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We derive an electron-vibration model Hamiltonian in a quantum chemical frame-

work, and explore the extent to which such a Hamiltonian can capture key e ects of 

nonadiabatic dynamics. The model Hamiltonian is a simple two-body operator, and 

we make preliminary steps at applying standard quantum chemical methods to 

evaluating its properties, including mean- eld theory, linear response, and a primitive 

correlated model. The Hamiltonian can be compared to standard vibronic Hamiltoni-

ans, but is constructed without reference to potential energy surfaces, through direct 

di erentiation of the one- and two-electron integrals at a single reference geometry. 

The nature of the model Hamiltonian in the harmonic and linear-coupling regime is 

investigated for pyrazine, where a simple time-dependent calculation including 

electron-vibration correlation is demonstrated to exhibit the well-studied population 

transfer between the S2 and S1 excited states. 
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I. INTRODUCTION 
 

 

The Born{Oppenheimer approximation1 is an indispensable framework for chemistry, 

providing the theoretical setting for the understanding of molecular structure; the 

ground-state potential-energy surface (PES) provides fundamental insight|through the 

work of Eyring and Polanyi2|to the mechanisms and kinetics of chemical reactions. 

Existence of multiple minima on the PES underpins concepts such as isomers, 

conformers and rotamers; and the curvature at minima supplies the means to interpret 

infra-red spectroscopy. In short, the Born-Oppenheimer approximation helps rationalize 

and explain many of the central concepts of modern chemistry. 
 

Even so, the Born{Oppenheimer approximation breaks down in a wide range of 

chemically important scenarios: nonadiabatic e ects play an important role in practically all 

photo-activated processes, in molecular electronics, and in electron-transfer reactions.
3
 

Moreover from the theoretical viewpoint, the Born{Oppenheimer approach has a major 

drawback: it converts a problem with at worst two-body interactions into one in which the 

coordinates of all nuclei are coupled together through potential-energy surfaces. Much of 

the ingenuity of the eld of chemical quantum dynamics has been aimed at undoing or 

circumventing the complexities introduced by many-body potential energy surfaces. 
 

For example, a number of approaches have been developed in a mixed quantum/classical 

framework, in which the nuclear degrees of freedom are treated through one or several 

classical trajectories evolving on potential energy surfaces, with corrections for nonadiabatic e 

ects. The simplest case, Ehrenfest dynamics,4 arises from a mean- eld treatment in which the 

nuclear trajectory evolves on an averaged PES, weighted by excited-state populations. In 

surface hopping,5,6 classical trajectories are propagated under the forces of a single poten-tial 

energy surface, but with stochastic hopping events between electronic states, allowing e ective 

treatment of tunneling and nonadiabatic e ects in averaged quantities.3,7 

 
Another class of methods involves propagation of quantum wavepackets in a basis that 

evolves through dynamics on some form of potential energy surface: in particular, such 

methods typically use a moving Gaussian basis to represent the nuclear wave packet. Since 

the introduction of this idea by Heller,8{10 it has formed the basis of many modern devel-

opments in the nonadiabatic dynamics. For example, in ab-initio multiple spawning,11{13 

classically moving Gaussian functions are evolved over potential energy surfaces, spawn- 
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ing new trajectory basis functions in highly nonadiabatic regions. Quantum dynamics in 

the moving evolving basis on di erent electronic states captures nonadiabatic e ects, 

and includes interference e ects between parts of the wavepacket that have split onto di 

er-ent surfaces. Numerous recent extensions and developments have made this a 

particulary powerful approach for nonadiabatic dynamics.14{16 

 
Variationally solving the time-dependent Schrodinger equation, using a basis of 

Gaussian nuclear wave packets lead to the variational multi-con gurational Gaussian 

(vMCG) method of nonadiabatic dynamics.
17

 In vMCG each of several coupled electronic 

states is described by a basis of multiple Gaussian functions. The nonadiabatic coupling 

between electronic states determines the equations of motion for the expansion coe cients 

and some quantum mechanical parameters of the wavepackets, while classical equations 

of motion are used for the position and momentum of thawed basis functions. 
 

Considerable recent e ort has been made to extend path integral dynamics methods 

to the nonadiabatic regime. For example in the iso-RPMD extension to ring polymer 

molecular dynamics18, the RPMD classical Hamiltonian is sampled over multiple 

potential energy sur-faces using surface hopping, or evolves on an Ehrenfest averaged 

surface, producing correct thermodynamic properties while also approximately19 

recovering nonadiabatic e ects. An alternative path-integral approach smoothly 

interpolates between the quantum instanton in the adiabatic limit and Wolynes’s theory 

in the golden-rule limit of the nonadiabatic regime.20 

 
Finally, there are fully quantum methods based on wavefunctions that describe both 

electronic and vibrational degrees of freedom. Amongst these the time-dependent Hartree 

(TDH) method and particularly the multi-con gurational generalization (MCTDH) are par-ticularly 

noteworthy.21,22 In MCTDH a superposition of electronic/nuclear product states is used, with 

nuclear functions described on grids. As the grid has the same dimensionality as the underlying 

potential energy surface, such treatments are only amenable to small sys-tems or those of 

reduced dimensionality. Recent advances include on-the- y implementations which attempt to t 

a global potential energy surface using local information.23 

 
Alternatively, MCTDH methods can be applied to model vibronic Hamiltonians, thereby 

bypassing the introduction of potential energy surfaces.
24

 A very recent work applied the 

MCTDH machinery with a second-quantization representation of the electrons avoiding the 

need for potential energy surfaces.
25

 The electronic single-particle basis in that work 

 

3 



 
 
 
 

 

  
  

  
  

corresponds to mean- eld orbitals on top of a simple diabatization strategy. 
 

Not all approaches to the problem rely on the introduction of potential energy surfaces in 

their original formulation. For example the nuclear-electronic orbital (NEO) method takes a 

decidedly quantum chemical approach, shifting the normal Born{Oppenheimer separation to 

include light nuclei on the same footing as electrons.26 The NEO-DFT27,28 method in par-

ticular has been applied to studies of proton densities and geometries with some success.29,30 

 

In parallel with developments mainly in the chemistry community, electron-phonon 

in-teractions have been a part of the theoretical fabric of condensed-matter physics 

since the foundational work in that eld.31 In molecular quantum chemistry the logical ow 

involves the introduction of adiabatic potential-energy surfaces followed by dynamics 

that captures nonadiabatic e ects; but in the condensed-matter eld the approach is di 

erent, starting from an assumption of harmonic oscillations in the lattice and linear 

couplings between nuclear positions and electronic degrees of freedom. 
 

