 

2.6. Divergence-Time Analyses  212 

To estimate divergence times between different clades in Pachyhynobius, we 213 

used BEAST version 1.8.0 (Drummond et al., 2012) to calculate an ultrametric tree 214 

using as calibration points information (a, 157.1 Ma, 95% Highest Posterior Density 215 

[HPD] = 145.6 – 165.3 Ma; b, 135.1 Ma, 95% HPD = 120.2 – 150.3 Ma; c, 40.2 Ma, 216 

95% HPD = 34.5 – 46.2 Ma; Fig. 2) from a previous phylogenetic study of 217 



Hynobiidae (Chen et al., 2015). For this analysis, we used a relaxed uncorrelated log 218 

normal model of lineage variation, a Yule Process prior for the branching rates, and 219 

with a GTR + I + G model of sequence evolution (best selected model). Four 220 

replicates of the analysis were run for 1 × 107 generations with parameter and tree 221 

sampling every 1,000 generations, discarding the first 25% of BEAST’s MCMC 222 

iterations as burn-in. Convergence between runs was monitored using Tracer version 223 

1.6 (Rambaut et al., 2014) and ESS values indicative of adequate sampling (i.e. >200). 224 

The phylogenetic tree was generated and visualized with TreeAnnotator version 1.8.0 225 

(Rambaut and Drummond, 2010) and FigTree version 1.4.3 (Rambaut, 2016), 226 

respectively. The ultrametric tree without outgroups used for species delimitation was 227 

collected from this generated tree.  228 

 229 

2.7. Species delimitation 230 

We used SPLITSTREE version 4.13.1 (Huson and Bryant, 2006) to construct a 231 

phylogenetic network based on uncorrected p-distances with heterozygous 232 

ambiguities averaged and normalized, using the neighbor-net ordinary least squares 233 

variance and equal angle algorithm and 1,000 bootstrap replicates to assess branch 234 

support. We used several species delimitation models to determine the number of 235 

different species in our dataset. We used the BF approach (Grummer et al., 2013) to 236 

estimate the best fitting model to our dataset between alternative models (M1: 5 237 

species; M2: 4 species; M3: 3 species; M4: 1 species) defined by the estimates of 238 

population structure identified by the above phylogenetic tree. The MLE of each 239 



model was estimated and the BF between pairs of modes was calculated as BF = 2 × 240 

(MLE model1 – MLE model2)], with values for BF between 0 and 1 indicating very 241 

weak support for model 1 over 2, values between 1 and 3 indicating some support, 242 

albeit little, for model 1, values between 3 and 5 indicating strong support for model 1, 243 

and values > 5 indicating decisive support for model 1 (Kass and Raftery, 1995). . 244 

Two independent runs for each model were performed in *BEAST (Heled and 245 

Drummond, 2010) to assess convergence of the MCMC runs. *BEAST was run each 246 

time for 1 ×107 generations of the MCMC algorithm sampling every 1,000 247 

generations and discarding the first 25% of the iterations as “burn-in”.  The general 248 

parameter settings were a relaxed uncorrelated log normal model of lineage variation, 249 

a Yule Process prior for the branching rates, and with a GTR + I + G model of 250 

sequence evolution. For MLE analysis, the applied parameters were as follows: 1×106 251 

generations, sampling every 1,000 generations and default settings for the other 252 

parameters. The results of different runs were combined using LogCombiner. Based 253 

on the MLE results, the species tree of Pachyhynobius was determined. Convergence 254 

of all model parameters was assessed by examining the trace plots and histograms in 255 

Tracer. 256 

BPP version 3.0 was used to simulate the posterior probabilities of speciation 257 

events resulting in fewer or more lineages than the observed data using a reversible 258 

jump MCMC (rjMCMC) algorithm (Rannala and Yang, 2003; Yang and Rannala, 259 

2010). A guide tree to start the BPP analyses was generated from the species tree 260 

estimated with MrBayes. The root age (τ) and prior distributions of the ancestral 261 



population size (θ) can affect the posterior probabilities for the BPP models. Due to 262 

the lack of knowledge about these parameters in Pachyhynobius, we tested the effect 263 

of different prior values for τ and θ on the probabilities of posterior speciation. Three 264 

ranges for θ were used, i.e. large G(1, 10), middle ~G(1, 100) and small ~G(2, 2000) 265 

ancestral population size, and three ranges for τ representing divergences ranging 266 

from deep to shallow genealogies, i.e. ~ G(1, 10), τ ~ G(1, 100) and τ ~ G (2, 2000). 267 

