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A B S T R A C T

The proliferation and application of machine learning-based Intrusion Detection Systems (IDS) have allowed for
more flexibility and efficiency in the automated detection of cyber attacks in Industrial Control Systems (ICS).
However, the introduction of such IDSs has also created an additional attack vector; the learning models may
also be subject to cyber attacks, otherwise referred to as Adversarial Machine Learning (AML). Such attacks
may have severe consequences in ICS systems, as adversaries could potentially bypass the IDS. This could
lead to delayed attack detection which may result in infrastructure damages, financial loss, and even loss
of life. This paper explores how adversarial learning can be used to target supervised models by generating
adversarial samples using the Jacobian-based Saliency Map attack and exploring classification behaviours. The
analysis also includes the exploration of how such samples can support the robustness of supervised models
using adversarial training. An authentic power system dataset was used to support the experiments presented
herein. Overall, the classification performance of two widely used classifiers, Random Forest and J48, decreased
by 6 and 11 percentage points when adversarial samples were present. Their performances improved following
adversarial training, demonstrating their robustness towards such attacks.
. Introduction

Industrial Control Systems (ICS) play a key role in Critical National
nfrastructure (CNI) concepts such as manufacturing, power/smart
rids, water treatment plants, gas and oil refineries, and health-care.
istorically, ICS networks and their components were protected from
yber attacks as they ran on proprietary hardware and software and
ere connected in isolated networks with no external connection to

he Internet [1]. However, as the world is becoming more intercon-
ected, there has been a need to connect ICS components and to other
etworks, allowing remote access and monitoring functionalities. As a
esult, ICSs are now subject to a range of security vulnerabilities [1].

Given the importance of these systems, they have become an at-
ractive target to an attacker. As these systems control operations in
he physical world, the cyber attacks against them may have major
onsequences for the environment they operate in, and subsequently,
ts users. It is therefore understandable that the security issues sur-
ounding such systems have become a global issue. Thus, designing
obust, secure, and efficient mechanisms for detecting and defending
yber attacks in ICS networks is more important than ever [2].

Although there exist several security mechanisms for traditional IT
ystems, their integration into ICS systems is challenging mainly for
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two reasons; (a) ICS devices are resource-constrained, and (b) they
include legacy systems and devices that do not support modern security
measures. Subsequently, complementary security solutions, such as
passive process data monitoring, are promising [3]. This has led to
a substantial increase in research focusing on ICS tailored Intrusion
Detection Systems (ICS). Such intrusion systems operate by observing
the network or sensor data to detect attacks and anomalies that may
affect ICS.

Due to their efficiency in detecting attacks, there has been a sub-
stantial increase in the application and integration of machine learning
within IDSs (e.g. [1,4–10]). However, the introduction of such systems
has introduced an additional attack vector; the trained models may
also be subject to attacks. The act of deploying attacks towards ma-
chine learning-based systems is known as Adversarial Machine Learning
(AML). The aim is to exploit the weaknesses of the pre-trained model
which has ‘‘blind spots" between data points it has seen during training.
More specifically, by automatically introducing slight perturbations
to the unseen data points the model may cross a decision boundary
and classify the data as a different class. As a result, the model’s
effectiveness can be reduced as it is presented with unseen data points
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that it cannot associate target values to, subsequently increasing the
number of misclassifications.

The existence of such techniques means that infrastructures which
incorporate machine learning-based IDSs may be at risk of being vul-
nerable to cyber attacks. In the context of ICS, AML can be used to
manipulate data from actuators or other devices by including per-
turbations to cause malicious data to be classified as being benign,
consequently bypassing the IDS. This could lead to delayed attack
detection, information leakage, financial loss, and even loss of life. It
is therefore understandable that as machine learning-based detection
mechanisms become more widely deployed, the adversary incentive
for defeating them increases. As a result, it is evident that machine
learning-based IDSs must be extensively evaluated against AML attacks.

To the best of our knowledge, this is the first study which in-
vestigates the behaviour of supervised models against automatically
generated AML attacks, as well as the defence of such attacks in
the context of ICS. More importantly, this work considers a realistic
attacker model and assumptions, as well as a realistic dataset collected
from a representative power system testbed. The main contributions of
the work presented in this paper are the empirical investigations into:

• generating adversarial samples from a power system dataset
• the behaviour of supervised machine learning algorithms against

adversarial samples for intrusion detection in an ICS system
• how adversarial training can support the robustness of such mod-

els

The study was designed as follows (see Fig. 1): (1) randomly split
the power system dataset into training and testing set, each contain-
ing 60% and 40% data points respectively, (2) evaluate a range of
supervised machine learning models and identify which are the best
performing, (3) generate adversarial samples using the Jacobian-based
Saliency map method, (4) evaluate the performance of the trained
models in 2 on the generated adversarial samples in 3, (5) include
a percentage of adversarial samples from 3 in the training data and
re-train and evaluate the models.

