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Some insights into the effect of maintenance quality
for a protection system

M.D. Berrade, P.A. Scarf, and C.A.V. Cavalcante, Member, IEEE

Abstract—This paper considers an inspection and preventive
replacement policy for a one-component protection or cold
standby system. Inspection is imperfect, and subject to false pos-
itives and negatives; preventive replacement may also be of poor
quality. We determine conditions relating to the quality of the
inspection and preventive replacement under which a maintained
system would not benefit from the execution of inspections and
preventive maintenance. We present examples with decreasing
failure rate component lifetimes in which preventive replacement
is cost-optimal, contrary to the classic policy. Such cases arise
when inspections do not necessarily detect the failed state.

Index Terms—Inspection, replacement, mixture, cold standby,
preparedness, optimum policy

ABBREVIATIONS

DFR Decreasing failure rate
IFR Increasing failure rate

NOTATION

X component lifetime
R(x) reliability or survival function of X
µ=E[X] expected component lifetime
T inspection interval
α probability of a false positive inspection
β probability of a false negative inspection
M maximum number of inspections until preven-
tive replacement.
K1 number of inspections previous to failure or a
false positive or to preventive replacement whichever
occurs first
K2 number of inspections after failure until
its detection or preventive replacement whichever
occurs first
U uptime in a cycle
D downtime in a cycle
c0 cost of inspection
cm cost of a preventive replacement either at time
MT or at a replacement at a false positive inspection
cr cost of replacement at a true positive inspection
cd cost-rate of unavailability
cins expected cost due to all inspections in a cycle
cren expected cost derived from the replacement
of the system
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τ length of a cycle
C(τ) total cost of a cycle
Q(T,M) cost rate (the long run expected cost per
unit time)

I. INTRODUCTION

THIS paper focuses on the quality of maintenance, and in
particular on the quality of inspection. Inspection policies

are typically used when failures are hidden, where a test or
inspection is required to establish the state of the system. This
hidden failure condition is the case for systems that are not
in continuous operation but alternate between idle periods and
periods of use. When a failure can occur during an idle period,
if such a failure occurs and there is no regular inspection, the
failure will remain undetected until there is an attempted use
of the system.

Protection or preparedness systems and cold standby sys-
tems are typical examples of systems that operate in this way,
and thus experience hidden failures. Apostolakis and Bansal
[1] describe safety features of nuclear power plants consist-
ing of redundant systems that are inactive until emergency
conditions occur (e.g., pump failure in a cooling system).
These systems undergo inspections at regular intervals to
ensure their high availability. The consequences of poor quality
maintenance, including poorly executed replacements or low
quality spare parts [2], are reported by technology users or
operators ( [3], [4]). In our paper here, we model the quality of
inspections, and analyze when low quality has non-negligible
consequences on both maintenance procedures and systems
reliability.

Inspection policies for systems subject to hidden failures
have been studied by many authors. A classic reference is
Vaurio [5]. Recent work has considered multi-component
systems (e.g [6]), and hard (revealed) and soft (unrevealed)
failures of multi-component systems (e.g [7]). Models have
been proposed when inspection and replacement downtimes
are non-negligible (e.g. [8]).

Inspection policies with false positives or false negatives
or both are analysed in [9]- [13]. Okumura et al. [9] present
an inspection model based on the delay-time model. Human
errors are considered in [1], and [10]. Gong [14] investigates
a repetitive testing process where the testing equipment may
leave the in-control state at random, resulting in different
testing errors.

At a false positive event, inspection indicates that the system
is failed when it is in fact not failed. At a false negative,
inspection does not reveal an existing failure. In Berrade et
al. [12], the effect of such imperfect inspection is further
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analysed by presenting two scenarios, one of which is related
to the outsourcing of maintenance, and the other is related to
maintenance performed in-house. In our paper, we analyze in
detail the second scenario, and in particular we characterise
circumstances in which false positives can lead to unneces-
sary replacements. We also implicitly consider circumstances
in which false negatives do the same. This consideration
is important because, if false negatives tend to occur with
high probability, a typical response might be to do more
inspection. Moreover, more inspection will lead to more false
positives; and, where we have DFR component lifetimes, more
inspection will lead to the possibility of more unnecessary
replacements of good components by poor components. We
model this low quality replacement by a mixture of two
Weibull distributions (see e.g. [16], [20]). Cha and Finkelstein
[17] also consider two ordered sub-populations with strong,
and weak units respectively for a burn-in procedure.

When the population is heterogeneous, that is, strong and
weak spares are mixed, failed components are replaced by new
ones, which in turn can be weak or strong. However, in the
case of imperfect inspections, another consequence emerges
which is that strong, working components can be replaced
by weak ones. Thus, an actual decrease of reliability can
occur when heterogeneous components may undergo imperfect
inspections.

Our paper analyzes this situation just described. Further-
more, whereas Ten Wolde and Ghobbar [15] for example state
that increasing the inspection frequency increases the chance
that a potential failure will be identified so that the additional
cost (of more inspections) leads to improved reliability, this
condition is not the case when the consequence of a false
positive inspection is the possible replacement of a strong
component by a weak one (Berrade et al. [13]). Therefore,
in our view, it is necessary to consider both cost and system
reliability when analyzing the effect of inspection errors and
low quality maintenance on inspection policy, and we do so
in our paper here.