BPP’s run parameters were set to 500,000 generations sampling every 50 steps and 268 

discarding the first 100,000 iterations as burn-in. Each BPP analysis of different 269 

combinations of θ and τ priors was run twice to test algorithm convergence. 270 

In addition to the Bayesian methods tested, we also applied three tree-based 271 

species-delimitation methods, namely the single-threshold General Mixed Yule 272 

Coalescent (sGMYC) (Pons et al., 2006; Tomochika and Barraclough, 2013), the 273 

multiple threshold GMYC (mGMYC) (Monaghan et al., 2009) and Bayesian 274 

implementation of the Poisson Tree Processes (bPTP) (Zhang et al., 2013). All three 275 

analyses were calculated using the online server (http://species.h-its.org/). BEAST’s 276 

ultrametric tree with an outgroup (R. sibiricus) was used for the sGMYC, mGMYC 277 

and bPTP models with default parameter settings in the server. The parameters of 278 

these three analyses were set as follows: 500,000 generations, a thinning of 500 and 279 

burn-in of 10%. Convergence of model was assessed by visualizing plots of MCMC 280 

iteration vs. log likelihood. Lastly, we used the computationally efficient 281 

distance-based species-delimitation method ABGD (Kekkonen and Hebert, 2014; 282 

Puillandre et al., 2012a; Puillandre et al., 2012b), which can quantify the barcode gap 283 



location that separates intra- from interspecific distances. During the calculation, 284 

default settings were used for the prior range for maximum intraspecific divergence 285 

(0.001, 0.1) and minimum slope increase (X) of 1.5 (default) and 1.0. Both JC69 and 286 

K80 corrected distances were used to compare species delimitation results. 287 

 288 

3. Results 289 

3.1. Sequences variability and trees construction 290 

The aligned mtDNA genome from Hynobiidae and outgroups consisted of 16,575 291 

bp nucleotide positions before trimming, and 16,553 bp after trimming. The trimmed 292 

data were used for genealogical reconstructions, including 8,105 constant and 8,378 293 

variable sites. This dataset yielded well-supported phylogenetic trees (BI and ML; Fig. 294 

2) with both reflecting the same topological structure previously identified for 295 

Hynobiidae (Chen et al., 2015; Zhang et al., 2006). All Pachyhynobius individuals 296 

formed a clade that internally presented five well supported groups (posterior 297 

probabilities = 1 and bootstrap support values = 100%), each representing a 298 

geographical area, namely JTX, KHJ, MW, TTZ and the two sampling areas that 299 

could not be genetically told apart, BYM and KJY (Fig. 2). These five lineages 300 

grouped forming two branches, one containing the JTX and KHJ lineages, and the 301 

other one the remaining 3 groups. The phylogenetic network of Pachyhynobius 302 

contained the same groupings observed with the phylogenetic methods (Fig. 3).  303 

The dating analyses of Hynobiidae suggested that the most recent common 304 

ancestor (MRCA) of Pachyhynobius dates to ~7.84 million years ago (Ma; 95% HPD 305 



= 5.62 – 13.09 Ma; Fig. 2). The MRCA of JTX and KHJ was ~3.19 Ma (95%HPD = 306 

1.93 – 5.47 Ma). The MRCA of BYM, MW and TTZ was estimated at ~5.92 Ma (95% 307 

HPD = 4.03 – 8.40 Ma), while the MRCA of MW and TTZ was ~3.25 Ma (95% HPD 308 

= 2.15 – 5.33 Ma).  309 

 310 

3.2. Species delimitation 311 

The Bayes Factor for the comparison between the five candidate species 312 

hypotheses and either the PS or SS hypotheses was larger than five, indicating that the 313 

5-species hypothesis was clearly better than the other two alternatives (Table 1). The 314 