The remainder of this paper is structured as follows: Section 2
discusses the relevant work in this research area, Section 3 discusses
the power system testbed and the generated dataset which is used
to support the experiments in this paper, Section 4 evaluates the
performance of a range of supervised classifiers, Section 5 discusses
AML and the methodology followed to generate adversarial samples,
Section 7 investigates the effectiveness of adversarial training as a
defence mechanism, and finally 8 concludes the paper.

2. Related work

There has been a substantial increase in machine learning-based
IDSs for a range of ICS systems. Table 1 presents a summary of the
existing ICS systems and associated supervised learning approaches to
attack detection and classification in these contexts. To date, there
has been less focus on AML in this context. Such research has mainly
focused on email spam classifiers, malware detection, and very recently
there has been interest in AML against network IDSs for traditional
networks (e.g. [11–13]).

More specifically, both Nelson et al. [14] and Zhou et al. [15]
demonstrate that an adversary can exploit and successfully bypass
the machine learning methods employed in spam filters by modifying
a small percentage of the original training data. Moreover, Grosse
et al. [16] evaluate the robustness of a neural network trained on the
DREBIN Android malware dataset. They report that it is possible to
confuse the model by perturbing a small amount of the features in the
training set. Such an attack is considered to be a white box attack, as to
be successful, the adversary needs to have access or knowledge of the
dataset and the features it includes. Additionally, Pierazzi et al. [17]
evaluated 170K Android apps between 2017 and 2018 to demonstrate
2

Fig. 1. An overview of the study design.

the practical feasibility of evading a state-of-the-art malware classifiers.
Their results showed that ‘‘adversarial-malware as a service’’ is a re-
alistic threat, as it was possible to automatically generate thousands
of realistic and inconspicuous adversarial applications at scale, where
on average it took only a few minutes to generate an adversarial app.
Furthermore, Hu and Tan [18] proposed a more advanced adversarial
technique which uses the concept of Generative Adversarial Networks
(GAN) to successfully attack malware classifiers without requiring any
knowledge of the data and the system. This is known as a black
box attack. Finally, Appruzzese, Colajanni, and Marchetti [19] deploy
realistic adversarial attacks against network intrusion detection sys-
tems that focus on identifying botnet traffic through machine learning
classifiers. The results showed that such attacks are effective.

In the context of ICSs, there exist only a handful of investiga-
tions into AML attacks. Specifically, Zizzo et al. [20] showcased a
simple AML attack against a Long Short-Term Memory (LSTM) clas-
sifier which was applied on an ICS dataset. However, this work is
at a preliminary stage as the adversarial samples were generated by
manually selecting the feature values to be perturbed. Yaghoubi and
Fainekos [21] proposed a gradient-based search approach which was
evaluated on a Simulink model of a steam condenser. However, this
approach is efficient only against a handful of systems that may specifi-
cally employ Recurrent Neural Networks (RNN) with smooth activation
functions. Finally, Erba et al. [3] demonstrated two types of real-
time evasion attacks, again using Recurrent Neural Network models,
and used an autoencoder to generate adversarial samples. Neither of
these aforementioned works investigate defence methods against AML.
Conclusively, it is evident that there is room to investigate AML and
the defence against such attacks for current IDSs in ICS systems that
are supported by supervised learning. Moreover, as Table 1 shows, Re-
current Neural Networks are yet to gain prominence in attack detection
in an ICS context — with algorithms such as Naive Bayes, Random
Forest, SVM, and J48 being much more widely used. The experiments,
therefore, focus on defending against AML on these methods as the state
of the art in ML-driven attack detection methods for ICS.
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Table 1
Summary of current work on Intrusion Detection Systems in Industrial Control Systems.
Citation Publication date Dataset Machine learning models

