
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/137076/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Klemencic, G.M. , Perkins, D. T. S., Fellows, J. M., Muirhead, C. M., Smith, R. A., Mandal, S. , Manifold,
S., Salman, M., Giblin, S. R. and Williams, O. A. 2021. Phase slips and metastability in granular boron-
doped nanocrystalline diamond microbridges. Carbon 175 , pp. 43-49. 10.1016/j.carbon.2020.12.042 

Publishers page: http://dx.doi.org/10.1016/j.carbon.2020.12.042 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Phase Slips and Metastability in Granular Boron-doped
Nanocrystalline Diamond Microbridges

G.M. Klemencica,∗, D. T. S. Perkinsb, J. M. Fellowsc, C. M. Muirheadb, R. A.
Smithb, S. Mandala, S. Manifolda, M. Salmana, S. R. Giblina, O. A. Williamsa

a School of Physics and Astronomy, Cardiff University, Queen’s Buildings, The Parade,
Cardiff, CF24 3AA, UK

b School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
c School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue,

Bristol, BS8 1TL, UK

Abstract

A phase slip is a localized disturbance in the coherence of a superconductor

allowing an abrupt 2π phase shift. Phase slips are a ubiquitous feature of one-

dimensional superconductors and also have an analogue in two-dimensions. Here

we present electrical transport measurements on boron-doped nanocrystalline

diamond (BNCD) microbridges where, despite their three-dimensional macro-

scopic geometry, we find clear evidence of phase slippage in both the resistance-

temperature and voltage-current characteristics. We attribute this behavior to

the unusual microstructure of BNCD. We argue that the columnar crystal struc-

ture of BNCD forms an intrinsic Josephson junction array that supports a line

of phase slippage across the microbridge. The voltage-state in these bridges is

metastable and we demonstrate the ability to switch deterministically between

different superconducting states by applying electromagnetic noise pulses. This

metastability is remarkably similar to that observed in δ-MoN nanowires, but

with a vastly greater response voltage.
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1. Introduction

Superconductivity in reduced dimensions is the subject of resurgent interest

for both fundamental and practical reasons. Historically, phase slips were con-

sidered an unwelcome experimental feature; however recent work on coherent

quantum phase slips[1] has revealed promising device applications that exploit

the duality between these and the Josephson effect[2] in both superconducting

quantum computing[3] and metrology[4]. The length scale governing electronic

dimensionality in superconductors is the coherence length, ξ(T ), which describes

the shortest length over which the superconducting wavefunction may vary. If

a sample thickness or width is reduced below ξ(T ), the electronic dimension-

ality is correspondingly reduced. Two-dimensional superconductivity has been

observed in ultrathin films[5, 6], atomically thin exfoliated single crystals[7, 8],

and heterogeneous interfaces [9]. One-dimensional superconductivity has been

seen in nanowires and whiskers[10, 11], whilst zero-dimensional superconduc-

tivity has been seen in granular samples of superconducting grains in a non-

superconducting matrix [12, 13].

Superconductivity in reduced dimensions is of particular interest for the di-

amond community as this material has notably been shown to display the prop-

erties of 0-, 2-, and 3-dimensional superconductivity in different experiments, as

described below. In this paper, we will show behavior reminiscent of 1D super-

conductivity in samples far from that limit. We will argue that the origin of this

behavior is a macroscopic analog of the phase slips in truly 1D systems brought

about by nanocrystalline diamond’s unusual microstructure, making diamond a

promising candidate for novel devices exploiting the applications of phase slips.

A distinctive feature of 1D superconductivity is a residual resistance below

the transition temperature, Tc [14, 15]. In the low-current ohmic limit, this is

caused by phase slips[16]. For a phase slip to occur, a free energy barrier must be

overcome either thermally, or tunneled through quantum mechanically, leading

to thermally activated and quantum phase slips, respectively. In 1D nanowires,

suppression of the order parameter interrupts superconducting transport, but
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Figure 1: Microstructure of boron doped nanocrystalline diamond films grown by

microwave plasma-assisted chemical vapor deposition. (a) Scanning electron micro-

graph of a 339 nm thick BNCD film surface with clearly defined grains with an average size

of 102 nm. (b) Schematic of the microstructure of the film showing columnar grain growth

originating from the (light blue) seed crystals.