BPP analysis supported the BF analysis, with all nine combinations of the values of 315 

the priors for τ and θ presenting a posterior probability of at least 0.99 for the 316 

hypothesis of 5 species (Table 2). The ABGD analysis suggested a total of five 317 

species based on initial partitioning over a range of prior values for the maximum 318 

intraspecific divergence observed (Fig. S1). However, as the divergence was reduced, 319 

the number of inferred species decreased to three with a maximum intraspecific 320 

divergence prior value (P) of 0.0055, or less if a lower threshold was allowed. The 321 

sGMYC model yielded 6 clusters and 7 entities. In contrast, the mGMYC model (i.e. 322 

several coalescent time values) shows 5 GMYC clusters and 7 entities (Fig. S2). bPTP 323 

also suggested a strikingly high number of Pachyhynobius species (5) with confidence 324 

intervals (4-7) from MCMC analyses (Fig. S3). Overall, the species tree (Fig. 4) was 325 

highly consistent with the mtDNA gene tree. 326 

Four out of six of the species-delimitation methods consistently identified five 327 



species, while the sGMYC and mGMYC identified more than five. The areas of KHJ 328 

and MW consistently presented one species per area. However, for both the sGMYC 329 

and mGMYC methods the TTZ area presented two candidate species, while the BYM 330 

area also presented two species with the sGMYC method, and the JTX area presented 331 

two species with the mGMYC method (Table 3). Average pairwise sequence 332 

divergence varied markedly among candidate species, from 1.8 % (JTX vs KHJ) to 333 

4.1% (KHJ vs MW) (Table 4). 334 

 335 

4. Discussion 336 

4.1. Species delimitation of Pachyhynobius 337 

Generally, one of the main criteria for species delimitation is reciprocal 338 

monophyly (Kizirian and Donnelly, 2004). In species delimitation, analytical methods 339 

of delimiting species that typically rely upon the genetic distances across lineages or 340 

the topological structure of a phylogenetic tree (Sites and Marshall, 2003, 2004) 341 

require subjective setting of the thresholds that demarcate the species boundary (Hey, 342 

2009). However, for recent speciation events, not all molecular markers are presumed 343 

to be reciprocally monophyletic across the phylogenetic tree (Fujita and Al, 2012; 344 

Hudson and Coyne, 2002). Recently, it has been possible to identify derived species 345 

before achieving reciprocal monophyly after species formation (Knowles and 346 

Carstens, 2007). In such cases where there is incomplete lineage sorting, 347 

coalescent-based species delimitation approaches can be calculated that do not require 348 

reciprocal monophyly of molecular markers or fixed differences (Fujita and Al, 2012; 349 



Leaché and Fujita, 2010). In recent years, these methods for species delimitation have 350 

been successfully applied to many animal groups, such as sap-green stream frog 351 

(Ranidae: Sylvirana) (Sheridan and Stuart, 2018), horned lizards (Phrynosomatidae: 352 

Phrynosoma) (Blair and Bryson, 2017), Kotschy's gecko (Gekkonidae, Mediodactylus) 353 

(Kotsakiozi et al., 2018), Slender-snouted crocodilian (Mecistops 354 

cataphractus)(Shirley et al., 2014), and Andean mouse opossums (Didelphidae: 355 

Thylamys)(Giarla et al., 2014). These many examples demonstrate that these methods 356 

are successful in delimiting species boundaries for species complexes or 357 

morphologically indistinguishable species. 358 

In this study we found that the inferred phylogenetic tree for the Chinese 359 

salamander Pachyhynobius using whole mitochondrial DNA sequences was 360 

consistent with previous phylogeographic analyses using single or multiple 361 

mitochondrial genes (Pan et al., 2014; Pan et al., 2019; Zhao et al., 2013), confirming 362 

the existence of five independent genetic clades within the genus. We found that two 363 

areas (KHJ and MW) consistently presented support for the existence of putative 364 

species in each of them across the various species-delimitation methods used (Table 365 

3). In the species-tree approach (Fig. 4), the statistical support for the three additional 366 

lineages of JTX, TTZ, and BYM-KJY was very high (>90%). The signal supporting 367 

the identification of a candidate species for each geographic area in the 368 

Pachyhynobius distribution range was overall strong, as reflected by most 369 

species-delimitation methods supporting the presence of five candidate species. 370 

However, two of the methods suggested that a further number of hidden species may 371 



remain. mGMYC suggested two potential candidate species within the JTX and TTZ 372 

lineages, while sGMYC suggested two potential species within the TTZ and BYM 373 

lineages. Although it is possible that these two GMYC based methods may be more 374 

sensitive to otherwise subtle cryptic divergence in the data, it is also possible that they 375 

may be too liberal when defining the number of putative species in a group as has 376 

previously been suggested (Blair and Bryson, 2017; Lang et al., 2015). Contrastingly, 377 