In the next section, we describe our maintenance policy
and its features, including the underlying component reliability
model. We then determine conditions under which there exists
a finite optimum inspection interval (Section 2.1). In so
doing, we also quantify circumstances in which the quality
of inspection and replacement is not sufficiently high for
the benefit derived from inspections to compensate for their
incurred cost. In this way, we provide conditions that relate
to the quality of maintenance and spare parts under which a
maintained system would not benefit from the execution of
preventive maintenance. Proofs of our results are given in the
Appendix. In Section 2.2, we further determine the operational
reliability of the system. This knowledge may be useful when
one wishes not only to consider a maintenance policy that is
safety driven rather than cost driven (e.g. Flage et al. [18]),
but also to consider the possibility that an increasing cost (of
inspection) does not imply an increasing reliability. We then
consider some numerical examples, the first of which presents
a discrete mixture for the failure time distribution (Section
3.1), and the second a continuous mixture (Section 3.2). The
examples provide additional insight about how the interaction

between inspection errors and low quality maintenance cannot
be neglected. We finish with a short discussion of the impli-
cations for the management of engineering services.

II. MAINTENANCE POLICY

Consider a system with failures that are detected only
by inspection. The system is inspected periodically every T
units up to replacement. The system is replaced at a positive
inspection, which is when inspection indicates the occurrence
of a failure.

Testing may be imperfect. At an inspection, a false positive
can occur. A false positive is the case when the inspection
indicates a system failure but the system is actually good
(working). Also, an inspection may report that the system is
good when in fact it is failed; this is a false negative. The
corresponding probabilities of a false positive, and a false
negative at an inspection are denoted by α, and β respectively.
We assume that, when an inspection is positive, the system
is replaced. Thus the system is replaced at a true positive
inspection, in error at a false positive inspection, and at MT ,
whichever occurs first.

One might envisage circumstances in which at a false
positive a deeper investigation of the state of the system is
carried out to reveal the true system state. Such a secondary
inspection would come at an extra cost; but because it would
ultimately reveal the system state, in such circumstances false
positives would not occur, and a positive inspection would
merely imply an additional cost. Thus, we do not consider
this scenario. We emphasise that, in the model we develop in
this paper, at a positive inspection, the system is replaced. In
a real context, a maintainer may not have the capability to
carry out the secondary inspection; the maintainer responds
to a positive inspection (whether true or false) with an im-
mediate replacement. This response is referred to as in-house
maintenance by Berrade et al. [12].

We assume replacement renews the system so that concep-
tually the system comprises a component located in a socket
which together perform an operational function (Ascher and
Feingold [19]). In this way, by replacement we mean the
replacement of the component in the socket with another
functionally new component from a common stockpile of
components.

Further, we suppose that, when the component fails, the
system fails. The lifetime X of a component has a general
distribution F with corresponding reliability function R. In
our numerical study in Section 3, we suppose that F may
be a mixture, although in the determination of our results
the exact nature of F does not need to be specified. In its
simplest form, in our first example, the mixture we consider
is a mixture of two sub-distributions: one that represents
components with relatively short lives, and one that represents
components with long lives. A short component life may be
the result of using a poor quality spare part, or of poor quality
installation. Either way, this is conceptually what we mean
by poor quality replacement. This idea has been studied in
a reliability context (e.g. [20]), and a maintenance context
(e.g. Scarf et al. [21]). Furthermore, and more generally in
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our second example, we consider a continuous mixture model
for the lifetimes of a heterogeneous population of components.
Overall, in the numerical study, our purpose is to illustrate the
effect of poor quality inspection and component heterogeneity,
or poor component quality, upon a preventive maintenance
policy.

Regarding the costs, we suppose that the preventive cost
cm is smaller than the corrective cost cr, even though the
component is replaced in both cases. We justify this assump-
tion on the basis that, on replacement, components may be
re-conditioned and returned to inventory. In the case of a
false positive or a preventive replacement at MT , little re-
conditioning may be required. In the case of a true positive,
an overhaul of the component may be required. Furthermore,
it is worth noting that, as the system is a protection system, cr
is associated with the failure of the protection system, and not
the protected system. Thus, failure of the protection system
only has an impact on the protected system if the protected
system demands protective action from the protection system
when the protection system is in the failed state. Such an event
is modelled through the cost of unavailability cd, which is
interpreted as the product of notional quantities: the expected
cost per unmet demand (for the operational function of the
protection system), and the rate of occurrence of unmet
demands.

A. Some characterisations of the optimal policy

The random variables K1 and K2 take values in
0, 1, 2, . . .M .
Now

P (K1 = 0) = 1−R(T ),

and for i = 1, 2, . . .M − 1

P (K1 = i) =

(R(iT )−R((i+ 1)T ))(1− α)i +R(iT )(1− α)i−1α,

and

P (K1 =M) = R(MT )(1− α)M−1.

Its expected value is

E[K1] =

M∑
i=1

R(iT )(1− α)i−1. (1)

In the case that there is no inspection at MT , the expectation
is

E[K1] =

M−1∑
i=1

R(iT )(1− α)i−1.

For K2, we have

P (K2 = 0) =
M−1∑
i=1

R(iT )(1− α)i−1α+R(MT )(1− α)M−1;

and for i = 1, 2, . . .M − 1,

P (K2 = i) =
M−i∑
k=1

(R((k − 1)T )−R(kT )) (1− α)k−1βi−1(1− β) +

(R((M − i)T )−R((M − i+ 1)T )) (1− α)M−iβi−1,

and
P (K2 =M) = (1−R(T ))βM−1.

E[K2] = (2)
M∑
i=1

(R((i− 1)T )−R(iT )) (1− α)i−1 1− β
M+1−i

1− β
.

If there is no inspection at MT , the expectation is

E[K2] =

M−1∑
i=1

(R((i− 1)T )−R(iT )) (1− α)i−1 1− β
M−i

1− β
.