Cooper pairs can tunnel across the phase slip leading to a finite conductance in

the superconducting state[11]. At intermediate currents, non-equilibrium phase

slip centers (PSC) form[16], whose signature is the appearance of discrete voltage

steps in the voltage-current V (I) characteristic above some onset current, due

to successive PSC formation along the sample length[17, 18].

Here we present low temperature electronic transport measurements of pho-

tolithographically defined 3D boron-doped nanocrystalline diamond (BNCD)

microbridges that bear the signatures of phase slip physics. BNCD films can

be grown by chemical vapor deposition on non-diamond substrates by seed-

ing the substrate with nanodiamond particles [19]. These seed crystals grow

epitaxially, growing laterally and vertically to form 3D islands until a fully co-

alesced film forms [20]. A competitive columnar growth process then proceeds

following the Van der Drift model[21]. The resulting film comprises colum-

nar superconducting diamond crystals separated by non-superconducting grain

boundaries[22]. A scanning electron micrograph is shown alongside a schematic

columnar growth structure in Fig. 1. In a previous publication[12], we have

shown a cross-sectional SEM image of a BNCD film grown under the same con-

ditions as the sample used here. Fig. 1b of that paper shows a grain boundary

spanning the entire vertical extent of the film. Other works[22, 23] have also con-

firmed the columnar nature of the grains in similarly grown films. The general
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superconducting properties of BNCD (Tc ∼ 4 K and ξ ∼ 10 nm)[12] are similar

to bulk single crystalline samples[24] but the detailed behavior is modified by

the granular microstructure[22, 23], which is unusual for a superconducting ma-

terial in that columnar grains extend vertically through the entire film. Indeed,

we have previously seen a 3D–0D–3D dimensional crossover in the fluctuation

conductivity arising from the granularity[12, 25].

To understand how these 3D microbridges can apparently show 1D behav-

ior, we note that PSCs have higher dimensional analogues. Their 2D ana-

log, phase slip lines (PSLs), have been observed in wide superconducting strips

[26, 27, 28, 7]. Although their experimental signatures are similar to PSCs,

their physical mechanism is different since it is too energetically costly to sup-

press the order parameter across the whole width, w � ξ(T ), of the strip.

Numerical simulations based on time-dependent Ginzburg-Landau theory sug-

gest that PSLs can be caused by fast-moving vortices traveling perpendicular to

the current flow[29]. These simulations, confirmed experimentally[26], predict

that PSLs behave as dynamically created Josephson junctions[7]. Like PSCs,

PSLs result in a resistance below Tc[28] and discrete voltage steps in the V (I)

characteristic[27, 7].

Remarkably, we observe the hallmarks of phase slip phenomena described

above in BNCD microbridges, despite their width and thickness being well

within the 3D limit. Given the morphology, with columnar superconducting

grains in a normal matrix, we may expect to see transport phenomena associ-

ated with a randomly disordered 2D Josephson junction array[30, 31]. This is

supported by behavior reminiscent of a BKT transition – a distinctly 2D phe-

nomenon – observed in similar BNCD films[32]. We conclude that the signatures

of low-dimensional superconductivity must therefore arise from the microstruc-

ture of the material. We present, first our results, and then return to this model

to consider the extent to which phase slip theory provides an explanation.
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2. Results

2.1. Resistance in the superconducting state

The resistance as a function of temperature, R(T ), of three BNCD micro-

bridges of different widths is shown in Fig. 2(a). The microbridges are fabri-

cated from the same BNCD film which has a thickness of 339 nm and an average

grain size of 102 nm. Each microbridge has a length, L, of 1600µm and their

widths, w, are 4.6, 6.7, and 10.5µm. The geometric dimension of each of these

microbridges is many times larger than the typical coherence length reported

for BNCD (∼10 nm) and therefore they are considered to be three-dimensional

structures.

At temperatures up to the measurement limit, 300 K, the normal state con-

ductance has the form G(T ) = a + b
√
T , as expected from granular electron-

electron interaction (EEI) theory[33] in three-dimensions. This term is sub-

tracted from the measured conductance over the whole temperature range to

leave only the fluctuation conductance, Gfl(T ), near Tc. When Gfl(T ) is plot-

ted against the reduced temperature, t = (T−Tc)/Tc, on a log-log plot (Fig. 2b),

three distinct regions are expected[12], with power laws − 1
2 , −3, and − 1

2 , respec-

tively as Tc is approached. Note that in Fig. 2(b) only the transition furthest

from Tc is distinctly seen; the power law behavior is only expected close to Tc,

which is why the results deviate from the − 1
2 power law at higher temperature.