ABGD based on JC69 and K80 corrected distances indicated that there were fewer 378 

species (3 instead of 5), defined as “JTX-KHJ”, “MW-TTZ”, and “BYM-KJY”, or 379 

less if lower maximum divergence thresholds were used. These results are 380 

conservative in comparison to the GMYC models, and likely representative of the 381 

reliance of the ABGD approach just on genetic distances without considering the 382 

phylogenetic relationships between the operational taxonomic units studied (Postaire 383 

et al., 2016). The genetic distance values among the five lineages were variable, 384 

ranging from 1.8% to 4.1%. Overall, the genetic distances were close to intra-genus 385 

genetic distances observed in Hynobiidae. For example, in the genus Hynobius, the 386 

inter-species genetic distances ranged from 1.1% (H. formosanus vs H. arisanensis) to 387 

11.2% (H. formosanus vs H. kimurae). Therefore, in this study, the species 388 

delimitation based on mitochondrial genome data revealed that there are indeed 389 

multiple species in Pachyhynobius. Of six species-delimitation methods used, four 390 

methods strongly supported that there are five determined species (from JTX, KHJ, 391 

MW, TTZ, BYM-KJY respectively). 392 

 393 



4.2. Sky island effect and montane speciation 394 

Abiotic factors such as climate and tectonic events, as well as biological factors 395 

such as interspecific or intraspecific interactions, competition and predation, may be 396 

the major drivers for biological evolution and diversification temporally and 397 

geographically (Benton, 2009). Generally, due to the interactions of multiple abiotic 398 

and biological factors, mountains exhibit various microhabitats with different 399 

ecological conditions than the surrounding landscape. Herein, unique and endemic 400 

species often evolved with the relatively small populations that are separated by 401 

well-defined geographical boundaries (Huang et al., 2017; Shepard and Burbrink, 402 

2009, 2011). In the vast subtropical regions of China, countless scattered mountains 403 

(e.g., Qinling Mountains, Hengduan Mountains, Dabie Mountains) form potential sky 404 

islands, which show spatial isolation on restricted areas and are considered ideal 405 

natural laboratories for studying the formation of endemic plants and animal species 406 

(Gao et al., 2015; Zhen et al., 2016).  407 

After the rapid uplift, the Tibetan Plateau and its adjacent mountain ranges acted 408 

as a blocky orographic barrier to the atmospheric circulation, and then contributed to 409 

the Asian monsoon system (Guo et al., 2008; Song et al., 2010; Tang et al., 2013). 410 

During three East Asian monsoon intensification periods (~15 Ma, ~8 Ma and 4-3 Ma) 411 

(Jacques et al., 2011; Molnar et al., 2010; Wan et al., 2007), the monsoonal flow led 412 

to the humid and warm climate in the south of China (Sun and Wang, 2005). This was 413 

favorable for speciation and geographical spreading (Che et al., 2010; Wu et al., 414 

2013). Mountainous areas often harbor more cryptic lineages because altitudinal 415 



zonation of habitats and rugged terrain cause the formation of sky island habitats (He 416 

and Jiang, 2014; McCormack et al., 2009). For these species restricted to sky-island 417 

habitats, dispersal often was limited and more opportunities were created for 418 

allopatric divergence, which promotes high levels of inter-population genetic 419 

divergence and unique patterns of genetic structure (Favre et al., 2015; Kozak and 420 

Wiens, 2006; Pauls et al., 2006; Shepard and Burbrink, 2008, 2009, 2011; 421 

Valbuenaureña et al., 2017; Wu et al., 2013; Zhu et al., 2011). For example, in 422 

western Arkansas (USA), unique physiographic features of the Ouachita Mountains 423 

area, coupled with species response to climatic factors, drove deep lineage divergence 424 

in three Plethodon species (P. ouachitae, P. fourchensis and P. caddoensis) and 425 

finally produced a series of classic phylogeographic structures associated with stream 426 

drainages and mountains (Shepard and Burbrink, 2008, 2009, 2011).  427 

Pachyhynobius is a typical stream salamander, endemic to the Dabie Mountains, 428 

and lives in the cool and oxygen-rich streams above 500 meters in elevation (Fei et al., 429 

2012). In this study, dating analyses of Hynobiidae suggested that the MRCA of 430 

