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ABSTRACT 

 

The overall objective this work is to contribute to the understanding of how the precise 

structure of the corneal stroma is achieved during development, and to apply this knowledge 

to the latest attempts at engineering effective stromal constructs for use in transplantation. 

 

The cornea is the major refractive element of the human eye, accounting for two-thirds of 

total focusing power. Representing around 85% of corneal thickness, the stroma possesses the 

mechanical strength needed to protect intraocular tissues, whilst still achieving the high level 

of transparency necessary for light transmission. This is chiefly due to the small, uniform 

diameter collagen fibrils arranged into a precisely ordered series of orthogonal lamellae. 

Proteoglycans in the stroma are thought to regulate the arrangement and diameter of the 

collagen fibrils, although the mechanism by which this occurs is not fully understood.  

 

The deceptively complex organisation of the stroma may be responsible for the relatively 

little progress that has been made in engineering constructs that can reproduce the structural 

and functional characteristics of the cornea. Further study into the embryonic development of 

the cornea may aid attempts to recapitulate in vivo mechanisms for corneal construction. Of 

particular relevance would be the method of collagen organisation and deposition in the 

developing avian corneal stroma and the interactions that occur within the collagen fibril 

bundles as development progresses. 

 

Initially, en face sections were used to study the organisation and arrangement of collagen 

fibrils in the developing stroma. It is hypothesized that in tendon, the formation of parallel 

arrays of collagen fibrils occurs via fibroblast surface recesses and invaginations. It was 

evident through transmission electron microscopy that this process also occurs in the 

developing corneal stroma via surface recesses on stromal keratocytes. 

 

Analysis of the interactions between the collagen and proteoglycans within fibril bundles 

demonstrated that the developing cornea is less well structured than often considered and is 

possibly a much more fluid and dynamic system than originally thought. Proteoglycan size 

and orientation show a degree of variety and disorder and appear to follow no set 

organisation or positioning. The data suggests that proteoglycans were seen forming 

aggregates that were capable of bridging the gap between more distant neighbouring fibrils. 

 

Following the study of the developing corneal stroma, collagen gel based constructs were 

engineered and their structural and functional characteristics were analysed to assess their 

potential as stromal equivalents for use in tissue engineering. Manipulating the assembly of 

collagen fibrils by varying the pH and cross-linker concentration had a dramatic effect on the 

structure and functionality of the final gel construct. A range of collagen gels were then 

implanted into intra-stromal pockets to determine their biocompatibility and in vivo 

properties. 
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1. INTRODUCTION 

 

1.1. Background 

 

Although there are similarities between the mammalian and avian eye, it could be argued that 

the avian eye is in many ways more evolved than the mammalian eye, resulting from the 

avian sensory world being largely visual. There are also remnants of the reptilian eye that 

remain present in the structures of the avian eye, such as the scleral ossicles that support the 

shape of the eye. 

 

The avian eye is considerably flatter than the spherical mammalian eye (Figure 1.1). Relative 

to body size, the avian eye is also larger, permitting increased depth of focus and a lager 

retinal image. Whilst an adult human eye has a 25mm approximate diameter, a mature hen 

eye has an 11.86mm diameter across its equator (Gottlieb et al., 1987). 

 

1.1.1. Ocular structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Cross section of a mammalian eye (left) and avian eye (right). 

(Taken from http://www.nei.nih.gov/diabetes/content/english/faq.asp (left) and 

http://www.birdsnways.com/wisdom/ww31eii.htm (right)). 
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The sclera is a tough fibrous layer that covers most of the eyeball. The surface of the sclera is 

covered by the conjunctiva - a mucous membrane consisting of cells and a basement 

membrane. However, anteriorly the cornea and its surface epithelial cells form

 the tunic of the eye. Together the sclera and cornea protect the ocular tissues from trauma 

and infection. Both are composed of a dense network of collagen fibrils, although scleral 

collagen fibrils are larger and more varied in diameter. 

 

Six extraocular muscles insert into the sclera, to control eye movement. Focusing of avian 

eyes utilizes corneal and/or lenticlar accommodation (Glasser and Howland, 1996). In chicks, 

corneal accommodation occurs as the anterior ciliary muscles to pull backwards on the inner 

lamella of the cornea (Glasser et al., 1994).  

 

In avian eyes, small bones known as the scleral ossicles are arranged around the cornea 

within the sclera. They support the eye and provide an attachment site for the ciliary muscles 

(Murphy et al., 1995), which in turn help control lens tension via thin zonular fibres attached 

to the lens capsule. The consequence of this arrangement is that lens shape, dioptric power 

and focal point can be accurately controlled.  

 

The cornea is the major refractive element of the human eye, responsible for about two-thirds 

of the total focusing of the human eye (von Helmholtz, 1962) equal to around 42.4 Dioptres. 

The lens is responsible for the remaining third of focusing power. In the mature avian eye, 

Schaeffel and Howland (1987) observed that in chick accommodation, up to 9 Dioptres could 

be accounted for by corneal curvature changes, equivalent to around 40% of the full range of 

artificially stimulated accommodation (Troilo and Wallman, 1987). Corneal accomodation in 

chicks occurs becaue the cornea is able to change shape. This ability is not present in the 

human cornea. 

 

The tear film is formed from the continuous fluid secretions of the lachrymal gland. Spread 

across the eye by blinking, this fluid nourishes the front of the eye, lubricates the eyelids, 

keeps the corneal surface wet and free from irritating particles, and creates a smooth 

refracting surface. In addition, meibomian glands found at the rim of the eyelids produce an 

oily substance that helps prevent the evaporation of the tear film. 
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1.1.2. The cornea 

 

The majority of the corneal tissue is composed of uniform collagen fibrils tightly packed 

together into an entirely avascular matrix, which gains innervation from thin nerve fibres. 

The highly organised lamellae structure of the collagen fibrils conveys transparency and 

strength to the tissue. Maintenance of corneal curvature and transparency is integral to its 

continued function. Any disruption to this arrangement often results in reduced visual acuity. 

 

The cornea is composed of five layers (Hay and Revel, 1969) – epithelium, Bowman’s layer, 

stroma, Descemet’s membrane, and endothelium (Figure 1.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Cross section of the human cornea. 

(Adapted from http://www.vetmed.ucdavis.edu/courses/vet_eyes/images/archive/s_4015_a.jpg) 

 

 

1.1.2.1. Epithelium 

 

The epithelium constitutes around 10% of the cornea’s total thickness, and is composed of 

layers of three different cell types. The superficial-most layers are made up of non-

keratinized, squamous cells. Tight junctions form between these cells, producing a protective 

barrier against chemical and bacterial damage. The middle layers of cells are polygonal 

daughter cells produced by a single subjacent dividing layer of cells. These daughter cells 

migrate superficially to replace the surface cells that degrade and are washed away by the tear 

 

Endothelium 

Descemet’s  

Membrane 

Bowman’s 

Layer 
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film. The deepest layer of the epithelium contains the basal cells that undergo mitotic 

divisions, serving as an indefinite supply of replacement cells. 

 

Beneath these cellular layers lies the basal lamina. As the epithelium serves to protect the 

cornea from abrasive forces, it requires strong anchorage to the underlying stroma. The basal 

lamina anchors into the lamina densa of the subjacent stromal matrix (Bowman’s layer) via 

epithelial attachment complexes. The basal surface of the deepest layer of epithelial cells 

possess adhesion complexes called hemidesmosomes, which along with anchoring filaments 

of type IV and type VII collagen form these strong epithelial attachment complexes. 

 

1.1.2.2. Bowman’s Layer 

 

Subjacent to the corneal epithelium, this uniquely organised acellular layer of compact 

striated collagen fibrils is around 6-8μm thick in the chick cornea (Gordon et al., 1994; 

Marchant et al., 2002), constituting to around 2% of the cornea’s total thickness. The collagen 

fibrils that make up this layer are deposited as a feltwork, and have a smaller diameter of 18-

22nm, compared to the 24nm fibrils found within the stroma (Hay and Revel, 1969). The 

collagen fibrils of Bowman’s layer have a functional role as the region of epithelial 

anchorage via attachment complexes, thus making this layer particularly resistant to 

mechanical strain. In man Bowman’s layer is around 8-12μm thick (Tisdale et al., 1988; 

Komai and Ushiki, 1991), however in some species such as rabbits, this layer is not apparent 

at any developmental stage, nor in the mature tissue.  

 

1.1.2.3. Stroma 

 

The stroma represents around 85% of the cornea’s total thickness. It is a precisely organised, 

multi-layered structure arising from a tightly controlled sequence of developmental events. It 

possesses the mechanical strength needed to protect of the intraocular structures, whilst still 

maintaining the high degree of transparency necessary for light transmission. This ability is 

the result of small uniform diameter collagen fibrils (approx. 24nm under electron 

microscopy) arranged into an alternating orthogonal array of separate and distinct layers. The 

human cornea contains approximately 240 lamellae through the central region (Maurice, 

1957; Bergmanson et al., 2005). These lamellae are synthesised by the resident keratocytes, 

and are orientated parallel to the corneal surface. 
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In addition to collagen fibrils, the stroma also contains a large amount of water, as well as 

various glycoproteins and proteoglycans that serve to aid collagen spacing and organisation, 

and contribute to stromal hydration via their hydrostatic glycosaminoglycan side chains. 

 

1.1.2.4. Descemet’s Membrane 

 

Descemet’s membrane occupies around 1% of the cornea’s total thickness, and acts as a 

specialized basement membrane-like structure for the corneal endothelium, serving as a 

barrier to substances in the anterior chamber of the eye. As with all basement membranes, it 

contains fibronectin and laminin glycoproteins, as well as various collagen types that may be 

involved in stromal attachment.  

 

However its similarities to a basement membrane have previously been questioned. Fitch 

(1990) showed that the nodal matrix of Descemet’s membrane contained no type IV collagen, 

a feature inherent to mature basement membranes. This collagen type was however seen 

penetrating the membrane, forming irregular plaques in the boundary between Descemet’s 

membrane and the stroma, enhancing endothelial adhesion. 

 

1.1.2.5. Endothelium 

 

The endothelial cell layers constitute around 1% of the cornea’s total thickness. A mosaic 

pattern of hexagonal cells, this single cellular layer has a role in maintaining corneal 

transparency by regulating corneal hydration via a complex pump-leak mechanism (Hodson 

and Miller, 1976): bicarbonate ions leak across the endothelium into the stroma of the cornea, 

the ion-pump then transports the ions back into the aqueous humour via a continuous pump. 

It keeps stromal hydration at an equilibrial state, preventing stromal swelling that would then 

lead to a loss in transparency. Cell population density in this layer decreases naturally with 

age; as a result cell shape and size adjust to retain the integrity of the layer. When the 

endothelial cell density decreases to a critical point of around 800 cells/mm
2
, stromal 

swelling results in the disruption of the organized collagen arrays (Forrester et al., 2002; 

Edelhauser, 2006), which leads to corneal opacity. 
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1.2. Collagen 

 

1.2.1. Collagen superfamily 

 

The collagen super-family represent around 25% of the total body protein in mammals 

(Horton et al., 2002). Present in most connective tissues (bone, blood vessels, cornea, 

cartilage and skin), there are currently 29 genetically unique collagen subtypes in the 

vertebrate system (Soderhall et al., 2007). However, all collagen molecules are still 

structurally connected on some level. For example, they all contain a characteristic triple 

helix domain, and are composed of three polypeptide subunit α-chains. These chains have 

particular amino acid sequences and individual gene loci. There are a total of forty different 

α-chains from which collagen molecules can be composed; collagen type I for example 

contains two α-1 chains and one α-2 chain. 

 

Dependant on their particular function and anatomical location, the collagen molecules can 

then either assemble into fibrils, or into non-fibrillar formations. Whereas fibril forming 

collagens will possess a triple-helix domain often around 95% of their length, non-fibrillar 

collagen molecules possess only short triple-helix segments. These molecules may then form 

globular structures that interact with other matrix components. 

 

1.2.2. Biosynthesis 

 

The collagen biosynthesis pathway is a complex series of biochemical processes that varies 

between collagen subtypes. Often the precise structural engineering of these molecules 

depends on their particular functions. For example collagen type XII is frequently spliced into 

long and short forms; consequently these different forms have different spatial and temporal 

locations, presumably reflecting different functional roles (Wessel et al., 1997; Young et al., 

2002). 

 

The three α-chains are synthesised on the rough endoplasmic reticulum within stromal 

keratocytes, they are then assembled into an immature collagen fibril form, known as 

procollagen (Comper, 1996). Post-translational modification of the procollagen molecules 

determine the structure (and thus function) of the collagen fibrils. This initially occurs 

intracellularly, where proline residues are hydroxylated to enable hydrogen bonding between 
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hydroxyproline residues, this then enhances the stability of the triple helix (Hay, 1991). In 

addition, in some collagen types lysine residues also undergo enzymatic hydroxylation. 

Hydroxylysine then has a role in the formation of cross-links within and between collagen 

molecules (Comper, 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Collagen type I biosynthesis. 

Steps 1-5 occur within the cytoplasmic endoplasmic reticulum/Golgi compartment. Transportation in 

a secretory vesicle to the cell surface membrane is then followed by the extracellular assembly of the 

procollagen molecules into mature fibrils (Steps 7-8). Step 9 shows one example of how collagen 

fibrils are arranged into a three-dimensional array – these collagen fibres are found within the 

extracellular matrix of tendon and muscle tissue. In the cornea, collagen fibrils do not form fibres, 

instead they assemble into orthogonally orientated lamallae  (Taken from Alberts et al., 2002). 

 

 

Extracellular modifications process the procollagen molecule into a mature state (Figure 1.3). 

Propeptidase enzymes cleave the terminal sequences from the ends of the molecule, allowing 

the molecules to associate into parallel arrays of fibrils. These may then in turn assemble with 
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other fibrils into a collagen fibre, or in the case of the corneal stroma, into orthogonal 

lamellae. 

 

The collagen molecule is composed of three α-chains that form a triple helical structure. The 

α-chains are left handed polypeptide molecules contain a repeating Gly-X-Y amino acid 

motif, where X and Y are frequently proline and hydroxyproline. This repeating amino-acid 

motif is essential for the formation of the helical rope-like structure. X-ray diffraction has 

confirmed the triple helical structure of collagen molecules (Ramachandran, 1967). The three 

left handed α-chains associate to form the right handed triple helix structure (Figure 1.4), 

which is then stabilized by hydrogen bonding between the proline carbonyl groups and 

glycine amino groups of adjacent α-chains, as well as inter and intramolecular cross-links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Collagen triple helix structure. 

A single left handed α-chain composed of a Gly-X-Y amino acid motif (left). Three α-chains associate 

to form a right handed triple helix structure (right) which is stabilized by hydrogen bonding, 

intermolecular and intramolecular cross-links (Adapted from Lehninger et al., 2005). 

 

 

The precise primary structure of the α-chains varies between collagen types. Similarly, the 

collagen molecule can be heterotypic or homotypic, depending on whether they are 

composed of different or identical α-chains. Collagen type I is a heterotypic molecule, 
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containing two identical, and one different α-chain [α1(I)2 α2(I)]. Collagen type II however, 

is homotypic. Containing three identical α-chains [α1(II)]3. The molecular components of 

these collagen molecules affect the overall structure and thus the functional role that the 

collagen fibril will have in the tissue. 

 

1.2.3. Different classes of Collagens 

 

Within each family of collagen molecules there is a shared genomic ancestry, having derived 

from a common parental gene (Buttice et al., 1990). The classification of collagen molecules 

into these different families is dependent on the particular molecule structure, organisation, 

and size. 

 

1.2.3.1 Fibrillar Collagens 

 

There is now considerable evidence that suggests that the fibrillar collagens of the avian 

cornea (type I, II, V) frequently form heterotypic structures, containing multiple collagen 

types (Linsenmayer et al., 1983, 1984; Fitch et al., 1984, 1988; Birk et al., 1988; Mendler et 

al., 1989). Antibody masking (Linsenmayer et al., 1983; Birk et al., 1988), and enzymatic 

digestion of selective components of the heterotypic fibrils (Fitch et al., 1984, 1988) revealed 

that collagen type V and type I are assembled together into heterotypic fibrils in the stroma of 

the mature avian cornea. The triple helix domain of type I collagen can be seen within and at 

the surface of the heterotypic fibrils. Conversely, numerous type V collagen molecules run 

strictly within the fibril, only the large NH2 terminal domain of the molecules can be seen 

protruding through gap zones to the fibril’s surface. It is hypothesized that this formation 

would then serve to inhibit the addition of further collagen molecules to the fibril’s surface – 

thus mediating fibril diameter (Linsenmayer et al., 1998). 

 

Type I collagen is primarily responsible for the tensile mechanical strength of the cornea. It is 

the predominant collagen type in Bowman’s layer and the stroma. It is integral to the 

development of stromal organisation. In the Mov13 mutant mouse model, where no type I 

collagen forms, the corneal stroma contained thin collagen fibrils with no structural 

orthogonality (Bard and Kratochwil, 1987). Synthesised by keratocytes in the corneal stroma, 

type I collagen forms heterotypic fibrils with collagen type II in the developing avian corneal 

stroma, and with type V in the mature avian stroma (Hendrix et al., 1982; Birk et al., 1988). 
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Type II collagen is present only in the primary stromal stage of avian corneal development, 

reaching undetectable levels by the stage of corneal condensation (Cai et al., 1994). It has 

been observed in the primary stroma forming heterotypic fibrils with type I collagen, and 

forming covalent links to type IX collagen (Fitch et al., 1994). 

 

Type V collagen is prolific throughout the avian corneal stroma (Hay, 1991). Its appearance 

coincides with mesenchymal cell invasion (Linsenmayer et al., 1984), as it is synthesised by 

the differentiated stromal keratocytes (Ruggiero et al., 1996). Forming heterotypic fibrils with 

type I collagen (Linsenmayer et al., 1983; Birk et al., 1988), it may serve to regulate fibril 

diameter within the stroma and play a role in anchoring of basement membranes to the 

subjacent stromal matrix (Birk et al., 1990). Around 20% of collagen in the mature cornea is 

type V, resulting in the synthesis of thin heterotypic fibrils with a uniform diameter 

(Linsenmayer et al., 1983). In vitro fibrillogenesis studies (Birk et al., 1990) have 

demonstrated that by altering the relative proportions of type I and type V fibrillogenesis, 

fibril diameter can be controlled – the greater the proportion of type V fibrillogenesis, the 

thinner the diameter of the resultant heterotypic fibril. This heterotypic collagen arrangement 

is also found in the human cornea (Ruggiero et al., 1996; White et al., 1997). In addition, in 

humans, naturally occurring mutations that affect the relative levels of these collagen types 

produce a similar effect on collagen fibril diameter (Bonaventure et al., 1989; Wenstrup et al., 

1996). 

 

1.2.3.1.1. Fibrillogenesis 

 

Collagen fibrillogenesis is the process of assembling and packing the collagen molecules into 

fibrillar structures. It has been hypothesized, from studies on chick and murine tendon that 

initiation of procollagen processing and collagen fibrillogenesis occurs within intracellular 

membrane bound vesicles. Transported from the Golgi apparatus to the plasma membrane, 

the collagen fibrils are then excreted into the extracellular matrix by plasma membrane 

protrusions (fibripositors) and the adjacent extracellular channels they form aligned along the 

cell’s axis (Canty et al., 2004) (see Figure 1.3). The nucleation stage of fibrillogenesis occurs 

at the base of these channels (several microns within the cell); whilst towards the end of these 

processes the fibrils are then deposition into the extracellular matrix. This suggests that the 

parallel arrangement of collagen fibres in tendon is established by the late secretory pathway 
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and interactions of adjacent fibripositors and the extracellular channels they form (Canty et 

al., 2004). However the fibripositor theory has yet to be proved conclusively. Futhermore, 

whilst this theory is conceptually easy to visualize for simple uniaxial tissues such as tendon, 

wether is can also relate to the production of a complex three-dimensional matrix such as ther 

corneal stroma remains largely unknown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Corneal type I collagen molecule packing. 

Collagen molecules pack together to form a collagen fibril. The staggered arrangement of collagen 

molecules creates overlap and gap zones that produce the characteristic 'a', 'b', 'c', 'd' and 'e'  banding 

pattern of collagen fibrils seen under electron microscopy. Scale bar = 250nm. (Diagram adapted from 

Ross et al., 1989; micrograph adapted from Young, 1985). 
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The collagen molecules within tendon fibrils are arranged with a longitudinal staggering 

equal to 67nm or 234 amino acids (Meek et al., 1979), occurring through a process of axial 

translation called the D-periodicity (Hodge and Petruska, 1963). Consequently there is a 0.6D 

gap between the amino end terminal of one collagen molecule and the start of the next 

molecule (Figure 1.5). This creates overlap zones and gap zones within each D-period that 

correspond respectively to the 'a' and 'c' bands, and the 'd' and 'e' bands of the collagen fibiril. 

These zones appear under transmission electron microscopy as alternating dark and light 

bands. In skin and corneal collagen fibrils, the axial periodicity is closer to 65nm (Marchini et 

al., 1986). The different banding patterns observed in these tissues are the result of corneal 

(C-type) collagen molecules possessing an angular orientation of 15° (with respect to the 

fibril axis) as they run helicoidally throughout the length of the collagen fibril (Holmes et al., 

2001). Conversely in tendon (T-type) fibrils, the highly tensile nature of the tissue results in 

only a 5° angular displacement of the collagen molecules from the fibril axis (Marchini et al., 

1986). 

 

There are several models that describe the three-dimensional assembly of collagen molecules 

into mature fibrils, often dependant on the technique in use (such as transmission electron 

microscopy or X-ray diffraction). Smith’s microfibrillar theory (1968) was the first accepted 

model based on the lateral aggregation of five tropocollagen molecules to form a 

microfibrillar collagen filament. Hulmes and Miller (1979) suggested a model of quasi-

hexagonal collagen molecule packing that occurs without the need for microfibrillar 

substructures, where the molecules within the fibril create sheet structures that have a 

molecular para-crystalline formation. This model also indicated that the collagen molecules 

were angularly displaced from the fibril axis, either by tilting of the straight molecules, or by 

super coiling of the molecule as first suggested by Miller and Wray (1971). Orgel et al (2006) 

demonstrated a similar organisation within type I collagen microfibrils. They purposed that 

adjacent collagen molecules twist into a super-coiled right-handed microfibril. In this 

arrangement, quasi-hexagonally molecular packing creates the para-crystalline lattice 

structure. 

 

Holmes et al (2001) reported that in bovine cornea, each collagen fibril may in fact be 

composed of smaller 4nm diameter microfibrils. The microfibril lateral packing also 

demonstrated structural regions of both order and disorder, commonly at the N terminal and 

C terminal telopeptides, as well as the d-band of the gap zone. The regions of ordered 
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structure also coincided with binding regions for extracellular macromolecules such as 

proteoglycans. Fibril stability is enhanced by interfibrillar and intermolecular cross-links that 

grant a tensile strength to the structure. It is also hypothesized that these cross-links aid in the 

transmission of force across the entire structural array, dissipating stress and enhancing 

structural integrity (Orgel et al., 2006). 

 

In the cornea, collagen fibrils then assemble into flat lamellae, where fibril diameter and 

interfibrillar spacing may be mediated in part through proteoglycan interactions (Scott 1985; 

1988). Electron microscopy techniques have reported that the collagen fibril diameter within 

these lamellae appears to be a relatively constant 24nm throughout a large proportion of the 

vertebrate kingdom (Craig and Parry 1981). However, X-ray diffraction studies have shown 

that this measurement may in fact vary dependant on the technique used to study the tissue, 

as it affects the hydration levels of the stroma (Sayers et al., 1982; Meek et al., 1991). 

Standard electron microscopy, that shows fibril diameter to be around 24nm, requires the 

chemical dehydration of the tissue being processed. However, Sayers et al (1982) 

demonstrated using X-ray diffraction that air dried bovine corneal samples show a markedly 

increased fibril diameter of 40nm. Further X-ray diffraction studies untaken by Meek and 

Leonard (1993) using an alternative method, gave a reading of 38.2nm in bovine cornea at 

physiological hydration. Similarly Worthington and Inouye (1985), also using X-ray 

diffraction on untreated (hydrated) bovine cornea, showed a fibril diameter of 39nm. Low 

temperature electron microscopy studies indicate fibril diameter to be around 38nm (Craig et 

al., 1986). This figure correlates closely with the results from X-ray diffraction studies 

(Sayers et al., 1982; Worthington and Inouye, 1985; Meek and Leonard 1993), demonstrating 

that the conventional dehydration and embedding used in standard electron microscopy 

dramatically affects the fibril diameter observed. 

 

1.2.3.2. FACIT collagens 

 

Characterised as ‘Fibril associated collagens with interrupted triple helices’, there are seven 

members in the FACIT family including collagen types IX, XII, XIV, XVI, XIX, ,XX, and 

XXI (Gordon et al., 1989; Comper et al., 1996; Fitzergerald et al., 2001). They universally 

possess several triple helical domains that alternate with non-triple helical domains. 

Functionally, they interact with other matrix components and the surface of fibrillar collagen 

molecules. Consequently, FACIT molecules have several structural domains. Some lie along 
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the fibril surface and often anchor the molecule to the underlying fibrillar collagen by 

covalent cross-links (Vaughan et al., 1988). Other domains extend outwards from the fibril, 

interacting with adjacent fibrils and other matrix components (Comper, 1996). However, the 

exact supramolecular organisation of these molecules is currently unknown. 

 

Type IX is the major FACIT collagen involved in avian corneal development (Svoboda et al., 

1988). This collagen molecule associates with the surface of type II collagen fibrils in the 

primary corneal stroma. Absent during the period of stromal swelling, it is implicated as a 

stabilizing factor, whose presence maintains the primary stroma as a compact matrix (Cai et 

a1., 1994). In the developing avian corneal stroma, two different isoforms have been detected. 