The (T − Tc)−3 region is the widest, and fitting to this allows very accurate

determination of Tc. A residual resistance is seen below Tc for the three micro-

bridges (Fig. 2d and Supplementary Information), but not for the unpatterned

film (Fig. 2c), strongly suggesting that some form of phase slip phenomenon is

taking place in these patterned microbridges[11, 34].

Despite the fact that these films are clearly three-dimensional, as evidenced

by the fitting to the EEI theory, the residual resistance below Tc has features

reminiscent of the Langer-Ambegaokar-McCumber-Halperin (LAMH)[14, 15]

behaviors commonly seen in one-dimensional superconductors. The appearance

of 1D phenomena in higher dimensional systems has recently been reported
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Figure 2: Resistance as a function of temperature, R(T ), for BNCD microbridges

- focusing on the 6.7 µm wide microbridge - and the unpatterned film. (a) R(T )

for three 1600µm long microbridges (widths as indicated by the legend) in the temperature

region 2 – 300 K. The high temperature data are fit to the form G(T ) = a+b
√
T expected from

electron-electron interaction theory. (b) Log-log plot of the fluctuation conductivity Gfl(T )

as a function of the reduced temperature, showing a crossover from 0D to 3D behavior at

T − Tc ∼ 0.3 K. (c) The superconducting transition of the unpatterned film does not show

evidence of broadening below Tc. The black line is a fit to the fluctuation conductivity. The

superconducting transition of the 6.7µm wide microbridge is shown for comparison. (d) Low

temperature R(T ) for the 6.7µm wide microbridge. The resistance below Tc is fit to the LA

(red), LAMH (yellow) and linear (green) forms. Note that none of these are expected to be

accurate close to Tc as they assume large free energy barriers.
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in systems such as percolating films of Pb nanoparticles[35], and Pbx(SiO2)1−x

nanocrystalline films[36]. The various theories of thermally activated phase slips

all predict a resistance below Tc of the activated tunneling form

R(T ) =
h̄2

e2
Ω(T )

kBT
exp

(
−∆F (T )

kBT

)
, (1)

where Ω(T ) is an attempt rate, and ∆F (T ) is a free energy activation barrier.

In the region not too close to Tc, Ω(T ) = a(Tc − T )α and ∆F (T ) = b(Tc −

T )β , where the powers α, β, are theory dependent and a and b are fitting

parameters. In Fig. 2d, we fit the R(T ) below Tc for the 6.7µm wide bridge

to the Langer-Ambegaokar (LA), LAMH, and linear forms for which (α, β) are

(0, 32 ), ( 9
4 ,

3
2 ) and (0, 1), respectively. The data in the resistance range from

10−5 kΩ to 10−2 kΩ appears to fit best to the linear form. Below 10−5 kΩ we

are limited by noise, whilst above 10−2 kΩ we are too close to Tc for these

theories to work, and some numerical interpolation formula is needed. The

linear form is equivalent to the inverse Arrhenius form reported in granular Pb,

Sn and Pb-Ag films[37]. A resistance below Tc, whose temperature dependence

shows thermally activated tunneling, is indicative of the presence of phase slips

in these microbridges.

2.2. Voltage-current characteristics

The observed signature of low-dimensional superconductivity in large BNCD

microbridges was further examined by measuring the current-biased V (I) char-

acteristics at 1.9 K, sufficiently far below Tc that the residual resistance is neg-

ligible. The three microbridges display the same general characteristics and

behavior so here we will focus on the 6.7µm wide bridge for which we have the

most detailed measurements and analysis.