Pachyhynobius dates back to ~7.84 Ma (Fig. 2), while the five candidate species 431 

originated ~3.19 to ~5.92 Ma (Fig. 2). The deep genetic divergences were disclosed 432 

among these candidate species (Fig. 2, 3 and 4), which indicated that the candidate 433 

species may be separated long-term by unsuitable habitats. Dabie Mountains, 434 

composed of a chain of ancient isolated low-middle elevation massifs (Fig. 1), were 435 

believed to be able to maintain a relatively stable climate over the last several million 436 

years (Ju et al., 2007; Zhao et al., 2009). In addition, ecology niche model (ENM) 437 



indicated that lower elevation areas acted as a strict and effective isolation barrier for 438 

the Pachyhynobius species (Pan et al., 2019). Therefore, once discontinuous sky 439 

islands were formed and fixed, deep inter-species genetic divergences of 440 

Pachyhynobius gradually accumulated, then monophyletic groups appeared, and 441 

finally, the independent species formed.  442 

 443 

5. Conclusion 444 

In this study, different species delimitation approaches revealed that multiple 445 

species exist in the genus Pachyhynobius. Although these methods failed to produce 446 

an identical species number, most species delimitation methods indicated that there 447 

are five distinct species (from JTX, KHJ, MW, TTZ, BYM-KJY respectively) in 448 

Pachyhynobius. Discontinuous habitat, combined with niche conservatism, produced 449 

the sky-island effect in Pachyhynobius and finally led to hidden species diversity in 450 

this genus.  451 
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Titles and legends to figures 678 

Fig. 1: Sampling area and regional group of Pachyhynobius in Dabie Mountains, 679 

China. The dotted lines represent rivers. The values with different colors 680 

represent the elevations of mountains. Sampling sites are shown as ellipses. The 681 

approximate position of the region within China is shown in the inset as a green 682 

square.  683 

 684 

Fig. 2: Mitochondrial genomic phylogeny of the Hynobiidae. The species from 685 

Pachyhynobius are shown with a pink background. The values on nodes indicate 686 

Bayesian posterior probabilities and ML bootstrap support (shown as a 687 

percentage). These letters (a, b and c) indicate the calibration points. The blue 688 

lines on nodes correspond to the 95% highest posterior density of the age of the 689 

node. The bottom axis is in millions of years.  690 

 691 

Fig. 3: Network constructed from the complete mitochondrial genome of the 692 

Pachyhynobius samples based on uncorrected p-distances using SPLITSTREE. 693 

The values on nodes indicate bootstrap support (only values above 75% are 694 

shown). 695 

 696 

Fig. 4: Species tree estimated using BEAST based on complete mitochondrial 697 

genome in Pachyhynobius. The values on nodes are Bayesian posterior 698 

probabilities. 699 



 700 

Fig. S1: Species delimitation analyses by ABGD methods with two model (JC90 and 701 

K80l) based on complete mitochondrial genome in Pachyhynobius. Y-axis shows 702 

the number of groups inferred, and the x-axis the maximum divergence threshold 703 

used for species delimitation. The two models show identical results of species 704 

delimitation. 705 

 706 

Fig. S2: Lineage through time plots in the species delimitation analyses by sGMYC 707 

method (A) and mGMYC method (B) based on complete mitochondrial genomes 708 

in Pachyhynobius. N represents the lineage number. Vertical red line(s) indicate 709 

the inflection point between speciation and coalescence. Branching events older 710 

than the inferred threshold indicating speciation event, while younger ones 711 

representing coalescences within species. The bottom axis is in millions of years. 712 
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Fig. S3: Species delimitation analyses by bPTP methods based on complete 714 

mitochondrial genomes in Pachyhynobius. The putative molecular species 715 

identified are marked beside the tree. The numbers above branches correspond to 716 

the nodes’ support posterior probabilities. 717 
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Table 1. The Species Delimitation results of Pachyhynobius in BF method. 

Model Species MLE Path Sampling(PS) MLE Stepping Stone(SS) Rank BF 

PS SS 

M1 5 –34243.11 –34243.18 1 16.08 16.06 

M2 4 –34251.15 –34251.21 2 – – 

M3 3 –34256.11 –34256.19 3 – – 

M4 (current taxonomy) 1 –34292.29 –34292.44 4 – – 

Note: “MLE”represents “Marginal likelihood estimate”; “BF ”represents “Bayes factor”. 