One of which possesses non-collagenous domains that may function as a bridge between 

fibrils or to other matrix components (Fitch et al., 1995).  

 

Types XII and XIV are structurally similar molecules, and are also present during 

development of the avian corneal stroma. Generally associated with the surface of type I 

collagen fibrils (Keene et al., 1991), these FACIT collagens may have a role in stabilizing the 

fibrillar architecture within the stroma through interactions with adjacent cells and 

extracellular matrix components (Gordon et al., 1996).  

 

The mRNA for both molecules can be differentially spliced, forming ‘long’ or ‘short’ form 

polypeptides. Both forms of type XII collagen are expressed in several tissues during avian 

embryogenesis, localised in the developing primary and secondary corneal stroma at variable 

temporal and spatial locations (Young et al., 2002). 

 

Type XIV collagen has been observed progressing posteriorly from the subepithelial region 

during mesenchymal cell invasion. Consequently, it is distributed throughout the stroma just 

before stromal compaction (Gordon et al., 1996). Synthesis of type XIV collagen across the 

secondary stroma then increases as compaction begins, peaking between days 10 to 14, at 

which point production declines (Young et al., 2002). It is therefore possible that interactions 

between this collagen type and the surface of fibrillar collagens may stabilize the movement 

of fibrils and stromal compaction. 

 

Type XII collagen is synthesized by the corneal epithelium, and is present in the primary 

stroma by developmental day 5. During synthesis of the secondary stroma, type XII collagen 
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is localised in the subepithelial and subendothelial regions (Akimoto et al., 2002) – such as 

the interface between the anterior stroma and Bowman’s layer, and the interface between the 

posterior stroma and Descemet’s membrane. This suggests it may serve to stabilize these 

regions (Gordon et al., 1996). 

 

As type XII and type XIV collagen molecules are expressed at different developmental stages, 

they may interact with different matrix components, and hence may have slightly different 

roles. Type XII is implicated in fibril organisation and matrix stability (Gordon et al., 1996), 

whilst type XIV may assist in fibrillogenesis (Young et al., 2002). 

 

In the mature avian corneal stroma the long form of type XII collagen is no longer present. 

Whilst in the mature human cornea it can be seen in the stroma, epithelial basement 

membrane and Bowman’s layer (Wessel et al., 1997). 

 

Type XX FACIT collagen was discovered in the embryonic chick relatively recently. Found 

only in minor quantities, it is weakly expressed in several connective tissues including tendon, 

skin, and to a greater extent in corneal epithelium (Koch et al., 2001). Here it is expressed at a 

constant level between days 7 and 13 in a similar pattern to type XII collagen. 

 

1.2.3.3. Other non-fibril forming collagens 

 

Type IV collagen is a ubiquitous component of basement membranes. Along with other 

matrix components it forms mesh-like networks that are situated beneath all epithelial and 

endothelial cell layers. In the developing avian cornea type IV collagen is also found in the 

interface region between Descemet’s membrane and the posterior stroma. Observed 

extending into both structures, it promotes endothelial adhesion by forming contacts with 

endothelial cell processes (Linsenmayer et al., 1998). Type IV collagen is also found in 

unique structures within the developing avian corneal stroma, such as stromal strings and 

plaques of basement membrane-like material (Fitch et al., 1991). 

 

Type VI collagen molecules are organised into beaded filaments that become detectable at 

the time of mesenchymal cell invasion (Linsenmayer et al., 1986). Synthesised by 

mesenchymal cells in the developing cornea, type VI collagen associates with striated fibrils 

in the loose stroma to form an interlocking matrix (Linsenmayer et al., 1986). In the mature 
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cornea, synthesised by fibroblasts, these beaded filaments run between lamellae and fibril 

bundles. 

 

Type VII collagen is present at the epithelial-stromal interface. It forms anchoring fibrils that 

help stabilize the attachment of the basement membrane to the underlying stromal matrix 

(Keene et al., 1987), through interactions with collagen type IV anchoring plaques. 

 

Type VIII collagen is a component of Descemet’s membrane in the avian cornea. Belonging 

to a class of small collagens half the size of fibrillar collagens (Yamaguchi et al., 1991), type 

VIII collagen molecules likely form a hexagonal lattice arrangement (Jakus, 1956). 

 

Type XVII collagen is thought to have a role in epithelial attachment complexes and is a 

component of transmembrane hemidesmosomes in the avian cornea. The intracellular 

globular domains of the collagen molecules form the hemidesmosome, whilst the 

extracellular collagenous domains provide basement membrane attachments (Gordon et al., 

1997; Linsenmayer et al., 1998). 

 

Type XXIII is a member of MACIT (membrane associated collagens with interrupted triple 

helices) collagen types. Collagen type XXIII is related to types VIII and XV, and is 

associated with the epithelium and endothelium of the developing avian cornea (Koch et al., 

2006). It is thought to have a stabilizing role in regions of matrix-matrix interface such as 

Bowman’s layer and Descemet’s membrane. 

 

1.2.4. Collagen organisation 

 

The collagen lamellae of the avian stroma are stacked so that adjacent layers are orientated 

orthogonally (Figure 1.6). Transparency is brought about by this highly organised collagen 

structure, combined with the avascular nature of the cornea. 
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Figure 1.6: Orthogonal collagen lamellae in human corneal stroma. 

Scale bar = 500nm (Courtesy of Dr Rob Young, unpublished data). 

 

 

Although striated collagen fibrils within the cornea appear uniform, increased fibril stability 

in certain areas of the cornea suggest possible structural and functional differences. Similarly, 

organisation of the lamellae varies depending on location within the stroma. The collagen 

lamellae cross the apex of the corneal dome as they run from limbus to limbus. In the anterior 

of the stroma, collagen lamellae appear as thin, narrow bundles densely interwoven. 

Consequently, the tighter packing and denser interweaving causes the layers run at an oblique 

angle to the corneal surface (Radner et al., 1998). Conversely in the posterior stroma, 

lamellae are thicker and wider and run parallel to the corneal surface, with a lesser degree of 

interlacing (McTigue, 1967). Throughout the stroma, interconnections between lamellae are 

formed by interweaving of adjacent layers, disulphide cross-links between fibrils, and 

interlacing of the divided sublayers of adjacent lamellae (Radner and Malinger, 2002). 

 

1.3. Proteoglycans 

 

Proteoglycans are found throughout most tissues, either within intracellular vesicles, on a cell 

surface, or in the extracellular matrix. They are water-soluble molecules composed of a 

protein core around which is covalently bound one or more polysaccharide carbohydrate 

chains called glycosaminoglycans. Proteoglycans are distinguishable from glycoproteins by 
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the structure of their protein core. They are more acidic in nature due to the high negative 

charge generated by the long, unbranching, highly sulphated sugar chains attached to their 

protein cores. 

 

Proteoglycans can be categorized according to function, for example basement membrane 

proteoglycans, large extra-cellular proteoglycans, and cell-associated proteoglycans. 

However due to their prolific nature and diverse structures, some proteoglycans belong to 

more than one group, having multiple biological functions. When categorized by 

glycosaminoglycan structure, the two predominant proteoglycan families within the corneal 

stroma are those with keratan sulphate side chains, and those with chondroitin 

sulphate/dermatan sulphate side chains. 

 

1.3.1. Glycosaminoglycans 

 

Glycosaminoglycans are sulphated carbohydrate polymers containing 40-100 repeating 

disaccharide units. These units contain an N-acetylated hexosamine (such as D-glucosamine 

or D-galactosamine) and a second sugar residue of either L-uronic acid or D-galactose 

(Figure 1.7). Consequently, one of the two sugars in the repeating disaccharide is always an 

amino sugar (where the nitrogen of the amino group has an acetyl group attached) – either N-

acetylglucosamine or N-acetylgalactosamine – hence the name glycosaminoglycan. The 

specific glycosaminoglycan type is determined by their linkages, the various sugar residues 

present in the disaccharide units, and the location and number of sulphation sites. The two 

major glycosaminoglycan types in the cornea are keratan sulphate and a chondroitin 

sulphate/dermatan sulphate hybrid. Other types include hyaluronic acid and heparan sulphate. 
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Figure 1.7: Glycosaminoglycan chain structure. 

Glycosaminoglycans are composed of repeating disaccharide units composed of an N-acetylated 

hexosamine and a second sugar residue of either L-uronic acid or D-galactose (Adapted from Bomsel 

and Alfsen 2003). 

 

 

The region of sulphation on the N-acetylgalactosamine unit often shows a high degree of 

variability. This may reflect the diverse biological functions of these molecules. For example, 

more immature articular cartilage shows a greater degree of sulphation is seen at position four 

relative to that seen at position six (Saamanen et al., 1989). It is hypothesized that sulphation 

at position six results in a more spatially free orientation. This then supports a greater degree 

of interaction with other components in the extracellular matrix (Saamanen et al., 1989). 

 

Glycosaminoglycans are covalently linked to the proteoglycan protein core by specific 

oligosaccharide structures (with the exception of hyaluronic acid which exists as a free chain) 

(Figure 1.8). Keratan sulphate is either N-linked to Asn residues, or O-linked to Ser or Thr 

residues in mature skeletal tissues (Barry et al., 1995). Chondroitin sulphate, dermatan 

sulphate and heparan sulphate are O-linked to the protein core by Ser residues (Comper, 

1996). 

 

 

-O3SO  O 

COO- 

OH 

CH2OH 

NHSO3
- 

 O 

 O 

OH 

 O 

-O3SO  O 

COO- 

OH 

CH2OH 

NHSO3
- 

 O 

 O 

OH 
 O 

 O 

Core protein 

GlcUA   GalNAc(4OSO3)                 GlcUA                  GalNAc(4OSO3) 

   Chondroitin-4-sulphate 

Glycosaminoglycan chain 



Chapter 1 - Introduction 

 

20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Glycosaminoglycan linkage mechanism to proteoglycan protein core.  

Covalent linkage to the proteoglycan protein core occurs through specific oligosaccharide structures. 

Ser-Serine; Asp-Asparagine; Xyl-Xylose; GalNAc-N-acteylgalactosamine; GlcNAc-N-

acetylglucosamine; Gal-Galactose; NeuNAc-N-acetyl-D-neuraminic acid; Man-Mannose; GluA-β-D-

glucuronic acid. Yellow arrowheads indicate sulphate groups (Adapted from Garrett and Grisham 

2005). 

 

 

Under physiological conditions, the charged anionic groups on the glycosaminoglycan 

molecules are fully ionized. They therefore show a high negative charge, often varying 

between disaccharide units dependant on the particular sulphate content (Comper and Laurent, 

1978). The resulting electrostatic interactions allow proteoglycans to interact with other 

macromolecules. This negative charge also results in an osmotic draw, causing matrix 

swelling and the formation of a compression resistant structure (Comper and Laurent, 1978). 

In addition, the glycosaminoglycan charge is also thought to contribute to corneal 

transparency through the maintenance of fibril spacing, with the electrostatic forces exerting 

a repulsive force on adjacent fibrils (Hedblom, 1961; Scott, 1988).  
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Recent studies in reconstruction three-dimensional corneal proteoglycans have observed large 

proteoglycan complexes spanning across the width of several collagen fibrils. It is thought 

that these larger proteoglycans are the result of self-assembly or aggregation of 

glycosaminoglycan chains from individual proteoglycans to form anti-parallel multimers. 

Whilst it is possible to determine the structure of the bond from these reconstructions, several 

models have been suggested as to how these aggregations may be organised (Knupp et al., 

2009; Lewis et al., 2010; Parfitt et al., 2010). The mechanism by which these lateral 

associations form is also not clear. The ionic balance of the stroma is known to be important 

for proteoglycan interactions. It is possible that the negative charge of the glycosaminoglycan 

chains is cancelled out by positively charged ions within the stroma (K
+
, Na

+
), allowing them 

to associate through hydrophobic attraction and hydrogen bonding (Scott, 2001). 

 

1.3.1.1. Chondroitin sulphate 

 

The precise structure of chondroitin sulphate varies depending on its anatomical location, 

with both chain length and sulphation patterns fluctuating between individual molecules 

(Roughley and Lee, 1994). However the standard structure of this glycosaminoglycan is a 

repeating disaccharide unit is composed of N-acetylgalactosamine and glucuronic acid 

(Cheng et al., 1992; Roughley and Lee, 1994). In the cornea, chondroitin sulphate is present 

in both sulphated forms chondroitin-4-sulphate and chondroitin-6-sulphate (Handley and 

Phelps, 1972). Initially synthesised by the epithelial cells of the developing cornea, this 

glycosaminoglycan may have a morphogenetic role in conjunction with other matrix 

molecules (Trelstad et al., 1974). 

 

1.3.1.2. Dermatan sulphate 

 

The repeating disaccharide units of dermatan sulphate’s glycosaminoglycan chains are 

composed of N-acetylgalactosamine and iduronic acid (Rosenberg et al., 1985). Dermatan 

sulphate could be considered a modified form of chondroitin sulphate, as the iduronic acid 

residues are formed simply from the action of an epimerase enzyme on a glucuronic acid 

residue (Malmstrom and Aberg, 1982). Sulphation of the iduronic acid residues occurs at the 

second position, whilst sulphation at position 4 of the N-acetylgalactosamine residues is also 

common in the cornea (Roughley and Lee, 1994). The resulting dermatan-4-sulphate form 
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constitutes around a fifth of the glycosaminoglycan content in the adult mammalian corneal 

stroma (Scott Bosworth, 1990). 

 

1.3.1.3. Keratan sulphate 

 

Unlike chondroitin sulphate and dermatan sulphate glycosaminoglycan chains, keratan 

sulphate does not contain uronic acid residues. Rather the repeating disaccharide units are 

composed of N-acetylglucosamine and galactose (Roughley and Lee, 1994). In addition it 

also possesses two forms of linkage to a protein core. The type I isoform, present in the 

cornea, links via the amino group of an Asn amino acid in small proteoglycan protein core 

(Greiling and Scott, 1989). This isoform is the predominate glycosaminoglycan found in 

mammalian and avian corneal stroma, constituting to around half of the total 

glycosaminoglycan content of the mature tissue (Scott Bosworth, 1990). The type II isoform 

is found in skeletal tissues, and links via the hydroxyl group of Ser or Thr residues of large 

proteoglycan protein cores (Nilsson et al., 1983). Sulphation of these isoforms can occur at 

position 6 of both the hexosamine and the galactose residues (Roughley and Lee, 1994). 

 

1.3.1.3.1. Keratan sulphate biosynthesis 

 

The keratan sulphate polymer is elongated by the alternating addition of galactose and N-

acetylglucosamine by a glycosyltransferase enzyme (Funderburgh et al., 2000). Cai et al 

(1996) observed that during avian development, increased keratan sulphate biosynthesis in 

the corneal stroma coincides with increased glycosyltransferase activity. The enzyme activity 

is then also sustained within adult cells (Cai et al., 1996). 

 

After assembly of the polymer, keratan sulphate undergoes sulphation by multiple 

sulphotransferase enzymes (Kusche-Gullberg and Kjellén, 2003). In corneal keratan sulphate, 

most N-acetylglucosamine residues are sulphated, as are around half of the galactose residues. 

However unlike galactose sulphation, N-acetylglucosamine sulphation is coupled with chain 

elongation (Funderburgh, 2002). Mutations in the CHST6 gene that encodes the N-

acetylglucosamine-6-sulphotransferase enzyme are thought to lead to the inactivation or loss 

of this enzyme, and are responsible for type I and type II macular corneal dystrophy (Akama 

et al., 2000). A second enzyme is involved in the sulphation of galactose, and has been 

observed preferentially targeting internal galactose residues if they lie adjacent to sulphated 
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N-acetylglucosamine residues (Torii et al., 2000). In addition, sulphation of terminal 

galactose residues appears to inhibit polymer elongation (Akama et al., 2002). 

 

1.3.2. Small leucine-rich proteoglycans 

 

Stromal proteoglycans belong to a twelve member superfamily of small leucine-rich 

proteoglycans (SLRP). The predominate SLRPs of the cornea are decorin (Bianco et al., 1990; 

Li et al., 1992), biglycan (Bianco et al., 1990; Funderburgh et al., 1998), lumican 

(Blochberger et al., 1992), mimecan (Funderburgh et al., 1997) and keratocan (Corpuz et al., 

1996). 

 

This superfamily is characterised by a terminal ‘leucine-rich repeat’ consensus sequence 

motif that runs through the COOH- terminal cysteine cluster, as well as throughout the 

protein core sequence (Hocking et al., 1998). Amongst the different members of this 

superfamily, this consensus sequence is repeated between 6 and 11 times between the 

cysteine clusters and varies in length between 20-29 amino acid residues, the most common 

being 24 (Hocking, 1998). Although the leucine-rich repeat sequences are often highly 

conserved between SLRPs, there is no common amino-acid sequence amongst every protein 

core. Whilst considerable similarities have been observed in the C-terminal domain 

sequences, there are several regions along the molecules that show a high level of variability 

(Iozzo, 1998).  

 

 

 

 

 

 

 

 

 

 

Figure 1.9: The three-dimensional organisation of a leucine rich repeat motif. 

Red arrows represent β-strands; blue ribbons represent α-helices (Taken from Kobe and Deisenhofer 

1993). 

http://www3.interscience.wiley.com/cgi-bin/fulltext/118808578/main.html,ftx_abs#b10#b10
http://www3.interscience.wiley.com/cgi-bin/fulltext/118808578/main.html,ftx_abs#b11#b11
http://www3.interscience.wiley.com/cgi-bin/fulltext/118808578/main.html,ftx_abs#b12#b12
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The three-dimensional organisation within these proteoglycans has been likened to that of the 

intracellular ribonuclease inhibitor protein (Kobe and Deisenhofer, 1993). The leucine rich 

regions form a horse-shoe shaped coil of parallel alternating α-helices and β-sheets stabilized 

by H-bonding between the concave surfaces of parallel chains (Scott, 1996) (Figure 1.9). 

Consequently the horseshoe shape is able to accommodate a single collagen triple helix 

(Dunlevy et al., 1998). 

 

1.3.3. Corneal proteoglycans 

 

In the corneal stroma, decorin is the predominant proteoglycan possessing chondroitin 

sulphate/dermatan sulphate side chains (Bianco et al., 1990; Li et al., 1992), whilst keratocan 

(Corpuz et al., 1996), lumican (Blochberger et al., 1992) and mimecan (Funderburgh et al., 

1997) all possess keratan sulphate glycosaminoglycan side chains. These proteoglycans 

interact with the cellular and extracellular matrix components of the corneal stroma via 

particular binding sites. In the corneal stroma, different proteoglycan binding sites have been 

observed along the collagen fibrils corresponding to the ‘a’ and ‘c’ bands of the overlap zone, 

and the ‘d' and 'e’ band of the gap zone (Scott and Haigh, 1985; Meek et al., 1986). It has also 

been identified that particular proteoglycans will associate with different binding sites on the 

collagen fibril. Of the two different classes of proteoglycans, keratan sulphate proteoglycans 

bind to the ‘a’ and ‘c’ bands of the fibril, whilst chondroitin sulphate/dermatan sulphate 

proteoglycans bind to the ‘d/e’ bands (Scott and Haigh, 1985; Young, 1985; Meek et al., 

1986; Scott and Bosworth, 1990).  

 

1.3.3.1. Decorin 

 

Decorin is a member of the SLRP family, and may have a role in interacting with collagen 

fibrils, helping to stabilize and orientate them during fibrillogenesis (Scott, 1996). First 

discovered in bone and cartilage (Rosenburg et al., 1985; Fisher et al., 1989), decorin is 

named after its appearance under electron microscopy, ‘decorating’ the collagen fibril surface, 

specifically at the ‘d’ and ‘e’ bands (Scott et al., 1981). 

 

During decorin biosynthesis the core protein is glycosylated by a single glycosaminoglycan 

chain at the N-terminal Ser-Gly site. The chain is constructed from repeating disaccharide 

http://www3.interscience.wiley.com/cgi-bin/fulltext/118808578/main.html,ftx_abs#b10#b10
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units of N-acetylgalactosamine and either iduronic acid or glucuronic acid. Consequently, 

decorin can have either a chondroitin sulphate or dermatan sulphate side chain. In the cornea 

(as in articular cartilage) decorin is present with either of these glycosaminoglycans attached. 

In addition, studies by Midura et al (1989) have also identified the presence of several 

oligosaccharides N- and O-linked to the protein core of decorin in the embryonic chick 

cornea. Conversely, in the mature avian cornea decorin may exists as one of two isoforms – 

either possessing the standard chondroitin sulphate/dermatan sulphate side chain, or as a 

hybrid isoform that contains both a chondroitin sulphate/dermatan sulphate side chain and a 

keratan sulphate side chain (Blochberger et al., 1992). 

 

Decorin is also able to undergo dimerisation (Scott et al., 2004). This molecular self-

recognition allows decorin core protein molecules to bind together into dimers. In the corneal 

stroma long multimer glycosaminogycan aggregations have also been observed (Knupp et al., 

2009; Lewis et al., 2010; Parfitt et al., 2010). Previous studies have identified these longer 

aggregations to be chondroitin sulphate/dermatan sulphate proteoglycans (Scott, 1992; Liles 

et al., 2010). 

 

1.3.3.2. Keratocan 

 

Keratocan is abundant throughout the cornea. Synthesised by keratocytes, it is named due to 

the keratan sulphate glycosaminoglycan chains bound to its protein core. It is also present to a 

lesser extent in skin, ligament, cartilage, artery, and striated muscles as a glycoprotein 

containing short non-sulphated keratan sulphate chains (Corpuz et al., 1996). Only in the 

cornea is the 38kDa core protein linked to highly sulphated keratan sulphate chains (Corpuz 

et al., 1996), indeed three keratan sulphate-linkage sites have been observed on the protein 

core (Funderburgh et al., 1991). 

 

1.3.3.3. Mimecan 

 

Mimecan is another member of the SLRP family that has recently been shown to be present 

in the developing chick cornea (Dunlevy et al., 2000), having first been discovered in bovine 

bone (Madisen et al., 1990). As with keratocan, mimecan is also present to a lesser extent in 

other tissues as a non-sulphated glycoprotein. The 25kDa sulphated form of mimecan found 

in the cornea contains keratan sulphate glycosaminoglycan side chains and is synthesised by 
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stromal keratocytes (Funderburgh et al., 1997). It is expressed in much lower quantities than 

either keratocan or lumican; consequently in the mature chick cornea its levels fall to the 

extent that it is virtually undetectable (Dunlevy et al., 2000). 

 

Mimecan does not show the high degree of amino acid sequence identity shared between the 

other two cornea keratan sulphate proteoglycans – lumican and keratocan. Nonetheless there 

is evidence that suggests certain molecular characteristics remain conserved within the 

particular structural domains of all the members of the keratan sulphate proteoglycan family. 

For example in the N-terminal region, a minimum of one tyrosine amino acid is universally 

located adjacent to any acidic amino acids such as
 
glutamate or aspartate, forming then the 

consensus site for tyrosine sulphation (Funderburgh et al., 1997) 

 

1.3.3.4. Lumican 

 

Lumican is a keratan sulphate proteoglycan found in several connective tissues, including 

cornea, skin, and cartilage (Comper, 1996). Its name is derived from its role in corneal 

transparency. In the cornea, the keratan sulphate glycosaminoglycan chains are highly 

sulphated, whereas in other tissues such as skin or cartilage, it exists in either poorly 

sulphated or non-sulphated forms. It is suggested that the sulphation of corneal lumican, is 

directly involved in the development of corneal transparency (Blochberger et al., 1992). 

Indeed, the onset of corneal transparency in developing chick coincides with the production 

of the sulphated form of lumican (Cornuet et al., 1994). 

 

Lumican in the cornea is usually expressed by stromal keratocytes; but is also expressed 

transiently by corneal epithelial cells during the initial stages of the wound healing process 

(Saika et al., 2000). The 37kDa protein core of the molecule is highly sulphated. In the 

bovine cornea one keratan sulphate chain is bound to the protein core (Funderburgh et al., 

1991). Whilst in the chick cornea, five potential keratan sulphate binding sites have been 

identified – four N-linked glycosylation sites within the leucine rich region, and one site 

outside of it (Blochberger et al., 1992). However in the mature chick, only two to three of the 

five potential binding sites are thought to be associated with keratan sulphate chains 

(Dunlevy et al., 1998; Midura et al., 1989). 
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Lumican and keratocan are thought to be structurally alike and possess many of the three-

dimensional characteristics of the intracellular ribonuclease inhibitor protein (Kobe and 

Deisenhofer, 1993). The leucine rich regions of the protein cores of these molecules coil into 

a spiral, this then forms a horse-shoe shape that is thought to accommodate a single collagen 

triple helix. The leucine residues are thought to be involved in interacting and binding the 

collagen fibril (Scott, 1996). The glycosaminoglycan chains of these proteoglycans then 

protrude from the convex surface of the horse-shoe shape, to play a role in collagen fibril 

spacing (Weber et al., 1996). 

 

1.3.4. The role of corneal proteoglycans 

 

The interactions between proteoglycans and collagens are both wide-ranging and complex. It 

is thought that through these interactions, the organisation of the corneal structure is 

controlled. Cellular and extracellular components of the stromal matrix interact extensively 

with proteoglycans. For example spatial and temporal variations in proteoglycans may, along 

with other extracellular matrix components, mediate cell migration, proliferation, 

differentiation and adhesion (Doane et al., 1996; Davies et al., 1999; Ameye and Young, 

2000). 