While in the early days such a framework was used to motivate model Hamiltonians, 

such as those of Frohlich32 and Holstein,33 much recent work has been performed in 

the ab initio context, working to include more subtle interactions between electrons and 

phonons, and to apply resulting methods to a host of more complex challenges in 

condensed matter physics.34 Much of the work in the condensed matter community 

uses DFT and Green’s-function-based many-body corrections, but very recently work 

on periodic35 and nite-temperature coupled-cluster theory36,37 has been brought to 

bear to study electron-phonon couplings in a coupled-cluster framework.38 

 

Here we begin to explore how the typical electron-phonon framework can be derived 

in a quantum chemical context, applied to nonadiabatic processes in molecules. The 

goal in do-ing so is to move away from methods that invoke potential-energy surfaces 

that couple many degrees of freedom together. Instead, the intention is to construct 

approximate Hamilto-nians that capture key phenomena beyond the 

Born{Oppenheimer approximation, and use the established hierarchy of quantum 

chemistry methods to explore the dynamics of these Hamiltonians. There is clearly 

some overlap with existing attempts to model nonadiabatic e ects through model 

vibronic Hamiltonians; but, as we will show, the approach set out here avoids the need 

to compute individual excited-state PESs, and avoids the need to diabatize them. 
 

In this paper we set out the basic formalism, derive a molecular electron-vibration model 
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Hamiltonian, and show results from mean- eld and linear response theory; we show through a 

simple model calculation how correlated theories on such model Hamiltonians will yield non-

trivial nonadiabatic e ects; and we demonstrate how vibronic model Hamiltonians can be simply 

parameterized based on a one-shot calculation at a single reference geometry. 

 

 

II. THEORY 
 
 

The total molecular Hamiltonian is given by 
 

^ ^ ^ 

(1) 
H

mol 
=

 
H

el
(X) +

 
T

nuc 
 

where X provides the nuclear coordinates in terms of displacements in normal modes 

com-puted at a reference geometry, X = 0. 
^ 

The domain of Hmol is a tensor product of Hilbert spaces for electronic and 

vibrational degrees of freedom; however, we plan to derive a theory in a standard 

quantum chemical framework, in which the one-particle electronic basis functions are 

atomic orbitals connected to atomic centres. For this reason we deal with basis 

functions of the form IP (x; X) = I (x; X) P (X), where x are the electronic coordinates. 

Here, I (x; X) is an electronic Slater determinant for a particular set of nuclear 

coordinates X, and P (X) is a product of vibrational wavefunctions for each mode , 
 

Y  

P(X) =P (X ): (2) 
 
 

The electronic determinant I (x; X) is constructed from electronic orbitals p(x; X) that are 

taken to be orthonormal for all values of X. Standard (geometry-dependent) creation and 

annihilation operators a
(
p

y)
(X) allow us to build the Slater determinant electronic basis: 

Y  

I (x; X) = hxj   ap
y(X) j i : (3) 

p2I 

 

We use a similar set of vibrational creation and annihilation operators for each vibrational 
^ (y)  

mode, denoted bn for the n-th modal of the vibrational mode labelled , as suggested by 

Christiansen.39;40 

 

To set up a second-quantized Hamiltonian we have to be careful in tracking dependence 

on X. As an example, we can think about the electronic kinetic energy operator. The 
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underlying operator 1
2 r2 has no dependence on X, but we introduce an X-dependent 

second-quantized operator (whose X-dependence disappears in the basis-set limit): 
 

  X  
 1 

r2 !   tpq(X)ap
y(X)aq(X) (4)  2 

  pq  

where  

tpq(X) = h p(X)j 
1 

r2j q(X)i : (5) 2 
 

The X-dependence of the creation and annihilation operators stems solely from the 

orbitals in which they create or annihilate particles. Because these operators 

themselves will only be used to change one number string to another, the X-

dependence has no consequence, and we will drop it. 
 

To construct the total second-quantized Hamiltonian we consider a typical matrix element 
 

^ 

(6) HIP;JQ = h I (X) P jHmolj J (X) Qi 
 

where the X-dependence of the electronic basis functions is made explicit for clarity, 

although obviously the nuclear basis functions also have this dependence. 
 

The integrations over the electronic and nuclear degrees of freedom can be 

performed in either order, and we choose to integrate over electronic coordinates rst: 

 

^ 

(7) HIP;JQ = h P j h I (X)jHmolj J (X)i j Qi : 
 

The X-dependence of the electronic states couples the integration over both sets of 

coor-dinates, preventing straightforward evaluation. In previous work by some of us, the 

issue is solved by numerical integration over the nuclear degrees of freedom.41 Here, in 

order to achieve a more scalable solution, the approach is to approximate the inner 

integral over electronic coordinates with a truncated Taylor expansion in X. 
 

The inner integral is separated into its constituent terms: 

h j 
^

 j i h j 
^

 j i h j 
^

  j i 

I (X) Hmol J (X) = I (X) Hel(X)  J (X) + I (X) Tnuc   J (X) ; (8) 
 
 

where the su x serves to emphasize that the result is an operator that will still act on the 

vibrational ket wavefunction, even after the integration over electronic degrees of freedom. 
 

The rst term is recognisable as an element of the standard clamped-nucleus electronic 

Hamiltonian as a function of X. To enable simple calculation of the total matrix element, 
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we make a truncated expansion of this term about X = 0:    

h I (X))jH
^

el(X) j J (X)i = HIJ
el (X) = HIJ

el (0) + X  rHIJ
el  (0) + 

1 

XTKX + O X2 
: (9) 

 

2 
Here we chose to introduce a model harmonic potential with diagonal force-constant 

matrix K; this is not exact, so further quadratic terms contribute along with higher-order 

terms. To each order, the terms of the expansion are hermitian in both the electronic 

and vibrational space. 
 

Now the second term of Eq. (8) is investigated. It is a matrix element over  

 
X 

^2 
 

X 
2  

T
^

nuc = 
 P 

=  h2 
r 

(10) 
 2  2 

   
       

 

where labels a normal mode with reduced mass . To simplify the notation we now 

abbreviate I (X) as I and introduce 

 

IJ (X) = hIjr jJi (11) 

IJ (X) = hr Ijr Ji : (12) 

The r2 operator after integration over the electronic degrees of freedom becomes  

hIjr2 jJi  = hIj(r2 J)i + 2 IJ (X) r + hIjJi r2 
(13) 

= [r  IJ (X)]IJ (X) + 2 IJ (X) r + IJ r2 
(14) 

 

Apart from the pre-factors, the last term is the nuclear kinetic energy operator acting on 

the nuclear basis functions. Note that IJ (X) and IJ r2 are individually hermitian in both 

electronic and vibrational space while [r IJ (X)] + 2 IJ (X) r is antihermitian in each 

subspace but hermitian overall.41 Any approximation should keep these symmetries in 

order to ensure real observables. 
 