Therefore, the expected length of a cycle is

E[τ ] = E[(K1 +K2)T ] = (3)
M∑
i=1

(1− α)i−1T β
M+1−i − β
1− β

R(iT ) +

M∑
i=1

(1− α)i−1T 1− βM+1−i

1− β
R((i− 1)T ).

The expected uptime in a cycle, E[U ], is

E[U ] =

M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
tdF (t) +

M−1∑
i=1

iTα(1− α)i−1R(iT ) +MT (1− α)M−1R(MT ) =

M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
R(t)dt. (4)

In addition, the expected downtime in a cycle is

E[D] = E[τ ]− E[U ].

Regarding costs, the expected cost derived from inspections,
cins, is

cins = c0 (E[K1] + E[K2]) .

Therefore,

cins = (5)

c0

M∑
i=1

R(iT )(1− α)i−1 +

c0

M∑
i=1

(R((i− 1)T )−R(iT )) (1− α)i−1 1− β
M+1−i

1− β
.

The system is replaced at a false positive, or when it is
detected to be failed (true positive), or preventively at MT ,
whichever occurs first. Both a false positive and the preventive
maintenance at MT incur a cost cm. The associated cost due
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to the replacement of a failed system is cr. Hence, the cost
derived from the replacement of the system is{

cr, if X < MT and there are no false positives,
cm, otherwise,

with

P (cr) =

M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
dF (t) =

1− α
M−1∑
i=1

R(iT )(1− α)i−1 − (1− α)M−1R(MT ),

and

P (cm) =

α

M−1∑
i=1

R(iT )(1− α)i−1 + (1− α)M−1R(MT ),

where P (cr), and P (cm) denote the probabilities that the
replacement cost is cr, and cm respectively. The expected cost
derived from the replacement of the system is

cren =

(cm − cr)α
M−1∑
i=1

R(iT )(1− α)i−1 +

(cm − cr)(1− α)M−1R(MT ) + cr.

The expected total cost incurred in a cycle is then

C(τ) = cins + cren + cdE[D] = cins + cren +

cd

(
E[τ ]−

M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
R(t)dt

)
.

Therefore, the cost-rate (the long-run cost per unit time) turns
out to be

Q(T,M) = cd + (6)

cins + cren − cd
(∑M

i=1(1− α)i−1
∫ iT
(i−1)T R(t)dt

)
E[τ ]

,

with E[τ ] given in (3). In the case that M = 1, the expression
in (6) is

Q(T,M) =

cd +
c0 + (cm − cr)R(T ) + cr − cd

∫ T
0
R(t)dt

T
.

The next lemma gives two limits for Q(T,M) which are
the key in the proofs of the results concerning the existence
of a finite optimum policy T .

Lemma 1: Given M , Q(T,M) is a continuous function so
that

limT→0Q(T ) =∞ and limT→∞Q(T ) = cd.
The next result provides a sufficient condition to ensure the

existence of a finite optimum T ? for a given M when cm = cr.
Proposition 1: Suppose that cm = cr, and the number

of inspections previous to the preventive maintenance, M ,

is fixed. If there exists some T > 0 satisfying one of two
conditions

a) TR(MT ) > (7)
c0

cd(1− β)

(
1− βM+1 − β(1− α)M

β − (1− α)
α

1− (1− α)M

)
+

αcr
cd(1− (1− α)M )

if α+ β 6= 1, or

b) TR(MT ) > (8)
c0

cd(1− β)

(
1− MβM (1− β)

1− βM

)
+

cr(1− β)
cd(1− βM )

if α+ β = 1,
then there exists a finite T ? minimizing Q(T,M) in (6).
Lemma 2: The following properties apply.

i) max (cr, cm) ≥ cren ≥ min (cr, cm).
ii) E[U ] < µ 1−(1−α)M

α for a given M .
The next results give some sufficient conditions under which

the optimum inspection interval, T ?, does not exist when the
number of inspections M is fixed.

Proposition 2: Given a fixed M , if µ = E[X] satisfies

µ ≤ α(c0 +min (cr, cm))

cd(1− (1− α)M )
, (9)

then T ? =∞.
Condition (9) broadly means that, if maintenance costs are

large or the false positive probability is large or both, then the
best policy is no inspection at all.

Theorem 1: Given a fixed M ≥ 1, if
i) cm ≤ cr, and
c0

(
1−βM

1−β + 1−M
)
+ cm ≥ cdµ 1−(1−α)M

α ; or
ii) cm > cr, and
c0

(
1−βM

1−β + 1−M
)
+ cr ≥ cdµ 1−(1−α)M

α

then T ? =∞.
Corollary 1: Given a fixed M > 1, let βM0 be defined as

βM0 = min

{
β|1− β

M

1− β
≥ v(µ,M,α, c0, cr, cm, cd)

}
where

v(µ,M,α, c0, cr, cm, cd) =

cdµ
1−(1−α)M

α −min(cr, cm)

c0
+M − 1.

If β ≥ βM0, then T ? =∞.
Note that Corollary 1 only makes sense when M > 1;

that is, when there are several inspections, and the inspection
may fail to detect a failure, only then does a condition on
β exist. Thus, if one insists on conducting an inspection, if
β is (sufficiently) large, then such an inspection should be
postponed indefinitely.

Next, we aim to obtain a condition for the existence of an
optimum number of inspections, M?, and hence for preventive
replacement to be optimal when the time to failure follows
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an exponential distribution. In general, Q(T,M?) has a local
minimum at M? if

Q(T,M? + 1) ≥ Q(T,M?), Q(T,M? − 1) > Q(T,M?).

Theorem 2: If the time to failure is an exponential distri-
bution, and β = 0, then, for any given T , M? =∞.