 

It is also thought that interactions between proteoglycans and fibrillar collagens of the 

extracellular matrix may mediate collagen fibril size, spacing and organization in the stroma 

(Scott, 1985; Scott, 1988). The core protein domain of the proteoglycan interacts with 

collagen fibrils whilst the glycosaminoglycan side chains occupy the interfibrillar space, 

assisting in the spatial organisation of collagen fibrils (Dunlevy et al., 1998), and causing an 

osmotic pressure that serves to expand the stromal matrix (Hedblom, 1961). As such, 

proteoglycans and their associated glycosaminoglycan side chains contribute to the cornea’s 

compressive and swelling changes (Comper and Laurent, 1978). 

 

Previously studies have suggested a symmetrical six-fold arrangement of proteoglycans 

around a central collagen fibril (Müller et al., 2004). However, recent studies of mature 

bovine and mouse corneas that utilized three-dimensional reconstructions of stromal 

extracellular matrix (Knupp et al., 2009; Lewis et al., 2010; Parfitt et al., 2010) suggest that 

the proteoglycans have no symmetrical organisation or set azimuthal positioning. With no 

regular proteoglycan organisation evident, alternative theories have emerged as to how 
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proteoglycans are able to modulate interfibrillar spacing. One current theory is that two equal 

but opposing forces are exerted simultaneously on the fibrils due to the presence of 

proteoglycans. Thermal motion of the glycosaminoglycan chains, arising from the constant 

molecular collisions of the proteoglycans and other extracellular matrix molecules, creates an 

attractive force that pulls the two terminal ends of the chain, and subsequently the attached 

collagen fibrils together. Simultaneously, the negatively charged glycosaminoglycan chains 

attract positively charged ions within the stroma resulting in an osmotic pull. This creates a 

repulsive force as the influx of water molecules into the interfibrillar spaces increases the 

pressure between the collagen fibrils (Knupp et al., 2009; Lewis et al., 2010). This force 

counteracts the attractive force caused by thermal motion of the glycosaminoglycan chains, 

resulting in a balanced system. Together these forces, resulting from the presence of 

proteoglycans, stabilize fibril architecture and regulate interfibrillar distances. 

 

Studies have confirmed the regulatory role of lumican in collagen fibrillogenesis and the 

development of corneal transparency (Rada et al., 1993; Chakravarti et al., 1998). 

Associating with newly synthesized collagen fibrils at the keratocyte surface, lumican was 

found to regulate fibril diameter by mediating lateral fibril associations. Lumican-null mice 

have increased stromal light scattering and corneal opacification (Chakravarti et al., 1998; 

2000). This supports the theory of keratan sulphate having role in development of 

transparency. In addition, lumican-null mice show increased collagen fibril diameter as a 

result of fibril fusion. There is abnormal fibril architecture in the posterior stroma that 

contains the mature collagens, an area where lumican has been shown to have a greater 

concentration in normal mice. Conversely the anterior stroma, containing newly synthesized 

collagen fibrils, maintained normal collagen architecture (Chakravarti et al., 2000). In 

addition, lumican null mice show decreased keratan sulphate content throughout the whole 

eye, demonstrating significantly lower sulphation levels to those in other mammalian species 

(Young et al., 2005). 

 

In contrast, keratocan-null mice demonstrate normal corneal transparency, although stromal 

collagen fibril organisation is still disrupted to an extent. They have a thinner stroma in cross 

section, and a narrower corneal–iris angle of the anterior segment, as well as increased 

collagen fibril diameter and less organized fibril packing (Meek et al., 2003). Whilst these 

changes are not seen in mimecan-null mice, a slight reduction in collagen fibril diameter has 

been observed in the cornea and skin (Tasheva et al., 2002). However, similar studies 
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undertaken by Beecher et al (2005) have shown no significant changes in corneal fibril 

diameter or local order within mimecan-null mice. 

 

Lumican- and keratocan-null mice both show decreased stromal thickness (Chakravarti et al., 

2000; Meek et al., 2003). This thinning may be due to stromal dehydration resulting from 

reduced keratan sulphate proteoglycan levels. The strong negative charge on stromal 

proteoglycans causes an osmotic flow into the tissue, as water molecules are attracted to the 

sulphated glycosaminoglycan side chains. Keratan sulphate has a greater ability to attract 

water than chondroitin sulphate/dermatan sulphate glycosaminoglycans, therefore causing a 

dehydrating effect once removed (Bettelheim and Plessy, 1975). 

 

Chondroitin sulphate/dermatan sulphate proteoglycans, in particular decorin, may aid 

collagen fibril movement during developmental deformation of the stroma (Bard et al., 1988; 

Pins et al., 1997). Dermatan sulphate proteoglycans may have a morphogenetic role in the 

developing chick (Hart, 1976; Hahn, 1992), as specific disruption of dermatan sulphate 

proteoglycan synthesis leads to abnormalities in lamellar organization and packing of the 

collagen fibrils (Hahn, 1992). Fibril diameter remains unaffected. Therefore dermatan 

sulphate proteoglycans may control fibril-fibril spacing and lamellar organization, but not the 

regulation of fibril diameter (Hahn, 1992; Danielson et al., 1997). 
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Figure 1.10: Collagen fibril morphology in Decorin and Biglycan-null corneal stroma. 

Altered collagen fibril diameters can be seen in the corneal stroma of P60 decroin and biglycan 

knockout mice. Black arrow indicates an abnormal collagen fibril. (Adapted from Zhang et al., 2009). 

 

 

Whilst decorin-null mice do show skin and tendon abnormalities, no corneal phenotype is 

present (Danielson et al., 1997). In vitro studies have demonstrated the effect of decorin and 

lumican on fibrillogenesis of type I collagen. They can delay fibril formation by inhibiting 

the rate of collagen fibrillogenesis. They also prevent fibril diameter growth, resulting in the 

formation of thinner collagen fibrils. This inhibitory role is thought to be a function of the 

core proteins of these proteoglycans, rather than the glycosaminoglycan side chains (Rada et 

al., 1993). These findings were contradicted in another study, which showed decorin has no 

role in mediating collagen fibril diameter (Li et al., 1992). Alternatively, decorin may have a 
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role in preventing lateral association of procollagen molecules (Figure 1.10). Decorin was 

seen to be secreted along procollagen molecules within vesicles, supporting the proposed role 

in fibril formation (Birk et al., 1995).  

 

Mice deficient in both decorin and biglycan show significantly disrupted stromal organization 

and fibril packing, with larger and more abnormal fibril structure present particularly in the 

posterior stroma. These double deficient mice demonstrate that decorin does have a role in 

stromal fibril assembly; its importance is however masked in decorin-null mice by the 

compensatory up regulation of biglycan that consequently prevents any fibrillogenesis 

disruption (Zhang et al., 2006). 

 

Current research suggests that only lumican-null mice produce a clinical corneal phenotype, 

whilst corneal transparency remains unaffected with keratocan, decorin and mimecan 

deficiencies (Chakravarti et al., 2000). This suggests that keratan sulphate has the defining 

role in corneal transparency. Whilst mimecan carries keratan sulphate in bovine and human 

corneas, in the murine cornea it does not. However, keratocan and lumican in the murine 

cornea does possess highly sulphated keratan sulphate chains. Whilst decreased keratan 

sulphate levels are noted in keratocan-null mice, corneal transparency remains unaffected, 

suggesting that lumican and keratocan may bind to different regions on collagen fibrils, 

altering their function. 

 

Keratan sulphate biosynthesis, if disrupted, can have a dramatic impact on corneal clarity. 

Macular corneal dystrophy type I (MCD-I) is a rare inherited disorder resulting in the 

production of immature keratan sulphate molecules (Klintworth and Smith, 1977; Hassell et 

al., 1980). Consequently there is disruption to the organisation of the extracellular matrix, 

including collagen interfibrillar spacing and reduced corneal thickness. This then causes 

clouding and reduced corneal transparency (Hassell et al., 1980). However, whilst this 

phenotype is attributed to disruption of keratan sulphate biosynthesis, other 

glycosaminoglycan irregularities occur that may contribute to the disease characteristics. For 

example in MCD-I, larger over sulphated chondroitin sulphate proteoglycans and increased 

levels of chondroitin-6-sulphate are found in the stroma (Klintworth and Smith, 1977; Meek 

et al., 1989; Plaas et al., 2001). In addition hyaluronic acid, usually absent in normal cornea, 

is present in MCD-I corneas and may affect hydration levels in the stroma (Plaas et al., 2001). 
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Corneal scars also show similarly abnormal proteoglycan composition and distribution 

(Funderburgh et al., 1990). In corneal scar tissue there is a reduction in keratan sulphate 

levels, increased quantities of highly sulphated chondroitin sulphate/dermatan sulphate 

proteoglycans (Wollensak and Buddecke, 1990), and initiation of hyaluronic acid synthesis 

(Hassell et al., 1983; Fitzsimmons et al., 1992). The altered expression profile of the 

keratocytes is also consistent with the observed transdifferentiation of these cells into 

fibroblasts and myofibroblasts (Funderburgh et al., 2003). These changes then contribute to 

the formation of scar tissue that is structurally disorganised and opaque. Furthermore, in 

Alzheimer’s disease afflicted cerebral tissue, reduced keratan sulphate synthesis is associated 

with inflammation (Lindahl et al., 1996). Down regulation of corneal keratan sulphate 

proteoglycan biosynthesis may then also be initiated by the influx of proinflammatory 

cytokines associated with inflammation. 

 

1.4. Corneal Transparency 

 

The transparency of the cornea is dependent on the minimal absorption and deflection of the 

light passing through the tissue (Goldman et al., 1968; Cox et al., 1970). Several theories 

have arisen that attempt to explain how the structure of the cornea is tailored to this function. 

 

One theory suggests that transparency in the stroma is the result of the organised lattice 

arrangement of the collagen fibrils. Transparency occurs when fibrils are parallel and 

organised into a precise lattice, resulting in individual scattered waves destructively 

interfering in all directions except in the incident direction (Maurice, 1957). This theory 

suggests that it is the regular long range organisation of the fibril lattice that confers 

transparency to the tissue. However, other studies have since disproved this theory, 

demonstrating theoretically and experimentally that short range collagen order is more 

essential for corneal transparency (Hart and Farrell, 1969; Goodfellow et al., 1978)  

 

Smith (1970) proposed another theory, claiming that transparency depended on regular fibril 

spacing and a uniform refractive index across a homogenous stromal matrix. Here, the 

refractive index of the collagen fibrils was considered similar to that of the other matrix 

components, thus resulting in light passing through the tissue with minimal light scattering. 

However, studies using X-ray diffraction techniques have since revealed that collagen fibrils 
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in the stroma show a higher refractive index than the other components of the surrounding 

matrix (Leonard and Meek, 1997). 

 

The X-ray diffraction results concur with the most widely accepted model of corneal 

transparency, proposed by Farrell (1994). This theory states that the fraction of undeviated 

light transmitted through the cornea (F) is a function of the scattering cross-section per unit 

length (σ), the density of fibril packing (ρ), and the thickness of the tissue in the direction of 

the light path (t). The formula can be expressed as F = e
 –σρt

 (Farrell, 1994). The scattering of 

light is a function of the wavelength of light, the collagen fibril mode of packing, fibril 

diameter, and the ratio of the refractive index of the hydrated fibrils to the refractive index of 

the interfibrillar matrix. 

 

Keratan sulphate proteoglycans may also have a role in corneal transparency. They have a 

critical role in the maintenance and development of the unique collagen organisation that is 

integral to corneal transparency, for example maintaining interfibrillar spacing (Hassell et al., 

1980). It has also been noted that keratan sulphate proteoglycan levels are lower and the 

molecular sulphation patterns are structurally altered, in opaque sclera and new corneal scar 

tissue, when compared to transparent cornea tissue (Funderburgh et al., 1988). In addition, 

older scar tissues show increasing keratan sulphate proteoglycan levels that accompanied the 

return of transparency (Hassell et al., 1983; Cintron et al., 1990).  

 

In addition, it is also thought that tissue hydration has a profound effect on corneal 

transparency. Until day 14 of avian corneal development, collagen fibril bundles are 

separated by large collagen-free lakes (Hay and Revel, 1969; Hirsch et al., 1999). 

Compaction of the corneal stroma occurs due to progressive dehydration, occurring most 

prominently between days 13 and 14. This first stage of dehydration occurs largely through 

the absorption of these collagen free lakes within the stroma. At this stage, collagen 

interfibrillar spacing remains fairly constant. Not until the second major phase of stromal 

dehydration between days 16 and 18 does collagen interfibrillar spacing reduce (Siegler and 

Quantock, 2002). It is suggested that if these collagen free spaces remained, and exceeded 

half the incident light’s wavelength in size, scattering of light would occur and corneal 

transparency would then be affected (Goldman et al., 1968). However transparency of the 

developing avian cornea does not improve until day 15 (Coulombre and Coulombre, 1958), 



Chapter 1 - Introduction 

 

34 

 

suggesting that the reducing size of these lakes between days 13 and 14 has little impact on 

the development of corneal transparency. 

 

1.5. Development of the chick cornea 

 

The developmental stages that the avian cornea undergoes are tightly controlled. Both 

proteoglycans and uniform collagen fibrils are implicated in the formation of a transparent 

and structurally organised tissue matrix. The expression and organisation of both these 

components alters during development, consequently affecting both the ultra structure and 

optical properties of the cornea as development progresses. 

 

1.5.1. The Primary Stroma 

 

 

 

 

 

 

 

 

 

Figure 1.11: Early development of the eye at stages 14-18 and 19-22. 

(Taken from Hay and Revel, 1969) 

 

 

Development begins with the formation of a cup-shaped structure in the optic vesicle (Figure 

1.11). This then induces the development of the lens placode from the overlying ectoderm. 

Following detachment of the primitive lens, the overlying ectoderm differentiates into corneal 

epithelium. At around developmental day 3 the epithelium is a two cell layer that begins to 

synthesise an underlying precursor to the secondary stroma known as the primary stroma. 

Similar in structure to the secondary stroma, this acellular matrix begins as a thin collagenous 

layer (Hay and Revel, 1969).  
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Figure 1.12: Development of the primary stroma at stages 24 and 25. 

(Taken from Hay and Revel, 1969) 

 

 

From early to mid day 5 the stroma increases in thickness from around 10μm to 

approximately 60μm. The primary stroma at this stage consists of heterotypic collagen fibrils 

with uniform diameters. Structurally they do not form continuous sheets of thin, regularly 

spaced collagen fibrils; rather they are present as collections of laterally associated fibril 

bundles (Trelstad and Coulombre, 1971).  The corneal endothelium forms from cells that 

have migrated between the primary stroma and the lens at around day 4, having originated in 

the vascular mesenchyme at the edge of the optic cup (Figure 1.12). 

 

This primary stroma is considered to act as a template for the arrangement of the secondary 

stroma, which is synthesized by differentiated mesenchymal cells. Characteristic swelling of 

the primary stroma is closely followed by an influx of undifferentiated mesenchymal cells 

from the surrounding area. These cells begin invading the primary stroma (initially 

posteriorly) at day 5 (Hay and Revel, 1969; Linsenmayer et al., 1998). This population of 

cells resemble ciliated fibroblasts at the time of invasion at day 6. At this point the primary 

stroma is around 110μm thick; however the anterior 10μm region adjacent to the epithelium 

remains cell free. 
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It is thought that the invading mesenchymal cells use the primary stroma as a scaffold to 

guide migration (Bard and Hay, 1975). However, the precise mechanism for this guidance is 

unknown. The primary stroma may acts as a template for alignment of the invading cells, or it 

may act as a scaffold for collagen assembly (irrespective of cell alignment). Alternatively, the 

invading keratocytes may possess spatial knowledge independent of any guidance structure 

(Doane and Birk, 1991).  

 

1.5.2. The Secondary Stroma 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13: Development of the secondary stroma from stage 27 to 30. 

(Taken from Hay and Revel, 1969) 

 

 

Synthesis of the secondary stroma’s matrix components occurs over the collagenous scaffold 

of the primary stroma, following the differentiation of the precursor cell populations into 

stromal fibroblasts around day 7 (Trelstad and Coulombre, 1971; Linsenmayer et al., 1998) 

(Figure 1.13). Descemet’s membrane is synthesised by the endothelium between days 8 ½ 

and 9, at which point stromal swelling is at its greatest. Furthermore, at the same 

developmental time point, corneal curvature develops as a result of increased intraocular 

pressure, altered stromal composition, and interactions between the cornea and the sclera 

(Coulombre and Coulombre, 1958). 
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At day 9, the stroma is at its thickest, between 190μm (Trelstad and Coulombre, 1971) and 

220μm (Hay and Revel, 1969). Between days 12 to 14, Bowman’s layer forms from an 

anterior 1μm region of the stroma that remained free from the migrating mesenchymal cells. 

Progressive dehydration of the developing stroma then occurs, accompanied by structural 

reorganisation and compaction. Consequently the stroma thins to around 150μm by day 14 

(Hay and Revel, 1969). The secondary stroma compresses to 50% its thickness as the 

collagenous layers compact, reducing the collagen free ‘lakes’ between the fibril bundles 

(Hay and Revel, 1969; Connon et al., 2003). In addition, the resident cells take on a more 

rounded morphology typical of mature stromal keratocytes. As a consequence of this matrix 

dehydration and compaction, tissue transparency increases resulting in light transmission 

improving from 40% to 95% by day 19 (Coulombre and Coulombre, 1958; Hay and Revel, 

1969). 

 

Connon et al (2004) report an increase in fibril number density between days 14 and 18. This 

supports studies that observed from day 14 onwards, the dry weight of the stroma continued 

to increase whilst the wet-weight of the tissue did not (Coulombre and Coulombre, 1958). 

 

1.5.3. Collagen in the developing corneal stroma 

 

Type I and type II collagen are present in the developing stroma from embryonic day 3, 

expressed by epithelial cells (Trelstad and Coulombre, 1971; Linsenmayer et al., 1977). 

However studies by Hayashi et al (1988) also suggest endothelial cells may also have a role 

in collagen synthesis from day 5 onwards. In the developing stroma, these two collagen types 

associate to form uniform diameter heterotypic fibrils that then assemble into orthogonal 

lamellae. Following stromal swelling, type V collagen can also be seen forming heterotypic 

fibrils with type I collagen (Linsenmayer et al., 1983; Fitch et al., 1984, 1988; Birk et al., 

1988). Type II collagen in the primary stroma may function in a similar way to type V 

collagen in the mature stroma. Structurally similar, the amino-terminal domain of collagen 

type II may, like type V collagen, protrude out from within the heterotypic fibril, serving to 

regulate lateral associations and thus control collagen fibril diameter (Fitch et al., 1995). As 

development progresses, type II collagen is localised to increasingly anterior regions of the 

stroma. Its synthesis decreases progressively until it is no longer expressed in the secondary 

stroma by day 8, mature molecules do however remain present until stromal condensation 

(Fitch et al., 1995). 
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The primary stroma may also contain type IX FACIT collagen fibrils (Fitch et al., 1988, 

1995). Studies using monoclonal antibodies localised immature type II and type IX collagen 

molecules to the subepithelial region of the primary stroma (Fitch et al., 1994). Two isoforms 

of collagen type IX have been identified in the developing stroma. One isoform observed on 

the surface of type II fibrils possesses a non-collagenous domain that forms covalent links 

with the underlying fibrillar collagen (Fitch et al., 1994, 1995). It was therefore suggested 

that type IX collagen may stabilize the stromal matrix by cross-linking adjacent collagen 

fibrils to other fibrillar and non-fibrillar matrix components such as hyaluronic acid. 

 

In addition, collagen type IX could also be classified as part of a functional class of collagen 

molecules (Fitch et al., 1995; Linsenmayer et al., 1990) that assist and stabilize the 

morphogenetic changes that occur in the matrix, namely stromal swelling and compaction. It 

was initially thought that the high concentration of hyaluronic acid present in the primary 

stroma caused an osmotic draw (as a result of the negatively charged glycosaminoglycan side 

chains) that would then produce the characteristic swollen, hydrated primary stroma (Toole 

and Trelstad, 1971). However, as hyaluronic acid synthesis occurs several developmental 

stages prior to stromal swelling, another regulatory mechanism must also be involved in 

addition to hyaluronic acid. Namely, collagen type IX and the cross-links it forms between 

adjacent collagen fibrils and with hyaluronic acid (consequently binding this proteoglycan in 

a compact state) (Fitch et al., 1995; Linsenmayer et al., 1998). Cleavage of this collagen 

molecule would release both adjacent collagen fibrils and the hyaluronic acid molecules. The 

resulting osmotic draw from the released proteoglycans would then force adjacent collagen 

fibrils apart, expanding the stroma and allowing the invasion of mesenchymal cells. Several 

studies have confirmed the proposed transitory existence of this collagen molecule: detected a 

few days after type II collagen, its expression falls dramatically just prior to stromal swelling, 

and by day 11 it is undetectable (Svoboda et al., 1988; Fitch et al., 1988; Cai et al., 1994). In 

addition, inhibiting the cleavage of type IX collagen from the surface of the fibrils produced a 

compact and acellular matrix (Cai et al., 1994), confirming its role in assisting matrix 

swelling and the subsequent cellular invasion. This work demonstrates that mesenchymal cell 

influx is triggered not by a molecular cue, but rather by developmentally controlled cleavage 

of collagen cross-links. 
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Fitch et al (1991) observed another mechanism that may be involved in stabilization of 

swelling in the secondary stroma – elongated, radiating ‘stromal strings’ containing collagen 

type IV, fibronectin and collagen type VI. Following initiation of stromal swelling and 

cellular invasion, these strings can be seen spanning radially across the corneal stroma. In 

addition, they were commonly observed inserting into the epithelial basement membrane and 

exerting a tensile force, suggesting a role in resisting and stabilizing matrix swelling. They 

were also observed running between keratocytes, connecting adjacent cell surfaces. It is 

hypothesized that these structures may assist in preserving cellular spacing and subsequently 

the width of the stromal lamellae, as well as stabilizing the expansion of the stroma, as they 

disappear at around day 15 following matrix compaction (Fitch et al., 1991). 

 

Types XII and XIV FACIT collagens are structurally similar, but show different expression 

profiles. They may also function differently, interacting with different matrix components. 

However both collagen types are thought to have wider roles in matrix condensation, and the 

development of stromal transparency. Specifically, type XIV may be involved in 

fibrillogenesis (Young et al., 2002) whilst type XII may aid fibril organisation and matrix 

stability (Gordon et al., 1996).  

 

Type XII collagen is initially synthesized by the epithelial cells, and is detectable throughout 

the primary stroma prior to the influx of mesenchymal cells. However by day 7, following 

stromal swelling, it is located solely in the subepithelial and subendothelial regions of matrix-

matrix interface (Akimoto et al., 2002). It is thought that type XII collagen may assist in 

stabilizing these regions as it has been observed localizing with the surface of fibrillar 

collagens (Linsenmayer et al., 1986; Keene et al., 1991; Gordon et al., 1996). This collagen 

type is present in either a long or short form, with each form showing different temporal and 

spatial localisation in the developing stroma (Akimoto et al., 2002; Young et al., 2002). For 

example, the mRNA of the long form, localised to the matrix-matrix interface regions, 

maintains a constant level from day 10 until hatch, at which point its level declines. The 

mRNA of the short form however peaks at day 12, and then also declines (Young et al., 

2002). 

 

Type XIV collagen is initially expressed by epithelial cells and is consequently primarily 

located in the subepithelial region at the early stages of development (around day 7). 

Epithelial expression increase up to day 9 at which point it can be detected throughout the 
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stroma. By day 11, epithelial synthesis of this collagen begins to decline. However, type XIV 

continues to be present throughout the stroma from day 9 as expression by stromal fibroblasts 

increases. Levels in the secondary stroma continue to rise particularly as compaction begins, 

peaking between days 10 to 14 (Gordon et al., 1996). After this stage production begins to 

decline. Collagen type XIV is then undetectable by hatch (Young et al., 2002). It is suggested 

that interactions between this collagen type and the surface of fibrillar collagens may stabilize 

the movement of fibrils and may have a role in stromal compaction. 

 

1.5.4. Collagen assembly in the developing corneal stroma 

 

From studies using embryonic tendon, it has been hypothesized that fibrillogenesis occurs in 

recesses and invaginations on the surface of stromal keratocytes. Collagen fibrils are 

transferred to the extracellular matrix by plasma membrane protrusions called fibripositors 

and the adjacent extracellular channels that form between these processes (Canty et al., 2004; 

Canty and Kadler, 2005). In tendon, studies have shown that deposition into the matrix 

occurs at the tip of the fibripositor, whilst it is at the base of the fibripositor lumen (several 

microns within the cell) where the nucleation stage of fibrillogenesis occurs (Canty et al., 

2004). Similarly, in the developing corneal stroma small bundles of between 5 and 12 

collagen fibrils have been seen protruding from small recesses on the keratocyte surface. 

These small bundles then coalesce on the cell surface into larger bundles which then form the 

lamellae (Birk and Trelstad, 1984). In addition, this study also observed that these processes 

and cellular recesses aligned along the two major axes of the cell, thus conferring the 

orthogonality of the collagenous lamellae (Birk and Trelstad, 1984). However, these cell-

associated lamellae have also been seen in developing chick cornea, running in multiple 

directions, particularly around day 14 when the stroma is loose (Young et al., 2007). 

 

Collagen deposition may occur during migration of the stromal cells, with the fibrillar 

extrusion occurring in a direction determined by the migratory path. However, the 

simultaneous production of collagen fibrils in many different orientations (as seen in Young 

et al., 2007) suggests there may be some cellular control over the formation of basic lamellae. 

Coordinating the production of fibrils for several lamellae of different orientations, would be 

a complex process requiring tight cellular control and the use of fibripositors on the surface 

of migrating stromal cells. 
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To assess whether the migrating cell populations possess inherent spatial information, Doane 

and Birk et al (1991) cultured fibroblasts in a three-dimensional collagen gel. Collagen fibrils 

expressed by the tendon fibroblasts grew in parallel bundles along a primary axis. Dermal 

fibroblasts produced collagen fibrils with no particular orientation. After three days, corneal 

fibroblasts produced collagen fibrils orientated perpendicular to each other, eventually 

forming orthogonal sheets by day seven (Doane and Birk 1991). This work suggests that the 

cells may possess pre-programmed, tissue specific spatial information that may assist in the 

formation of correctly orientated collagen fibrils. 