The V (I) characteristic, the positive current branch of which is shown in

Fig. 3a, is strongly hysteretic and shows underdamped Josephson-like behav-

ior. When the critical current, Ic = 96.6µA, is reached there is a large and

discontinuous jump to a high-voltage state with a resistance close to the normal
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Figure 3: Current-biased V (I) characteristic for a 6.7 µm wide, 339 nm thick BNCD

microbridge at 1.9 K. Only the positive current branch is shown for clarity. (a) Ic and IR

denote the critical current and retrapping current respectively. The arrows show the current

direction around a hysteretic loop. (b) An expanded view of the falling current branch

showing discrete voltage steps with subsequent linear slopes that converge to the same point

I0 = 13.78µA on the current axis. (c) A detailed view of individual voltage steps, showing

the converging linear slopes.

state resistance. Once in the normal state, as the current is reduced, a hys-

teretic return path is followed, and the superconducting state is re-established

at the so-called retrapping current, IR = 21.4µA. We note that, similar to the

1D Mo79Ge21 systems described by Sahu et al[38], Ic appears to be stochastic,

with a maximum observable value of Ic(max) = 115µA at 1.9 K, while IR is

completely reproducible. The stochastic nature of Ic gives a range of critical

current densities for the same microbridge.

On the reducing current return path, shown in greater detail in Fig. 3b

and Fig. 3c, a large number of discrete voltage steps separated by linear slopes

are clearly visible, the locations of which are highly reproducible. By fitting

to these linear slopes, we find that they extrapolate back to a single point

on the current axis, I0 = 13.78µA. This behavior is strongly reminiscent of

PSCs in one-dimensional superconductors. The existence of an intercept at

∼ 0.5− 0.7 IR has its origin in the fact that PSCs involve a temporal oscillation

between states in which the current is alternately carried by supercurrent and

normal current[39, 16]. To our knowledge, such consistent behavior over a large
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number of voltage steps has not been reported in studies of Josephson junction

arrays.

2.3. Metastability in the current-voltage characteristics

In addition to the strongly hysteretic behavior shown in Fig. 3a, we used

an externally applied electromagnetic noise pulse to induce a completely new

branch in the V (I) characteristic. Fig. 4a shows the full V (I) characteristic

for the same 6.7µm wide microbridge shown in Fig. 3, now under the influence

of such a noise pulse initiated just above IR as the current is swept upward.

The return current path is again highly reproducible, unchanged as compared

to Fig. 3, and is largely unaffected by the introduction of externally supplied

electromagnetic noise, either continuous or pulsed. Upon noise switching, rather

than showing a single sharp upward jump at some Ic � IR, the rising-current

behavior now becomes qualitatively similar to the return path, with a much

reduced hysteresis. We observe that the sample displays a metastability between

the voltage-carrying state and the zero-voltage state and that it is possible to

switch between the two. The behavior we observe is similar to that reported

in superconducting δ-MoN nanowires, which are clearly one-dimensional and

where the resistance is dominated by PSCs[40], and in YBa2Cu3O7−x where

it is suggested the resistance is dominated by PSLs[41]. This supports the

suggestion that our samples are acting in a similar way to PSC/PSLs.

Fig. 4b shows a detailed view of the switched branch of the V (I) characteris-

tic. There is still a pronounced hysteresis, but now the rising and falling current

paths meet the current axis at approximately the same place. The minimum

critical current, Ic(min) = 21.19µA, is very close to IR and is approximately

0.18 Ic(max) at 1.9 K. At low bias currents close to Ic(min), small discrete volt-

age steps and differential resistance slopes similar to those on the return path

are observed, albeit with some differences in detail. While the return path is

highly reproducible, the rising path shows small differences in the exact loca-

tion of the voltage steps in the low current region on successive current ramps.

Also, before reaching the normal state resistance at a bias current In = 30.6µA,
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Figure 4: V (I) characteristic of the 6.7 µm wide BNCD microbridge switched by

electromagnetic noise. (a) The full V (I) characteristic measured at 1.9 K for the same

sample as shown in Fig. 3 switched into the metastable resistive state near to IR by an

applied electromagnetic noise pulse during the upward current sweep. (b) Detail of the

hysteretic region close to IR. A repeatable hysteretic loop (purple) can be traced if the bias

current is not returned to zero after switching. (c), (d) Details of individual current-voltage

steps, showing converging linear slopes with selected fit lines for clarity. Red lines converge

to I0 = 13.78µA; green lines converge to I1 = 6.89µA.
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there is a reproducible longer linear slope that is qualitatively different to the

preceding slopes and is observed in all three samples.