The result is not necessarily true in the case of β 6= 0, as
the following counter examples establish. With costs c0 = 1,
cm = 5, cr = 10, cd = 5000, α = 0, and an exponential time
to failure distribution, we obtain
• λ = 100, β = 0.8, M? = 1, T ? = 0.0063, Q (T ?,M?) =

2613.751.
• λ = 1, β = 0.9, M? = 1, T ? = 0.0498, Q (T ?,M?) =

247.82.

It is known (Barlow and Proschan [22]) that, when the
failures of a system are revealed as soon as they occur, and
the time to failure follows an exponential distribution, then
the lack of memory property implies that the best policy is no
preventive maintenance (M? =∞). Theorem 2 indicates that
this classic result still holds when the inspection procedure
is only subject to false positives. Thus, there is no need to
replace the system before it fails provided that the system in
use is as-good-as-new, and the maintainer can be confident
that a potential failure will be detected in the next inspection.
When false negatives can occur, M? = ∞ may not be
the best policy. The examples show that, although there is
nothing to be gained from preventive replacement of a non-
ageing system if it is known to be in the good state, if it
is not known to be in the good state (because inspections
are subject to false negatives) it may be worthwhile to carry
out preventive replacement at inspection. This condition is
true because replacement guarantees the restoration of system
functionality whereas inspection does not. Thus, and this is
the crux of our work here, when a protection or cold-standby
system has an exponential time to failure, and inspections are
subject to false negatives, then contrary to the classic result,
preventive replacement may indeed be cost-optimal. Thus,
in summary, Theorem 1 describes the consequences of low
quality maintenance for an inspection policy when M , the
number of inspections until preventive replacement, is given,
and the distribution of the time to failure of the component has
a general form. Theorem 2 shows that, when inspections of a
protection or standby system are subject to false positives, the
classic result (it is cost-sub-optimal to replace a non-ageing
system) still holds; but when inspections are subject to false
negatives, our examples show that the classic result is no
longer valid.

B. The operational reliability function

In the context of perfect inspection, more frequent inspec-
tions will increase the operational reliability of the system
while also increasing the cost-rate, so that a reliability or safety
requirement will generally dominate policy choice (Scarf
et al. [23]). With imperfect maintenance, it is possible to
simultaneously maximise reliability and minimise cost (Scarf
et al. [21]). Therefore, for the imperfect inspection policy

that we consider in this paper, it is interesting to derive the
operational reliability function. We do this now. Note that by
the operational reliability function we mean the probability
that the system is functioning at time t, and there has been no
failure in (0, t) given that the system was new at time t = 0
(Lewis [24]). The terminology used here is the same as that
in Christer [25] who formulate the reliability function for a
delay-time model. The main difference is that, in [25], the
inspection procedure is considered to be perfect, and has no
effect on the reliability of the system.

Let RTM (t) denote the reliability function of the system
under inspection every T units of time and preventive replace-
ment at MT . RTM (t) represents the probability that a system
new at t = 0 survives up to t, for all t > 0. In addition, let
r
(m)
TM denote the reliability function for the system at time t

with (m− 1)T ≤ t < mT . It follows that

r
(1)
TM (t) = R(t), 0 ≤ t < T

is just the component reliability. When developing r
(m)
TM for

m > 1, we have to take into account the possibility of a false
positive at each inspection prior to the replacement at MT of
a non-failed system.

Therefore, for T ≤ t < 2T ,

r
(2)
TM (t) = (1− α)R(t) + αR(T )r

(1)
TM (t− T ).

For 2T ≤ t < 3T , it follows that

r
(3)
TM (t) = (1− α)2R(t) +
αR(T )r

(2)
TM (t− T ) + (1− α)αR(2T )r(1)TM (t− 2T ).

Let us now develop the expression of r(3)TM (t) to explain its
meaning. Replacing the corresponding expressions of r(2)TM (t)

and r(1)TM (t), we obtain

r
(3)
TM (t) =

(1− α)2R(t) + αR(T )(1− α)R(t− T ) +
α2R2(T )R(t− 2T ) +

(1− α)αR(2T )R(t− 2T ).

The first term represents the probability that the system, new
at t = 0, survives up to t with no false positive either at T or
at 2T . The second term indicates that the system is renewed
at T due to a false positive. There is no false positive at 2T ,
and the system survives up to t. The third term corresponds
to the case that there are two false positives at T and 2T , and
the component installed at 2T survives to t. In the forth term,
there is no false positive at T , but one occurs at 2T , and the
system renewed at 2T survives up to t.

For 3T ≤ t < 4T ,

r
(4)
TM (t) = (1− α)3R(t) +
αR(T )r

(3)
TM (t− T ) + (1− α)αR(2T )r(2)TM (t− 2T ) +

(1− α)2αR(3T )r(1)TM (t− 3T ).

The general formulation for (m− 1)T ≤ t < mT is

r
(m)
TM (t) = (1− α)m−1R(t) +
m−1∑
i=1

α(1− α)i−1R(iT )r(m−i)TM (t− iT ).
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For MT ≤ t < (M + 1)T ,

r
(M+1)
TM (t) = r

(M)
TM (MT )r

(1)
TM (t−MT ).

For kMT + (j − 1)T ≤ t < kMT + jT with
k = 0, 1, . . ., and j = 1, 2, . . . ,M , the general formula

turns out to be

RTM (t) = r
(kM+j)
TM (t) = (r

(M)
TM (MT ))kr

(j)
TM (t− kMT ).

Observe that there is no effect of false negatives on the
operational reliability; these only affect availability.

III. NUMERICAL EXAMPLES

In this section, we present some results that aim to illus-
trate the mathematical dependence on the parameters of both
the optimum inspection frequency and optimum number of
inspections previous to the preventive maintenance.