[22] 2019 Power System Random Forest
[23] 2019 Wind Turbines SVM
[24] 2019 SCADA Testbed Long Short Term Memory (RNN)
[25] 2018 Power system (synthetic) Naive Bayes, Random Forests, SVM
[26] 2018 SWaT SVM, J48, Random Forest
[27] 2018 Gas Pipeline SVM, Random Forest
[6] 2018 SCADA Testbed Random Forest, J48, Logistic Regression, Naive Bayes
[28] 2018 SCADA Testbed SVM, Decision Tree, and Random Forest
[29] 2018 Power System SVM, J48, Neural Network
[30] 2018 Wind Turbine Decision Trees (J48, Random Forest, CART, Ripper, etc.)
[1] 2018 SWaT 1D Convolutional Networks
[31] 2017 SCADA/ICS J48, Naive Bayes
[32] 2017 SCADA/Modbus Decision Tree, K-Nearest Neighbour, SVM, OCSVM
[33] 2017 Power Grid, Water Plant, Gas Plant J48, Random Forest, Naive Bayes, SVM, JRipper + Adaboost
[34] 2017 SCADA Testbed Decision Tree, Random Forest
[35] 2017 ICS Testbed Long Short Term Memory (RNN)
[8] 2017 SWaT Long Short Term Memory (RNN)
[36] 2015 Power System OneR, Random Forest, Naive Bayes, SVM, JRipper + Adaboost
[37] 2014 SCADA Naive Bayes, BayesNet, J48
[9] 2014 SCADA Network Traffic One-Class SVM
[4] 2013 Gas Pipeline Naive Bayes, Random Forest, SVM, J48, OneR
[10] 2009 ICS Testbed Neural Network (Error-back propagation and Levenberg–Marquardt)
[5] 2003 SCADA Testbed Bayesian Network
Fig. 2. Power System Framework Testbed used for generating the datasets in which
support the experiments herein [39].

3. Industrial control system case study: Power system

Mississippi State University and Oak Ridge National Laboratory
implemented a scaled-down version of a power system framework.
Although this system is relatively small, it captures the core func-
tion and is considered as being a representative example of a larger
power system [38]. Fig. 2 illustrates in more detail the power system
framework configuration and the components used for generating the
datasets in which support the experiments in this paper.

More specifically, the components of the power system as shown in
Fig. 2 include:

• G1 and G2 are the main generators.
3

• R1, R2, R3, and R4 are the Intelligent Electronic Devices (IEDs)
responsible for switching the breakers (BR1, BR2, BR3, BR4),
which are automatically operated electrical switches designed to
protect electrical circuits from damage caused by excess current
from an overload or short circuit, on and off.

• Each IED automatically controls one breaker (e.g. R1 controls
BR1, R2 controls BR2, etc.)

• The IEDs use a distance protection scheme which trips the breaker
on detected faults (whether they are valid or invalid) since they
have no internal validation to detect the difference.

• Operators can also manually issue commands to the IEDs to
manually trip the breakers. The manual override is used when
performing maintenance on the lines or other system components.

• There are also other network monitoring devices connected on
the testbed, such as SNORT and Syslog servers.

4. Supervised machine learning

To explore how well supervised classification algorithms can learn
to detect cyber attacks in an ICS environment, the performance of
supervised machine learning when the corresponding data discussed in
Section 4.1 was used to train the classification model and evaluated.
The following Sections report the features present in the power systems
dataset, as well as describing the methodology behind selecting and
training the best performing supervised classifiers.

4.1. Dataset

A dataset containing both benign and malicious data points was
generated from the power system testbed by [38]. These data points
have been further categorised into three main classes; ‘no event’ in-
stances, ‘natural event’ instances, and ‘attack event’ instances. Both the
‘no event’ and ‘natural event’ instances are grouped to represent benign
activity. To generate the malicious data, attacks from 5 scenarios were
deployed on the power system. These attacks are described as follows:

(1) Short-circuit fault. This is a short in a power line and can occur
in various locations along the line. The location is indicated by
the percentage range.

(2) Line maintenance. One or more relays are disabled on a specific
line to do maintenance for that line.
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Table 2
Features included as part of the power system dataset.

Feature Description

PA1–PA3:VH PA1:VH–PA3:VH Phase A
PM1: V–PM3:V C Voltage Phase Angle
PA4:IH–PA6:IH Phase A–C Current Phase Angle
PM4: I–PM6: I Phase A–C Current Phase Magnitude
PA7:VH–PA9:VH Pos.–Neg.–Zero Voltage Phase Angle
PM7: V–PM9: V Pos.–Neg.–Zero Voltage Phase Magnitude
PA10:VH–PA12:VH Pos.– Neg.–Zero Current Phase Angle
PM10: V - PM1 Pos.–Neg.–Zero Current Phase Magnitude
F Frequency for relays
DF Frequency Delta (dF/dt) for relays
PA:Z Appearance Impedance for relays
PA:ZH Appearance Impedance Angle for relays
S Status Flag for relays

(3) Remote tripping command injection attack. This is an attack
that sends a command to a relay which causes a breaker to open.
It can only be done once an attacker has penetrated outside
defences.