Up to this point, the above is in the same form as in Ref. 41. However, in that work 

the integration over vibrational space is performed numerically, leading to prohibitive 

com-putational cost for systems with a large number of vibrational modes. Here we 

replace the numerical integrations with analytic integrals of the Taylor expansion of the 

integrand, in analogy to the expansion of HIJ
el (X). 

Taylor-expansion of the terms containing electronic integrals yields 
 

IJ (X) =   IJ (0)  X [r IJ ](0) + O X2 
(15) 
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and  

[r  IJ (X)] + 2 IJ (X)  r (16) 

= [r IJ (0)] + 2 IJ (0) r + r [X [r IJ ](0)] + 2 [X [r IJ ](0)] r + O X2 

 

The rst term of the above vanishes due to the derivative operator. Thus, the second 

term contains all zeroth order contributions. It is antihermitian in both electronic and 

vibrational space. From the third term, only the derivative along mode survives: 
 

X 

r [X [r IJ ](0)] = r   X [r  IJ ](0) = [r  IJ ](0) (17) 
  

 

Combined with the other rst order term, the total rst order contribution along mode = is 
 

 

[r  IJ ](0) (1 + 2X r ) (18) 
 

and the contribution along all modes 6= is 

 

2 [r  IJ ](0) X r : (19) 
 

The latter expression is antihermitian along and hermitian along all other modes and 

thus overall antihermitian in vibrational space (and also antihermitian in electronic 

space). Although it is not obvious, Eq. 18 is antihermitian in vibrational space as well 

(see supple-mentary material). 
 

As a conclusion, all above expressions keep the aforementioned symmetries separately 

for the zeroth-order and rst-order terms. By inspection of Eq. 14, one may be tempted to 

Taylor-expand the expression after application of the derivative operator in the rst term. 

However, this would break the symmetries for the individual orders of the expansion. 
 

As a result of the Taylor expansion, the integrations over electronic and vibrational 

degrees of freedom can now be performed separately. All integrals in the vibrational space 

are straightforward. The integrals in the electronic space result from the application of 
 
^ 

Tnuc; application of the Slater{Condon rules allows IJ and IJ to be obtained from the 

corresponding orbital integrals, 

 

pq (X) = h p(X) jr j q(X)i (20) 

pq (X) = hr  p(X) jr  q(X)i : (21) 
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So far, the orbital basis f p(X)g has not been speci ed other than being orthonormal for 

all X. For molecular systems the basis functions are usually atom-centered, and so depend 

on X. The electronic orbital basis is expanded in such atomic basis functions f (X)g. The 

orbital basis is de ned by an X-dependent transformation matrix T. Its X-dependence is vital 

in order to ensure orthonormality for all X. Interpreting fj (X)ig as a row vector of all atom-

centred basis functions, the transformation to the orbital basis is given by 

 

fj p(X)ig = fj (X)ig T(X) : (22) 
 

The notation is now further simpli ed by implying that a dropped position-

dependence means evaluation at 0. The n-th derivative with respect to the coordinates 

of the -th vibrational mode of any object A, evaluated at 0, is denoted A(n). Furthermore, 

we write S(m;n) = h (m)j (n)i so that for example S = S(0;0). 
 

The integral matrices over electronic coordinates needed for the zeroth-order terms 

in the expansions become 

 

= TyS(0;1)T + TyST(1) 
(23) 

= T(1)yS(0;1)T + T(1)yST(1) + TyS(1;1)T + TyS(1;0)T(1) : (24) 
 

Analytic derivatives of the above with respect to mode , and also the other modes, 

(leading to mode-mode coupling) are straightforward if the corresponding derivatives of 

the trans-formation matrix are available. The rst-order expressions along are shown in 

the supple-mentary material. 

 

 

A. Electronic basis 
 

 

If the Taylor expansion includes all orders, and in the limit of a complete basis, the 

full molecular Hamiltonian is recovered and results become invariant to the choice of 

the electronic basis. The same holds for the underlying single-particle basis, so that 

results are invariant to the choice of T(X). However, when the Taylor expansion is 

truncated, di erent choices of T(X) do lead to di erent results, and it becomes important 

to consider how di erent basis sets perform in the context of these approximations. 

Before setting out the approach we take here, it is worth noting that this issue has also 

been considered in perturbation theory under the heading of orbital connection.42,43 
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One obvious and intuitively reasonable choice for T(X) is the coe cient matrix C(X) of the 

optimized mean- eld orbitals at each X, which is also used in Ref. 41. This choice amounts 

to a kind of one-particle adiabatic basis: the coupling Hamiltonian has an electronic part 

that is diagonal at each value of X. No coupling is induced between di erent Slater 

determinants constructed from mean- eld orbitals through the one-particle (Fock matrix) 
^ 

approximation to Hel(X). It will be shown further below, that this choice in fact has dramatic 

consequences on low-order approximations turning the seeming advantage of a diagonal 

electronic Hamiltonian into a severe disadvantage. Clearly, in situations where 
^ 

the above approximations are valid, the coupling via Hel(X) will be small for this basis 

choice. Another drawback of the mean- eld orbital basis in the context of this work is the 

computational expense for the calculation of derivatives of the transformation matrix. 
 

The diabatic basis suggested by Troisi and Orlandi44 does not su er from these drawbacks. 

Here, only derivatives of S(X) (and of its inverse, in case of higher derivatives) are required in 

the calculation of derivatives of the transformation matrix. Furthermore, it has the appealing 

advantage that by construction (0) vanishes. It should be emphasized, though, that the one-

particle diabatization that leads to this choice does not amount to diabatization of the many-

particle states; indeed such a diabatization is not generally possible.45 

 

The aforementioned basis sets focus on the change of molecular orbitals upon 

displace-ment. In quantum chemistry we typically use nonorthogonal atom-centred 

basis functions, and so a large part of the electron-nucleus coupling simply arises from 

the changing metric, which in turn leads to Pulay forces, which are known to be far from 

negligible. The bases listed above con ate the issue of a changing metric with changes 

induced by actual physical electron-nuclear coupling e ects. 
 

To avoid this we also investigated the simplest choice for T(X) that resolves the issue of 

the changing metric whilst leaving the basis functions as close as possible to the orig-inal 

atomic orbitals. That is, we use the symmetric orthogonalized basis, with T(X) = 

S 1 (X) :46 This choice correctly deals with the changing metric but does not induce any 
2 

 

further rotation of the orbital basis upon displacement. E ectively, this basis is identical to a 

frozen orbitals basis, which has been shown to represent an excellent choice for a quasi-

diabatic basis in case one wants to avoid the explicit calculation of derivative couplings.
47

 

In stark contrast to using mean- eld orbitals, the main vibronic coupling e ect is captured 
^ 

through Hel(X), because all changes to the electronic state caused by moving nuclei (other 
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than those resulting from a changed metric) have to be made through explicit orbital ro- 
 

1 

tations. Analytic expressions for the derivatives of S 2 (X) are given in the 

supplementary material. 
 