A. A discrete mixture failure time distribution

The time to failure is assumed to be a mixture of two
Weibull distributions. The failure rate of a Weibull distribution
is given by

r(t) = sη−sts−1.

The reliability function of the Weibull mixture is

R(t) = pe−(t/η1)
s1

+ (1− p)e−(t/η2)
s2
.

The characteristic lives, and shape parameters of the mixture
are η1 = 500, η2 = 7000, and s1 = 2.5, s2 = 4.5, respectively.
The sub-populations in the mixture verify that r1(t) ≥ r2(t),
t ≥ 0; that is, sub-population 1 is smaller than sub-population
2 in hazard rate order. This mixture is used to model early
failures caused by a proportion p of weak items represented by
sub-population 1. For additional insight on stochastic orders,
see Shaked and Shantikumar [26].

Parameter values in the example relate to a case study
considered in Berrade et al. [12] regarding a protection device
in a soft drink production process. The optimum policy, T and
M , for different values of the model parameters is contained
in Table I. Table I shows that the inspection interval increases
when the probability of false positives, α, increases, whereas
T decreases when β increases. Both results are as expected
because of the risk of incurring unnecessary replacements in
the first case, and to mitigate false negatives in the second.

Whenever η1, η2, s1, s2 increase, the inspection frequency
is relaxed, and the optimum cost-rate decreases. When the pro-
portion of weak items p increases, more intensive inspection
is required, and therefore the optimum cost-rate is also higher.
The form of the cost-rate is illustrated in Fig. 1.

Fig. 2 illustrates the behaviour of the operational reliability.
An inspection of Fig. 2 reveals interesting features. For small
values of p, as in Fig. 2(a), RTM (t) > R(t). Thus, mainte-
nance tends to increase the reliability. For large values of time
t, the reliability is greater when inspection is carried out at kT
than when no inspection is carried out. When the proportion of
weak items is high, the reliability function is not monotonic
with T as in Fig. 2 (b) and (c). That is, RTM (t) does not
always increase when the inspection frequency increases. The

high proportion of weak items p = 0.15 and p = 0.3 explains
the non-monotonic behavior. The risk of replacement with a
weak item is large; therefore, as T decreases, the risk of a
poor quality replacement increases.

Nevertheless, RTM (t) increases as T decreases when the
proportion of weak items is low as in Fig. 2(a) (p = 0.005).
The same reason as before explains this fact: provided that
the risk of low quality replacement is low, increasing the
inspection frequency is beneficial from the reliability point
of view. Moreover, when p increases to very high values as in
Fig. 2(c) (p = 0.3), RTM (t)) drops dramatically, and tends to
be even below the reliability when no maintenance is carried
out, (baseline reliability R(t)).

Fig. 3 illustrates the interaction effect between parameters.
In Fig. 3(b), when α increases, the reliability decreases. The
same argument as before applies here: the high probability of
a low quality replacement (p = 0.15) after a false positive
makes RTM (t) decrease. In Fig. 3(a), where the value of p is
small (p = 0.005), the behaviour is just the opposite: when α
increases, so does the reliability.

B. Continuous mixture failure time distribution

Following Gupta and Gupta [27], we consider the following
mixture.

Let X be a continuous random variable with baseline failure
rate r(x), and Z be a nonnegative random variable that models
the environmental effect responsible for the heterogeneity in
the population. The reliability function conditional upon Z =
z is

R(t|z) = e−z
∫ t
0
r(x)dx,

and the conditional failure rate is

r(t|z) = zr(t)

In this case, a greater value of z implies harder environmental
conditions, and therefore r(t|z1) ≥ r(t|z2), z1 > z2.

The reliability function of the mixture, R?(t), is expressed
as

R?(t) =

∫ ∞
0

g(z)e−z
∫ t
0
r(x)dxdz,

with g(z) being the density function of Z.
In what follows, we assume the baseline failure rate corre-

sponding to a Weibull distribution. Hence,

R(t|z) = e−z(t/η)
s

,

and Z is inverse Gaussian, so

g(z) =
1

(2πbz3)
1
2

e−
(dz−1)2

2bz , z, b, d > 0.

It can be verified ( [27], [28]) that the failure rate of the
mixture r?(t) is

i) decreasing for s ≤ 1,
ii) increasing s ≥ 2, and
iii) non-monotonic of type U for 1 < s < 2.

The form of r?(t) of the type U case implies that there
exists a t0 such that the derivative of r?(t), r?′(t), is such that
r?′(t) > 0 for t < t0, r?′(t0) = 0, r?′(t) < 0 for t > t0.
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Table II shows some results corresponding to the Weibull-
inverse Gaussian mixture.

Note that in all the cases where the mixture has a decreasing
failure rate the corresponding M? is not finite for moderate
values of alpha and beta. This result makes sense provided that
in both cases an improvement in the reliability of the system
takes place as time goes by. However, we can see that, for
β large, or α large and β 6= 0, then M? 6= ∞; in fact, pure
replacement M = 1 is the best policy. In those cases such that
β = 0, then M? = ∞ no matter what the value of α is, and
so we conjecture that the result in Theorem 2 also holds for
DFR distributions.

When comparing cases 1 (IFR) and 3 (DFR) in Table II,
both mixtures present the same mean time to failure. However,
in the DFR case, the cost-rate is higher because in spite of the
fact that the failure rate is decreasing it is initially high in
comparison to the IFR case so that undetected early failures
are likely.

Fig. 4 illustrates the point that if the mixture is DFR then
the effect of increasing α is to decrease the reliability, while
if the mixture is IFR then the effect of increasing α is to
increase the reliability. Thus, if the mixture is DFR, increasing
the inspection frequency can produce a negative effect on the
reliability. The higher α, the greater this negative effect will
be. In addition, increasing α also increases the cost-rate. Note
that the reliability function does not depend on the value of
β.