(4) Relay setting change attack. Relays are configured with a
distance protection scheme. The attacker changes the setting to
disable the relay function so that the relay will not trip for a
valid fault or a valid command.

(5) Data injection attack. A valid fault is imitated by changing
values to parameters such as the current, voltage, and sequence
components. This attack aims to blind the operator and causes a
blackout.

The final dataset consisted of 55,663 malicious and 22,714 benign
data points.

4.2. Feature selection

To perform machine learning classification experiments, it is es-
sential to identify which attributes best describe the dataset. In this
case, the data points within the power system dataset contain attributes
associated with synchrophasor measurements and basic network secu-
rity mechanisms. A synchrophasor measurement unit is a device which
measures the electrical waves on an electricity grid, using a common
time source for synchronisation. The dataset contains a total of 128
features [39]. These features are described in more detail as follows:

• 29 types of measurements from each synchrophasor measurement
unit. In this specific power system testbed, there are 4 PMUs.
Therefore, the dataset contains a total of 116 synchrophasor
measurement columns.

• 12 types of measurements of control panel logs, snort alerts, and
relay logs of the 4 synchrophasor measurement unit and relay.

Table 2 summarises the features included in the dataset, as well as
their corresponding descriptions. More specifically, the index of each
feature is in the form of ‘‘R#-Signal Reference’’. The ‘‘R ‘#’ ’’ specifies
the type of measurement from the synchrophasor measurement unit.
For instance, ‘‘R1-PA1:VH’’ corresponds to the ‘‘Phase A voltage phase
angle’’ measured by ‘‘PMU R1’’.

4.3. Model training

To explore how well supervised machine learning algorithms can
detect cyber attacks in an ICS environment, the corresponding power
system dataset was used to evaluate a range of state-of-the-art classi-
fiers.

The ‘‘no free lunch’’ theorem suggests that there is no univer-
sally best learning algorithm [40]. In other words, the choice of an
appropriate algorithm should be based on its performance for that
4

Fig. 3. Distribution of data points across both training and testing datasets.

particular problem and the properties of data that characterise the
problem. In this case, a variety of classifiers distributed as part of
Weka [41] were evaluated using 10-fold cross-validation using their
default hyper-parameters.

To conform to other comparable IDSs in ICS systems in Table 1,
the classifiers were also selected based on their ability to support a
high-dimensional feature space. The classifiers included:

• Generative models that consider conditional dependencies in the
dataset or assume conditional independence (e.g. Bayesian Net-
work, Naive Bayes).

• Discriminative models that aim to maximise information gain or
directly maps data to their respective classes without modelling
any underlying probability or structure of the data (e.g. J48
Decision Tree, Support Vector Machine).

To support classification experiments, a random subset of approx-
imately 60% of the dataset described in Section 4.1 was selected for
training, with the remaining 40% selected for testing. Fig. 3 reports the
distributions of data points across the target values in both the training
and testing datasets.

An uneven balance of class labels across the training dataset has the
potential to negatively affect or may bias classification performance.
Given the significant uneven balance across the dataset, the class
balancing filter available in Weka was applied to balance the distri-
bution of classes within the sample. In this case, the training dataset
was balanced so that there were 13,725 samples of both malicious
and benign data points. In order to generate a representative testing
dataset and comply with relevant work [42,43], where the benign
samples outnumber the malicious ones, a random sample of 40% of the
malicious packets was selected. Subsequently, the final distribution of
class labels in the testing dataset was 3560 malicious and 8989 benign
data points.

Previous works which have used a very small sample of this power
system dataset to support their classification experiments have shown
that the ensemble classifier which combines both the Adaboost and
JRipper models was found to be the best performing [44]. Conversely,
the classifiers with the highest performances were Random Forest
and Weka’s implementation of the J48 decision tree method with no
pruning respectively (see Table 3).

5. Adversarial machine learning

To reiterate, AML aims to automatically introduce perturbations to
the unseen data points to confuse the pre-trained model. The following
sections introduce the types of AML attacks, as well as the methods
used to automatically generate adversarial samples.
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Table 3
Weighted average results following cross-validation (P = Precision, R = Recall, F =
F1-score)

Classifier P R F Time (s)

Random Forest 0.94 0.94 0.94 25.21
J48 0.87 0.87 0.87 19.80

5.1. Adversarial attack types

Depending on the phase and aspect of the machine learning model
that is being targeted, AML attacks can be described in terms of four
primary vectors: [13,45]:

• The Influence of an attack’s affects the classifier’s decision. At-
tacks can be further categorised as causative attacks, which occur
during the learning phase (poison attacks), or exploratory attacks,
which target the trained model during the testing phases (evasion
attacks).