 

Adjacent lamellae are arranged orthogonally in both the primary and secondary stroma. In the 

primary stroma the orthogonal axes of fibril orientation are fixed, one parallel and one 

perpendicular to the choroid fissure axis (Trelstad and Coulombre, 1971). In the secondary 

stroma however, the orthogonal orientation of the stromal lamellae is accompanied by an 

additional small degree of angular displacement clockwise, 2.5-5° per micron of corneal 

thickness (Trelstad and Coulombre, 1971). The direction of this rotational displacement is the 

same in both the left and the right eye, suggesting that corneal development may be a self 

assembly process where the tissue dictates its own architecture. Interestingly, the posterior of 

the stroma shows no rotational displacement, and it is in this region that compaction of the 

collagenous matrix is believed to occur first (Trelstad and Coulombre, 1971). 

 

Until developmental day 14 in the avian corneal stroma, collagen fibrils are arranged into 

groups separated by large collagen-free lakes (Hay and Revel, 1969; Hirsch et al., 1999). It is 

hypothesized that if these collagen free ‘lakes’ exceed half the wavelength of the incident 

light, corneal transparency would be affected (Goldman et al., 1968). Studies using X-ray 

diffraction have revealed after day 12, collagen fibrils pack closer together, even as collagen 

fibril synthesis continues (Quantock et al., 1998). From day 14 onwards, lamellar 

organisation increases as the matrix compacts and collagen fibrils within the groups become 

better orientated and structured (Hay and Revel, 1969). More recent studies have recorded the 

change in interfibrillar spacing across development by measuring collagen fibril Bragg 

spacing (Liles et al., 2010). Interfibrillar spacing was recorded at day 12 as 60.8nm (±0.6), at 

day 14 as 63.9nm (± 0.99), and at day 16 as 59.8nm (±0.87).  Further readings confirm that 

compaction is initiated after day 14, within the bundles of collagen fibrils (Liles et al., 2010). 

From electron microscopic study of this developmental period, it is clear that the compaction 

of fibrils within these bundles occurs simultaneously with the progressive coalescing of the 
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bundles eventually forming lamellae. Collagen synthesis is believed to continue within the 

lamellae even after hatch (Hay and Revel, 1969). Interestingly, whilst fibrillar and lamellar 

organisation increases as development progresses, it has been suggested that the mean 

diameter of the collagen fibrils remains constant throughout development, between 30.3nm 

and 31.2nm as measured by quick-freeze, deep-etch electron microscopy (Hirsh et al., 1999). 

 

1.5.5. Proteoglycans in the developing corneal stroma 

 

Keratan sulphate and chondroitin sulphate/dermatan sulphate proteoglycans are known to 

have important functions in corneal development; their exact roles however still remain 

unclear. With respect to these proteoglycans, it has been suggested that two critical stages 

exist within corneal development – matrix dehydration and compaction between days 9 and 

14, and the onset on corneal transparency between days 15 and 18 (Dunlevy, 2000). Prior to 

day 9 however, the primary glycosaminoglycan synthesised in the developing stroma is an 

unsulphated form of hyaluronic acid (Toole and Trelstad, 1971). Thought to be expressed by 

epithelial and endothelial cells in the primary stroma (Toole and Trelstad, 1971), and by 

keratocytes in the secondary stroma (Conrad, 1970), it is believed to have a role in corneal 

swelling and mesenchymal cell influx (Toole and Trelstad, 1971; Fitch et al., 1995; 

Linsenmayer et al., 1998) 

 

It has been well established that the distribution of glycosaminoglycans during corneal 

development is not uniform (Coulombre and Coulombre, 1958). Keratan sulphate synthesis 

begins around day 6 (Hart, 1976; Funderburgh et al., 1986), expressed by the invading 

mesenchymal cells in an under-sulphated form until day 14, at which point it become more 

highly sulphated (Hart, 1976). However the quantities produced do begin to decline from 

days 9 to 18. Using antibodies selective for minimally sulphated keratan sulphate 

glycosaminoglycans, Young et al (2007) demonstrated that prior to day 14 keratan sulphate is 

located primarily in anterior stromal regions, later spreading posteriorly throughout the 

stroma as corneal transparency increases. 

 

Keratocan, lumican, and mimecan are the major keratan sulphate containing proteoglycans in 

the developing cornea. Expression of keratocan mRNA begins around day 6, as it is 

synthesised by the invading and differentiating cell populations (Conrad and Conrad, 2003). 

Expression of keratocan declines from day 9 to 18, during which time it is located in the 
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anterior stroma. However, its distribution here is not homogeneous. From day 10 to 14 it 

moves from being mainly cell-associated, to largely extracellular in nature (Gealy et al., 

2007). During the final week of development, the nature of keratan sulphate antigenicity 

changes. Synthesis of a more highly sulphated form of keratan sulphate takes precedence 

over the lesser sulphated form. Accumulation of this more sulphated form first occurs at 

around day 15, after the initialisation of stromal compaction (Liles et al., 2010). 

 

Lumican follows a similar expression pattern to that of keratocan, present in equal quantities 

until day 9. At which point lumican expression although also in decline, remains several fold 

higher than either keratocan or mimecan (Dunlevy et al., 2000). Similarly Funderburgh et al 

(1991) demonstrated that throughout development the relative levels of lumican, keratocan 

and mimecan in the cornea can be expressed in the ratio of 6:3:2. 

 

Chondroitin sulphate/dermatan sulphate glycosaminoglycans are also present in the 

developing stroma during mesenchymal cell invasion (Doane et al., 1996). Decorin, the 

predominant chondroitin sulphate/dermatan sulphate proteoglycan in the avian cornea, is 

increasingly expressed from days 9 to 18 (Dunlevy et al., 2000). 

 

Tenascin is an extracellular glycoprotein that has been found in the primary and secondary 

stroma, the endothelium, and Descemet’s membrane (Tucker, 1991). It is thought to have a 

role in cell adhesion, and migration. Fibronectin also has a similar function; whether it is also 

expressed in the primary stroma is not currently clear (Kurkinen et al., 1979; Doane et al., 

1996). 

 

1.5.6. The mature corneal stroma 

 

The mature avian corneal stroma consists of orthogonally arranged collagenous lamellae 

around 25 fibrils thick, running parallel to the corneal surface (Linsenmayer et al., 1998). 

Each collagen fibril is a heterotypic association of type V collagen with the predominant type 

I collagen molecules. Type V collagen therefore constitutes around 5-20% of total stromal 

collagen (Linsenmayer, 1988). Type VI collagen is also prevalent, and may associate with the 

various proteoglycans (Takahashi et al., 1993) present with it between the collagen fibrils and 

the lamellae (Linsenmayer et al., 1986). 
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Numerous proteoglycans have been observed in the mature corneal stroma, including 

keratocan, lumican, mimecan, and decorin (Dunlevy et al., 2000). Whilst mimecan is thought 

only to have a minor role in mature corneal tissue, lumican is considered the predominate 

keratan sulphate proteoglycan, present at 38 times the level of mimecan, and five times the 

level of keratocan (Dunlevy et al., 2000). The chondroitin sulphate/dermatan sulphate 

proteoglycan decorin may undergo post-translational modifications as corneal development 

progresses, as two different isoforms have been observed in the mature stroma. One 

containing the standard chondroitin sulphate/dermatan sulphate side chains, and a second 

hybrid form containing a keratan sulphate side chain substituted onto its core protein 

(Blochberger et al., 1992). 

 

1.6. Tissue engineering 

 

Whilst the cornea may appear to be a reasonably simple avascular tissue, its matrix 

organization is deceptively complex and highly ordered at a molecular level. In addition, the 

cornea possesses three phenotypically different cell types – epithelial, keratocyte, and 

endothelial. For these reasons, no clinically viable examples of tissue engineered corneal 

constructs are currently available. However, the importance of developing a successful 

treatment for corneal defects cannot be understated.  

 

Firstly, corneal disease and injury continues to affect over 10 million people worldwide, and 

is currently the second largest cause of vision loss (Whitcher et al., 2001). Secondly, the 

increasing use of LASIK techniques for treatment of sight defects currently disqualifies the 

corneal tissue for use in donor transplantations. Lastly, graft failure occurs in approximately 

10% of corneal graft surgeries after a five year period (Thompson et al., 2003). 

 

1.6.1. Corneal structure and function 

 

Engineering corneal constructs requires the consideration of three principle design 

requirements that reflect the function and matrix organization of the cornea. Firstly, it ensures 

the protection of the intraocular structures. This is achieved through the formation of a barrier 

by the epithelial cells and the tight junctions that link them, and through the mechanical 

strength of the stroma brought about by the ordered collagenous lamellae that allow it to 

withstand trauma and intraocular pressures without rupturing. Secondly, the highly organized, 
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avascular nature of the corneal matrix allows it to be transparent to visible light. In addition, 

both the relative hydration of the stroma (Goldman et al., 1968), and the phenotype of the 

cells within it (Jester et al., 1999) also play a role in corneal transparency. For example, 

dedifferentiation of keratocytes to a fibroblastic phenotype during wound healing induces 

corneal opacity (Jester et al., 1999). Thirdly, in conjunction with the tear film, the cornea 

forms a near perfect optical interface that serves to focus and refracts light onto the retina. 

 

Considerable advances have been made culturing and expanding both epithelial and 

endothelial cells sheets often for use on stromal scaffolds or as grafts (Pellegrini et al., 1997; 

Griffith et al., 1999; Li et al., 2003; Ide et al., 2006: Koizumi et al., 2007). 

 

Nishida et al (2004) developed an alternative strategy for the replacement of damaged corneal
 

epithelium, using tissue-engineered multi-layered epithelial cell sheets cultured from 

autologous oral mucosal epithelial cells. Cultured on amniotic membrane, the cell-cell 

junctions and extracellular matrix on the basal side of the cell sheets remained structurally 

and functionally intact. Furthermore, transplantation into rabbit showed successful integration 

and re-epithelialisation of the damaged corneal surface (Nakamura et al., 2003). 

 

Comparatively, there has been little progress in producing effective stromal constructs that 

accurately reproduce the structural and functional characteristics of the corneal stroma 

(Orwin et al., 2003; Hu et al., 2005; Torbet et al., 2007). Consequently, the difficulties 

associated with stromal engineering have held back the production of effective whole corneal 

constructs. 

 

The formation of hydrated gels from monomeric type I collagen solution was first reported 

over 30 years ago (Bell et al., 1979). Following this discovery, skin equivalents (Bell et al., 

1981) and corneal equivalents (Griffith et al., 1999) were also proposed. However, current 

research efforts aiming at engineering functionally suitable and clinically useable cornea are 

in their infancy, and research worldwide into the establishment of a mechanically robust and 

optically transparent corneal matrix is active.  
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1.6.2. Approaches to stromal tissue engineering 

 

Classically, stromal constructs are often created by seeding corneal stromal cells into 

degradable collagen-based scaffolds which can then be remodelled either in vitro or in vivo 

(Griffith et al., 1999; Orwin et al., 2000; Li et al., 2003; Oh et al., 2003). Collagen gel 

scaffolds constructed from long collagen type I fibrils have also been used to create stromal 

constructs (Minami et al., 1993; Schneider et al., 1999; Germain et al., 1999; Tegtmeyer et al., 

2001; Tanaka et al., 2011b). However, though highly biocompatible, collagen-gel constructs 

occasionally show contractions, mechanical instability and reduced transparency.  

 

Introducing glycosaminoglycans and other additives into the collagen constructs has also 

been studied (Matsuda et al., 1990; Chen et al., 1995; Zhong et al., 2005). We are however, 

still a long way off being able to produce fibrillar arrangements using proteoglycan additions. 

In 2003, Li et al developed an optically clear collagen-copolymer hydrogel matrix, containing 

cell adhesion factors such as the laminin pentapeptide motif YIGSR to promote cellular 

invasion and epithelialisation of the construct surface. After implantation into pigs, the 

matrices integrated effectively with the host tissue, and demonstrated successful growth of 

stratified epithelium and stromal fibroblasts. 

 

Collagen gels are often improved by inducing cross-linking systems between the collagen 

fibrils. Cross-linkers such as 1-ethyl-3-(3 dimethyl aminopropyl) carbodiimide (EDC) and 

poly (ethylene glycol) dibutraldehyde (PEG-DBA) used in collagen hydrogel constructs have 

resulted in good host-graft integration, enhanced mechanical strength and elasticity, high 

optical transparency (Rafat et al., 2008), as well as extensive repopulation with corneal 

epithelial and stromal cells 12 months post-implantation (Liu et al., 2009). These cross-

linking agents exhibit less toxicity and better biocompatibility than other cross-linkers such as 

glutaraldehyde.  

 

Similarly, Griffith et al (1999) demonstrated that by exposing a collagen-chondroitin sulphate 

substrate to 0.03-0.04% glutaraldehyde, the stromal scaffold could be sufficiently stabilized 

and consequently seeded with fibroblasts. In addition this study constructed epithelial and 

endothelial cell layers for attachment onto the stromal construct. Consequently they reported 



Chapter 1 - Introduction 

 

47 

 

the production of a three layered, morphologically and physiologically accurate corneal 

equivalent (Griffiths et al., 1999). 

 

Fibrillar alignments from a solution of monomeric collagen molecules has also been 

engineered through the application of flow manipulations (Koster et al., 2007; Lanfer et al., 

2008), electron spinning (Zhong et al., 2006; Chew et al., 2007),  strong magnetic fields (Guo 

et al., 2007; Torbet et al., 2007), and dip pen nanolithography (Wilson et al., 2001). It may be 

possible through these methods to produce a biomimetic corneal construct that demonstrates 

structural and mechanical properties similar to that of native corneal tissue.  However, 

currently this still remains a challenge. 

 

The most common method of flow manipulation uses a shearing flow to align the collagen 

onto a substrate in an organised, uniform manner (Figure 1.14). However fibrillar loops are 

frequently formed, resulting from collagen fibrils attempting to grow upstream only to be 

swept back downstream. Consequently, producing uniform collagen alignment using shear 

force alone has been shown to be problematic. Furthermore, the collagen fibrils produced did 

not exhibit classic D-band morphology (Ruberti and Zieske, 2008). A similar method known 

as spin-coating, utilizes a cover slip to confine the collagen fibrils. Consequently, this not 

only improved the fibrillar alignment, but also permitted multiple collagenous layers to be 

produced at varying orientations by rotating the cover disk through a particular angle between 

coating runs (Ruberti and Zieske, 2008). Processing these alternating collagen layers into 

three-dimensional stromal-like structures remains a challenge that has yet to yield results. In 

addition, fibrillar loops although lower in number, still remained an issue with regards to the 

production of a uniformly aligned layer of collagen fibrils. Nevertheless, the collagen 

structures produced so far may be aligned well enough for use as a contact guide for the 

migration and orientation of introduced fibroblasts populations. 
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Figure 1.14: Spin coating method of collagen deposition. 

(Left) An aligned collagen layer on a glass substrate produced by spin coating. The black arrows 

indicate the direction of flow, whilst the white arrow demonstrates an example of unwanted upstream 

fibril growth. (Right) The effect of utilizing an offset glass substrate, producing a radial spread of 

collagen flow over the substrate surface. The 3D alternating arrays of collagen fibrils are produced by 

rotating the glass substrate between coating runs. (Adapted from Ruberti and Zieske 2008) 

 

 

Alternatively, de novo methods utilize a biomimetic approach to collagen organization. The 

theory of collagen fibril deposition occurring through a fibripositor mechanism (Canty et al., 

2004; Canty and Kadler, 2005) has resulted in the development of techniques designed to 

imitate this process. The nanoloom is a device currently under US patent that attempts to 

recreate the environmental conditions favourable for the fibripositor mechanism of collagen 

fibril deposition (Ruberti et al., 2007). By controlling temperature, pH, pressure, and collagen 

concentrations, this device is structured to recreate the proposed cell membrane extrusions of 

the fibripositor theory. However so far, only limited results have been obtained using this 

method (Ruberti and Zieske, 2008). 

 

An alternative method involves seeding collagen sponges with primary corneal cell 

populations in vitro. Keratocytes within these scaffolds have been observed aligning along 

the axes of the fibrils, and synthesising collagen and proteoglycans (Orwin et al., 2000). 

Additional inducing of cross-linking within these sponges and the introduction of chondroitin 

sulphate glycosaminoglycans and hyaluronic acid produced a construct that was better both 
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optically and mechanically than the collagen-gel based stromal constructs (Orwin et al., 2000; 

Orwin et al., 2003). However, these collagen sponges still lacked the mechanical stability and 

transparency of natural corneal tissue. 

 

Some of the cell-based developmental methods of tissue engineering attempt to recapitulate 

the developmental conditions of the stroma in vitro, stimulating the production of a 

functioning stromal matrix from fibroblast cell populations, prior to implanting the construct. 

 

Whilst accurately reproducing every developmental stage would present a considerable 

challenge, particular processes have been observed and duplicated in vitro. For example, 

human corneal stem cells cultured in large numbers will subsequently orientate themselves 

into multilayered structures. The long axis of the cells would also alternate in an orthogonal 

pattern between the adjacent layers (Newsome et al., 1974). Similarly, addition of ascorbic 

acid into human corneal stem cell cultures induces collagen production of the correct type, 

and in the quantities found naturally in the corneal stroma (Stoesser et al., 1978). The 

mutability of the keratocyte phenotype also provides a potential avenue of interest. The 

ability in culture, to direct the dedifferentiation and re-differentiation of these cell populations 

may also provide a method of reproducing the developmental stromal environment (Jester et 

al., 1999; Berryhill et al., 2002). 

 

1.6.3. Future engineering techniques 

 

De novo techniques are attractive in that they permit total control over the formation and 

morphology of the construct. However, current de novo techniques fall short of producing the 

desired corneal constructs and significant advances need to be made. Consequently in the 

near future, tissue engineering stromal constructs will remain largely dependent on cellular 

support. However, further study is required to accurately control the phenotype of the cell 

populations and the organization of the matrix components they produce. Indeed the ability of 

primary corneal stromal cells to synthesise stroma-like constructs given the correct 

environment, does suggest that by establishing the optimum environment of chemical, 

mechanical, spatial and structural stimuli it will be possible to induce the synthesis of a 

functioning stromal matrix. Alternatively, further study into the embryonic development of 

the cornea may aid attempts to recapitulate in vivo mechanisms for corneal construction. Of 
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particular relevance would be the methods of collagen fibrillogenesis and organisation within 

the corneal stroma during development. 

 

1.7. Transmission electron microscopy 

 

The first transmission electron microscope prototype was built by Ernst Ruska and Max 

Knoll in 1931. However, the first practical transmission electron microscope was not built 

until 1938 by Eli Franklin Burton, Cecil Hall, James Hillier, and Albert Prebus at the 

University of Toronto.  

 

Historically, transmission electron microscopy was developed to overcome the limited image 

resolution available in light microscopy. The resolution of an image directly relates to the 

wavelength of the electron or photon beam used. Consequently as the wavelengths of visible 

light, at around 400-700nm, are often larger than many of the objects under investigation, 

light microscopy resolution is limited to approximately 300nm. First hypothesized by Louis 

de Broglie in 1925, electrons have wave-like characteristics and a wavelength considerably 

less than visible light. De Broglie also established that the particular wavelength of the 

electron beam directly relates to the electron energy, which in electron microscopy can be 

adjusted through the accelerating fields. Additional staining with heavy metals such as lead or 

uranium is often carried out prior to the samples being introduced into the electron 

microscope. This additional step improves the structural detail and contrast of the final image, 

as the dense electron clouds of the heavy metal atoms interact with the electron beam. 

 

Transmission electron microscopy has become a widespread technique applied to a broad 

range of disciplines such as anatomy, biochemistry, and tissue engineering. This study will 

use transmission electron microscopy to study the method of collagen deposition in the chick 

cornea at around day 14 of embryonic development. It will also be used to study the structure 

of novel tissue engineered corneal constructs. 

 

1.8. Three-dimensional electron tomography 

 

In 1968 De Rosier and Klug published details on the principles of using electron tomography 

to construct high resolution three-dimensional reconstructions from two-dimensional 

transmission electron micrographs (De Rosier and Klug, 1968). At present, electron 
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tomography is able to analyse the structure of macromolecules to a resolution of 2nm 

(Baumeister et al., 1999). Imaging at such high resolutions allows extracellular matrix 

components, such as collagen fibrils and proteoglycan complexes to be accurately analysed 

and reconstructed in three dimensions. To reconstruct an object an electron beam is passed 

through the sample whilst the specimen holder is tilted through 120º around a single or a 

double axis. Digital images are obtained at degree increments, and this 'tilt series' is then 

processed and used to reconstruct the desired object (Frank, 2006). Continued technological 

advancement will result in unprecedented insight into the structural organisation of biological 

systems, revealing molecular structures and interactions with increasing accuracy and clarity. 

 

1.9. Aims and objectives of the study 

 

The aim of this project is to investigate how the fibril bundles of the developing avian corneal 

stroma are laid down into precisely organised orthogonal lamellae, and to investigate the 

interactions that occur within these fibril bundles - specifically, the relationship between the 

collagen fibrils and proteoglycans. This project is also aimed at using natural materials to 

engineering effective corneal stromal constructs for use in grafts and transplantation. The 

goal is to construct a stromal equivalent that has structural and functional characteristics that 

make it applicable for clinical use. 
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2. GENERAL METHODS 

 

2.1 Transmission Electron microscopy 

 

2.1.1. Fixation and staining 

 

Corneal samples (approximately 2 x 1mm in size) that were to undergo routine processing 

were immediately placed in a primary fixative that utilized both glutaraldehyde and 

paraformaldehyde to ensure rapid and complete penetration of the fixative into the tissue. For 

3 hours, these samples were immersed in a room temperature solution of 2.5% glutaraldehyde 

and 2% paraformaldehyde in a 0.1M sodium cacodylate buffer (pH 7.2). Further cross-

linking was then halted by washing twice in sodium cacodylate buffer for 10 minutes each. 

The samples were then stained in 1% osmium tetroxide solution for 1 hour, followed by three 

rinses in distilled water, for 5 minutes each time. 0.5% aqueous uranyl acetate was then used 

as a further contrasting agent; the samples were immersed in this solution for 30 minutes. 

 

Alternatively, some samples underwent processing for specific proteoglycan staining. 

Cuprolinic blue is a cationic stain that binds to the negatively charged glycosaminoglycan 

side chains of proteoglycans (Scott and Haigh, 1988). The presence of copper atoms in the 

stain creates a favourable electron density that is then further enhanced through the addition 

of tungstate ions. Magnesium chloride is a negatively charged salt that results in greater 

amounts of the Cuprolinic dye molecules attaching to the glycosaminoglycan chains, due to 

competitive binding. 

 

Immediately after dissection, the corneal samples undergoing processing for Cuprolinic blue 

staining were fixed overnight in a solution of 2.5% glutaraldehyde, 0.05% Cuprolinic blue, 

0.1M magnesium chloride, and 25mM sodium acetate buffer (pH 5.7).  The samples were 

then rinsed three times in 25mM sodium acetate buffer (pH 5.7) to halt the fixation process. 

This was followed by three stages of washing for 5 minutes in aqueous 0.5% sodium 

tungstate, and 15 minutes in a 50% ethanolic 0.5% sodium tungstate solution, which serves to 

increase the electron density of the stain. 
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2.1.2. Dehydration and resin embedding 

 

All samples then underwent the same dehydration process in a series of graded ethanol 

changes which consisted of 15 minutes in 70%, 90%, and twice in 100% ethanol. This was 

followed by two 15 minute stages in propylene oxide, then 1 hour in a 1:1 propylene 

oxide:araldite resin mixture. The Araldite resin is made by mixing the Araldite monomer 

CY212, DDSA hardener, and BDMA accelerator in a ratio of 23.3:26.6:1. The Araldite 

monomer and hardener were pre-warmed to reduce their viscosity and facilitate their 

measurement and pouring. Following six changes of Araldite resin infiltration over 24 hours, 

the samples were then inserted into moulds with further resin. Resin infiltration and 

hardening then occurred over a 48 hour period in a 60°C oven. 

 

2.1.3. Sectioning and post-staining 

 

Glass knives were made on a Leica EMKMR2 glass cutter (Leica, Austria). Tape, placed 

around the top sides of the knife and sealed with wax, creates a small well that can be used as 

a water bath. De-ionised water was pippetted into the bath, and the knife was set at an angle 

of 6
o
. Semi-thin sections approximately 500nm thick were cut either on a Reichart-Jung 

Ultracut Microtome or a Leica EM UC6 Microtome. These sections were transferred to a 

microscope slide, and after staining with toluidine blue the sections were observed under light 

microscopy. Desirable regions were polished by reducing the thickness of the sections cut by 

glass knife, then a diamond knife was used to obtain the ultrathin sections. Initially, the 

diamond knife water bath was filled with de-ionised water then sections approximately 90nm 

thick with gold interference colours were sectioned, stretched using chloroform vapour, and 

lifted onto copper grids. 

 

Post-staining of the sections was carried out in order to enhance the contrast and detail in the 

final electron microscope images. The solutions used in post-staining were all centrifuged 

and filtered through Millipore syringes before use, in order to minimize the occurrence of 

stain precipitate remaining on the samples. 