The switched rising path is shown in more detail in Fig. 4c and Fig. 4d. As

with the return path shown in Fig. 3, there are discrete voltage steps separated

by slopes of differential resistance which extrapolate to distinct non-zero points

on the current axis, as is characteristic for PSCs[17, 18, 39]. For voltages below

approximately 100 mV, the extrapolation of these slopes often pass through a

corresponding step on the the return path, and intercept at the same point,

I0 = 13.78µA (red lines). Above about 100 mV, the slopes extrapolate to a new

point, I1 = 6.89µA, which appears to be 0.5 I0 to a high precision (green lines).

This includes the long linear slope which precedes a large voltage jump that

takes the system almost into the normal resistive state. This extrapolation of

differential resistance slopes to two distinct points of origin on the current axis

has not previously been observed.

To further explore the metastability of the voltage state, we performed re-

peated ramps of the bias current to above Ic(max) and down again whilst apply-

ing a noise pulse at a range of points on the rising current part of each ramp.

The results are shown in Fig. 5 as a composite of all bias current ramps. The

values of bias current at which the pulses were applied are shown by the ver-

tical arrows and the V (I) characteristic has been divided into three regions of

qualitatively different response. In the region [0, IR) (shaded red in Fig. 5),

the system is unaffected by noise pulses and is in the thermodynamically sta-

ble superconducting state. In the region [In, Ic(max)) (yellow), the zero voltage

state is clearly metastable and is switched into the stable normal state by the

application of a pulse. In the region [IR, In) (blue), the zero voltage state is

again metastable and the pulses take the voltage up to the rising branch that

can be initiated by a pulse just above IR. Once the rising branch is accessed by

a single pulse, the entire upward path is then followed with no need for any fur-

ther pulses. This rising branch represents a non-normal voltage-carrying state

which must be of a lower energy than the superconducting state for this current

range. We have noted that, once initiated by a pulse close to IR, the rising
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branch is slightly different on successive upward sweeps. The same is true for

application of pulses anywhere in the blue region, i.e. pulses take the system up

to slightly different voltages on successive ramps. There are clearly a number

of metastable states in this region. The exception appears to be the long linear

slope that precedes the large voltage jump into close to the normal state which,

like the return path, is highly reproducible.

There are other potential minima on the rising path which can only be ac-

cessed by sweeping the current above In, reducing it to a value in the range

(IR, In), and then ramping it back up, whereupon it follows a previously inac-

cessible voltage-carrying path. The purple loop in Fig. 4b is one example of

such a hysteresis loop. The high degree of reproducibility of the return path

compared to the rising path suggests that the return path possesses the deeper

potential minimum. That the more stable branch is the one with the higher

voltage would indicate that PSC/PSLs are energetically favorable in the region

(IR, In), but cannot be formed on the rising current path without the introduc-

tion of additional energy in the form of noise, due to some free energy activation

barrier, in agreement with the form of the R(T ) characteristic below Tc.

3. Discussion and Conclusion

3.1. Origins of the phase slip behavior

Having observed the characteristic features of phase slip physics in these

BNCD microbridges, we must ask how these could be present and what form

they take. Recall that both the physical dimensions of the system in comparison

to the coherence length, and the shape of the R(T ) curve in the normal state

confirm that these bridges are truly three-dimensional in nature. As PSCs are

a 1D phenomenon and PSLs are 2D, some interpretation is required.

One striking feature that is explained by a phase-slip interpretation is that

the slopes of the linear ramps between steps extrapolate to one of two common

intercepts on the current axis. Within the phase slip interpretation, the ex-

trapolation back to a common intercept is predicted by the theory of Skocpol,
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Figure 5: Controlled electromagnetic noise pulse induced switching of the 6.7 µm

wide BNCD microbridge state. The bias current through the microbridge at 1.9 K is

repeatedly ramped above Ic and then back to below IR. On each ramp the noise pulse is

applied to coincide with a different value of bias current on the rising path. The plot is a

composite of all ramps; the points at which the pulses were applied are shown by the vertical

arrows on the graph. The colored regions are as described in the main text.

Beasley and Tinkham[16, 39], which considers the voltage across a PSC due to

quasiparticle diffusion. In this model the voltage produced by n PSCs is

V (I) = R(I − I0)
2nΛ

L
tanh

(
L

2nΛ

)
, (2)

where R is the normal state resistance of the track, n is the number of PSCs,

L is the track length, Λ is the quasiparticle diffusion length, and I0 ∼ Ic/2 is

the intercept of the slopes on the current axis - determined by the time-average

supercurrent at the center of the PSC. Although this model was developed for

PSCs in 1D wires, as it essentially describes a situation where the supercurrent is

interrupted by localized quasi-normal region, it could equally well be applied to

PSLs although the parameters will no longer have the same physical significance.