IV. CONCLUSION

This paper focuses on the effect of inspection errors and low
quality maintenance when determining the optimal inspection
interval and preventive maintenance time for a protection sys-
tem or cold standby system in which failures are unrevealed.
We develop a number of results that characterise the minimum
cost-rate policy, and which allow us to quantify circumstances
in which inspection is cost-inefficient.

When a safety requirement is prescribed, and it is therefore
natural to consider the operational reliability of the system,
false negatives affect availability ((3) and (4)), but not re-
liability. On the other hand, the effect of false positives on
operational reliability is complex, and depends on the nature
of the component reliability distribution. If this is IFR, then
false positives increase operational reliability, so that false
positives are a cost issue. For discrete mixtures, false positives
provide also a positive effect on the reliability when the
proportion of weak items is low. However, if the reliability
distribution is not IFR, and replacement is imperfect (in the
sense of Scarf et al. [2]), then the unnecessary replacements
at false positives not only increase the cost-rate but may also
decrease operational reliability and decrease availability. The
same effect is detected when the proportion of weak items is
high. This result is true because a new component introduced
at replacement may be worse than the one in use.

When the system under inspection is DFR, and inspections
are perfect, no preventive maintenance is recommended. How-
ever, we observe that this recommendation is no longer valid
when false negatives can occur. If so, preventive maintenance

can protect against the occurrence of a failure that remains
undetected and causes unavailability and potential catastrophic
failure of the protected system.

Thus, when one is dealing with a protection system, it would
seem essential to inspect this system because inspection is
the only way to know the state of the system. However, we
show in this paper that, even if inspection is the only way to
know the system state, and hence if the protection system is
performing its required function (to protect a critical system),
if maintenance is poorly executed (with high probability to
commit mistakes at inspection and to introduce poor quality
or badly installed components at preventive replacement), then
it may be more prudent to do nothing. This kind of conclusion
is not according to common engineering sense because in
practice one might tend to act more frequently when an action
is perceived to be only moderately effective.

APPENDIX

PROOF OF LEMMA 1

The cost-rate can be alternatively expressed as

Q(T,M) = cd +
c0
T

+
cren − cdE[U ]

T (E[K1] + E[K2])
.

The expected uptime is given by

E[U ] =

∫ T

0

R(t)dt+

M∑
i=2

(1− α)i−1
∫ iT

(i−1)T
R(t)dt.

The second term in the previous expression is bounded as

T

M∑
i=2

(1− α)i−1R(iT ) ≤
M∑
i=2

(1− α)i−1
∫ iT

(i−1)T
R(t)dt,

and
M∑
i=2

(1− α)i−1
∫ iT

(i−1)T
R(t)dt ≤ T

M∑
i=2

(1− α)i−1R((i− 1)T ).

The upper, and lower bound of the foregoing inequalities
tend to zero in both cases when T tends to zero, and when T
tends to infinity (see Badı́a et al. [29]); and hence the following
conditions hold.

limT→0E[U ] = 0 and limT→∞E[U ] = E[X] = µ
In addition,

limT→0 cren = cm, limT→∞ cren = cr
1 ≤ K1 +K2 ≤ M . Hence T ≤ E[(K1 +K2)T ] ≤ MT ,

and the following two limits hold for a fixed M .
limT→0E[(K1 +K2)T ] = 0, and
limT→∞E[(K1 +K2)T ] =∞.

Thus the two limiting conditions in Lemma 1 are proved.

PROOF OF PROPOSITION 1

The total number of inspections in a cycle is bounded as
follows.

E[K1] + E[K2] ≤
M∑
i=1

(1− α)i−1
(
1− βM+1−i

1− β

)
=

1

1− β

(
1− (1− α)M

α
− βM+1 − β(1− α)M

β − (1− α)

)
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provided that α+ β 6= 1.
Next, a lower bound for the expected uptime is

E[U ] =

M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
R(t)dt >

M∑
i=1

(1− α)i−1TR(iT ) > TR(MT )
1− (1− α)M

α
.

Then,

c0(E[K1] + E[K2]) + cr − cdE[U ] <

c0
1− β

(
1− (1− α)M

α
− βM+1 − β(1− α)M

β − (1− α)

)
+

cr − cdTR(MT )
1− (1− α)M

α
.

In the case that α+ β = 1, it follows that

E[K1] + E[K2] ≤
M∑
i=1

(1− α)i−1
(
1− βM+1−i

1− β

)
=

1

1− β

(
1− βM

1− β
−MβM

)
.

Conditions (7) and (8) imply that

c0(E[K1] + E[K2]) + cr − cdE[U ] < 0

for some T > 0, and Lemma 1 leads to the result.

PROOF OF LEMMA 2
Result i) is true because

0 ≤

(
α

M−1∑
i=1

R(iT )(1− α)i−1 + (1− α)M−1R(MT )

)
< 1,

and this follows because

α

M−1∑
i=1

R(iT )(1− α)i−1 + (1− α)M−1R(MT ) <

α

M−1∑
i=1

(1− α)i−1 + (1− α)M−1 =

α
1− (1− α)M−1

α
+ (1− α)M−1 = 1.

Result ii) follows from the fact that(
M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
R(t)dt

)
≤(

M∑
i=1

(1− α)i−1
∫ ∞
0

R(t)dt

)
=

M∑
i=1

(1− α)i−1µ = µ
1− (1− α)M

α
.