• Security Violations affect either the integrity of the model when
the adversarial samples cause misclassifications, or when the high
rate of misclassifications causes the model to become unusable.

• Specificity refers to targeted attacks, where the adversarial sam-
ples aim to target a specific target value, or indiscriminate attacks,
where the samples do not target a specific target value.

• Privacy refers to attacks where the adversary’s goal is to extract
information from the classifier.

Papernot et al. [46] further categorise adversarial attacks based on:

• Their complexity. The consequences of such attacks can range
from slightly reducing the confidence of a model’s predictions to
causing it to misclassify all unseen data points.

• The knowledge an adversary may have. A white box attack refers
to when an attacker has useful knowledge related to the learning
model, such as its architecture, the network’s traffic it reads, and
the features used to support its training. It is considered as being
a black box attack when an adversary has no information about
the internal workings of the target model.

.2. Attacker model

In this work, we consider an insider threat attacker who has admin
ccess privileges to the local plant communication network systems
chief network engineer). Insider threats are one of the most under-
stimated but rather critical threats for ICSs [47]. More specifically,
s insiders reside behind the enterprise-level security defence mecha-
isms and often have privileged access to the network, detecting and
reventing insider threats is a complex and challenging problem [48].

According to the German Federal Office for Information Secu-
ity [49], insider threats include those with potentially privileged
ccess to IT components, services, installations, documents, or any
ther critical information about the infrastructure and its components.
n particular, the following groups are considered as insider threats:

• A person with direct physical access to control systems (e.g. op-
erators, engineers).

• A person with privileged rights (e.g. administrators).
• People with indirect access (e.g. even to the office network or

administration buildings).
• External service providers (e.g. maintenance or software develop-

ment), suppliers, etc.
5

Such adversary can deploy a range of attacks such as:
• Theft/modification of sensitive information (data leakage)
through access to file servers, historians, data storage media. The
main motive for this includes industrial espionage and whistle-
blowing.

• Social Engineering to prepare follow-up attacks. This can occur
by determining weak employees, understanding the industrial
processes, mapping the IT infrastructure and more.

• Sabotage the company. This is mainly motivated by political
or economic interests. This may include manipulating control
components or implanting malware or spyware.

In the power system scenario discussed herein and given the ca-
pabilities of the attacker as discussed above, it is assumed that the
adversary interested in utilising AML would have access to both the
dataset and its features. Additionally, given the position of the adver-
sary (chief network engineer), it is assumed that they know the features
that the IDS is utilising for the classification; however, they do not know
the exact algorithm configuration of the detector. This is due to the
obscurity of the exact product specifications that often accompanies
enterprise software. The goal of the attacker is, therefore, to identify
how to bypass the IDS to (a) cause further damage in the future by
deploying further attacks or (b) give this information to competitors so
that they can harm the organisation. It is also important to highlight
that it is assumed that there are no measures in place to protect the
leaked information and the ICS from AML attacks, such as [50,51]. Due
to the nature of the knowledge obtained by the adversary, such an AML
attack is classified as being a grey box attack.

5.3. Adversarial sample generation methods

There are various methods by which adversarial samples can be gen-
erated. Such methods vary in complexity, the speed of their generation,
and their performance. An unsophisticated approach towards crafting
such samples is to manually perturb the input data points. However,
manual perturbations of large datasets are tedious to generate and may
be less accurate. More sophisticated approaches include automatically
analysing and identifying features which best discriminate between
target values. Such features are discretely perturbed so that they re-
flect similar values to those which represent target values other than
their own. Two of the most popular techniques towards automatically
generating perturbed samples include the Fast Gradient Sign Method
(FGSM) and the Jacobian based Saliency Map Attack (JSMA), presented
by Goodfellow et al. [52] and Papernot et al. [46] respectively.

Both methods rely on the methodology, that when adding small
perturbations (𝛿) to the original sample (X), the resulting sample (X*)
can exhibit adversarial characteristics (X* = X + 𝛿) [11] in that X*
is now classified differently by the targeted model. Moreover, both
methods are also usually applied by using a pre-trained MLP as the
underlying model for the adversarial sample generation.