In this model, the voltage and concomitant differential resistance both increase

with increasing n leading to a family of straight lines tracing back to I0.

In our system, there is a single intercept, I0 = 13.78µA, on the return
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path, for which the differential resistance for small n predicts Λ ∼ 1.6µm. The

switched branch of the rising current path develops a second point of intercept

I1 = 6.89µm= 0.5 I0. We have argued above that the rising path is not a

potential minimum which suggests that some additional physical process is at

work. The large plateau on the rising path seen between 25 and 30µA in

Fig. 4b is highly reminiscent of resonant steps seen in Josephson junction arrays

(JJAs)[42] which, as we shall discuss, suggests that this additional physics could

be related to some underlying collective JJA behavior.

We have argued above that the microstructure of BNCD is structurally sim-

ilar to a JJA. Underdamped JJAs can produce voltage steps themselves due

to the phenomenon of synchronized row switching[43, 42, 44, 45]. This occurs

when an entire row of junctions perpendicular to the flow of current switches

into (or out of) the normal state. This scenario is supported by both a wealth

of theoretical modeling[30, 46] and low temperature scanning laser microscopy

measurements[44]. Coherence across the array is maintained, and the switched

row behaves as a single junction with critical current equal to the number of

junctions in a row multiplied by the critical current per junction. Row switched

states are conceptually very similar to PSLs, being a thin band of suppressed

order parameter stretching across the width of the system. It may therefore

be instructive to think of a PSL as being akin to the continuum limit of a row

switched state. Indeed, Lognevov et al[47] have argued that a switched row

acts like a phase slip line in wide superconducting films for sufficiently high

temperatures such that the vortex mass vanishes.

Notwithstanding row switching, phase slip behavior has been observed by

previous authors in both 1D chains[48, 49] and 2D arrays[50] of Josephson junc-

tions. We therefore conclude that the origin of the behavior seen in these exper-

iments is an accumulation of macroscopic PSLs forming across the width of the

bridge, facilitated by the intrinsic JJA making up the microstructure of BNCD.

We note that the sheet resistance for our sample is only ∼ 100 Ω and this sets

the resistance scale for the intergranular conductance in our samples. This is

is much less than the resistance quantum (∼ 6 kΩ) and should put our samples
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well into the metallic state[30], supporting a PSL interpretation. The fact that

our samples are disordered should not be a bar to this behavior. In either a JJA

or PSL model, would expect breakdown to occur along the lowest energy track,

which may, or may not be perpendicular to the track length.

We have demonstrated the ability to switch between metastable voltage-

carrying states, a feature which has previously been reported in nanowires[40,

41]. As in these previous reports, the ability to switch is very promising for

a number of applications. These include implementation as a pulse-controlled

memory device[40], and as a novel circuit element for quantum sensing and

computing[3, 41]. The BNCD system has the practical advantage that it is

not necessary to fabricate individual tunnel junctions to achieve these ends. A

further advantage is that, in comparison with its 1D counterparts, the voltage

across the device is orders of magnitude greater, which leads to a clearer readout.

There is ongoing interest in quantum phase slips as these are the most promising

route to a quantum current standard[4]. Given the ease with which PSLs are

induced in this system, future work will look to create equivalent quantum PSLs

in similar structures.

4. Conclusion

In summary, we have measured the transport properties of three-dimensional

BNCD microbridges and have found clear hallmarks of phase slip phenomena,

which can be induced by the application of electromagnetic noise pulses. Mea-

surement of the R(T ) and V (I) characteristics performed on the same sample

both support the conclusion that these microbridges carry macroscopic excita-

tions akin to phase slips. We suggest that the origin of these macroscopic phase

slips is tied to an intrinsic Josephson junction array formed by the columnar

growth of nanocrystalline diamond.

Supplementary Information (BNCD film preparation, microbridge fabrication,

measurement techniques, and additional data showing results from all three
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microbridges) is available.
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S. Chiriaev, V. Adashkevich, P. Szabó, Y. Li, et al., Anomalous anisotropy

in superconducting nanodiamond films induced by crystallite geometry,

Physical Review Applied 12 (6) (2019) 064042.
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