At the level of approximation we employ in this work, we found that none of the other 

bases mentioned above are competitive with the symmetrically orthogonalized basis; this is 

demonstrated below through comparisons of the three discussed choices for T(X). It also 

accords with the simple intuitive picture a orded by atomic-orbital basis sets: properties of 

diabatic states should vary smoothly with geometry, and this seems to be a clear attribute 

of atomic orbitals that follow nuclear positions in a straightforward way. The choice of 
1 

T(X) = S 2 (X) remains as close as possible to this intuitively simple picture, while 

ensuring that the orbitals are orthogonal at all geometries. 

 

 

B. Approximations 
 
 

We apply the following set of approximations: 
 
 

1. All second-order terms are replaced by a harmonic potential with a xed force 

constant in each mode (see Eq. 9). 

 
2. Only the zeroth-order terms of Taylor expansions of  (X) and  (X) are included. 

 

^ 

3. The gradient of Hel(X) is replaced by the gradient of a mean- eld approximation to 

avoid three-body terms (see below). 

 

Each approximation can be separately improved on if necessary. Preliminary calculations 
^  

showed that due to the scaling with the inverse mass, contributions from coupling via Tnuc are 

small and the rst order terms neglected in Item 2 are signi cantly smaller than the zeroth order 

terms. Item 3 embodies some peculiarities which are discussed in the following. 
 

  

The rst-order term of the electronic Hamiltonian, X rHIJ
el

 (0), contains three-body terms 

involving the two-particle electronic integrals and the one-particle displacement op- 
 

erator. These are prohibitive for an e cient solution of the Schrodinger equation, so we 

replace the coupling with a mean- eld approximation. While this is routinely done in the 

condensed-matter literature, we here set out a derivation that illustrates the nature of 

the approximation. 
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Adding and subtracting the expectation value for the mean eld ground state at any X 

yields 
 

^ ^ ^ ^ 

(25) r Hel(X) = h mf jr Hel(X) j mf i + r Hel(X) h mf jr Hel(X) j mf i 
el ^ ^   

= r E
mf (X) + r Hel(X) hr Hel(X)i;  

where Emf
el is the mean- eld ground state electronic energy, and where a notational simpli - 

cation is introduced for the expectation value with the mean- eld ground state. The second 

equality arises because the mean- eld state is variationally optimized at each geometry. The 
^ 

electronic Hamiltonian can be split up into the Fock operator F and a uctuation operator 
^ 
V , commonly used in perturbation theory. Thus, 
 

^ el ^ 

hr 

^ ^ 

hr 

^ 

(26) r 
H

el 
=

 r 
E

mf + r F F i + r V V i; 
 

where the X-dependence is omitted for further brevity. We then neglect the last two 

terms (which contain the 3-body contribution) to yield 

 

^ el ^ 

hr 

^ 

(27) r 
H

el    r 
E

mf + r F F i 
 

an approximation that should be valid for states whose densities are not too di erent 

from the mean- eld ground-state density. 
 

The Hamiltonian gradient in the electron-vibration coupling is then given by the one-

electron operator 

^ 
X  

y 

(28) r Hel = [A ]pqa^pa^q + c 
pq 

 

where A = [r F](0) and c = r Emf
el (0) tr(Dy

elA ). Here the constant term c re ects the fact 

that the gradient of the mean- eld energy at the reference geometry need not match the 

matrix element of the derivative of the fock operator. 

 

 

C. Analysis of the linear coupling matrix A 
 

 

In this section, we only consider a single mode and thus omit the mode index . Within a 

unitary transformation, the Fock matrix, Fel D
el

mf (X) , does not depend on the choice of 

the position-dependence of the electronic basis, i.e. on 

T(X). Still, the  rst-order coupling 

 
matrix A, which is its  rst derivative, does depend on T(X). This can be seen most easily 
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when comparing the mean- eld orbital basis (T(X) = C(X)) to any other choice. In the 

mean- eld orbital basis, the Fock matrix is the diagonal matrix of orbital eigenvalues for 

all X, thus the o -diagonal elements and all their derivatives are zero. A linear Taylor 

expansion is then identical to a linear expansion of the orbital energies. For any other 

choice of T(X), the Fock matrix is not diagonal for all X. Still, approximate orbital 

energies can be obtained by diagonalizing a Taylor expansion of the Fock matrix in that 

basis. However, the eigenvalues of a matrix do not depend linearly on the values in the 

o -diagonal elements. Thus, the orbital energies will in this case not depend linearly on 

X. Clearly, in an in nite-order Taylor expansion, the same eigenvalues are recovered for 

any choice of T(X). Thus, the choice of T(X) leads to di erent convergence behaviour of 

a Taylor-expansion of the Fock matrix. 
 

It is now evident that in the mean- eld orbital basis no coupling between di erent orbitals 

is possible via A. In contrast, any other choice of T(X) will usually lead to couplings (via A) 

between almost all orbital pairs for which it is not avoided by symmetries of the system 

under investigation. As a consequence, couplings between di erent states are ubiquitous. 

Note that this is crucially di erent from approaches in which the electronic Hamiltonian and 

its derivatives are evaluated separately from the vibrational degrees of freedom. In such 

computations, each coupling between a pair of states must be considered explicitly. 
 

The ubiquitous coupling between states includes couplings to high-energy states 

which are poorly described by the truncated model Hamiltonian. Preliminary 

calculations re-vealed instabilities resulting from such couplings, which lead to 

convergence problems and unphysical results. 
 

Often only a limited number of excited states, and most often only singly excited 

states, are of relevance for nonadiabatic calculations. Thus, a large fraction of the 

information contained in A is never required, including those parts that are the root 

cause of the prob-lems in practical calculations. We have therefore developed a 

strategy to project out all problematic couplings, which we here describe taking A to be 

in the molecular orbital basis at the reference position. 
 

The diagonal elements do not couple di erent orbitals to each other, but do play an 

important role in determining displacements in excited-state minima, and are fully retained. 
 

The occupied-virtual block of the matrix can be understood as a vector in the space of 

single-particle excitations. Thus, the occupied-virtual block of A can be projected onto the 
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subspace of the single-particle excitation vectors corresponding to the states of interest: 
 

Aeov = PAov; (29) 

where Aov is the occupied-virtual block of A, attened out as a vector in the space of 

single-particle transitions, and the projector P is 
 

P = XlrXlr
T    YlrYlr

T; (30) 
 

with the matrix of relevant excitation vectors Xlr and de-excitation vectors Ylr which are 

obtained from time-dependent linear-response Hartree{Fock (or Kohn{Sham) 

calculations. (If the Tamm-Danco approximation is used, the Ylr term is omitted.) 
 