Table 2. The species delimitation results of Pachyhynobius in BPP method. 

Scheme Priordistribution Posterior probabilities 

θ τ 

Scheme 1 G (1,10) G (1,10) P[5]=0.9971 

Scheme 2 G (1,10) G (1,100) P[5]=0.9948 

Scheme 3 G (1,10) G (1,2000) P[5]=0.9908 

Scheme 4 G (1,100) G (1,10) P[5]=0.9984 

Scheme 5 G (1,100) G (1,100) P[5]=0.9988 

Scheme 6 G (1,100) G (1,2000) P[5]=0.9987 

Scheme 7 G (1,2000) G (1,10) P[3]=1.0000 

Scheme 8 G (1,2000) G (1,100) P[3]=1.0000 

Scheme 9 G (1,2000) G (1,2000) P[3]=0.9999 

Note: “P[5]” represents“((KHJ, JTX), (BYM-KJY, (TTZ, MW)))”; “P[3]” 

represents“(BYM-KJY-MW-TTZ, (KHJ, JTX))”. 



Table 3. Number of lineages in Pachyhynobius inferred by mutiple species delimitation methods. 

Lineage n Mean Tamura–Nei distance BF GMYC single GMYC multiple bPTP BPP ABGD 

JTX 8 0.001 1 1 2 1 1 1 

KHJ 6 0.002 1 1 1 1 1 1 

MW 6 0.003 1 1 1 1 1 1 

TTZ 8 0.004 1 2 2 1 1 1 

BYM-KJY 8 0.004 1 2 1 1 1 1 

Total 36 0.0028 5 7 (5–14) 7 (5–7) 5.14(5–7) 5 5 

Note: “n” represents the number of individuals; All bPTP are from Bayesian MCMC analyses. Confidence intervals for totals are in parentheses. 

ABGD results are based on the initial partitioning scheme with a maximum intraspecific diversity value of 0.0055 (K80 distances).  



Table 4. Pairwise FST among five candidate species (BYM-KJY, TTZ, MW, KHJ, 

JTX) of Pachyhynobius. 

 BYM-KJY TTZ MW KHJ JTX 

BYM-KJY      

TTZ 0.029*     

MW 0.031* 0.019*    

KHJ 0.039* 0.039* 0.041*   

JTX 0.037* 0.038* 0.039* 0.018*  

Note: Significant tests are indicated with an asterisk (*P < 0.01).  
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Table S1. Primers for amplified the complete mitochondrial genome of Pachyhynobius. 

Pairs Primer name Sequence (5' to 3') Gene Annealing temp. (�) 