 

Routinely prepared samples were post-stained at room temperature in 2% aqueous uranyl 

acetate for 12 minutes, and then Reynolds lead citrate for 5 minutes. Reynolds lead citrate 

was made following the standard published protocol (Reynolds 1963). The grids were 
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positioned face down onto the surface of 25μm drops of the stain, which were placed on 

parafilm over moistened filter paper. A cover was then placed over this area to prevent any 

light from reacting with the stains, and NaOH pellets were placed around the drops to ensure 

minimal CO2 reacted with the lead citrate. The corneal samples were washed between stains 

by floating on a series of four 100μm drops of Millipore-filtered distilled water, for 2 minutes 

at a time. After lead citrate staining the grids were washed using the same method, with the 

addition of dip washing and jet washing with Millipore filtered distilled water. The grids 

were then blotted dry on lint-free filter paper, and allowed to air dry. 

 

The Cuprolinic blue stained samples were post-stained at room temperature in 1% aqueous 

phosphototungstic acid for 2 minutes and then 2% aqueous uranyl acetate for 12 minutes. As 

with the routine samples, these grids were also positioned face down onto the surface of 

25μm drops of the stain, which were placed on parafilm over moistened filter paper. The 

samples were washed between stains by floating on a series of four 100μm drops of 

Millipore-filtered distilled water, for 2 minutes at a time. After uranyl acetate staining the 

grids were washed using the same method, with the addition of dip washing and jet washing 

with Millipore-filtered distilled water. The grids were then blotted dry on lint-free filter paper, 

and allowed to air dry. 

 

2.1.4. Observation and Imaging 

 

Electron microscopy was carried out at 80kV on a Hitachi H7600 and a JEOL 1010 

transmission electron microscope. Images were taken on a Gatan ORIUS SC1000 CCD 

camera. 
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3. AVIAN CORNEAL STROMA 

 

3.1. Introduction 

 

The corneal stroma is composed predominantly of heterotypic type I/V collagen fibrils 

organised into orthogonally orientated lamellae. Within these lamellae, the collagen fibrils 

demonstrate highly ordered packing, with regular fibril diameters and interfibrillar spacing. 

This organisation is key to the corneas ability to be optically transparent and still remain 

mechanically strong (Maurice, 1957; Farrell and Hart, 1969; Benedek, 1971).  

 

Proteoglycans in the corneal stroma interact with these collagen fibrils, and are thought to 

regulate their diameter and pseudo-hexagonal array (Borcherding et al., 1975; Chakravarti et 

al., 2000; Quantock et al., 2001; Meek et al., 2003). As discussed previously, corneal 

proteoglycans are composed of one or more glycosaminoglycan side chains covalently linked 

to a small leucine rich repeat protein core. These glycosaminoglycan side chains are linear 

polymers of negatively charged disaccharides. In the corneal stroma, the two predominant 

side chains are keratan sulphate or a hybrid of chondroitin sulphate and dermatan sulphate. In 

the chick corneal stroma, the former binds to the protein core of keratocan, lumican and 

mimecan proteoglycans, whilst the latter binds to decorin and biglycan proteoglycans (Iozzo, 

1997). The core protein of the proteoglycan binds with collagen fibrils at distinct banded 

regions along the fibril axis - ‘a’ and ‘c’ for keratan sulphate proteoglycans and ‘d’ and ‘e’ 

for chondroitin sulphate/dermatan sulphate proteoglycans (Scott and Haigh, 1985; Young, 

1985; Meek et al., 1986; Scott and Haigh, 1988). The glycosaminoglycan side chains then 

project into the interfibrillar gap and, via their negative charge resulting from sulphated 

amino sugars, interact with other collagen fibrils or extracellular matrix components (Iozzo, 

1997).  

 

Several models have been put forward to explain how collagen-proteoglycan interactions 

regulate interfibrillar spacing (Maurice, 1962; Farrell and Hart, 1969; Müller et al., 2004). 

The predominant theory is based on a six-fold arrangement of glycosaminoglycan side chains 

radiating from a collagen fibril to connect to six adjacent fibrils. More recent studies have 

modified this theory to account for the length of some proteoglycans as being longer than the 

interfibrillar gap. It is now suggested that rather than associating with adjacent fibrils, the 
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glycosaminoglycan side chains formed bridges to the next nearest fibril (Müller et al., 2004). 

However, electron tomography studies have suggested a new theory of collagen-proteoglycan 

interaction (Knupp et al., 2009; Lewis et al., 2010; Parfitt et al., 2010). Three-dimensional 

reconstruction of murine and bovine corneal stroma have shown that rather than being bound 

to a six-fold arrangement, the organisation of proteoglycans is a more fluid and dynamic 

system, with no set azimuthal positioning. The side chains are able to form complexes with 

the side chains of adjacent proteoglycans, and thus may influence fibril architecture by self 

associating to form multimer bridges that span across several fibrils, and through the presence 

of equal but opposing forces created by their charged glycosaminoglycan side chains (Knupp 

et al., 2009; Lewis et al., 2010; Parfitt et al., 2010), allow a lattice-like organisation of the 

collagen fibrils.  

 

This study uses three-dimensional electron tomography to study the developing chick cornea 

across developmental days 12, 14 and 16. Specifically, I investigated the relationship and 

interactions between type I collagen fibrils and proteoglycans in the chick corneal stroma. 

These reconstructions gave a view of the spatial orientation of proteoglycan side chains in 

three dimensions revealing the complex collagen-proteoglycan interactions that regulate the 

architecture of the developing stroma. 

 

3.2. Methods 

 

3.2.1. Sample collection 

 

Fertilized white leghorn chicken eggs were obtained from the Henry Stuart & Co. Hatchery 

(Lincolnshire, UK).  

 

For the low magnification study, fertile chicken eggs were collected at early day 14 (at 

9:00am), mid day 14 (at 1:00pm), and late day 14 (at 5:00pm). The corneas were then 

dissected immediately from the decapitated chick embryos and placed in fixative solutions 

ready for routine processing.  

 

For the high magnification study, fertile chicken eggs were collected at day 12, day 14, and 

day 16. One series was cut into quarters and fixed overnight in 2.5% glutaraldehyde in 25mM 

sodium acetate buffer with 0.05% Cuprolinic blue (pH 5.7, 0.1M MgCl2).  
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The use of animals in this work was carried out in accordance with ARVO (the Association 

for Research in Vision and Ophthalmology, Bethesda, MD, USA) statement for the use of 

animals for ophthalmological and vision research and local ethical rules. 

 

All samples for the low magnification study underwent routine processing as described in 

Chapter 2 ‘General Methods’ and were observed with transmission electron microscopy. 

Sample sections were collected on copper 300 mesh grids. 

 

All samples for the high magnification study underwent Cuprolinic blue processing as 

described in Chapter 2 ‘General Methods’ 

 

3.2.2. Sample preparation 

 

3.2.2.1. Polyetherimide Support films 

 

0.76g of polyetherimide granules were dissolved in 200ml of ethylene dichloride for 

approximately 72 hours. Coated microscope slides were dipped into this 0.38% 

polyetherimide/ethylene dichloride solution for 20 seconds and then left to dry. These coated 

slides were then scored along each edge with a razor blade, and dipped slowly into a water 

bath. The polyetherimide film lifted off, and floated on the surface of the water. Slot grids 

were placed onto the floating film, which was then attached to another polyetherimide coated 

slide. This was then left to dry, before the grids were carefully lifted off the slide using a 

razor blade and forceps. 

 

3.2.2.2. Sectioning 

 

As described in Chapter 2 'General Methods'. Corneal sample sections were collected on the 

Polyetherimide coated slot grids. 

 

3.2.2.3. Section staining 

 

As described in Chapter 2 'General Methods'. Following phosphotungstic acid and uranyl 

acetate staining, the sections were also coated with 10nm diameter gold fiducial markers. 
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Gold fiducials function as points of reference to enable tracking of the desired region whilst 

the tilt series is being acquired. In addition, they allow the computer software to correctly 

align the series of micrographs with each other during computer analysis of the tilt series. 

 

The gold fiducial solution was pippetted into 10µL droplets on a parafilm sheet. Both sides of 

the coated slot grids containing sample sections were placed onto the droplets for 20 seconds 

each side, then removed and left to dry. 

 

3.2.3. Electron Microscopy and Electron tomography 

 

3.2.3.1. Tilt Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: JEOL 1010 Transmission electron microscope. 

 

 

Electron microscopy was carried out at 80kV on a Hitachi H7600 and a JEOL 1010 

transmission electron microscope (Figure 3.1). The sample was tilted using the goniometer on 

the JEOL microscope from – 60
o
 to + 60

o
. Due to obstruction by the sample holder, images 

cannot be taken over a full 360
o
. The axis of the sample was centred and aligned before the 

tilt series was obtained. The image was returned to the same co-ordinates at each degree 

increment, to ensure that each image was aligned with the previous one. This was achieved 
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by selecting one centrally located fiducial marker and tracking its position to the same point 

in each micrograph. Images were taken on a Gatan ORIUS SC1000 CCD camera. 

 

3.2.3.2. Alignment of Tilt Series 

 

IMOD is an open source computer software package used for analzing, modelling and 

displaying 3-D image data. It was developed by the Boulder Laboratory for 3D electron 

microscopy of cells at Colorado University (Kremer et al., 1996). Using the tif2mrc and 

newstack programs within the IMOD software package, the tiff images that make up the tilt 

series are then converted into a .mrc file and a .st image stack respectively. This .st file is then 

used by the eTOMO alignment software, also a sub-program of IMOD (Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Screenshot showing the fine alignment stage in eTOMO. 

Using the 0o micrograph from the tilt series, contours (green circles) are drawn around multiple 

fiducial markers for computer aided tracking. 

 

 

In eTOMO the stack of images is then taken through a series of coarse and fine alignment 

stages, to generate a final tomograph. This alignment is achieved through an iterative process 
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of tracking of gold fiducial markers that were previosuly coated onto both sides of the 

sample. After alignment, eTOMO uses back-projection to generate a three-dimensional 

reconstruction of the initial two-dimensional micrographs. This final tomograph is created by 

the smearing of the aligned images to create an image that possesses depth, allowing the user 

to now pass through the thickness of the image stack. 

 

3.2.3.3. Segmentation of Three-Dimensional Reconstruction 

 

Using EM3D software, developed at Stanford University, USA (Ress et al., 2004), the final 

tomogram undergoes segmetation to make the image easier to interpret and analyse (Figure 

3.3). Contours are manually drawn round each object of interest, and segmented in each 

individual image in the image stack. The image is then rendered, and a three-dimensional 

model of each segmented object of interest is produced. This model can be manipulated and 

rotated, giving a much clearer and more meaningful image than is possible from a two-

dimensional greyscale micrograph (Figure 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Screenshot showing the segmentation and rendering stage in EM3D. 

Segmentation of the aligned tilt series (left) is then followed by rendering to produce the final three-

dimensional reconstruction (right). 
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3.3. Results 

 

3.3.1. Low magnification study 

 

It can be hypothesised that there are several different categories of membrane compartments 

formed by stromal keratocytes. This membrane compartmentalisation was discovered to be 

the predominant method of collagen production in embryonic tendon. Plasma membrane 

protrusions called fibripositors, and the adjacent extracellular channels that form between 

these processes, transfer collagen fibrils into the extracellular matrix. These narrow 

membrane bound tunnels were found emerging from deep within keratocytes (shown in 

Figure 3.4), throughout developmental day 14. These fibripositors contained approximately 

9-12 fine filamentous structures, thought to be collagen in the process of condensing into 

fibrils. In Figure 3.4B this collagen can be seen running in a uniform direction out of the 

fibripositors. The morphology of these tunnels may then facilitate fibrillogenesis and impart a 

degree of orientation to the newly synthesised collagen.   

 

Small cell surface recesses were observed, containing approximately 7-15 collagen fibrils. 

Figure 3.5 shows that within these recesses, the fibrils were observed closely associating with 

the keratocyte cell surface. The small fibril bundles, and the recesses from which they emerge, 

were found to a greater extent during early day 14 of development (Figure 3.5A).  

 

Larger cell surface recesses were also observed, containing fibril bundles of a greater size, 

approximately 20-40 fibrils. As Figures 3.6A and 3.6B show, these fibril bundles and larger 

recesses were present throughout day 14. However by late day 14, in addition to these large 

recesses, the thicker fibril bundles were also commonly orientated between thin cell 

processes that formed wide membrane bound channels (Figure 3.6C). 
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Figure 3.4: En face section of fibripositors and collagen. 

(A) Mid day 14 corneal stroma at x6000 magnification. (B) Mid day 14 corneal stroma at x10000 

magnification. Arrows indicates fibripositor with emerging collagen. Scale bar = 0.5µm. 
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Figure 3.5: En face section of small fibril bundles and keratocyte surface recesses. 

(A) Early day 14 corneal stroma at x3000 magnification. (B) Mid day 14 corneal stroma at x4000 

magnification. Arrows indicates keratocyte surface recess and fibril bundle. Scale bar = 1µm. 
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Figure 3.6: En face section of fibril bundles and keratocyte surface recesses. 

(A) Mid day 14 corneal stroma at x3000 magnification. (B) Late day 14 corneal stroma at x3000 

magnification. (C) Late day 14 corneal stroma at x5000 magnification. Arrows indicates keratocyte 

surface recesses and membrane bound compartments. Scale bar = 1µm. 
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Figure 3.7: En face section of large fibril bundles and keratocyte compartments. 

(A) Late day 14 corneal stroma at x2500 magnification. (B) Late day 14 corneal stroma at x2000 

magnification. Arrow indicates keratocyte bound compartment. Scale bar = 1µm. 
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Finally, as evident in Figure 3.7, regions were observed where large fibril bundles coalesced 

into broader bundles and lamellae. These bundles would frequently contain well in access of 

50 fibrils. Occasionally it was evident that these bundles passed through spaces created 

between cell surfaces (Figure 3.7B). In Figure 3.7B orthogonally aligned sheets of collagen 

fibrils can be easily identified. Often these large sheets of fibrils were orientated at right 

angles, reminiscent of the orthognally stacked lamellae of the mature corneal stroma. 

 

Observed across day 14 at three different time points, the relative proportions of these 

different sized fibril bundles and recesses appeared to change. During early day 14, collagen 

fibril bundles largely contained around 10 fibrils, bundles of 25 fibrils were also present, as 

were occasional bundles of around 30 fibrils. By mid day 14 the relative proportions of these 

three bundle sizes were approximately equal. However, by late day 14 few of the smaller 

fibril bundles remained, with the predominant bundle size being around 30 fibrils. In addition 

at this developmental stage, the membrane compartments formed by the keratocytes were 

more commonly channels created between cell processes (see Figure 3.6C). 

 

3.3.2 High magnification Study 

 

Electron micrographs (Figure 3.8) show that throughout the developmental stages studied, 

Cuprolinic blue-stained proteoglycans are present. They can be observed either associating 

with, or in the interfibrillar space between collagen fibrils (Figure 3.9). The fibrils themselves 

are seen initially in small bundles that progressively combine as development continues to 

form larger bundles, eventually coalescing into lamellae. Throughout development, even 

within these early bundles, a level of organisation in the collagen fibril packing can be seen. 

 

Three-dimensional reconstructions of collagen fibrils and associated proteoglycans at 

developmental day 12, 14 and 16 were obtained in both longitudinal and transverse planes 

(Figure 3.10). Closer examination of the collagen fibrils within these reconstructions 

confirmed the regularity of fibril packing observed in the electron micrographs. At day 12, 

fibril packing is consistent with that of a loose hydrated stroma populated by independent 

bundles of collagen fibrils. At developmental day 14, interfibrillar spacing showed a 

temporary increase. However by day 16 interfibrillar spacing had decreased, and fibrillar 

packing was closer than at day 12. 
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Figure 3.8: Transmission electron micrographs of the developing chick corneal stroma. 

Embryonic day 12 (A), day 14 (B) and day 16 (B) showing the progressive dehydration and 

compaction of the stroma at x3000 magnification. Collagen fibrils can be seen coalescing into larger 

bundles as development progresses. Scale bar = 1µm. 
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Figure 3.9: Transmission electron micrograph of collagen and proteoglycans in day 14 

developing chick corneal stroma.  

Collagen fibrils (red arrows) can be seen in a longitudinal and transverse plane at x20000 

magnification. Proteoglycans (green arrow heads) can be seen spannning the gaps between fibrils, and 

binding to the longitudinally orientated collagen fibrils at regular spacings. The proteoglycans 

interacting with the transversely orientated fibrils shows no regularity or order in their arrangement. 

Scale bar = 250nm. 
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Figure 3.10: Stereo pairs of three-dimensional reconstructions. 

Collagen (blue) and proteoglycan (yellow) interactions in the developing chick cornea at embryonic 

day 12 (A, B), day 14 (C, D), and day 16 (E, F). A, C and E show a longitudinal view, whilst B, D and 

F show a transverse view. Short proteoglycans are indicated by green arrowheads, whilst long 

proteoglycans are indicated by red arrows. Scale bar = 50nm. 
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Figure 3.11:   Proteoglycan size scatter graph. 

Proteoglycan length versus width at embryonic days 12, 14 and 16. Only proteoglycans whose entire 

structure was present in a reconstruction were measured. Proteoglycans range from 12.2nm to 71.7nm 

in length, and from 3.8nm to 11.1nm in width. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12:   Models of collagen fibril and proteoglycan interactions in the chick cornea. 

Collagen (blue) and proteoglycans (red and yellow) in a longitudinal view (A), and transverse view 

(B). Yellow arrowheads indicate short antiparallel keratan sulphate side chains. Red arrows indicate 

long antiparallel chondroitin sulphate/dermatan sulphate side chains.
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Proteoglycan number increased as development progressed (Figure 3.10). A scatter graph 

comparing proteoglycan length and width revealed the range of sizes that proteoglycans can 

exhibit (Figure 3.11). Tables of proteoglycan dimensions across the developmental stages 

studied can be found in Appendix 1. Small and medium sized proteoglycans ranging from 

approximately 12nm to 50nm in length, were prevalent throughout the developmental days 

studied. However during the later stages, larger proteoglycans up to 75nm in length were also 

present. The ratio of smaller to larger proteoglycans appeared to shift as development 

progressed, with the larger proteoglycans present in greater numbers at day 14 and greater 

still at day 16 (Figures 3.10 and 3.11). However, the smaller and intermediate sized 

proteoglycans still remain more common. An overall trend can be seen in the scatter graph, 

showing that the width of the proteoglycan corresponds approximately to its length, in that 

the shorter proteoglycans were often thinner in width also. Conversely, the longer 

proteoglycans were present in a range of widths. The smaller proteoglycans can be seen 

projecting from the surface of collagen fibrils and spanning the interfibrillar gaps. The length 

of these proteoglycans was approximately equal to the distance between adjacent fibril 

surfaces. The larger proteoglycans were often observed passing around adjacent fibrils to 

interconnect a more distant neighbouring fibril (Figure 3.12). The three-dimensional 

reconstructions also make it possible to observe the orientation and positioning of the 

proteoglycans on the collagen fibrils. By observing the longitudinally sectioned 

reconstructions at day 12 and day 14, the orientation of the proteoglycans appears to be more 

orthogonal with respect to the long axis of the collagen fibril to which it is associated. By day 

16, their orientation has taken on the characteristic appearance of more mature tissue, with 

proteoglycans pointing at more oblique angles from the collagen axis. These reconstructions 

also show distinct binding regions along the length of the fibril. Often two or more 

proteoglycans can be seen associating with the fibril at the same binding point along its 

length (Figure 3.10). In the transverse sectioned reconstructions, no distinct six-fold 

arrangement of the proteoglycans around a central fibril could be seen, nor did the 

proteoglycans appear to follow any set arrangement or azimuthal positioning.  
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3.4. Discussion 

 

3.4.1. Low magnification Study 

 

Whilst the synthesis and post translational modification of extracellular matrix components is 

well documented in fibroblasts, what is less well studied is the role these cells also have in 

the assembly and deposition of these matrix components. 

 

Trelstad and Coulombre (1971) observed that in the primary stroma, thin bundles of collagen 

fibrils are secreted into an orthogonal array by similarly orientated vacuoles in epithelial 

basal cells. Equally, in the secondary stroma Birk and Trelstad (1984) suggested that collagen 

production and organisation occurs in close association with the surface of the keratocyte. 

Often the lateral fusion of cell surface recesses and the process of cell surface folding can 

create membrane bound compartments that then contain the fibrilizing collagen. This process 

would then facilitate the direct connection and regulation between the intracellular and 

extracellular mechanisms of collagen fibril production.  

 

More recently this membrane compartmentalisation method was also discovered to be the 

predominant method of collagen production in embryonic tendon (Canty and Kadler, 2005). 

During embryonic development, tendon fibroblasts synthesise collagen through actin-rich 

fibripositors (Canty et al., 2004). A recent study investigated the role that tension has on the 

formation of fibripositors in embryonic tendon cells cultured in fibrin gel. The production of 

thin, axially aligned collagen fibrils from newly formed fibripositors was dependant on the 

receipt of a tension stimulus from the fibril gel matrix (Kapacee et al., 2008). This behaviour 

has also been simulated in adult human tendon fibroblasts, when cultured under tension in 

fibrin gels (Bayer et al., 2010). However, in vivo, the fibripositor mechanism appears to be 

active only during the short developmental period dedicated to the establishment of tissue 

architecture.  

 

This study utilized en face sections through the corneal stroma. This technique facilitates the 

observation of collagen fibril bundles running in multiple directions across the same plane. 

Sections could be taken through cell membrane bound compartments that are orientated in 

different directions, and orthonally aligned sheets of collagen fibrils can be seen 

longitudinally.  
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In the corneal stroma, the keratocyte cell surface was partitioned into at least three major 

compartments within which collagen fibrillogenesis, bundle formation, and the deposition of 

fibril bundles into orthogonal lamellae are all regulated (Birk and Trelstad, 1984). The 

diameter of the collagen fibrils often corresponded directly to the size of the compartments 

that contain them, an observation also reported by Birk and Trelstad (1984). 

 

The smallest cell surface recess usually contained 7 to 15 collagen fibrils. These small 

compartments may be the result of intracellular secretary vacuoles fusing with each other and 

the cell surface membrane (Birk and Trelstad, 1984). In these recesses, newly synthesised 

collagen undergoes extracellular modification (Trelstad and Hayashi, 1979). The clear 

presence of rough endoplasmic reticulum within the keratocytes is an indication of their high 

level of anabolic activity (Figure 3.5B). 

 

Medium sized compartments, termed open fibripositors, were wide membrane bound 

channels (Figure 3.6C) that may have facilitated the formation of small fibril bundles of 

approximately 20 to 40 fibrils. These recesses may have formed through the fusion of smaller 

cell surface recesses. 

 

Finally, large membrane bound channels were also observed, containing large fibril bundles 

coalescing into lamellae. These channels were often formed from large folds in the cell 

surface membrane and the spaces between adjacent cell processes. The collagen fibrils that 

could be seen running within these channels ran in a uniform direction, dictated by the long 

axis of the cell processes.  

 

The fibripositor model implies that the production and deposition of collagen fibrils is 

controlled by individual cells. An important feature of fibripositors is that they are always 

orientated along the main axis of the cell and tissue. Subsequently, intracellular transport and 

the extracellular matrix organisation are connected. Corneal fibroblasts migrate into the 

stroma using the collagenous template of the primary stroma. Positional information gained 

from this scaffold may then help orientate the cells in the correct axis. Consequently, collagen 

extruded by these cells with also posses the correct spatial orientation. By examining en face 

sections of the corneal stroma it was possible to observe keratocytes, and the cell membrane 

bound channels they produce, aligning with two major orthogonally orientated axes. The 
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fibril bundles being synthesised may then gain a degree of orientation from the direction of 

these cellular compartments. 

 

The compartmentalization of the intercellular space is well documented. Collagen 

fibrillogenesis, post-translational modification, and packing are all initiated within the cell 

cytoplasm, Golgi complex, and secretary vesicles (Prockop et al., 1979; Olsen, 1981; Trelstad 

and Silver, 1981; Trelstad et al., 1982). The compartmentalization of the extracellular space 

then allows a direct connection and continuation of this intracellular process, allowing 

cellular control over every aspect of collagen architecture, from fibril to lamellae, through the 

management of these unique micro-environments. These extracellular compartments 

facilitate both the spatial orientation and structural cohesion of the developing collagen 

lamellae that are so integral to proper corneal function. 

 

3.4.2 High maginifaction Study 

 

The reconstructions of collagen-proteoglycan interactions require careful analysis, as each 

developmental time point is only represented by one reconstruction.  Therefore, any theories 

drawn from these results must take this into account. However, each reconstruction was taken 

from approximately the same region in the corneas. In addition, numerous micrographs were 

taken and compared, to ensure each reconstruction was representative and characteristic of 

stromal morphology at that particular point in development.  

 

The reconstructions of developing corneas at embryonic days 12, 14 and 16 make it clear that 

whilst the collagen bundles possess increasingly regular and ordered packing throughout 

development, their relationship with proteoglycans appears much more complex and 

unsystematic. The diverse three-dimensional orientation of the proteoglycans, and their 

ability to interconnect adjacent and neighbouring fibrils seemingly without any set pattern or 

predisposed arrangement, points to a more mutable and dynamic matrix environment. 

 

Previous studies have reported the interfibrillar spacing within collagen bundles decreases 

during development as the stroma progressively dehydrates and compacts. It is clear from the 

transverse sectioned reconstructions that, of the three developmental stages studied, 

interfibrillar spacing is greatest at day 14, followed by day 12, with day 16 showing the most 

compact fibril packing. This agrees with data from a recent study that used x-ray diffraction 
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Figure 3.13:   Stereo pairs of three-dimensional reconstructions following trreatment with 

chondroitinase ABC. 

Collagen (blue) and proteoglycan (yellow) in the developing chick cornea at embryonic day 14 (A, B), 

and day 16 (C, D). A and C show a longitudinal view, whilst B and D show a transverse view. After 

enzyme digestion of chondroitin sulphate/dermatan sulphate proteoglycans using chondroitinase ABC, 

only short proteolgycans remain (indicated by green arrowheads). Scale bar = 10nm. Data obtained in 

collaboration with Dr Satoshi Nakajima and Dr Barbara Palka. 