PROOF OF PROPOSITION 2
K1, and K2 are s-dependent random variables such that

K1+K2 ≥ 1, implying that cins ≥ c0. Therefore, for a given
M , condition (9) along with Lemma 2 imply that Q(T,M) ≥
cd for all T > 0, and Lemma 1 leads to the result.

PROOF OF THEOREM 1

Let us analyze the numerator in the expression of the cost-
rate given in (6) as follows.

cins + cren − cd

(
M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
R(t)dt

)

The cost derived from inspections in (5) can be alternatively
written as

cins = c0

(
1− βM

1− β
+
βM − β
1− β

R(T )

)
+

c0

M∑
i=2

R(iT )(1− α)i−1 +

c0

M∑
i=2

(R((i− 1)T )−R(iT ))(1− α)i−1 1− β
M+1−i

1− β
.

Hence,

cins ≥ c0
(
1− βM

1− β
+
βM − β
1− β

R(T )

)
.

For a given M ≥ 1, let us denote by f(β) the function

f(β) =
βM − β
1− β

.

f(β) is a decreasing function, hence f(β) ≥ limβ→1 f(β) =
1−M , and it follows that

cins ≥ c0
(
1− βM

1− β
+ 1−M

)
provided that f(β) is a negative function. Hence, if any of the
conditions given in i) or ii) verify, then for all M ≥ 1 and
T > 0, Lemma 2 implies that

cins + cren ≥ cdE[U ].

Therefore, for a given M ≥ 1, Q(T,M) ≥ cd for all T > 0,
and the result follows from Lemma 1.

PROOF OF COROLLARY 1

g(β,M) = (1−βM )/(1−β) is an increasing function with
β:

∂g(β,M)

∂β
=

h(β)

(1− β)2
,

and h(β) = 1 −MβM−1(1 − β) − βM verifies that h(0) =
1, h(1) = 0, and h′(β) = −M(M − 1)βM−2(1 − β) < 0.
Therefore, h(β) ≥ 0, and g(β,M) is increasing with β. Hence,
conditions i) or ii) in Theorem 1 hold for β ≥ βM0, and thus
the result in Corollary 1 is obtained.
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PROOF OF THEOREM 2

If β = 0, the cost-rate is

Q(T,M) = cd +
c0
T

+
a(T,M)

b(T,M)

with a(T,M), and b(T,M) as

a(T,M) = (cm − cr)α
M−1∑
i=1

R(iT )(1− α)i−1 +

(cm − cr)(1− α)M−1R(MT ) + cr −

cd

M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
R(t)dt,

b(T,M) = T

M∑
i=1

(1− α)i−1R((i− 1)T ).

In addition,

Q(T,M + 1) = cd +
c0
T

+
a(T,M + 1)

b(T,M + 1)
,

a(T,M + 1) = a(T,M) + g(T,M),

b(T,M + 1) = b(T,M) + h(T,M)

with

g(T,M) =

(cm − cr)(1− α)M (R((M + 1)T )−R(MT ))−

cd(1− α)M
∫ (M+1)T

MT

R(t)dt,

and

h(T,M) = T (1− α)MR(MT ).

Then Q(T,M +1) ≤ Q(T,M) is equivalent to the inequality

a(T,M) + g(T,M)

b(T,M) + h(T,M)
≤ a(T,M)

b(T,M)

which in turn is equivalent to

g(T,M)

h(T,M)
≤ a(T,M)

b(T,M)

provided that b(T,M) ≥ 0, and h(T,M) ≥ 0.
The foregoing inequality can be also expressed as

(cm − cr)R((M + 1)T )−R(MT )

R(MT )

−
cd
∫ (M+1)T

MT
R(t)dt

R(MT )
≤ (10)
(cm − cr)α

∑M−1
i=1 R(iT )(1− α)i−1∑M

i=1(1− α)i−1R((i− 1)T )
+

(cm − cr)(1− α)M−1R(MT ) + cr∑M
i=1(1− α)i−1R((i− 1)T )

−

cd
∑M
i=1(1− α)i−1

∫ iT
(i−1)T R(t)dt∑M

i=1(1− α)i−1R((i− 1)T )
.

If the time to failure follows an exponential distribution with
rate λ = 1/µ, then we get

(
α

M−1∑
i=1

(1− α)i−1R(iT ) + (1− α)M−1R(MT )

)
=

αe−λT + (1− α)Me−λMT
(
1− e−λT

)
1− (1− α)e−λT

,

and
M∑
i=1

(1− α)i−1R((i− 1)T ) =
1− (1− α)Me−λMT

1− (1− α)e−λT
.

Also,

M∑
i=1

(1− α)i−1
∫ iT

(i−1)T
R(t)dt =(

1− e−λT
) (

1− (1− α)Me−λMT
)

λ (1− (1− α)e−λT )
.

Then, the inequality in (10) is given by

(cm − cr)
(
e−λT − 1

)
≤

(cm − cr)
(
αe−λT + (1− α)Me−λMT

(
1− e−λT

))
1− (1− α)Me−λMT

+

cr
(
1− (1− α)e−λT

)
1− (1− α)Me−λMT

.

Given that 1 − (1 − α)Me−λMT ≥ 0 for all T , the previous
inequality is in turn equivalent to

cm
(
e−λT − 1

)
≤ cmαe−λT ,

which is always true for all M and T as the left hand side of
the previous expression is less than or equal to zero.

Note that, if α = 0, then the last inequality also holds and
proves the result for perfect inspections (Barlow and Proschan
[22]).
Therefore, under the conditions of Theorem 2, Q(T,M+1) <
Q(T,M) for all M , and the result holds. This completes the
proof.
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Table I: Discrete two component mixture; minimum cost-rate policy 
for various parameter values. 