The FGSM method aims to target each of the features of the input
data by adding a specified amount of perturbation. The perturbation
noise is computed by the gradient of the cost function 𝐽 with respect
to the input data. Let 𝜃 represent the model parameters, 𝑥 are the inputs
to the model, 𝑦 are the labels associated with the input data, 𝜖 is a value
which represents the extent of the noise to be applied, and 𝐽 (𝜃, 𝑥, 𝑦) is
the cost function used to train the targeted neural network.

𝑥∗ = 𝑥 + 𝜖 sign
(

∇𝑥𝐽 (𝜃, 𝑥, 𝑦)
)

On the other hand, the JSMA method generates perturbations using
saliency maps and it requires three steps [11]. Initially, the Jacobian
of the overall neural network function 𝐹 in respect to the input 𝑋 is
calculated:

𝐽𝐹 =
𝛿𝐹 (𝑋)
𝛿𝑋

Secondly, the Jacobian is used in order to calculate a Saliency map.
A saliency map identifies which features of the input data are the
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Table 4
An example of how features are perturbed using JSMA.

Dataset R1-PA1:VH R1-PM1:V R1-PM4:I R3-PM6:I R3-PA8:VH

Original test data 0.7645 0.8710 0.1756 0.0261 0.5027
𝜃 = 0.1, 𝛾 = 0.1 0.7650 0.8710 0.1756 0.0261 0.5030
𝜃 = 0.5, 𝛾 = 0.5 0.7650 0.8710 0.1756 0.0261 0.5030
𝜃 = 0.9, 𝛾 = 0.9 1.0000 0.8770 0.1756 0.0261 0.5070

most relevant to the model decision being one class or another. These
features, if altered, are most likely affect the classification of the target
values. More specifically, an initial percentage of features (𝜃) is chosen
to be perturbed by a (𝛾) amount of noise. Thirdly, the model establishes
whether the added noise has caused the targeted model to misclassify or
not. If the noise has not affected the model’s performance, another set
of features is selected and a new iteration occurs until a saliency map
appears which can be used to generate an adversarial sample. For the
adversarial sample generation herein, we utilised the JSMA algorithm
as described in [46].

Given that the JSMA method may take a few iterations to generate
adversarial samples, the FGSM is computationally faster [46]. More
specifically its time complexity is O(N). However, as opposed to FGSM
which alters each feature, JSMA is a more complex and elaborate
approach which represents more realistic attacks as it progressively
alters a small percentage of features at a time. The complexity of
JSMA heavily depends on the number of input features. The larger the
feature space, the more iterations it requires to establish whether the
approach is successful in generating adversarial samples which affect
a model’s performance. Nevertheless, this approach allows for more
realistic and finer-grained AML attacks, as adversaries can define both
the percentage of features to perturb and the amount of perturbation
to include when generating the adversarial samples.

This work presents the use of JSMA in a grey box attack, in which
the attacker has no knowledge of the target model but has access to the
full dataset and knowledge of features. Despite not knowing the target
model, we can approximate samples that will cause the target model to
misclassify using another model due to the transferability of adversarial
samples across machine learning models [53].

In this case, the adversarial samples used in the experiments herein
were generated using the JSMA method. A pre-trained MLP was used as
the underlying model for the generation. The code implementation used
to create the adversarial data was based on the CleverHans project [46].
To illustrate, Table 4 shows the transformation of the features of a
malicious data point using the JSMA method using different variants
of 𝜃 and 𝛾. Such examples demonstrate that the higher the value of 𝜃,
the more intense the perturbation of the feature value. This is shown for
the R1-PA1:VH feature, where its original value increases from 0.7645
to 0.7650 when 𝜃 = 0.1 and 0.5, and to 1.000 when 𝜃 = 0.9. Similarly,
the higher the value of 𝛾, the more features are perturbed. This is shown
in the R1-PM1:V feature, where its value is perturbed only when 𝛾 =
0.9. The attacker’s ultimate goal is to find the minimum value of 𝜃 and
𝛾 to decrease the performance of the classifier, without significantly
modifying feature values.

6. Evaluating supervised models on adversarial samples

Both the trained Random Forest and J48 models presented in Sec-
tion 4.3 were first evaluated against the original testing dataset. The
F1-scores achieved by both classifiers were 0.61 and 0.60 respectively.
The confusion matrix in Table 5 shows how the predicted classes
for each data point in the original testing dataset compare against
the actual ones. In comparison to the Random Forest model, J48
demonstrated a higher percentage of correct predictions, thus less often
misclassifying the data points.