 

 

to measure collagen fibril Bragg spacing. Compaction within the bundles of collagen fibrils 

was initiated after developemental day 14 (Liles et al., 2010). From electron microscopic 

study of this developmental period, it is clear that the compaction of fibrils within these 

bundles occurs simultaneously with the progressive coalescing of the bundles eventually 

B A 

D C 



Chapter 3 - Avian corneal stroma 

 

76 

 

forming lamellae. Proteolgycan number was seen to increase as development progressed. 

Similarly the number of large proteoglycans was considerably increased at the later 

developmental stages. This increased proteoglycan presence may have a key role in the 

condensing of collagen fibril bundles, and the reduction in collagen interfibrillar spacing.  

The large proteoglycans are thought to be chondroitin sulphate/dermatan sulphate 

proteoglycans, as enzyme digestion using chondroitinase ABC left only small keratan 

sulphate proteoglycans (Figure 3.13). These short proteoglycans can be seen bridging the 

interfibrillar gap. After enzyme treatment, no protoelgycans were observed with sufficient 

length to pass around adjacent collagen fibrils to interconnect with more distance fibrils. The 

protocol for this enzyme treatment method is detailed in Liles et al., 2010. The increased 

presence of large proteoglycans following day 14 may correlate with the initiation of reduced 

interfibrillar spacing, as dermatan sulphate proteoglycans are considered to have a 

morphogenetic role in the developing chick (Hart, 1976; Hahn, 1992). For example, 

disruption of dermatan sulphate proteoglycan synthesis leads to abnormalities in collagen 

fibrils packing and lamellar organization. Therefore dermatan sulphate proteoglycans may 

control fibril-fibril spacing, but not the regulation of fibril diameter (Hahn, 1992; Danielson 

et al., 1997) 

 

The large range in proteoglycan length and width that was observed (Figure 3.11) may be due 

to the varying intensity of Cuprolinic blue staining resulting from different proteoglycan 

sulphation levels. However, individual glycan chains have a smaller width (<0.5nm) than 

what is observed (Scott, 1992), and the Cu
-
 and WO4

2-
 ions used to stain for proteoglycans 

are small enough to be measured in picometers. The proteoglycan chains are recorded in the 

reconstructions at much greater widths. It is therefore likely that these larger proteoglycans 

are the result of self-assembly or aggregation of glycosaminoglycan chains from individual 

proteoglycans to form anti-parallel multimers. It is not possible to determine the structure of 

the bond from these reconstructions, however several models have been proposed (Knupp et 

al., 2009; Lewis et al., 2010). In addition, the mediating role of other extracellular matrix 

components cannot be ruled out (Cooper et al., 2006). The mechanism by which these lateral 

associations form is not clear. The ionic balance of the stroma may be important for 

proteoglycan interactions. The formation of proteoglycan multimers in nasal cartilage have 

been reported previously, and have been shown to be sensitive to changes in the ionic balance 

in vitro (Roughley et al., 1995). It is possible that positively charged ions within the stroma 
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(K
+
, Na

+
) cancel out the negative charge of the glycosaminoglycan chains, allowing them to 

associate through hydrogen bonding and hydrophobic attraction (Scott, 2001). 

 

Linear aggregation of glycosaminoglycan chains allow the proteoglycans to form large 

multimers that are able pass around adjacent fibrils and interconnect a third more distant 

neighbouring fibril. From previous studies, these longer proteoglycans have been identified 

as chondroitin sulphate/dermatan sulphate proteoglycans (Scott, 1992; Liles et al., 2010). 

Decorin, the predominant chondroitin sulphate/dermatan sulphate proteoglycan of the 

developing avian cornea, is known to have the ability of molecular self-recognition. The 

protein core of one decorin molecule can recognise and bind to the protein core of another, 

and so undergo dimerisation (Scott et al., 2004). However, some studies have rejected the 

theory that decorin exist as naturally occurring dimers in solution (Goldoni et al., 2004). 

 

It has been previously reported that the arrangement of proteoglycans around a central 

collagen fibril follows a symmetrical six-fold organisation (Müller et al., 2004). However, 

concurrent with recent findings (Knupp et al., 2009; Lewis et al., 2010; Parfitt et al., 2010), 

the present reconstructions suggest that the proteoglycans have no set azimuthal positioning. 

However, some regularity was observed in the proteoglycan binding sites along the length of 

the collagen fibrils. The concept of proteoglycan specific binding sites is now widely 

accepted. Proteoglycans possessing chondroitin sulphate/dermatan sulphate 

glycosaminoglycan chains will bind to the  'd' and 'e' bands of the collagen fibril, whilst those 

containing keratan sulphate glycosaminoglycan chains bind to the 'a' and 'c' bands (Scott and 

Haigh, 1985; Young, 1985; Meek et al., 1986; Scott and Bosworth, 1990). 

 

With no regular or symmetrical organisation, alternative theories for how proteoglycans are 

able to regulate interfibrillar spacing have emerged. This more disordered local arrangement 

of proteycans may suggest that long range regulation of interfibrillar spacing is more 

important. It has been suggested in recent studies that two equal but opposing forces are 

exerted simultaneously on collagen fibrils due to the presence of proteoglycans. The 

negatively charged proteoglycan glycosaminoglycan chains attract positively charged ions 

within the stroma resulting in an osmotic pull. This influx of water molecules into the 

interfibrillar spaces creates a repulsive force due to increased pressure between fibrils. 

Simultaneously, thermal motion of the glycosaminoglycan chain complexes, arising from the 

constant molecular collisions of the proteoglycans and other extracellular matrix molecules, 
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creates an attractive force (Lewis et al., 2010; Knupp et al., 2009). This force counteracts the 

repulsive force caused by increased osmotic pressure resulting in a balanced system. 

Together, these two proteoglycan subtype are able to regulate interfibrillar distances, and 

stabilize fibril architecture. 

 

Chondroitin sulphate proteoglycans can achieve a much greater level of sulphation than 

keratan sulphate proteoglycans, due to a larger number of disaccharide motifs (Plaas et al., 

2001). Chondroitin sulphate/dermatan sulphate proteoglycans are able to form large 

complexes capable of interconnecting multiple fibrils. The increased osmotic pressure 

between fibrils caused by the large number of sulphated glycosaminoglycan chains would 

then act as a repulsive force, pushing fibrils apart. Conversely, under-sulphated keratan 

sulphate proteoglycans form short bridges that span the interfibrillar gap, connecting 

neighbouring fibrils. Thermal motion within these bridges would act as an attractive force, 

pulling the ends of the glycosaminoglycan chains, and consequently the attached fibrils, 

closer together. Sulphation levels in keratan sulphate proteoglycans are subject to change 

during development. Previous studies have reported that as development progresses, highly 

sulphated keratan sulphate proteoglycans accumulate preferentially over the lesser sulphated 

isoform (Liles et al., 2010). Here, the increase in sulphated keratan sulphate proteoglycans is 

not considered to be the driving force behind stromal dehydration and compaction of 

interfibrillar spacing. Instead, this may occur through the action of the developing endothelial 

pump. These over-sulphated keratan sulphate proteoglycans may then share a common role 

with chondroitin sulphate/dermatan sulphate proteoglycans, in controlling interfibrillar 

spacing through the maintenance of local hydration levels. 

 

3.5. Conclusions 

 

In summary, these three-dimensional reconstructions show that proteoglycans in the 

developing chick cornea possess no symmetrical arrangement, or system of organisation. Self 

aggregation of these proteoglycans may result in the formation of multimers that are able to 

extend around adjacent collagens, interconnecting multiple fibrils. The pseudo-hexagonal 

arrangement of collagen fibrils is likely held in place through the combined attractive and 

repulsive forces exerted by the resident proteoglycans. This network of proteoglycans has a 

key role in the formation of the transparency and mechanical strong corneal tissue. 
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4. IN VITRO SYNTHESIS OF COLLAGEN GEL STROMAL 

EQUIVALENTS 

 

4.1. Introduction 

 

Having examined the radical structural changes that occur in the corneal stroma during 

developmental days 12-16, this knowledge can then be applied to the production of a stromal 

equivalent for use in grafting, or the production of a full thickness corneal substitute. 

Following the study of collagen organisation and its interactions with proteoglycans in the 

stroma, attempts were made to utilize similar, predominantly natural, biological materials in 

the construction of an artificial corneal stroma.  

 

The transparency of the cornea is thought to be dependent on the regular short-range spatial 

order of the collagen fibril array within each lamella (Maurice, 1957; Hart and Farrell, 1969; 

Benedek, 1971). Interactions between proteoglycan macromolecules which associate with the 

collagen and occupy the extrafibrillar space (Zhang et al., 2009; Quantock et al., 2010; Lewis 

et al., 2010), and between different collagen subtypes (Birk et al., 1990),  are  thought to 

mediate the characteristic collagen fibril arrangement in the cornea. The biomechanical 

properties of the cornea are also largely due to the precisely ordered collagen fibrils and the 

orientation and architecture of the lamellae they form in the stroma (Meek and Boote, 2009). 

High concentrations of the water soluble proteins transkeletolase and aldehyde 

dehydrogenase type I within the keratocytes help minimize any light scattering that may 

occur due to their presence (Jester et al., 1999; Jester 2008). 

 

The organization of collagen within the stroma plays a key role in the formation of a 

transparent and mechanically robust corneal stroma. However, the inherent complexity of the 

tissue’s architecture has resulted in little progress being made in producing an effective 

construct that mimics corneal structure and function. Precise regulation of collagen fibril 

diameter, spacing and alignment would all be necessary in order to successfully engineer a 

construct that effectively resembles the stromal matrix and which has potential applications 

as a tissue substitute. At present this is difficult to achieve at the scale required for usable 

tissue construct size, although progress is being made (Griffith et al., 1999; Li et al., 2003; 

Orwin et al., 2003; Hu et al., 2005; Torbet et al., 2007). 
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Over the last decade, collagen gels have been investigated as scaffolds for use as potential 

stromal constructs (Germain et al., 1999; Schneider et al., 1999; Tegtmeyer et al., 2001; 

Griffith et al., 2002). However, whilst highly biocompatible, these collagen gels often have 

reduced transparency and show mechanically instabilities. Gels that can effectively mimic the 

highly organized collagen architecture of the corneal stroma are essential to achieve proper 

optical and biomechanical function. Collagen gels have been developed as aligned sheets of 

collagen fibrils, in an attempt to recapitulate the structure of the corneal stroma. These 

aligned collagen gels have been engineered from monomeric collagen molecules by utilizing 

electron spinning (Zhong et al., 2006, Chew et al., 2007), strong magnetic fields (Guo et al., 

2007; Torbet et al., 2007), dip pen nanolithography (Wilson et al., 2001), and flow 

manipulations (Koster et al., 2007; Lanfer et al., 2008). Recently, a mechanical improvement 

was achieved using electron spinning to produce a bilaminar, mesenchymal stem cell seeded 

collagen gel (Nerurkar et al., 2009). Whilst this construct fails to accurately reproduce 

stromal morphology or the cornea's optical and mechanical properties, it does highlight the 

importance of the relationship between tissue strucuture and function. Producing biomimetic 

multi-laminated collagen gels that accurately mirror stromal architecture may also result in 

improved mechanincal properties, suitable for use as a tissue substitute in corneal grafting. 

 

The addition of glycosaminoglycans and cross-linking agents has also been examined to 

determine their affect on the structural and functional properties of collagen constructs 

(Matsuda et al., 1990; Chen et al., 1995; Zhong et al., 2005), although fabricating and 

modulating a fibrillar arrangement using proteoglycan additions still remains a long way off. 

Comparatively, less research has been carried out on the structural and mechanical properties 

of type I collagen constructs formed at lower pH levels. 

 

Type I collagen molecules, at high concentrations, will self assemble into a liquid crystalline 

array. By altering the environmental conditions under which this process takes place, it may 

be possible to produce a construct that is not only biocompatible, but can accurately 

reproduce the structural and functional characteristics of the corneal stroma. In this study I 

worked with a team of bioengineers in Tohoku University, Japan, producing gels from a 

telopeptide-free collagen molecule solution known as atelocollagen. 
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Although atelocollagen will naturally form a weakly cross-linked gel, for the purpose of 

constructing a mechanical stable stromal equivalent, covalent intermolecular cross-linking 

must be induced between collagen molecules. Glutaraldehyde, whilst one of the most 

effective cross-linkers of biological tissue (Lee et al., 2001), has an undesirable level of 

cytotoxicity. For the current study, 'zero-length' cross-linkers were used which, unlike 

glutaraldehyde and other bridge building cross-linkers, do not become incorporated into the 

cross-linking bonds. Instead, they induce covalent cross-linking to occur between collagen 

molecules directly, the cross-linking agent is then washed out of the tissue. To cross-link the 

gels, a mixture of ethyl (dimethylaminopropyl) carbodiimide (EDC) and N-

hydroxysuccimide (NHS) was applied. Using EDC in conjunction with an amine-rich 

compound such as NHS increases the efficiency by which EDC can induce cross-linking 

between collagen molecules. By manipulating the molecular assembly of highly concentrated 

atelocollagen solutions and optimizing the chemical environment, we were able to produce a 

transparent and mechanically stable cross-linked collagen gel using flow manipulation 

(Tanaka et al., 2011b). This study, carried out by the author in the laboratory of Professor 

Kohji Nishida (Tohoku University, Japan), reports the structural and functional 

characteristics of these constructs. 

 

4.2. Methods 

 

4.2.1. Collagen solution preparation 

 

Acid freeze-dried type I porcine atelocollagen powder containing 5% type III collagen 

(Nippon Meat Packers) was dissolved at 4°C in distilled water using a syringe mixing 

technique (Liu et al., 2006a, 2006b; Rafat et al., 2008). Centrifugation overnight at 3500rpm 

was used to remove any air bubbles. The pH of the collagen solution was then adjusted by the 

addition, of a 1.0M NaOH (aq) solution, using the same syringe mixing method. 

 

4.2.2. Cross-linking of collagen gels 

 

To create the gels, the collagen solution was syringe mixed with a cross-linking solution of 

EDC/NHS (EDC:NHS = 2:1) until an homogeneous mixture was achieved. The final 

concentration of collagen was adjusted to 10 % wet weight. 
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4.2.3. Collagen fibril alignment within the gel 

 

Within 3 minutes of mixing the cross-linking agent with the collagen solution, 0.5ml of the 

mixture was spread onto a glass slide in a 30mm oval configuration. An elastic film was then 

placed on top, and a roller was used to spread the mixture in a unilateral direction (Figure 

4.2). Silicon rubber spacers placed between the glass slide and the elastic film regulated the 

thickness of the gel to 500µm. Incubation for 12 hours at 20 °C and for 12 hours at 37 °C was 

followed by phosphate buffered saline (PBS) washing at 4 °C. 

 

4.2.4. Collagen laminate gel preparation 

 

The atellocollagen solution was extruded in a line onto a tilted glass slide. This slide was 

placed on a hand-crafted stage attached to a swing type centrifugation machine (Figure 4.6). 

After centrifugation at 3500 rpm, the wet collagen layer was then incubated at 37 
o
C for 30 

min and dehydrated at 4-8
o
C until a dry rigid film is produced. Incubation before drying 

created thicker microfibre-like structures within the gel and a smoother surface texture. The 

reduction in thickness achieved by this method improved the visible light transmission 

through the collagen constructs (Takezawa et al., 2004). Subsequent collagen layers were 

added by rotating the collagen coated slide by 90
o
 or 180

o 
(Figures 1D, E), before extruding a 

new line of the collagen solution on top of the dried layer and repeating the centrifugation, 

incubation and drying processes. The final thickness of the laminated gel was proportional to 

the number of collagen layers it contained. Gels containing up to 20 layers were constructed. 

The thickness of each layer was consistently 2–5 μm (Figure 1F). 

 

4.2.4.1 Optical clearing and cross-linking of collagen laminate gels 

 

Once dry, the collagen laminate gels were cross-linked at room temperature for 2 hours using 

a 2:1 mixture of EDC (Wako pure chemicals, Osaka, Japan) and NHS (Thermo science, 

Rockford, IL, USA) solutions. Washing with distilled water was then followed by drying at 

4
o
C.  This process of low temperature drying, cross-linking, and washing in distilled water 

was then repeated until a desirable level of transparency was achieved. 
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4.2.5. Polarized Light Microscope imaging 

 

Constructs were placed on a glass slide, then covered with a glass clover slip. These were 

then inserted between an LCD monitor and a polarized filter set in an orthogonal direction. 

The transmitted light was then recorded with a digital camera (Canon, Japan). 

 

4.2.6. Mechanical testing 

 

The mechanical characteristics of the collagen gels were tested in directions parallel to and at 

right angles to the direction of flow manipulation. The 500µm-thick gels were formed into 

dumb-bell shapes to prevent rupture at the point of attachment and to provide a larger area on 

which to attach the apparatus. A Universal Testing Instrument (EZ Test, SHIMADZU, Japan) 

was used at a rate of 100mm/min to measure a 10mm by 3mm region of the gels. The stress 

was measured as a function of strain, and by analyzing the linear (elastic) region of the 

resulting stress-strain curve the Young's modulus was calculated. 

 

4.2.7. Transparency testing 

 

500µm thick collagen gels, and samples of non cross-linked atelocollagen, were placed 

between two glass slides, separated by 500µm thick silicon rubber spacers and held together 

with Parafilm. At room temperature, the transparency of the gels was measured using 

UV/vis-spectroscopy (UV-2550/2450, SHIMAZU, Japan) for narrow spectral regions centred 

at 400, 450, 500, 550, 600, 650, and 700nm. 

 

4.2.8. Transmission electron microscopy 

 

All samples underwent routine processing as described in Chapter 2 ‘General Methods’. 

 

4.3. Results 

 

From Figure 4.1 it is clear that by increasing the amount of NaOH used in the formation of 

the collagen solutions had the effect of increasing the pH but reduced their transparency. 

However, the effect on transparency was not linear, with a marked decrease in transparency 

at NaOH levels above 40mM. Below 40mM of NaOH, transparency remained approximately  
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Figure 4.1: Deacidification of a 10% (w/w) collagen solution through the addition of NaOH. 

 (A) pH changes in the collagen solution upon NaOH addition. (B) Transparency changes in the 

collagen solution upon NaOH addition. (C) Photo images of collagen solutions at with different 

NaOH levels. (D) Transmission electron micrographs of collagen solutions using (1) 20mM, (2) 

40mM, and (3) 60mM of NaOH. The thickness of specimens in (A), (B) and (C) is 500µm. Scale bar 

= 500nm. 
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constant at above 80% light transmission at 550nm. An increase in NaOH concentration from 

40mM to 50mM was accompanied by an increase of pH from 4.05 to 4.29. However, the 

effect on transparency was a more profound, dropping from 82% to 6% light transmission 

(Figure 4.1B). At 60mM of NaOH (the highest used in these experiments) transparency 

measured less than 1%. Below 40mM of NaOH, the collagen solutions showed some 

aggregation or coalescing of the collagen. Only at 60mM of NaOH were any fibril like 

structures formed, demonstrating characteristic D-banding. These resembled large tactoid 

structures that have been previously reported in other studies (Bard and Chapman, 1968; 

Leibovich and Weiss, 1970), (Figure 4.1D). 

 

4.3.1. Single layer gels 

 

Gels were formed by adding cross-linking agents to the collagen solution and spreading the 

mixture over a flat plate. Polarized light microscopy revealed birefringence of the collagen 

gel constructs (Figure 4.2). Dark areas indicate collagen fibrils orientated in the same axes as 

the polarizer or analyzer (±45
o
 to the horizontal axis). Light areas denote collagen fibrils 

orientated horizontally (0
o
) or vertically (90

o
). Light and dark areas were observed in 

irregularly, non-uniform patterns in the thicker collagen gels, whilst the thinnest gels 

produced clear and regular birefringence patterns. Whilst the two non-rolled samples 

demonstrated more than one axis of symmetry with both dark and light regions, the thinnest 

unilaterally rolled gel (Figure 4.2) showed a light region over its entire surface. 

 

The transparency of the gels reduced as NaOH levels were increased (Figure 4.3). This 

mirrors the results shown in Figure 4.1 for the collagen solutions. In addition it was found 

that increasing the levels of cross-linking also reduced the transparency of the gels. As a 

result, as NaOH levels were increased in the gels, the amount of cross-linking needed to be 

reduced accordingly in order to keep desirable levels of transparency (Figure 4.3).  

 

Only those gels whose transparency was above 70% were tested for mechanical stability. As 

expected, increasing the cross-linking of the collagen gels improved their mechanical 

properties, enhancing their tensile strength and decreasing the strain at rupture (Figure 4.4). 

Concurrent with the transparency data presented in Figure 4.3, at higher NaOH levels less 

cross-linking was required to produce a mechanically stable gel. Similar stress levels at 

rupture were seen in gels made with 30mM NaOH and 0.5% EDC concentration, compared 
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Figure 4.2: Flow-manipulation of collagen mixture to form aligned collagen gels. 

(A) Collagen mixture was expanded radially from a droplet, resulting in a precise circular shape. (B) 

Collagen mixture was expanded radially from a rod shape, resulting in an ellipsoidal shape. (C) 

Collagen mixture was spread unidirectionally from a rod shape in an orthogonal direction.  
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Figure 4.3: Cross-linked collagen gels transparency data. 

(A) Photo image of collagen gels made using different NaOH and cross-linker levels. * denotes 

inadequate gel formation. (B) Transparency of collagen gels with lines of best fit, and uncrosslinked 

collagen solutions (sol). All samples are 500µm thick, with a final collagen concentration of 10% 

(w/w), and a 2:1 weight ratio of EDC and NHS cross-linking agents.  
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Figure 4.4: Mechanical properties of collagen gels. 

(A) Stress (tensile stength) measured in a direction parallel to and perpendicular to collagen alignment. 

(B) Strain (deformation) measured in a direction parallel to and perpendicular to collagen alignment. 

Samples had transparency levels above 70%. All samples were 500µm thick, with a final collagen 

concentration of 10% (w/w), and a 2:1 weight ratio of EDC and NHS cross-linking agents. 
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to gels made with 40mM NaOH but with only 0.15% EDC. As NaOH levels were increased 

in the gels, the improvement in mechanical strength that accompanied cross-linker addition 

responded to smaller increases in cross-linker percentage. For example, in a 0mM NaOH gel, 

when the cross-linker concentration was increased by 0.2% (from 1.2% to 1.4%), the tensile 

strength of the gel almost doubled (from 0.75N/mm
2
 to 1.32N/mm

2
). However, in a 40mM 

NaOH gel, a similar magnitude rise in tensile strength (from 0.57N/mm
2
 to 1.22N/mm

2
) was 

achieved through just a 0.05% increase (from 0.1% to 0.15%) in cross-linker concentration 

(Figure 4.4). Mechanical testing also confirmed that uniaxial alignment of the collagen using 

flow manipulation affects the mechanical behaviour of the constructs. When tested in a 

direction parallel to the long axis of the collagen, the tensile strength of gels was 

approximately three fold higher than in the perpendicular direction. Strain levels were 

approximately doubled when tensile loading was applied in a direction perpendicular to the 

collagen long axis compared to the parallel direction. Increasing the amount of cross-linking 

or NaOH reduced the level of strain at rupture (Figure 4.4). 

 

Transmission electron micrographs of the gels were taken at each different NaOH condition 

used: 0mM, 10mM, 20mM, 30mM, 40mM, 50mM and 60mM (Figure 4.5). This clearly 

shows that increasing NaOH levels were accompanied by a progressive condensation of the 

collagen into filamentous structures. With no NaOH added, the gels contained a loose matrix 

of collagen with no overall structure. Using 10mM of NaOH resulted in the formation of 

aggregates or bundles of collagen. These showed a degree of directionality due to the flow 

manipulation used in the gel manufacture, which manifests itself in the preferential strength 

of the gel along the long axis of the collagen. Repeated addition of 10mM NaOH resulted in 

increased levels of collagen aggregation (Figure 4.5). The gel made using 50mM of NaOH 

demonstrated more compact bundled structures than seen in the 30mM or 40mM NaOH gels. 

However, as with the uncross-linked collagen solutions (Figure 4.1D), only in the gels made 

with 60mM of NaOH were more mature fibrils present, with characteristic D-periodicity 

banding (Figure 4.5).  
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Figure 4.5: Transmission electron micrographs of collagen gels at x3500 magnification. 

Gel conditions are shown as mM of NAOH, and % of cross-linker used. Black arrows in micrograph 

indicate tactoid structures.  All samples were 500µm thick. Scale bar = 500nm. 
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4.3.2. Laminated gels 

 

The laminated gels were cross-linked in order to inhibit the collagen layers from swelling 

during rehydration which would negatively affect light transmission, and to increase their 

mechanical stability by promoting chemical bonding between collagen molecules. However, 

a single cross-linking treatment resulted in only 55% transparency to visible light at 550nm. 

 

Therefore repeat cycles of chemical cross-linking, washing and low temperature drying were 

performed (Figure 4.6). Repeated cycles of this process increased the transparency of the 

laminated gels to 75% (in the 8 layer gel) and 68% (in the 20 layer gel). Light transmission 

was independent of the orientation of the collagen layers. Laminated gels containing 20 

collagen layers orientated in both parallel and orthogonal directions underwent six cycles of 

the cross linking, washing and drying process. Under transmission electron microscopy a 

clear difference in morphology can be seen between the orthogonal and parallel laminated 

gels (Figure 4.7). Furthermore, in the boundary zones of the orthogonally laminated gels 

some interlacing and fusion between adjacent orthogonal collagen layers was seen (Figure 

4.7D). 
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Figure 4.6: Formation of laminated gels by centrifugation. 