The above projection makes use of single excitations only. Thus, in case states 

which are not dominated by single-particle transitions are of high relevance, this 

procedure would need to be adapted. We want to point out, though, that the strategy 

employed here does not necessarily lead to a bad description of multiply excited states 

in the approximate molecular Hamiltonian. 
 

Often, all relevant excitations lie within the valence space. At the same time, 

excitations from core orbitals or into high virtual orbitals correspond to high-energy 

excitations and may thus be a main cause of the observed problems. Thus, all 

couplings outside the valence region are omitted. 
 

The o -diagonal elements in the occupied-occupied and virtual-virtual blocks of A are 

the leading-order contribution to couplings between excited states. Unlike the occupied-

virtual block, these blocks are not de ned in the same space as the states they couple 

at the lowest order. In contrast, here a single matrix element is relevant for couplings 

between a large number of pairs of states. Thus, a strict separation of couplings 

between states of interest and couplings between states of less or no relevance is not 

possible within the coupling matrix in principle. Still, at least in the virtual-virtual blocks, 

matrix elements with (to lowest order) no relevance for any of the states of interest can 

be discarded, i.e. all elements Aab for which 

jXia
nXjb

mj < thr; 8 i; j; n; m (31)  

where currently a threshold of 10 6 a.u. is chosen. Hereby, Xia
n is the element in the 

excitation vector for state n representing the excitation of a particle from orbital i into 

orbital a. Orbitals in the occupied-occupied block are highly important and couplings 

between them may be important for orbital relaxation; they are therefore retained. 
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D. Mean- eld theory for the coupled electron-vibration Hamiltonian 
 

 

We begin our exploration of quantum chemical methods for the coupled electron-

vibrational problem at the simplest, mean- eld level. Up to now, only the electronic 

terms have been quantized. In the following, also the vibrational terms will be used in 

second quantized form, so that 

X  

X  ! Xmnbm
ybn; (32) 

 mn  

where the double sum is taken over modals m; n, and  

 ^ 

(33) Xmn = hmjX jni : 
 

The matrix representation r of the gradient operator in the vibrational basis is obtained 

analogously. 
 

The interaction term between the electronic and vibrational subsystems is  

h2 
 

H
int 

= (A
 
+

 
c

 
1)

  
X

2   
(      1 + 2     r ) ; (34)  

 

where summation over is implied. 
 

Each of the above terms represent a tensor product of one-particle integrals in electronic 

space and one-particle integrals in vibrational space. The mean- eld interaction energy 

expression is thus easily obtained by tracing with the corresponding density matrices (D 
 
is the density matrix of mode  ):   

Eint = (tr(Del
yA ) + c )tr(Dy X ) (35) 

 h2 
  

  

h tr(Del
y   ) + 2tr(Del

y   )tr(Dy r ) i ;  2 
where it has been used that tr(D ) = 1. 
 

The Fock (or Kohn{Sham) matrix contributions due to the interaction are the 

derivatives of the above with respect to the corresponding density matrices, 
 

 h2 
    

Fel
int = A tr(Dy X ) 

 

 
+ 2  tr(Dy r ) ; (36) 2 

and       

    h2 
 

Fint = (tr(Del
yA ) + c )X 

  

tr(Del
y   )r : (37)   
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The energy contribution due to the term containing does not depend on the 

vibrational density, so it can be included into the electronic core Hamiltonian. It 

resembles part of the diagonal Born{Oppenheimer correction (DBOC). 
 

The Fock matrix for each vibrational mode is just the sum of the harmonic oscillator 

Hamiltonian and the above interaction term, 

 

F = HHO + Fint: (38) 
 
 

Given the expressions for the Fock matrices, applying a coupled self-consistent eld 

pro-cedure is not much di erent from spin-unrestricted electronic mean- eld 

calculations, where separate Fock and density matrices are used for each spin. Here, 

for each vibrational mode an additional Fock and density matrix appears. Convergence 

acceleration schemes typically used in electronic self-consistent eld algorithms like 

Pulay’s direct inversion of the iterative subspace48 (DIIS) can be straightforwardly 

applied. Although more specialized schemes could be developed, we found that 

common DIIS variants49 work su ciently well in the context of the coupled calculations. 

 

 

E. Coupled time-dependent linear response theory 
 

 

In electronic structure theory, the time-dependent linear response framework is the most 

widely used method for calculating excited states.
50,51

 Starting from a coupled mean- eld 

solution, that framework can be straightforwardly used in this context, especially in con-

junction with iterative solvers like the Davidson solver.
52

 Apart from a contribution from the 

orbital energies, the response matrix consists of the occupied-virtual occupied-virtual (plus 

the occupied-virtual virtual-occupied) block of the second derivative of the energy with 

respect to the density matrix, which is the derivative of the Fock matrix with respect to the 

density. In iterative schemes, the response matrix is not explicitly constructed, but the 

product of the response matrix with a guess transition density is calculated directly. This is 

(apart from the orbital energy contribution) essentially identical to a multiplication of the 

density derivative of the Fock matrix with the density. The interaction Fock matrices for both 

the electronic and vibrational subspace only have up to a linear dependence on the density 

(of the respectively other subspace). These terms are identical in the Fock matrix and the 

product of the response matrix with a guess transition density where each density 
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matrix is just replaced by the corresponding transition density matrix. The constant 

terms only contribute via the change of the orbital energies. 
 

In our framework it is thus straightforwardly possible to incorporate the coupling to vi-

brations into existing electronic structure programs. This has been shown for self-

consistent eld as well as for time-dependent linear response calculations and can be 

expected for established correlated electronic structure methods, too. 

 

 

III. RESULTS AND DISCUSSION 
 

 

A. Computational Details 
 

 

All calculations in this section have been performed with a development version of the 

En-tos Qcore package,
53;54

except for the propagation calculations, which have been 

performed in Mathematica.
55

 The PBE0 functional
56

 in the Def2-TZVP electronic basis 

set
57

 is em-ployed throughout. Density tting has been used for Coulomb and exchange 

contributions
58

 with the tting basis corresponding to the atomic orbital basis set.
59 

 

 

B. Potential energy surfaces 
 

 

We have presented an approximation to the molecular Hamiltonian, and we would 

like to establish its accuracy. While the theoretical direction we are taking eliminates the 

need for potential energy surfaces, they are nevertheless an important means by which 

to test the accuracy of the model Hamiltonian; for this reason alone, we now invoke the 

BO approxi-mation, removing the nuclear kinetic energy operator, other nuclear-mass-

dependent terms, and interpreting X as a classical variable. In this approximation the 

interaction Hamiltonian (for mode ) becomes 

Hint
BO(X ) = (A + c 1)X  : (39) 

 

In practice, the ground-state potential energy surface is obtained from a standard 

mean-eld electronic structure calculation with the core Hamiltonian modi ed by the 

addition of HBO
int(X ), plus the harmonic potential kX2=2. Excited states are obtained 

from correspond-ing electronic linear response calculations. 
 