To explore how different combinations of the JSMA parameters
affect the performance of the trained classifiers, adversarial samples
6

Table 5
Confusion matrices for the original test set (Benign = 0, Malicious = 1)

Predicted Predicted

0 1 0 1

Actual 0 5556 3433 Actual 0 5253 3736

1 1666 1930 1 1583 2013

Random Forest J48

Fig. 4. Random Forest classification performance (F1-score) on adversarial samples
generated using JSMA.

Fig. 5. J48 classification performance (F1-score) on adversarial samples generated
using JSMA.

were generated from all malicious data points present in the testing
data by using a range of combinations of 𝜃 and 𝛾. The adversarial
samples were joined with the benign testing data points and subse-
quently presented to the trained models. Figs. 4 and 5 report the overall
weighted-averaged Recall for all adversarial combinations of JSMA’s 𝜃
and 𝛾 parameters.

In comparison to Random Forest, the J48 model achieved a decrease
in Recall across the majority of the 𝜃 and 𝛾 parameters. This may
indicate that J48 may be more sensitive, subsequently misclassifying
malicious data points as benign. However, when 𝜃 = 0.1, 𝛾 = 0.2, 𝜃 =
0.3, 𝛾 = 0.2 and 𝜃 = 0.6, 𝛾 = 0.1, the model achieves a higher F1-score
of 0.63 (an increase of 3 percentage points). This may indicate that the
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Table 6
Confusion matrices after applying Random Forest to adversarial testing samples (Benign
= 0, Malicious = 1)

Predicted Predicted

0 1 0 1

Actual 0 5253 3736 Actual 0 5253 3736

1 2390 1206 1 1390 2206

𝜃 = 0.2, 𝛾 = 0.4 𝜃 = 0.5, 𝛾 = 0.9

Table 7
Confusion matrices after applying J48 to adversarial testing samples (Benign = 0,
Malicious = 1)

Predicted Predicted

0 1 0 1

Actual 0 5556 3433 Actual 0 5556 3433

1 2612 984 1 1141 2455

𝜃 = 0.1, 𝛾 = 0.5 𝜃 = 0.6, 𝛾 = 0.1

generation of some adversarial samples has made such data points more
distinct in discriminating between the target values.

Conversely, the classification performance of the Random Forest
model achieved an increase in F1-score in many of 𝜃 and 𝛾 combi-
nations. This may indicate that Random Forest may be a more robust
classifier in discriminating between malicious and benign data points
correctly. However, when 𝜃 = 0.2, 𝛾 = 0.4, and 𝜃 = 0.8, 𝛾 =
0.7, the model’s classification performance decreases by 6 percentage
points (F1-score = 0.55). Based on the dataset used in the experiments
presented in this paper, such combinations would be the optimal pa-
rameter an adversary would use to successfully reduce the accuracy of
a machine learning-based IDS, subsequently diverting malicious data
points.

These findings demonstrate the importance of parameter tuning in
applying JSMA for generating adversarial examples. The JSMA model
is likely to be more robust under white/grey box conditions as it was
designed but these results indicate that with careful parameter tuning,
this approach can be adapted to work under black-box conditions.
Although the F1-score increases in some instances, the attacker is
primarily interested in their malicious data points being classified as
benign, such that an increase in Recall is not necessarily undesirable
from the attacker’s perspective.

The confusion matrices in Tables 7 and 6 provide a better in-
sight into the performance of the classifiers across the experiments.
In comparison to the original classification distributions in Table 5,
both classifiers demonstrate a significant increase in false positives.
That is, data points with an actual target value of malicious have been
misclassified as being benign.

7. Defending adversarial machine learning

A few methods of defending AML attacks have been proposed in
the literature. Two of the most popular techniques include adversarial
training and adversarial sample detection. The former has been ex-
plored in the field of visual computing, where Goodfellow et al. [54]
demonstrated that re-training the neural network on a dataset contain-
ing both the original and adversarial samples significantly improves its
efficiency against adversarial samples. The latter technique involves the
implementation of mechanisms that are capable of detecting the pres-
ence of such samples using direct classification, neural network uncer-
tainty, or input processing [20]. However, these detection mechanisms
have been found to be weak in defending AML [20,55].