(A) Centrifugal force causes the stage to tilt upwards, orientating the glass slide into a horizontal 

position. (B) The collagen solution spreads across the surface of the glass slide due to centrifugal 

force. (C) Parallel aligned laminated collagen sheets are made by repeating the process of collagen 

spreading and drying without changing the axis of collagen orientation. Orthogonally aligned 

laminated collagen sheets are made by repeating the process of collagen spreading and drying, whilst 

changing the axis of the collagen orientation by 90º for each new layer (Adapted from Tanaka et al., 

2011a). 
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Figure 4.7: Transmission electron micrographs of multi layer collagen gels. 

Parallel (A and C) and orthogonal (B and D) aligned gels at x4000 (A and B) and x1200 (C and D). 

Arrow indicates boundary zones between collagen layers. Scale bar = 500nm. 
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4.4. Discussion 

 

4.4.1. Single layer gels 

 

It is clear from these results that a suitable chemical environment is vital in order to fabricate 

a functional and implantable biomimetic collagen construct for use in corneal repair. It was 

necessary to find a balance between the level of fibrillogenesis within the gel, and the amount 

of cross-linker used. Light transmission and the mechanical strength of the gels were 

dependent on both these factors. 

 

The transmission electron micrographs show that as NaOH levels, and therefore pH levels, 

within the gels are increased the diameter of the condensing collagen structures appear to 

decrease. Other studies that have focused on higher pH levels and later stages of fibril 

assembly have also recorded similar observations (Trelstad et al., 1976; Christiansen et al., 

2000). From these micrographs it is also possible to identify a range of subfibrillar 

intermediates - from a matrix of largely disorganized collagen, through intermittent molecular 

aggregations, to the formation of progressively condensing filamentous structures. The 

intermediate aggregations seen in gels containing 30mM and 40mM of NaOH resembled the 

pathologically unravelling collagen fibrils that are found in necrotizing scleritis (Watson and 

Young, 2004). At 60mM of NaOH, the high pH levels resulted in the collagen condensing 

into tactoid-like structures (Bard and Chapman, 1968). Other studies have reported similar 

results, although no fully mature collagen fibrils were observed (Harris and Reiber, 2007). 

Only under much greater pH levels are mature collagen fibrils, possessing the characteristic 

D-banded periodicity, formed in vitro during fibrillogenesis (Gelman et al., 1979; Graham et 

al., 2000; Cisneros et al., 2006). 

 

Transparency in the cornea is thought to be dependent on the major components of the matrix, 

namely the collagen fibrils, having diameters below that of the wavelength of visible light, 

and crucially a degree of short-range order (Farrell, 1994). In the gels with NaOH levels 

above 40mM, the matrix appears considerably more heterogeneous. The loss of 

ultrastructural uniformity might be responsible for the subsequent reduction in transparency 

above this level of NaOH. Loose collagen has associated into groups, forming filamentous 

structures with a higher degree of compaction. The assembly of larger macro-fibrillar 

structures would destructively scatter the light as it passes through the gel (Farrell, 1994). The 
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homogenous appearance of the gels below this level may result in a fairly uniform refractive 

index. With only small size aggregations of collagen, low levels of light scattering would 

occur, resulting in good transparency.  

 

The biomechanical properties of the cornea are largely dependent on collagen architecture 

and organization, and the ability to exploit the natural tensile properties of fibrillar collagen. 

Aligning the collagen within these gels provides greater mechanical strength along the long 

axis of the fibril. In addition, cross-linking the collagen gels, as expected, enhanced their 

mechanical strength. Both tensile strength in the direction parallel to collagen alignment, and 

the elastic properties of the gels in the perpendicular direction showed improvement. The 

mechanical properties of the single layer gels, when measured in the parallel direction, 

approached those recorded in human corneal tissue:  3.81 ± 0.40 N/mm
2
 in tensile strength 

(Zeng et al., 2001) and 3-13 N/mm
2
 in Young’s modulus (Crabb et al., 2006). 

 

Gels formed under increasingly greater pH levels demonstrated higher stress and strain 

readings at rupture in both the parallel and perpendicular directions to the collagen long axis 

of the initial layer. Other studies involving collagen gels have also reported the stress-strain 

relationship as being a function of pH (Christiansen et al., 2000; Roeder et al., 2002). In these 

studies, the length, diameter and organization of the forming collagen fibrils had a significant 

impact on the mechanical properties of the gels. Raising pH levels were found to increase 

fibril length and decrease fibril diameter, consequently improving the mechanical properties 

of the collagen matrices (Roeder et al., 2002). Increased levels of small diameter collagen 

fibrils in tendon were believed to have a protective role against the plastic deformation of the 

tissue structure (Parry, 1988). In addition, the viscoelastic properties of a collagenous matrix 

are considered to be more dependent on fibril length rather than diameter (Parry, 1988; 

Roeder et al., 2002).
 
In particular the longitudinal fusion of fibril subunits increases the 

resistance to high strain level deformation. Conversely, resistance to low strain level 

deformation was thought to be specific to the lateral fusion of fibril subunits (Christiansen et 

al., 2000). 

 

4.4.1. Laminated gels 

 

During construction of the laminated gels, it was found that centrifugation at lower speeds 

was not sufficient to spread the collagen across the length of the glass slide. However, 
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increasing the incline of the glass slide improved the collagen spread (Tanaka et al., 2011a). 

The addition of successive collagen layers (in both the parallel and orthogonal orientations) 

increased total gel thickness as expected (Tanaka et al., 2011a).  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Cross sections through parallel and orthogonal laminated gels. 

Parallel aligned collagen layers seen by polarized light (A) and scanning electron microscopy (C). 

Orthogonally aligned collagen layers seen by polarized light (B) and scanning electron microscopy 

(D). (A) and (C) cross sections obtained by cryosection, (B) and (D) cross sections obtained by 

microtome (Adapted from Tanaka et al., 2011a).  

 

 

Under polarized microscopy the parallel aligned laminated gels showed uniformly thin bright 

stripes representing each of the individual collagen layers that run longitudinally through the 

gel (Figure 4.8A). These results were then published in Tanaka et al., 2011a. The 

orthogonally aligned laminated gels showed alternating dark and light stripes, with the dark 

stripes representing those collagen layers running in an orthogonal orientation. Under 

scanning electron microscopy, the parallel orientated gels demonstrated smooth, fibrous 

structures running in a uniform direction. The orthogonally orientated gels showed both long 
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fibrous structures, and rounded dot like structures that represent the orthogonally orientated 

collagen. 

 

Transparency testing of these laminated gels shows them to have near human corneal 

transparency. In addition, they possessed greater transparency than either human donor 

corneal tissue or amniotic membrane which is commonly used for grafting during ocular 

surface repair (Liu et al., 2006a, 2006b; Connon et al., 2009). 

 

In collaboration with Dr Yuji Tanaka, the tensile strength of these laminated gels was also 

tested, to determine the effect fibril architecture has on their biomechanical properties. The 

results were then published in Tanaka et al., 2011a. Laminate gels containing 8 layers of 

either parallel or orthogonally aligned collagen were measured along both axes, in the plane 

of the collagen layers (Figure 4.9). The stress-strain curve of the orthogonally aligned gels 

demonstrated similar result in both axes, with a maximum strength of 5.98 N/mm
2
 in the 

parallel axis, and 5.35 N/mm
2
 in the perpendicular axis. The elastic property of the gels was 

47.8 N/mm
2
 in the parallel axis and 50.7 N/mm

2
 in the perpendicular axis. Conversely, the 

parallel aligned gels showed greater stress-strain levels at rupture when tested in the axis 

parallel to collagen orientation than in the perpendicular axis. They demonstrated a maximum 

strength of 9.38 N/mm
2 

in the parallel axis, and only 2.86 N/mm
2
 in the perpendicular axis. 

The elastic property of the parallel aligned gels was 74.8 N/mm
2
in the parallel axis, and only 

24.1 N/mm
2 

in the perpendicular axis. The parallel axis readings were considerable larger 

than the perpendicular axis readings for these parallel aligned gels. In addition, the 

orthogonally aligned gels demonstrated readings that were approximately three fold greater 

than the readings for the parallel aligned gels in the perpendicular axis. 

 

The mechanical stability of the laminated gels allowed them to be handled and manipulated 

with tweezers, without incurring visible damage. They possessed mechanical properties 

greater than that of the original single layer gels, and greater than that of other collagen 

scaffolds (Cheema et al., 2007), cross-linked gels (Liu et al., 2009), or laminated constructs 

(Nerurkar et al., 2009) currently under development. In addition, their mechanical strength 

and elastic modulus exceeds that of human corneal tissue: 3.81 ± 0.40 N/mm
2
 in tensile 

strength (Zeng et al., 2001) and 3-13 N/mm
2
 in Young’s modulus (Crabb et al., 2006). This 

increased stability may be due in part to interlacing between adjacent orthogonally aligned 

collagen layers that was observed under transmission electron microscopy. 
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Figure 4.9: Mechanical properties of laminated gels. 

(A) Direction of applied tensile load to both parallel and orthogonally aligned 8 layer lamellae gels. 

Yellow arrow show collagen flow direction, red arrows indicate direction of applied force. (B) Stress-

strain curve, with arrows indicating the point of rupture. Average readings for tensile strength (C) and 

elastic modulus (D) of both gels testing both at parallel and at right angles to the flow axis (means ± 

SD, n = 7, * P < 0.05, ** P < 0.01, and *** P < 0.001) (Taken from Tanaka et al., 2011a ). 
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4.5. Conclusions 

 

Type I collagen is ubiquitous and possesses excellent properties for use in tissue engineering. 

This study primarily focused on the ability of collagen fibril organization and structure to be 

manipulated in vitro by altering conditions, such as pH, during its formation. Whilst in vitro 

analysis can highlight the fundamental processes that govern fibrillogenesis, we must be 

careful to observe the limitations of any comparisons made to in vivo collagen assembly. The 

complex arrangement of other stromal cells and extracellular matrix macromolecules creates 

a unique three-dimensional environment that interacts with and influences the forming 

collagen fibrils. This represents a significant spatial system that cannot currently be replicated 

in vitro. Consequently, whilst our engineering method produces biocompatible stromal 

implants with desirable mechanical and optical properties, producing a stromal equivalent 

that effectively mirrors the structural architecture of the host stroma remains a challenge. 

 

Nevertheless, it is clear that the assembly of type I collagen filaments within these gels, can 

be manipulated over a wide pH range. In addition, even minor changes in the environmental 

conditions of the gels (such as pH), dramatically affects the optical and mechanical properties 

of the constructs.  The variety of subfibrillar intermediates that are produced are similar to 

those seen in previous collagen self assembly studies (Harris and Reiber, 2007; Merrett et al., 

2009). 

 

In summary, these simple optically transparent cross-linked collagen gels provide a basis for 

the future production of more complex biomimetic stromal constructs. They have potential 

clinical use as cell or drug carriers, as protective membranes for corneal surface damage, and 

stromal implantation for tissue replacement and regeneration. This study has also developed a 

unique and mass production-friendly processes for obtaining more complex laminated 

collagen gels with improved optical and mechanical properties. This novel method of 

repeated cycles of cross-linking, washing and low temperature drying, significantly improved 

light transmission through the gels. Additionally, the manipulation of collagen orientation, 

and lamina architecture enhanced the mechanical strength of the gels. These gels have 

potential use in the field of tissue engineering and regenerative medicine, including the 

production of stromal equivalent constructs for use in corneal grafting.  
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5. IN VIVO CHARACTERISTICS OF COLLAGEN GEL STROMAL 

EQUIVALENTS 

5.1. Introduction 

 

Opacification of the cornea caused from injury or disease is second only to cataracts as the 

leading causes of blindness worldwide. As such damage is usually irreversible, current 

treatment involves keratoplasty and the use of allografted corneal tissue. However, lack of 

donor tissue and the high rate of transplant rejection, limit the application of this treatment. 

Alternative approaches to these issues have involved using synthetic implants. These 

keratoprosthesis are designed principally to restore a functional level of vision rather than 

facilitate corneal regeneration. There is currently no one accepted keratoprosthesis that can 

effectively act as a corneal substitute. The two most successful implants are the AlphaCor, 

and the Boston KPro. The Boston KPro is a collar button design constructed from medical 

grade polymethylmethacrylate (PMMA). It features a front plate that contains the donor 

corneal tissue, and a back plate perforated with holes that serve to increase its permeability to 

the flow of oxygen and nutrients to the anterior chamber and the cellular component of the 

cornea (Sweeney et al., 1998). The AlphaCor is constructed from a porous and opaque outer 

skirt that provides anchorage to the host tissue, and a transparent central gel region, both of 

which are made from a polymer network of poly-2-hydroxyethyl methacrylate (pHEMA).  

However, these keratoprostheses also suffer from high rejection rates, with 

neovascularisation, stromal melt, and the formation of retroprosthetic membranes 

commonplace, reflective of their low level of biocompatibility. 

 

As an alternative to the use of synthetic polymers, biodegradable scaffolds have been used to 

promote tissue regeneration. Extracellular matrix macromolecules are known to play a role in 

directing cell growth and differentiation during development. This function can then be 

exploited to promote tissue repair and regeneration. As type I collagen is the primary 

constituent of the corneal stroma, representing 70% of the extracellular matrix dry weight, it 

has been widely used in engineering scaffolds for tissue repair and regeneration (Germain et 

al., 1999; Chen et al., 2001; Shimmura et al., 2003). Easily isolated and purified, collagen is 

available in a range of subtypes that possess low toxicity and good cell and tissue 

biocompatibility (Stegman et al., 1987; Kilgman, 1988; Wallace et al., 1988).  
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Early experiments in the 1960's first established the potential of collagen gels for 

implantation. Gels were produced by neutralizing acidic collagen solutions, and injected into 

animal tissue in vivo (Grillo and Gross, 1962). Of particular significance was the observation 

that injecting the collagen gels into living tissue elicited no immune response. This then led 

the way for collagen gels to be used in the in vitro culturing of cells (Elsdale and Bard, 1972). 

In 1985, Stopack et al demonstrated that collagen gels placed with the limb bud of a 

developing chick will be remodelled by the host cells to form natural tissue structures such as 

tendon. This remodelling effect has since proved to be a popular method of producing 

biomimetic constructs by combining the collagen gels with cell populations. Collagen gels 

have been preloaded with stromal cells (Hu et al., 2005), used to support the migration of 

host stromal cells, and used as acellular supports to facilitate the natural repair and 

regeneration of corneal tissue (Li et al., 2003; Liu et al., 2006a, 2006b). 

 

Cross-linked collagen gel scaffolds have been used in the construction of full thickness, 

functioning corneal equivalents (Minami et al., 1993; Griffith et al., 1999; Germain et al., 

1999). However, mechanical instabilities and complications at the graft/host interface still 

remain. More recently, a full thickness corneal equivalent was constructed from a cross-

linked collagen sponge. This scaffold was able to co-culture both epithelial and stromal cells 

when seeded with primary and progenitor cell populations (Vrana et al., 2008). 

 

Combining collagen gels with cross-linking agents such as 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), has produced stable 

biomimetic constructs that demonstrate successful implantation and graft-host integration. 

Recently type III collagen, similar in structure to type I, have also been used to produce 

collagen gels for corneal implantation. These type III gels showed good integration and 

optical transparency 1 year post-implantation, with migration of host stromal cells and nerve 

fibres into the construct (Merrett et al., 2008; Liu et al., 2008). In this study, the chemical 

composition of cross-linked type I collagen gels was altered during their production, to 

determine if varying the amounts of cross-linker and NaOH used, would have an effect on the 

morphology and long term survival of the constructs in vivo. 
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5.2. Methods 

 

5.2.1. Collagen solution preparation 

 

Acid freeze-dried type I porcine atelocollagen powder containing 5% type III collagen 

(Nippon Meat Packers) was dissolved at 4°C in an HCl aqueous solution (pH 3.0) using a 

syringe mixing technique (Liu et al., 2006a, 2006b; Rafat et al., 2008). Centrifugation 

overnight at 3500rpm was used to remove any air bubbles that were present. The pH of the 

collagen solution was then tuned to 3.5 by the addition, in an ice-water bath, of a NaOH 1.0M 

aqueous solution using the same syringe mixing method. 

 

5.2.2. Cross-linking of collagen gels 

 

To create the gels, the collagen solution was syringe mixed with a cross-linking solution of 

EDC /NHS (EDC:NHS = 2:1) until an homogeneous mixture was achieved. The final 

collagen concentration was adjusted to 10% wet weight. 

 

5.2.3. Collagen fibril alignment within the gel 

 

Within 3 minutes of mixing the cross-linking agent with the collagen solution, 0.5 ml of the 

mixture was spread onto a glass slide in a 30mm oval configuration. An elastic film was then 

placed on top, and a roller was used to spread the mixture in a unilateral direction. Silicon 

rubber spacers placed between the glass slide and the elastic film regulated the thickness of 

the gel to 500µm. Incubation for 12 hours at 20 °C and for 12 hours at 37 °C was followed by 

phosphate buffered saline (PBS) washing at 4 °C. 

 

5.2.4. In vivo implantation 

 

Three circular collagen gels with unilateral collagen orientation, 8mm in diameter and 

approximately 135µm thick were implanted into mid-depth stromal pockets of six male New 

Zealand White rabbits (2.0 to 3.5kg; Kitayama Labs Co., Nagano, Japan). This procedure was 

carried out by my colleague and ophthalmic surgeon, Dr Dong Shi at Tohoku Univeristy 

Hospital, Japan. To achieve this, the rabbits were anesthetized intramuscularly with a mixture 

of ketamine hydrochloride (60mg/kg; Sankyo, Tokyo, Japan) and xylazine (10mg/kg; Bayer, 
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Munich, Germany). A 6mm-long circumferential incision was then made at the limbus and a 

stromal pocket created throughout the cornea at mid-stromal depth after which a rolled up gel 

was inserted and unfolded in situ. The following gels were implanted: 30mM of NaOH with 

0.8% EDC concentration, 30mM of NaOH with 0.4% EDC concentration, and 10mM of 

NaOH with 0.8% EDC. Post-operatively, antibiotic medication (Tarivid and Levofloxacin 

ophthalmic ointment) was administered daily. All experimental procedures conformed to the 

ARVO (Association for Research in Vision and Ophthalmology) Statement for the Use of 

Animals in Ophthalmic and Vision Research and to local ethical rules. 

 

5.2.5. Corneal thickness measurements 

 

An ultrasonic pachymeter was used to measure corneal thickness in vivo at regular intervals 

during the post-implantation period. The ultrasonic transducer was pressed onto the corneal 

surface, and five measurements were used to give an average corneal thickness reading. 

 

5.2.6. Histology 

 

After fixation in 4% paraformaldehyde for 24 hours, the samples underwent dehydration in a 

series of graded alcohols: 70%, 95%, 100%, and 100% for 2 hours each. This was followed 

by clearance in histoclear for 2 hours. Three cycles of paraffin wax infiltration were then 

carried out at 60°C for 2 hours each. Following this, the samples were dried and embedded 

into the holding block. 

 

The block was trimmed, and sections were cut at 8μm thick through the central portion of the 

cornea, using an LKB bromma 2218 historange microtome. All sections were mounted on 

individual slides. Slides were then placed into a slide holder, deparaffinised by two repeats of 

5 minutes in Xylene, and rehydrated by 5 minutes in a series of graded alcohols (100%, 90%, 

70%, 50%).  

 

The slides were then stained in haematoxylin for 15minutes, followed by rinsing in (mildly 

alkaline) tap water. Then, counterstaining in eosin for 5 minutes was followed by a few 

seconds in 70% ethanol to remove any excess stain. Following this, dehydration through a 

series of graded alcohols for 5 minutes each (50%, 70%, 90%, 100%,) was carried out. 

Finally the slides went into two repeats of Xylene for 5 minutes, before being mounted with 
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DPX mounting fluid and cover slips. Images were taken on a BZ-9000 Series All-in-One 

Fluorescent Microscope (Keyence, Japan, Osaka). 

 

5.2.7. Transmission electron microscopy 

 

All samples underwent routine processing as described in Chapter 2 ‘General Methods’. 

 

5.3. Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.1: Six month implantation of collagen gels into rabbit intra-stromal pockets.  

The implanted collagen gels were 8mm in diameter and 100-200µm in thickness. 
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Figure 5.2: Rabbit corneal thickness measurements following implantation of collagen gels. 

For each time point, an average reading was taken from three thickness measurements using an 

ultrasonic pachymetry. 

 

 

No evidence of long term inflammation or rejection could be seen in the implanted corneas 

(Figure 5.1). All collagen gel types were well tolerated when implanted into mid-depth rabbit 

corneal intra-stromal pockets. Slit-lamp investigation detected no aberrations within the 

epithelium or endothelium during the period of gel implantation. No neovascularisation or 

immune reaction was observed in any of the eyes studied. The host stroma superficial and 

deep to the implant maintained a normal morphology in all but one case. In Figure 5.3F, 

some oedema can be seen in the anterior region of the stroma above the implant, indicated by 
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the region of paler staining and more loosely packed matrix. Good biocompatibility and 

transparency was seen in all three gel types, even up to 6 months post-implantation (Figure 

5.1). The transparency of the gels was dependant on the amount of cross-linker and NaOH 

used during production. The 10mM/0.8% gel demonstrated the best optical properties, whilst 

under a slit lamp observation the 30mM/0.8% gel was visible due to its lower transparency to 

light (Figure 5.1). 

 

The thickness of the operated corneas was measured in the immediate post-operative period 

by ultrasonic pachymetry (Figure 5.2). There was a significant increase in corneal thickness 

due to the addition of the gel into the stroma and because of the intrusive nature of the 

surgical procedure itself producing some temporary inflammation. The sham-operated cornea 

had a pocket made, but no gel inserted. This cornea measured approximately 150µm thicker 

after surgery indicative of post-operative inflammation and general trauma. However, one 

week after surgery, the control cornea had returned to pre-operative thickness, while the 

corneas containing collagen gels all remained significantly thicker than at pre-implantation 

(Figure 5.2). Following this, over the 6 month period of implantation, a gradual reduction in 

corneal thickness can be observed in the 30mM/0.4% gel and 10mM/0.8% gel implanted 

corneas. Conversely, the cornea containing the 30mM/0.8% gel remained at approximately 

the same thickness as immediately post-implantation over the duration of the 6 month 

implantation period. 

 

The reduction in gel thickness was confirmed by histological analysis (Figure 5.3). Both the 

30mM/0.8% and 30mM/0.4% gels remained prominent in the intra-stromal pockets, even 6 

months after implantation. The 10mM NaOH gel, even at 1 month after implantation, had 

reduced in thickness. By 6 months post-implantation the gel was barely visible, with only a 

small trace remaining indicating the location where the intra-stromal pocket was made. In 

addition, Figure 5.3, images B and C show several host cells that appeared to have migrated 

to within the collagen gel. 
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Figure 5.3: Rabbit corneal cross sections 1 and 6 months post-implantation of collagen gels into 

intra-stromal pockets. 

Corneas were stained with haematoxylin and eosin. Gel conditions are shown as mM of NAOH, 

and % of cross-linker used. Black arrows indicate the posterior surface of the implant. 

1 Month Post-implantation 6 Months Post-implantation 

A Sham-operated E Sham-operated 

30mM, 0.8% 30mM, 0.8% 

H 10mM, 0.8% D 10mM, 0.8% 

30mM, 0.4% G C 30mM, 0.4% 

F B 
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Figure 5.4: Transmission electron micrographs of rabbit corneal stroma 1 and 6 months post-

implantation of collagen gels into intra-stromal pockets.  

Gel conditions are shown as mM of NAOH, and % of cross-linker used. * indicate collagen gel 

implant, Black arrow indicates boundary between host stroma and gel implant. White arrow indicates 

invading host stromal cell. 10mM NaOH, 0.8% EDC/NHS gel was no longer present in the stroma at 

6 months post-implantation. Micrographs are at x 6000 magnification. Scale bar = 500nm. 
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The implanted gels were analyzed in situ by electron microscopy. Host stromal cells could 

clearly be seen having migrated into the collagen gel. This migration was often accompanied 

by the remodelling or digestion of the gels (Figures 5.4). Migration of stromal cells was more 

prevalent in the 10mM/0.8%, and 30mM/0.4% gels. Despite cross-linking the gels during 

their production, their morphological appearance was still able to change after long term 

implantation in the host stroma. The 30mM/0.8% gel showed a greater level of collagen 

fibrillogenesis at 6 months post-implantation compared to 1 month post-implantation. The 

morphology of the gels varied depending on the amounts of NaOH and cross-linker used 

during production. Lower levels of NaOH and cross-linker produced gels with a matrix of 

more loosely associated collagen filaments. As confirmed by histological examination 

(Figure 5.3), under transmission electron microscopy, remnants of the 10mM/0.8% gel were 

observed in the host stroma at 1 month post-implantation (Figure 5.4). However by 6 months 

post-implantation, the collagen gel could not be located. At the boundary zone of the 

30mM/0.4% gel a degree of interlacing could be seen between the gel implant and the host 

stroma. At this interface region, collagen from the gel could be seen interspersed with mature 

collagen fibrils. However in the two 0.8% cross-linked gels, the boundary zone of the gel 

appeared as a straight line, and was occasionally separated from the host stroma, with no 

integration seen between the gel and the stroma. 

 

5.4. Discussion 

 

Several key parameters define the production of collagen gels for use in corneal stroma tissue 

engineering. These include both physical factors such as their mechanical strength and 

survival in vivo, and biological factors such as cell migration and adhesion. The 

biocompatibility of the gel in vivo is an essential criterion for the production of a functioning 

stromal equivalent. An inflammatory response has the potential to not only compromise the 

function of the gel, but also to spread to any transplanted cells. Collagen-based gels are 

commonly used in tissue engineering, in part because naturally derived polymers usually 

exhibit sufficient biocompatibility. The cornea itself is somewhat immune privileged, and can 

subsequently accept allografts, such as the collagen gel used in this study, with minimal 

rejection. In addition, the amino acid composition of atelocollagen shows little variation 

across mammalian species (Angele et al., 2003). Consequently, as seen in this study, it is 

possible to produce collagen gel implants from purified animal collagen for use in tissue 
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engineering. In addition during implantation, taking care not to penetrate the anterior 

chamber also reduces the rate of implant rejection, minimizes the potential risk of intraocular 

infection, and improves the long term stability of the graft (Terry, 2000). 