1 Psh-1F26 GTTTATGTAGCTTAAACAAAGCATGG 12S 53 

 Psh-1R1333 TCGGAGTAGCTCGTTTAGTTTC 16S 53 

2 Psh-2F1054 GCTTACACCAAGAAGATACTCGT 16S 53 

 Psh-2R2363 GCTGTTATCCCTAGGGTAACTT 16S 53 

3 Psh-3F2333 CGAGAAGACCCTATGGAGC 16S 53 

 Psh-3R3363 AAGCTCTGATTCCCCTTCAGTT ND1 53 

4 Psh-4F3116 GGCTCAGGATGATCATCAAATTC ND1 53 

 Psh-4R4326 CTATAGGTGCTAGTTTTTGTCAAGT ND2 53 

5 Psh-5F4065 AAACTTCATCACCCACGAGCAA ND2 53 

 Psh-5R5348 GTCATCGAGTGATTATCACAGGT COX1 53 

6 Psh-6F5067 CATCACCTGAATGCAACTCAGAT COX1 53 

 Psh-6R6348 CACAATATTGCGGCGTCTCATTT COX1 53 

7 Psh-7F6030 GACCCTGTACTTTACCAACATCT COX1 53 

 Psh-7R7478 ATACGAATTGGGGATTCTATTGGAA COX2 53 



8 Psh-8F7117 TCATGACCATGCATTAATAGCAGTTT COX2 53 

 Psh-8R8467 GCAATTAATTGAATTAATAAATGTCCGG ATP6 53 

9 Psh-9F8222 TCTAGGTTTATTACCATATACATTTACC ATP6 53 

 Psh-9R9359 CAACAAAATGTCAATATCATGCTGC COX3 53 

10 Psh-10F9106 GTAACCTGAGCTCATCATAGTATTAT COX3 53 

 Psh-10R10378 AATGGCGATGAAATAAAATCTACTCC ND4 53 

11 Psh-11F10137 AGGACTTGCATTAATAGTAGCTACT ND4L  53 

 Psh-11R11413 ATATACAATGTGTAGGAGGCTGTAAT ND4 53 

12 Psh-12F11181 CGCACTATTCTGCTTAGCAAATATAA ND4 53 

 Psh-12R12285 CTTGTATTGCTGCAGTATTTGCG ND5 53 

13 Psh-13F11928 GCATTTTTAATTAGCCTAACACCATTAA ND5 53 

 Psh-13R13168 CCTGAAACTATACTACCTCATGC ND5 53 

14 Psh-14F12941 GCACTCCATTTCTTGCTGGATTT ND5 53 

 Psh-14R14189 TTTTCGAATTGGGTGGGCCATTA CYTB 53 

15 Psh-15F13898 GCCAAAGAAGCAGAATACGCAAA ND6 53 

 Psh-15R15235 GATGCGGCTTGTCCAATTTCAAT CYTB 53 



16 Psh-16F14999 CTCATTACACCCCCACATATTCA CYTB 53 

 Psh-16R154 GGTCCTAGCCTTACTATTAATTGAAA 12S 53 

 

 



Table S2 The complete mitochondrial genome of species in Hynobiidae with 

GeneBank accession nos. of corresponding sequences. 

Taxonomy/Species name Accession No. Full Length(bp) 

Order Caudata   

Family Hynobiidae   

Batrachuperus londongensis NC008077 16,379  

B. pinchonii NC008083 16,390 

B. tibetanus NC008085 16,379 

B. yenyuanensis NC012430 16,394 

Hynobius amjiensis NC008076 (DQ333808) 16,401 

H. arisanensis NC009335 (EF462213) 16,401 

H. chinensis JQ710885 16,495 

H. chinensis -CIB-XM2853 HM036353.1 16,404 

H. formosanus NC008084 16,394 

H. guabangshanensis NC013762 16,408 

H. kimurae JQ929920 16,448 

H. leechii NC008079 (DQ333811) 16,428 

H. maoershanensis NC023789 16,412 

H. nebulosus NC020650 16,447 

H. nigrescens NC026033 16,412 

H. quelpaertensis NC010224 16,407 

H. yangi NC013825 16,424 

H. yangi-1 JN415127 16,403 

H. yiwuensis HM036354 16,494 

Liua shihi NC008078 16,376 

L. tsinpaensis NC008081 16,380 

L. tsinpaensis –Tsinpa20141205 KP233806 16,378 

Onychodactylus fischeri NC008089 16,456 

O. zhangyapingi NC026853 16,537 



O. zhangyapingi-1 KX021909 16,457 

O. zhaoermii KX021908 16,455 

Pachyhynobius shangchengensis NC008080 16,394 

P. shangchengensis (JTX) MK890394-MK890400 16,395-16,396 

P. shangchengensis (KHJ) MK890388-MK890393 16,393-16,394 

P. shangchengensis (MW) MK890382-MK890387 16,398-16,418 

P. shangchengensis (TTZ) MK890374-MK890381 16,397-16,400 

P. shangchengensis (BYM) MK890366-MK890370, 

MK890372, MK890373 

16,396-16,399 

P. shangchengensis (KJY) MK890371 16,396 

Protohynobius puxiongensis FJ532058 16,398 

Pseudohynobius jinfo NC026698 16,393 

P. flavomaculatus NC020635 16,389 

P. puxiongensis NC020634 16,398 

P. shuichengensis NC021001 16,394 

P. tsinpaensis DQ333813 16,380 

Paradactylodon mustersi NC008090 16,383 

P. gorganensis NC008091 16,374 

Ranodon sibiricus NC004021 16,418 

Salamandrella keyserlingii DQ333814 16,338 

S. keyserlingii -SK8321 JX508761 16,336 

S. keyserlingii -SK8391 JX508762 16,340 

S. keyserlingii -SK8440 JX508763 16,334 

S. keyserlingii -SKN9 JX508764 16,338 

S. tridactyla NC021106 16,342 

Order Caudata   

Family Cryptobranchidae   

Andrias davidianus NC004926 16,503 

A. japonicus NC007446 16,298 



 