The pyrazine molecule has become a guinea pig for studies of nonadiabatic e ects and 
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has been subject to numerous computational studies.60{63 In contrast to diatoms or 

other small molecules, here the harmonic model potential can be expected to represent 

a good approximation. In pyrazine, the lowest singlet states of B3u(n ) and B2u( ) 

symmetry feature a conical intersection which leads to signi cant broadening of the B2u 

peak in the absorption spectrum. To rst order, these states are coupled only by the 10a 

mode which is the only mode of B1g symmetry. The short-term dynamics of the system 

after excitation to the B2u state is mostly governed by the coupling to the B3u state due 

to the 10a mode and by the totally symmetric tuning modes. 
 

Figure 1 compares PES slices along these modes from our approximate model 

Hamiltonian and reference calculations with the full electronic Hamiltonian. For 

comparison, displaced harmonic curves are shown according to 

E(Q )=
2 !iQ

2 
+ dQ 0 + En(0)  E0(0); (40) 

1   dEn 

 

   

       

 
 

 

where En is the energy of the n-th electronic state and the derivatives of the TDDFT 

excited state energies at the reference geometry have been obtained numerically. Q is 

the dimensionless displacement along mode (see below). 
 
 

It is evident that the model Hamiltonian does lead to PESs in good agreement with 

the reference in the vicinity of the reference geometry (energetic minimum). At larger 

displacements, inaccuracies appear as expected, especially in the presence of 

anharmonicities (Panels c and f of Figure 1), but for the tuning modes the results stay 

very close to the purely harmonic curves. A striking observation can be made for the 

coupling mode (Panel b of Figure 1). The model Hamiltonian is indeed able to 

reproduce features which signi cantly di er from the harmonic curves and appear as a 

change in curvature despite the restriction to linear coupling terms and a xed harmonic 

force constant. For this case, the results from the proposed linear coupling Hamiltonian 

are much closer to the reference than to the purely harmonic model with xed curvature. 
 

Due to symmetry, the displacement along the coupling mode in a real-time 

propagation calculation will stay zero (unless vibrational energy along the mode is 

explicitly added). Thus, in the mean- eld approximation no population transfer between 

the di erent states in question is possible. As will be shown below, a treatment beyond 

the mean- eld approx-imation will be able to lift this restriction. 
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Figure 1: Potential energy curves along the totally symmetric modes and the only mode of 
 

B1g symmetry in pyrazine, ordered by energy. Black, dashed lines: reference; green, 

dotted lines: displaced and shifted harmonic model; red, solid lines: BO approximation to 

the linear coupling Hamiltonian; blue, dashed lines in b): one-parameter  t to a harmonic 

coupling model. Displacements are given in dimensionless coordinates. Energy di 

erences to the ground state minimum are given in eV. 

 

C. Extraction of vibronic coupling parameters 
 

 

A common approach to study nonadiabatic dynamics is to set up a parameterized 

model Hamiltonian. Such model Hamiltonians can be further investigated with a number 

of meth-ods, most prominently with multicon gurational time-dependent Hartree. Here, 

we set up and parameterize a vibronic model starting from our approximate molecular 

Hamiltonian in order to compare resulting parameters to published values for such 

parameters. In this way, we test whether the leading order contributions to nonadiabatic 

coupling are still contained in the approximated molecular Hamiltonian. 
 

We will consider a linear coupling model in dimensionless coordinates, 
r  

Q  = ! X ; (41) 
 

 h  
 

as is common in the literature. Such models are of the form 

 

Hmodel = Hel
0 + HHO + Hc; (42) 

 

where the electronic reference Hamiltonian is a diagonal matrix containing the n vertical 

energy levels of the electronic subsystem, 
 

0 1 

 
B 

E0   0 0 
C 

 
Hel

0 = 0  ... 0 (43) 
 B   C  

 B   C  
@ A 

0  0  En 
 

HHO is the unperturbed harmonic oscillator Hamiltonian summed over all modes, 
 

HHO =  !  @2 
  1; (44) 

2 @Q2 
+ Q2 

 X        
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and the coupling is de ned as 
 

0 
0;1 . .  n 

.
 .1;n 

1 
  

 

X 
B 0  0;1 .   

Hc =    .  C Q : (45) 
 B      C   

 B      C   

@
 
.
 . .   n  1;n     n   

A 
 

The vibronic coupling parameters and are usually calculated from excited state Hes-

sians or by tting to PESs.
62

 However, they can alternatively be obtained from di erentiation 

of the electronic Hamiltonian. Recently, a one-shot strategy for direct calculation of these 

derivatives has been proposed,
64

 in which only calculations on a single molecular geometry 

are required. In this approach, derivatives of the wavefunctions of the di erent states must 

be calculated. This restricts the approach to wavefunction methods, which can only be ap-

plied to systems of limited size (due to the computational complexity of most such methods) 

or have a very limited accuracy (in case of HF/CIS). 
 

In contrast to the above methods, which work in a many-particle picture, the 

approach presented in this work allows for staying in a single-particle picture. The 

matrix elements of the rst derivative of the electronic Hamiltonian in the basis of states f 

m g with respect to nuclear displacements in our framework is hmjA + c jni. Thus, the 

coupling parameters may be calculated as 
 

m = tr(Ay (Dm D0 )) (46) 
 el el  

m;n = tr(Ay Dm;n);  (47) 
 el   

 

where Dm
el and Dm;n

el are the electronic density matrix of state m and the transition 

density between electronic states m and n, respectively. The density di erence in the 

equation for the diagonal elements m results from the de nition of c . Both the density di 

erence between ground and excited states and the transition density between excited 

states can be obtained from Eq. (56) and Eq. (57) in Ref. 65. A full calculation of these 

requires solving one set of CP-SCF equations for each parameter, which can become 

the time-dominating step in the overall procedure if many excited states are considered. 

In our current calculation setup, we neglect the expensive orbital relaxation terms 

entirely, so that the computational cost of calculating all coupling parameters for all 

states is dominated by a single LR-TDDFT calculation. 
 

In the above, couplings due to the nuclear kinetic energy operator have been neglected. 

These would lead to additional terms and additional parameters. For pyrazine, the most 
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Figure 2: Selected vibronic coupling parameters presented in Table I. Here, S1 is the 

1B3u state and S2 is the 1B2u state. 