 
Case Mixed failure distribution 

parameters 
Cost parameters False -ve 

and +ve 
probabilities 

Optimum policy 

  s1 η1 s2 η2 p c0 cm cr cD    β   α M* T* Q* 
1 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 7 606 0.067 

2 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.4 6 733 0.088 

3 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.6 5 847 0.114 

4 2.5 500 4.5 7000 0.1 5 55 105 1.35 0 0 10 410 0.042 

5 2.5 500 4.5 7000 0.1 5 55 105 1.35 0 0.2 6 687 0.056 

6 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.4 0.2 8 527 0.082 

7 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.6 0.2 9 449 0.107 

8 1.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 7 593 0.069 

9 3.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 6 656 0.065 

10 2.5 400 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 7 588 0.068 
11 2.5 600 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 6 670 0.066 
12 2.5 500 3 7000 0.1 5 55 105 1.35 0.2 0.2 7 533 0.077 
13 2.5 500 6 7000 0.1 5 55 105 1.35 0.2 0.2 7 655 0.062 
14 2.5 500 4.5 5000 0.1 5 55 105 1.35 0.2 0.2 6 509 0.079 
15 2.5 500 4.5 9000 0.1 5 55 105 1.35 0.2 0.2 8 675 0.060 
16 2.5 500 4.5 7000 0.01 5 55 105 1.35 0.2 0.2 1 2557 0.029 
17 2.5 500 4.5 7000 0.05 5 55 105 1.35 0.2 0.2 5 740 0.051 
18 2.5 500 4.5 7000 0.25 5 55 105 1.35 0.2 0.2 11 469 0.114 

19 2.5 500 4.5 7000 0.1 2 55 105 1.35 0.2 0.2 7 588 0.062 

20 2.5 500 4.5 7000 0.1 10 55 105 1.35 0.2 0.2 6 686 0.074 

21 2.5 500 4.5 7000 0.1 5 55 70 1.35 0.2 0.2 7 608 0.065 

22 2.5 500 4.5 7000 0.1 5 55 140 1.35 0.2 0.2 7 605 0.069 

23 2.5 500 4.5 7000 0.1 5 55 105 0.8 0.2 0.2 6 724 0.053 
24 2.5 500 4.5 7000 0.1 5 55 105 2.2 0.2 0.2 8 510 0.085 

 



Figure 1. Cost-rate, ),( MTQ , as a function of T for M=4 (
__

+
__

); M =5 (
__o__

);  

M =6 (- - -); M =7(
__
□

__
); M =8 (

__
∆

__
); M =9(

__
◊

__
); M=10(

__
 X__

).  

Parameter values: s s p = 0.10, α = 0.2,     

c0 = 5, cm = 55 cr =105, cD = 1.35.
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        (a)          (b)         (c) 

 

Figure 2. Reliability function )(tRTM as a function of t for M=5 and α =0.2, for various values of T:  

T(- - - -) T(─◊─) T(─Δ─)   T(─X─) T (─ + ─); T (─○─) ; 

baseline reliability R(t) (──). Discrete mixture (a)  p = 0.005; (b) p = 0.15; (c) p = 0.3;  

other parameter values: sscosts as base case. 

(c) 





        
          (a)               (b) 

 

Figure 3. Reliability function )(tRTM  as a function of t for M=7 and T= 655, for various values of α: α =0.05 

(- - - -); α =0.1 (─◊─); α =0.3 (─∆─); α =0.5(─X─); baseline reliability R(t) (──). Discrete mixture:  

(a) p=0.005; (b) p=0.15. Other parameter values: s scosts as base case.  



13

Table II: Continuous mixture: Weibull-inverse Gaussian. Minimum 
cost-rate policy for various parameter values. 

 
Case Mixed failure 

distribution 
parameters 

Cost parameters False -ve 
and +ve 
probabilities 

Optimum policy 

  s η b d c0 cm cr cD    β   α M* T* Q* 
1 2 5008 1 1 5 55 105 1.35 0.2 0.2 2 731 0.076 

2 1.5 5008 1 1 5 55 105 1.35 0.2 0.2 ∞ 340 0.094 

3 1 2897 1 1 5 55 105 1.35 0.2 0.2 ∞ 272 0.157 

4 1 2897 1 1 5 55 105 1.35 0.4 0.2 ∞ 217 0.189 

5 1 2897 1 1 5 55 105 1.35 0.6 0.2 2 348 0.236 

6 1 2897 1 1 5 55 105 1.35 0.8 0.2 1 578 0.238 

7 1 2897 1 1 5 55 105 1.35 0.2 0.4 ∞ 339 0.198 

8 1 2897 1 1 5 55 105 1.35 0.2 0.6 ∞ 395 0.230 

9 1 2897 1 1 5 55 105 1.35 0.2 0.8 1 578 0.238 

10 1 2897 1 1 5 55 105 1.35 0.0 0.8 ∞ 529 0.218 

11 1 2897 1 1 5 55 105 1.35 0.0 0.6 ∞ 475 0.195 

12 1 2897 1 1 5 55 105 1.35 0.0 0.5 ∞ 444 0.182 

13 1 2897 1 1 5 55 105 1.35 0.0 0.4 ∞ 412 0.168 

14 2 5008 1 1 5 55 105 1.35 0.1 0.1 6 392 0.069 
 



        
       (a)                (b)



Figure 4. Reliability function )(tRTM  as a function of t for M=7 and T , for various  values of α: 

α=0.05 (- -  -); α =0.1 (─Δ─); α =0.3 (─o─); and α =0.5 (─×─)  baseline reliability R(t) (──). 

Continuous mixturea sDFR)bsIFR)ther parameter values: bd 

costs as base case. 