Subsequently, in this paper, the robustness of supervised machine
learning classifiers against AML is further evaluated using adversarial
training. In this case, to avoid bias and by drawing inspiration from
7

Fig. 6. Random Forest classification performance (F1-score) following adversarial
training (𝜃 = 0.2, 𝛾 = 0.4).

the 10-fold cross-validation method [56], 10 random samples of 10%
of the adversarial data points in the testing dataset which significantly
decreased the model’s performance (Random Forest: 𝜃 = 0.2, 𝛾 = 0.4
and J48: 𝜃 = 0.1, 𝛾 = 0.5) were included in the original training dataset.
Subsequently, the average F1-score across the 10 models was calculated
and is reported in Figs. 6 and 7. The adversarial datasets produced using
the selected 𝜃 and 𝛾 combinations were omitted from the evaluations
as they were not comparable and are thus represented as black boxes.

The experiments described in Sections 4.3 and 6 were repeated by
retraining the models with the newly generated training data and ap-
plying such models on all unseen adversarial samples. Both the Random
Forest and J48 models achieved average cross-validation F1-scores of
0.94 and 0.89 respectively.

Figs. 6 and 7 report the overall weighted-averaged F1-scores for
all adversarial combinations of JSMA’s 𝜃 and 𝛾 parameters following
adversarial training. The results demonstrated that for both classifiers,
including adversarial samples in the training data increased the clas-
sification performances for several adversarial combinations of JSMA.
For example, when 𝜃 = 0.1, 𝛾 = 0.5 and 𝜃 = 0.9, 𝛾 = 0.9, Random
Forest and J48 achieved F1-scores of 0.76 and 0.80 respectively, an
increase of 11 and 17 percentage points in comparison to the highest
classification performances reported in Figs. 4 and 5.

The classification performances demonstrated by the Random Forest
model achieves a greater overall increase in comparison to the J48
model. That is, for Random Forest, the classification performance for all
combinations were improved. Whereas for J48, only around 30% of the
classification performances increased significantly. This may imply that
Random Forest is a more robust model towards classifying adversarial
samples of all combinations of JSMA’s 𝜃 and 𝛾 parameters. This is
intuitive given Strauss et al.’s [7] demonstration that ensemble machine
learning algorithms are more robust against adversarial techniques and
Random Forests are ensembles of decision trees (such as J48).

8. Conclusion

Due to their effectiveness and flexibility, machine learning-based
IDSs are now recognised as fundamental tools for detecting cyber
attacks in ICS systems. Nevertheless, such systems are vulnerable to
attacks that may severely undermine or mislead their capabilities,
commonly known as AML. Such attacks may have severe consequences
in ICS infrastructures, as adversaries could potentially modify malicious
data points to bypass the IDS, causing delayed attack detection and
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Fig. 7. J48 classification performance (F1-score) following adversarial training (𝜃 =
0.1, 𝛾 = 0.5).

extensive damages. Thus, it is evident that understanding the appli-
cability of these attacks in ICS systems is necessary to develop more
robust machine learning-based IDSs.

This paper explores how adversarial learning can be used to target
supervised models by generating adversarial samples and exploring
classification behaviours. To support the experiments presented herein,
an authentic power system dataset was used to train and test widely
used supervised machine learning classifiers. Moreover, this work con-
siders a realistic attacker model and assumptions. The testing data was
presented to a JSMA to generate adversarial samples with a range
of combinations that affect the amount of noise and the number of
features to perturb. Such samples were evaluated against two of the
best performing classifiers, Random Forest and J48. Overall, the classi-
fication performance for both models decreased by 6 and 11 percentage
points when adversarial samples were present.

The analysis also includes the exploration of how such samples
can support the robustness of supervised models using adversarial
training. A random sample of 10% of the generated adversarial data
points were included in the original training dataset. The models were
retrained and applied on all unseen adversarial samples. Overall, the
classification performance of the Random Forest model reported an
increase across all JSMA parameters in comparison to the J48 model.
This demonstrates that Random Forest is a more robust model towards
classifying adversarial samples of all combinations of JSMA parameters
on the given dataset.

9. Future work

Although the experiments described in this paper have demon-
strated that adversarial samples can successfully be generated using
JSMA and affect the classification performance of state-of-the-art su-
pervised models, it is important to note that there are several other
methods of generating such samples to consider (e.g. Iterative Gradient
Sign, Carlini Wagner, Generative Adversarial Networks). In this case,
as part of future work, this study can be extended further to include
different models as a source for generating adversarial samples. More-
over, AML should be further investigated against other models such as
LSTMs.

Finally, the robustness of the supervised models was demonstrated
using adversarial training. It is also important to note that this method
may not always be sufficient as it is difficult to anticipate all pos-
sible types of adversarial machine learning attacks against a given
system. Therefore, there is a need to investigate other possible defence
mechanisms.
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