 

relevant of these can be expected to be the zeroth order term coupling the B3u and B2u 

states along 10a, namely the term (h2= 10a) r, which leads to a parameter (analogous to 

the above) of 

h2 

tr(Del
B3u;B2u   10a) = 2:3  10 4 eV: (48) 10a  

Due to the scaling by inverse mass, this parameter is several orders of magnitude smaller 

than the values for and . Thus, for this term to become relevant, the system would require a 

huge momentum without experiencing displacements of the same magnitude, which is not 

what one would expect in a well-behaved propagation of the system. 
 

Table I and Figure 2 compare the most important parameters for a model of the 

pyrazine system obtained by the approach presented above with results available in the 

literature. A common procedure to obtain vibronic coupling parameters is to generate 

PESs and then t parameters in a model Hamiltonian to the surfaces. For comparison, 

this procedure has been followed in conjunction with the used mean- eld method. The 

results are shown in Table I and Figure 2. The coupling parameter was obtained by a 

simultaneous least-squares t of both of the eigenvalues of the two-state Hamiltonian 
 

 
0 

1 !
10a

Q
10a

2
 
+

 
E

B3u 
(0) 

E0(0) 
  Q

10a 1 
 

H1p = 2 1 2 (49) 
 

@ 

 

Q
10a 

  

!
10a

Q
10a 

+
 
E

B2u 
(0) 

E0(0); 
A 

 

   2  

in the interval of Q10a 2 [ 1; 1] to the original potential energy curves of the B3u and B3u 

states. The result of this t is further shown in Panel b of Fig. 1 (blue, dashed lines). In 

addition to this coupling mode, the totally symmetric modes (tuning modes) are usually 

included in such a model as well. The parameters are derivatives of the excited state 

energies. These have been calculated numerically and have already been used to 

produce the green, dotted curves in Fig. 1 (see also Eq. 40). 
 

The results obtained from single-shot calculations on the proposed Hamiltonian compare 

very well with those obtained from tting to PESs and are compatible with previously 

published parameters for pyrazine. The di erent sign obtained for the 2 mode clearly results 

from the used mean- eld method. Some of the remaining descripancies for modes 1 and 2 

can be attributed to anharmonicities. Additional results for di erent computational settings 
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Table I: Vibronic coupling parameter ( ) coupling the lowest 1B3u state to the lowest 1B2u 

state and electron-vibrational coupling constants ( ) for the totally symmetric (Ag) modes 

for the lowest three singlet excited states of pyrazine. Results obtained from local 

calculations as described in the text are compared to values reported in the literature. All 

numbers are given in eV. 
 

 

  Local   Fitting to PESs 
      

 Mode PBE0  PBE0 MRCI
61

 XMCQDPT2
63 

 10a 0:200 0:223 0:183 0:190 

1
B3u(n  ) 6a 0:0791 0:0844 0:0964 0:075 

 1 0:0376 0:0231 0:0470 0:045 

 9a 0:1295 0:1275 0:1594 0:120 

 8a 0:0432 0:0488 0:0623 0:067 

 2 0:0175 0:0219 0:0368  

1
Au(n  ) 6a 0:1709 0:1751  0:162 

 1 0:1076 0:0935  0:088 

 9a 0:0563 0:0607  0:064 

 8a 0:4546 0:4524  0:413 

 2 0:0716 0:0742   

1
B2u(   )   6a 0:1318 0:1302 0:1193 0:136 

 1 0:1728 0:1621 0:2012 0:190 

 9a 0:0547 0:0489 0:0484 0:051 

 8a 0:0234 0:0230 0:0348 0:056 

 2 0:0138 0:0110 0:0211  
       

 

 

(functionals, basis sets, integration grids) can be found in Table S2 in the 

supplementary material. 
 

As a conclusion, the obtained vibronic coupling parameters lead to a vibronic model 
 

Hamiltonian similar to models used earlier to study the excited state dynamics of pyrazine. 
 

Thus, similar results for properties like rate constants can be obtained from the presented 
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Table II: Slopes and changes in curvature (in eV) of the potential energy curves of the 
1
B3u 

and 
1
B2u states of pyrazine along the most important tuning mode ( 6a) and the coupling 

mode ( 10a) obtained from the linear coupling Hamiltonian using di erent electronic bases. 

Symmetric refers to the symmetrically orthgonalized model. Reference results are obtained 

from the potential energy curves of the original electronic Hamiltonian. 
 

 

  Symmetric Canonical Troisi Reference 
      

1
B3u @E=@Q6a 0:078 0:084 0:104 0:084 

 @
2
E=@Q

2 
0:001 0:0 0:012 0:0 

 6a     

 @
2
E=@Q

2 
0:065 0:0 0:180 0:092 

 10a     

1
B2u @E=@Q6a 0:120 0:130 0:107 0:130 

 @
2
E=@Q

2 
0:004 0:0 0:003 0:021 

 6a     

 @
2
E=@Q

2 
0:017 0:0 0:057 0:038 

 10a     
      

 

parameterization strategy. 
 

More importantly, it supplies evidence that the model electron-vibration Hamiltonian 

proposed in this work does contain the key features for studying nonadiabatic e ects. 

 

 

D. Comparison with other choices for the electronic basis 

 
1 

In order to compare the performance of the choice T(X) = S 2 (X) with the canon-ical 

MO basis (T(X) = C(X)) and the basis suggested by Troisi (T(X) = C(0) 
 

S 
1
(0) S

(0;1)
(0) C(0) X), we numerically calculate the slopes and curvatures of the TDDFT 

excited states of the approximate Hamiltonians resulting from the di erent basis choices. 
 
Hereby, we concentrate on the most essential features of the PESs of pyrazine, which are the 

slopes of the lowest 1B3u and 1B2u excited states along the most important tuning mode 
 

6a as well as the change of the curvature of these states (with respect to the ground state 

curvature) along this mode and the coupling mode 10a. The results are collected in Table II. 
 

For the canonical MO basis, the slopes match those of the original PESs and the change in 

curvature is zero, both by construction. Thus, the signi cant curvature changes along 10a are 

not captured. The symmetrically orthogonalised basis we suggest for usage with our model 

does correctly capture signi cant amounts of the curvature change at the expense 
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of small errors in the slopes. The Troisi basis tends to too large absolute values. For the 

1B2u state, this results in a negative curvature of the potential energy curve along 10a 

(the ground state curvature amounts to 0:118 eV, thus the curvature of the 1B2u state 

becomes 0:072 eV). Such a negative curvature leads to unbound states, which can 

lead to severe problems in practical calculations. In fact, we did observe severe errors 

at large displacements when using the Troisi basis in preliminary calculations, which 

are probably caused by mixing in of excited states with negative curvatures. 
 

Overall, the symmetrically orthogonalised basis shows the best performance of the 

tested bases for the level of approximation used in this work. 

 
 
 

E. Coupled Time-Dependent Linear Response 
 

 

In coupled linear response calculations, both the hermitian and antihermitian terms re-

sulting from the nuclear kinetic energy operator can in principle lead to a contribution. 
 

In practice, the results for pyrazine from coupled time-dependent linear response calcu-

lations show only tiny deviations from separate electronic and vibrational excitations. The 

electronic excitations are vertical. The linear response framework is only able to calculate 

single excitations. Alas, excitations from the overall ground state to the (mostly) vibra-tional 

ground state of a (mostly) excited electronic state formally represents a multiply excited 

state when the minimum of the excited state surface shows a signi cant displace-ment. 

Thus, these excitations cannot be captured in the linear response framework. Also, the 

linear response framework is not able to capture all relevant correlation e ects. 

 

 

F. A pilot study on the role of correlations 
 

 

The above ndings show that the inclusion of correlation is crucial for observing key 

nonadiabatic e ects in problems such as the photophysics of pyrazine. Here, the correlation 

between electrons and vibrations is of particular importance. While correlated calculations using 

the model Hamiltonian will be the subject of a future publication, we here demonstrate that even 

the simplest correlated treatment | a strictly limited con guration interaction calculation 

supplemented with key electron-vibration double excitations | produces the key nonadiabatic 

phenomenon of population transfer between the S2 and S1 states. In particular 
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we included excitations from the electronic HOMO or HOMO-1 to the electronic LUMO (the 

key elements of the 
1
B3u and 

1
B2u excitations) together with a vibrational excitation along 

10a
. 

 

This truncated CISD calculation has dimension 1 + nel
occnel

virt + 6 nvib
occnvib

virt + 2 

= 3978, with successive terms arising from the ground state, the singly excited 

electronic space, the singly excited vibrational space for the coupling mode and the ve 

tuning modes, and two mixed doubly excited states. The vibrational singles consist of 

just one excitation per mode (nvirt
vib = 1), because of the linear coupling in this model. 

 

Hartree{Fock calculations result in signi cantly di erent orbital energies and also 

change the order of the 1Au and 1B2u states, so we pragmatically used Kohn{Sham 

orbitals and the Tamm{Danco matrix instead of Hartree{Fock orbitals and the CIS 

matrix for the singles block of the calculation. 
 

In comparison with TDDFT results in the Tamm{Danco approximation, the excitation 

energies of the 
1
B3u and 

1
B2u states are shifted lower by a small amount, 0:01 eV and 0:07 

eV, respectively. We performed time propagation using this limited CISD Hamiltonian, 

starting in the product state composed of the 
1
B2u electronic and vibrational ground state. 

 

The 1B2u population oscillates between 1 and around 0.3 with an oscillation period of 

14 fs, and with practically all population transfer to the 1B3u state. The computed period 

is remarkably close to the experimental lifetime of the 1B2u state of 22 3 fs66 given the 

crude approximations we applied in this exploratory correlated calculation. In line with 

the ndings of a similar work using a many-particle picture,67 dephasing cannot be 

observed in this calculation, because there are no couplings between the electronic 

excitation and the vibrational tuning modes. Nevertheless, it provides a further 

indication that the model Hamiltonian captures the key phenomenology, and that 

correlated (e.g. coupled-cluster) theories based on this Hamiltonian should provide a 

rich alternative avenue for exploring nonadiabatic dynamics, without reference to 

potential energy surfaces, conical intersections, or diabatization. 

 
 
 

IV. CONCLUSIONS 
 

 

We have derived an electron-vibration model Hamiltonian that contains only up to two-

body terms and can be constructed for any molecular system for which a ground-state 
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Hessian can be computed at a reference geometry. The model follows the spirit of methods 

to describe electron-phonon coupling in condensed-matter physics, but uses atom-centred 

non-orthogonal single-particle basis functions. For pyrazine the choice to de ne position-

dependence in terms of the symmetrically orthogonalised basis leads to a model that 

captures key e ects of the full molecular system using only linear coupling terms. 
 

While the method we are proposing does not involve calculation of PESs, they have 

nevertheless proven to be a helpful way to assess the accuracy of the model. PESs extracted 

from our model Hamiltonian closely resemble those of the full molecular Hamiltonian in the 

vicinity of the reference geometry, and match them better than a simple harmonic t. 

Qualitatively correct vibronic coupling parameters can be extracted at essentially the cost of a 

nuclear Hessian plus linear-response TDDFT calculation. Throughout the calculation of these 

parameters, no PESs need to be calculated and no diabatization is necessary. 
 

This work has established a model Hamiltonian for molecular nonadiabatic e ects. The 

next task is to elaborate the full range of wavefunction-based quantum chemistry methods 

for this Hamiltonian, building an alternative framework for studying nonadiabatic e ects. 

Preliminary steps in that direction include coupled electron-vibration mean- eld theory, and 

linear response theory. As expected, neither lead to signi cant vibronic e ects, because the 

key phenomenon can be regarded as a \double" that couples simultaneous electronic and 

vibrational excitations. As a proof of principle, we have shown that a correlated propagation 

containing only the most relevant coupled electron-vibration excitations shows qualitatively 

correct population transfer from the S2 to the S1 state of pyrazine. Such e ects would be 

fully captured in a correlated framework such as coupled-cluster theory, provided the 

cluster operator includes these double excitations. 
 

Our broader aim is to construct a systematically improvable hierarchy of quantum-chemistry-

like methods for studying nonadiabatic e ects. The Hamiltonian can be system-atically improved 

by including higher-order terms in the Taylor expansions that underpin the derivation, and by 

removing the Fock approximation of coupling to 2-electron terms. While some extensions can 

be achieved while remaining in the framework of a two-body Hamiltonian, typically these 

additional e ects are described by three-body or higher order terms. The wavefunction can be 

systematically improved in a coupled-cluster framework, where extension to Hamiltonians that 

include both electrons and other degrees of freedom is already a proven technology.38,68 

Importantly, all of this can be achieved without reference to 
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potential energy surfaces, conical intersections, or diabatization. The combination of 

these two ideas | systematically improvable model Hamiltonians and a systematically 

improv-able framework for describing their quantum states and dynamics | provides a 

roadmap for the development of a powerful new family of polynomial scaling theories 

for nonadiabatic dynamics. 

 

 

SUPPLEMENTARY MATERIAL 
 

 

See supplementary material for additional equations about the anti-hermiticity of the 

term containing , derivatives of the kinetic energy coupling matrices and derivatives of 

the orthogonalisation matrix. Furthermore, vibronic coupling parameters for pyrazine 

obtained with varied computational settings are presented. 
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