 

Collagen turnover within the corneal stroma is very slow. However, in response to injury, the 

production of matrix metalloproteinases including collagenases quickly remodels the matrix 

to form opaque scar tissue. Stromal equivalent collagen gels must be able to resist this natural 

process of matrix digestion and remodelling. To achieve this, a frequently used method 

involves cross-linking the collagen molecules to increase both the mechanical strength of the 

gel and its stability in vivo. This study used EDC, a water-soluble carbodiimide, in 

combination with NHS to effectively cross-link the collagen gel by forming a stable amide 

link between the carboxyl group of one collagen molecule and the amine group of another 

NHS increases the efficacy of EDC mediated cross-link formation by reacting with the initial 

cardodiimidecarboxylic acid product (Damink et al., 1996). However, despite undergoing 

cross-linking, the morphology of the 30mM/0.8% gel was still able to change during the 6 

months of implantation. What is not clear is whether this change was due to remodelling of 

the construct by the migrating host stromal cells, or whether collagen fibrillogenesis was still 

able to progress despite the gel being cross-linked. A recent study using similar cross-linked 

collagen gels implanted into pig cornea, demonstrated remodelling of the gel implants by host 

stromal cells, with regeneration of normal stromal extracellular matrix after one year in vivo 

(Liu et al., 2008). 

 

Corneas implanted with the 30mM/0.4% and 10mM/0.8% gels showed a reduction in total 

corneal thickness over the course of the implantation period. It is clear from transmission 

electron microscopy and histological examination that these gels have been digested by host 

stromal cells. Only the gel containing 30mM of NAOH and 0.8% EDC was sufficiently stable 

enough to resist biodegradation. This was due to the greater degree of cross-linking and 

fibrillogenesis it underwent during construction. This level of cross-linking was however, 

detrimental to the gel's optical properties. A possible solution would be to perforate the gel 

with large pores. This may serve to increase light transmission through direct removal of 

some of the slightly opaque gel matrix. But it may also compensate for the fixed nature of the 

gel, by allowing greater access for host cells to migrate within the gel, whilst providing a 

greater surface area for integration into the host stromal matrix. Furthermore, as atelocollagen 

is a naturally derived substance, during production of collagen gels one is able to covalently 
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incorporate certain ligands and other extracellular matrix molecules in order to stimulate cell 

growth, migration or adhesion. For example, covalently binding the laminin pentapeptide 

motif YIGSR has been found to stimulate nerve growth into, and epithelial cell adhesion and 

proliferation across the surface of implanted collagen gels (Li et al., 2005; Duan et al., 2007). 

The addition of ligands that encourage stromal cell proliferation and migration within the 

matrix of the gel would complement the production of a perforated collagen gel into which 

they can gain easier access. 

 

The oedema seen in Figure 5.3F is affecting the anterior portion of the cornea that had the 

30mM/0.8% gel implanted. No swelling was observed in any of the corneas containing the 

other gel types. The more advanced fibrillogenesis and cross-linking that this gel possesses 

may have also affected its permeability to water and nutrients. Corneal epithelial nutrition is 

reliant on the diffusion of metabolites, primarily glucose, through the stroma from the 

aqueous humour. The diffusion of glucose through the implant is directly dependant on the 

diffusion coefficient of the gel, and inversely proportional to the thickness of the implant 

(McCarey and Schimidt, 1990). The gel's increased resistance to digestion resulted in it 

maintaining its original thickness whilst in vivo. Consequently, this may then have reduced its 

permeability to glucose compared to the other, thinner implants. Improving the implants 

permeability to glucose could be achieved by increasing the water content of the gels. 

However, an increase in water content would detrimentally affect other properties of the gel, 

such as their mechanical stability. Despite the odema seen by histological examination, no 

other pathological signs were seen that might indicate reduced nutrient diffusion. Any 

disruption of the flow of nutrients to the epithelium would result in stromal thinning and the 

formation of epithelial and stromal ulcerations anterior to the implant (Cardona et al., 1964; 

Maurice et al., 1969; Sweeney et al., 1998). Histological examination of the epithelium and 

anterior stroma revealed no pathologies other than a slight swelling of the tissue, suggesting 

that the implant had sufficient permeability to glucose. 

 

5.5. Conclusions 

 

Previous in vivo studies have shown that cross-linked collagen gels possess satisfactory 

biocompatibility for integration into stromal tissue and re-growth of host epithelial cells (Liu 

et al., 2006a, 2006b, 2008; Merrett et al., 2009). Our findings support the potential use of 

collagen based constructs for clinical use as corneal stromal implants. The enhanced stability 
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of the 30mM NaOH, 0.8% EDC cross-linked gel within the intra-stromal pocket suggests that 

higher cross-linker levels, when coupled with greater levels of collagen fibrillogenesis, delay 

the digestion or degradation of the construct. However, the detrimental effect that these levels 

have on transparency of the gel must be taken into consideration. In addition, odema in the 

anterior stroma suggests that the most stable gel (30mM of NaOH, 0.8% EDC/NHS) may act 

as a barrier, preventing the endothelial pump from properly regulating anterior stromal 

hydration. 

 

Further work will be aimed at introducing other macromolecules such as proteoglycans and 

other collagen types with a view to enhancing the optical and mechanical properties of the 

gels, and improving their long term in vivo characteristics. The production of more 

biomimetic collagen gels will also be investigated, utilizing orthogonally stacked layers of 

aligned collagen. 

 

These optically transparent cross-linked collagen gels provide a basis for the future 

production of more complex biomimetic stromal constructs. They have potential clinical use 

as cell or drug carriers, as protective membranes for corneal surface damage, and stromal 

implantation for tissue replacement and regeneration. 
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6. CONCLUDING DISCUSSION 

 

The focus of this study was the engineering of a corneal stromal equivalent from 

predominantly natural biological materials. By studying the developmental period during 

which the cornea undergoes the most radical structural and functional changes, this 

information could then be applied to the production of a stromal equivalent for therapeutic 

treatments. Chapter 3 centres on the development of the corneal stroma, investigating how 

the collagenous matrix is constructed naturally. Transmission electron microscopy was used 

to examine how collagen is deposited into the extracellular matrix, and the method by which 

it gains its spatial orientation. Three-dimensional tomography was then used to observe the 

interactions between collagen and other extracellular matrix components, namely 

proteoglycans, and to examine how these interactions changed as development progressed.  

 

Collagen fibrillogenesis has been shown to be a complex process that occurs both 

intracellularly and extracellularly (Trelstad, 1982). What is now evident is that cellular 

control over collagen fibrillogenesis also extends into the extracellular processes. As in 

developing tendon (Canty and Kadler, 2005), keratocytes in the developing cornea have a key 

role in the assembly and deposition of collagen fibrils. 

 

During the developmental time period studied, the keratocyte plasma membrane was seen to 

be highly convoluted. Collagen fibrils were often seen in close association with the 

keratocyte surface, within the recesses and compartments formed by the convoluted plasma 

membrane. It has been hypothesized that collagen excretion into the extracellular matrix 

occurs via membrane bound tunnels know as 'fibripositors' (Canty et al., 2004). The lateral 

fusion of surface recesses creates larger compartments capable of containing fibril bundles, 

indeed the fusion of small fibril bundles into a larger bundle may be facilitated by these 

cellular compartments. In tendon, fibripositor are seen aligned along the long axis of the cell, 

which in turn is aligned along the long axis of the tendon. Consequently, collagen extruded 

from the fibroblast fibripositor gains positional information and is correctly orientated within 

the extracellular matrix (Canty et al., 2004). This process is also thought to occur in corneal 

keratocytes, with the membrane bound channels aligned along the two orthogonal axes of the 

cell, thus conferring orthogonality to the collagen being synthesized (Birk and Trelstad, 1984). 

However, recent transmission electron microscopy of the chick cornea around developmental 
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day 14 revealed cell-associated collagen running in multiple directions within a loose stroma 

(Young et al., 2007). 

 

The fibripositor model implies that the production and deposition of collagen fibrils is 

controlled by individual cells. Compartmentalization of the extracellular space allows for 

direct connection between the intracellular and extracellular processes. The orientation and 

topography of these cell membrane bound compartments confers spatial orientation to the 

synthesized collagen, as well as facilitating the fusion of fibril bundles into collagen lamellae.  

 

Having initially observed the assembly of collagen fibril bundles, and the involvement of the 

keratocyte in this process, Chapter 3 continued to study the developing corneal stroma by 

going within the fibril bundles to observe the relationship between collagen and 

proteoglycans in the developing stroma. 

 

Considerable research has gone into understanding the importance of regular collagen fibril 

organisation to the transparency of the cornea (Maurice, 1957; Hart and Farrell, 1969; Farrell, 

1994). However, the mechanism which this level of organisation is achieved and maintained 

in the corneal stroma is still not widely understood. Proteoglycans are known to play a key 

role in collagen fibril assembly, mediating collagen fibril size, spacing and organization 

(Scott, 1985; Scott, 1988). Routine transmission electron microscopy of proteoglycan 

organisation has revealed two distinct populations of proteoglycans in the developing corneal 

stroma (Bianco et al., 1990; Blochberger et al., 1992; Li et al., 1992; Funderburgh et al., 1997; 

Corpuz et al., 1996). However, examining proteoglycan structure and organisation using two-

dimensional microscopy may lead to inaccuracies (Scott, 1992). Utilizing three-dimensional 

tomography gave a unique insight into how proteoglycans and collagen fibrils interact within 

fibril bundles in the developing corneal stroma. 

 

A large range in proteoglycan width and length was observed throughout the developmental 

days studied. Short, thin proteoglycans were observed bridging the interfibrillar gap between 

adjacent neighbouring fibrils. Longer, thicker proteoglycans could be seen passing around 

adjacent fibrils to interconnect more distant neighbouring fibrils. Previous studies have 

identified these large proteoglycans to be chondroitin sulphate/dermatan sulphate 

proteoglycans (Scott, 1992; Liles et al., 2010). The shorter proteoglycans are likely to be 

keratan sulphate proteoglycans such as keratocan.  

http://www3.interscience.wiley.com/cgi-bin/fulltext/118808578/main.html,ftx_abs#b10#b10
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The sizes of the Cu
-
 and WO4

2-
 ions used to stain for proteoglycans are on a picometer scale, 

and are therefore unlikely to be the cause behind the presence of these large proteoglycans. 

The large range in proteoglycan sizes may be the result of self-assembly or aggregation of 

individual proteoglycan chains. The exact configuration of these complexes has not been 

established, although potential structures have been modelled (Knupp et al., 2009; Lewis et 

al., 2010). In addition, the mechanism by which these multimers form is not clear, and 

whether other extracellular matrix molecules have a facilitating role cannot be ruled out 

(Cooper et al., 2006). Within the corneal stroma of knock-out mice lacking the keratan 

sulphotransferase enzyme, large chondroitin sulphate/dermatan sulphate proteoglycan 

complexes have been observed, resulting from increased lateral and end-to-end aggregation 

of this proteoglycan type (Parfitt et al., 2011). Consequently, a regulatory mechanism must 

exist in the normal cornea in order to produce the more discrete proteoglycan multimers that 

have been observed in the murine, bovine, and now developing avian corneal stroma.  

 

Previous studies have suggested that proteoglycans are organised into a symmetrical six-fold 

arrangement around a central collagen fibril (Farrell and Hart, 1969; Müller et al., 2004). 

However, the three-dimensional reconstructions revealed no specific organisation or set 

pattern of orientation. Large proteoglycans were observed passing around adjacent fibrils to 

interconnect more distant neighbouring fibrils. Whilst, smaller proteoglycans were frequently 

observed bridging interfibrillar gaps, often at regular axial positions - this is in agreement 

with the theory of specific proteoglycan binding regions along the length of a collagen fibril 

(Scott and Haigh, 1985; Young, 1985; Meek et al., 1986; Scott and Bosworth, 1990). A small 

number of proteoglycans were also seen running along the long axis of the fibril. These 

results are consistent with three dimension reconstructions of collagen and proteoglycan 

organisation in both bovine and murine corneal stroma (Lewis et al., 2010; Parfitt et al., 

2010). Overall these findings imply that the proteoglycans and collagen fibrils of the corneal 

stroma may have a more dynamic relationship than previously thought. This research 

suggests that the corneal stroma is a more fluid system, where the organisation and 

interactions of these two extracellular matrix components are dynamic and flexible. 

 

One key role of proteoglycans in the corneal stroma is the maintenance of collagen 

interfibrillar spacing. The previously suggested model of six-fold symmetrical proteoglycan 

organisation would provide a simple answer as to how this role is carried out, whereby each 
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fibril is connected to its adjacent neighbouring fibril by a short proteoglycan, forming a 

lattice-like configuration. However, three-dimensional reconstructions of bovine, murine and 

avian corneal stroma have shown this six-fold theory of organisation to be incorrect. 

Consequently, the method by which proteoglycans maintain collagen fibril spacing has yet to 

be established. Dispite the lack of local proteoglycan organisation, long range regulation of 

interfibrillar spacing may be maintained through a combination of attractive and repulsive 

forces generated by the presence of negatively charged proteoglycans in the interfibrillar 

region (Lewis et al., 2010; Parfitt et al., 2010). The negatively charged sulphate groups 

present on a glycosaminoglycan chain would attract positively charged ions into the 

interfibrillar space. The resulting osmotic pull would create an increase in osmotic pressure in 

the area surrounding the proteoglycan, generating a repulsive force between the adjacent 

collagen fibrils.  

 

In order to restrict the expansion of interfibrillar spacing, proteoglycans must generate an 

attractive force capable pulling adjacent fibrils together. Proteoglycans spanning the 

interfibrillar gap would serve to physically tether adjacent fibrils together. In addition the 

thermal motion of the glycosaminoglycan chains, resulting from constant bombardment by 

other molecules and ions, would cause retraction of the two terminal ends of the 

proteoglycans. As the proteoglycans are bound to the collagen fibrils via their protein core, 

the fibrils would experience an attractive force, pulling them closer together. Equilibrium of 

both these repulsive and attractive forces generated by the proteoglycans would serve to 

maintain collagen interfibrillar spacing, enabling the transmission of light through the cornea. 

The magnitude of these generated forces is dependent on several characteristics of the 

proteoglycans present. Sulphation pattern, charge density, glycosaminoglycan chain length 

and the degree of self-aggregation would all affect the magnitude of the forces involved, and 

therefore influence collagen fibril spacing. Consequently, the proportions of different 

proteoglycan subtypes present in the stroma would be an important determining factor in 

establishing interfibrillar spacing. This may explain the varying proteoglycan compositions 

and interfibrillar spacing observed in the corneal stromas of different species (Gyi et al., 1988; 

Scott and Bosworth, 1990). 

 

Having examined how collagen is organised in the corneal stroma, and the significance of its 

interactions with proteoglycans, attempts were made to utilize similar biological materials in 

the construction of an artificial corneal stroma. Chapters 4 and 5 are an attempt to tissue 
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engineer a stromal equivalent using type I collagen, and to record its structural and functional 

properties both in vitro and in vivo (following implantation into rabbit corneal stroma). A 

range of analytical tools were used to determine the optical, mechanical and morphological 

properties of the collagen constructs including transmission electron microscopy, polarized 

light microscopy, histology, spectrophotometry and mechanical testing. This fundamental 

study is then open to further investigation as future research attempts to improve the 

functional properties of the constructs. 

 

Disease or injury to the cornea can result in opacification and, in extreme cases, causes 

irreversible blindness. Affecting over 10 million people worldwide (The Vision Share 

Consortium of Eye Banks, USA) the only treatment for corneal blindness is transplantation 

using donated corneal tissue. An alternative option to donated corneal tissue is the use of a 

manufactured or engineered substitute that attempts to recapitulate the structural and 

functional properties of a healthy human cornea. Current attempts at manufacturing such 

replacements can be divided into two broad categories. The first approach involves the 

production of a keratoprosthesis - a synthetic polymer which replaces the damaged tissue and 

is designed to recreate the functional properties of the cornea. They have the advantage of 

reduced risk of disease transmission, consistent availability, and lack of postoperative 

remodelling. The second approach involves tissue engineering corneal equivalents from more 

natural biological materials. These constructs are designed to mimic the structure and 

properties of normal corneal tissue. They can then be implanted into the cornea to either 

replace damaged or diseased tissue, or to facilitate the repair and regeneration of healthy 

corneal tissue by the host's own cells. Whilst these two approaches are fundamentally quite 

different, the criteria for replicating proper corneal function are common to both. They must 

be optically transparent, mechanically strong, and biocompatible. They must also possess a 

functioning epithelium or support re-epithelialisation, be permeable to the diffusion of 

nutrients and gases, and promote re-innervation. 

 

Currently, there are numerous approaches being developed based on utilizing natural 

biological materials with or without cellular assistance, in order to tissue engineer a construct 

capable of replacing or aiding in the repair of damaged and disease corneal tissue. Whilst 

extensive research has been focused on the inclusion of a cellular component into engineered 

constructs (Minami et al., 1993; Germain et al., 1999; Griffith et al., 1999), there has also 

been considerable breakthroughs in the production of collagen based scaffolds which, when 
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implanted, become populated by migrating host cells in vivo (Liu et al., 2008; Merrett et al., 

2008). A third approach involves the isolation and expansion of corneal cell types in vitro 

(Du et al., 2007). These cell populations can then be manipulated into forming cell sheets for 

transplantation (Nishida et al., 2004), or into expressing stromal extracellular matrix in vitro 

in an attempt to construct a corneal equivalent for use in implantation. The addition of 

ascorbic acid to a cultured population of keratocytes induces an increase in collagen synthesis 

- the primary constituent of the corneal stroma and of most engineered corneal constructs 

(Grinnell et al., 1989). The cultured keratocytes then produce fibrous sheets that can be 

combined to form a stromal equivalent, or seeded with a surface layer of epithelial cells. 

 

Cultured corneal cells have also been used in conjunction with engineered stromal constructs. 

In 1994, Zieske et al developed a full thickness rabbit corneal equivalent using rabbit 

epithelial cells and keratocytes, and immortalized mouse endothelial cells grown around a 

three-dimensional type I collagen gel matrix. They were able to confirm the presence of 

anchoring fibrils, hemidesmosomes, and a continuous epithelial basement membrane 

following culture of their full thickness construct. Similarly, a full thickness bovine corneal 

equivalent was constructed from isolated bovine corneal cells in a collagen gel culture 

(Minami et al 1993). 

 

Using a similar method, Griffith et al (1999) constructed the first full thickness human 

corneal equivalent containing all three layers. Immortalized human corneal cells were 

characterized then seeded onto a glutaraldehyde cross-linked, chondroitin sulphate-collagen 

gel matrix. The morphological and physiological properties of the constructs were shown to 

be similar to that of normal corneal tissue, including stromal swelling, gene expression, 

wound healing response, transparency, and nerve re-growth. 

 

Recently, collagen gels have been used in phase I clinical trials as cell-free corneal substitutes 

to aid in the regeneration of stromal tissue (Fagerholm et al., 2009). Chondroitin sulphate-

collagen type III gels crosslinked with EDC/NHS were implanted into the anterior cornea of 

10 patients who had significant loss of vision. After an anterior lamellar keratoplasty, the 

implants were sutured into place and antibiotics were administered for a 5 week post-

operative period. 2 years post-implantation the constructs remain well integrated, populated 

by host stromal cells and innervated by nerve re-growth. The gels showed good transparency, 
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with re-epithelialisation over the surface of the constructs occurring in all patients, and the 

restoration of functioning tear films (Fagerholm et al., 2010). 

 

The hydrophilic properties of collagen gels, as well as their high level of transparency and 

permeability to nutrients, make them ideally suited for use in engineering corneal equivalents. 

However, due to their relatively poor mechanical properties, cross-linking is necessary in 

order to make the constructs robust enough to withstand implantation, and to function as 

corneal equivalents. In addition, cross-linking will also slow the rate of digestion by host 

collagenases to a more desirable level for tissue regeneration. However, cross-linking type I 

collagen gels was found to have a detrimental effect on their transparency. Consequently only 

low levels of cross-linker were used, and the pH of the gels was increased. A more advanced 

stage of fibrillogenesis in the gels would then compensate for the lower cross-linking levels.  

 

By increasing the pH of the gels a range of subfibrillar intermediates could be observed, from 

a largely disorganized matrix of loose collagen, through intermittent molecular aggregations, 

to the formation of progressively condensing filamentous structures (Chapter 4). At extreme 

levels of fibrillogenesis, short lengths of banded collagen fibrils could be seen within the gel 

matrix. However, as fibrillogenesis progressed, the increase in thickness of these aggregating 

filaments, coupled with a more heterogeneous matrix, led to a reduction in gel transparency. 

Establishing the correct balance between cross-linker levels and the degree of fibrillogenesis 

within the gels was key to constructing a transparent and mechanically stable collagen gel. 

 

A range of clinical suitable gels, demonstrating good transparency and mechanical strength, 

were implanted into rabbit cornea intra-stromal pockets (Chapter 5). Only those gels which 

had undergone the higher degree of cross-linking survived for 6 months implantation period, 

the mechanically weaker gels were digested in vivo.  

 

Consequently, future work is being focused on increasing the mechanical stability of the 

collagen gels without having to rely on extensive cross-linking or fibrillogenesis which would 

be detrimental to the gel transparency. One such method involved producing thinner collagen 

gels which could be stacked orthogonally, in an attempt to recapitulate the natural corneal 

architecture and to improve the mechanical properties of the gels (Chapter 4). These laminate 

gels demonstrated greater mechanical stability than the uniformly aligned gels that were used 
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during the in vivo implantation (Chapter 5). Moreover, their mechanical properties exceed 

that of other crosslinked collagen gels or scaffold, and even that of human corneal tissue. 

 

Alternatively, introducing other elements which may control and limit fibril diameter would 

allow fibrillogenesis to progress further, without negatively impacting on the gel transparency. 

This would increase the mechanical stability of the gel, without the need for extensive cross-

linking. Type V collagen is known to have a mediating role in collagen fibrillogenesis, 

naturally forming heterotypic fibrils with collagen type I in the corneal stroma, limiting fibril 

diameter by inhibiting the addition of additional collagen molecules. Proteoglycans are 

known to have a similar effect. The addition of either of these extracellular matrix 

components may be beneficial to the production of an effective corneal stromal equivalent. 

Previous unpublished data revealed that the addition of commercially available 

glycosaminoglycan chains such as chondroitin sulphate, dermatan sulphate and hyaluronic 

acid only served to decrease the transparency of the gels. However, future work may involve 

utilizing naturally expressed proteoglycans from cultured or implanted cell populations 

(Funderburgh et al., 1996; Long et al., 2000). 

 

Modifying the predominant collagen type used in constructing a collagen gel may affect its 

transparency and mechanical properties. As discussed previously, a team led by Griffith have 

recently developed a stromal substitute using crosslinked chondroitin sulphate-collagen type 

III gels (Fagerholm et al., 2009). They reported that the smaller diameter type III fibrils 

resulted in improved transparency, whilst the greater amount of hydroxyproline residues 

present in type III collagen molecules led to increased intermolecular hydrogen bonding and 

consequently greater mechanical stability over type I collagen gels (Liu et al., 2008). 

 

Collagen gel based constructs are now commonly used in the production of corneal 

equivalents of a sufficient quality to be suitable for implantation into animal models, and in 

some cases into humans (Liu et al., 2006a; Fagerholm et al., 2009). However, the long term 

characteristics of these gels are still unknown. Research is now focused on improving the 

morphological and physiological properties of corneal equivalents to more closely match the 

structural and functional characteristics of a healthy human cornea. Combining different 

methods of cross-linking, such as using y-irradiation and carbodiimide-based cross-linking 

are being investigated as potential means to increasing the mechanical stability of collagen 
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gels whilst still providing access into the construct for migrating stromal cells (Griffith et al 

2002).  

 

Optimizing the properties of engineered corneal equivalents may vary depending on the 

intended application of the construct. In vitro applications, such as tissue models, may not 

require a full thickness corneal equivalent containing all three layers. For example, 

investigating the link between mechanical stimuli and extracellular matrix organisation would 

require only the stroma to be replicated (Petroll et al., 2004; Karamichos et al., 2007). 

Artificial constructs can also be used in the advancement of surgery technology, whereby a 

realistic corneal equivalent can be used in place of corneal tissue, which is of limited 

availability. Collagen gels have a potential use as stromal equivalents for developing and 

training with new surgical tools and techniques. The constructs developed in Chapter 4 are 

now being used as a practice material for a newly developed tool designed for DSEK surgery. 

 

Engineered corneas may also have other uses in vivo, for example in promoting wound 

healing. If used as a temporary dressing, the construct would not need to integrate with the 

host cornea. It would serves to protect the wound, whilst promoting host cell migration and 

tissue repair through the secretion of specific growth and signalling factors. Engineered skin 

grafts have proved effective in treating skin wounds, and have been shown to accelerate the 

healing process when impregnated with growth factors (Kawai et al., 2000). 

 

Whilst considerable research has gone into the production of synthetic keratoprotheses, 

current attempts still demonstrate adverse side effects with failure still commonplace. 

Recently however, focus has shifted towards tissue engineering of corneal equivalents. The 

significant progress being made in this field of research suggests that these constructs may, in 

the near future, provide a new approach to the treatment of corneal injury and disease. 
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APPENDICES 

 

Asn  Asparagine 

CO2  Carbon Dioxide 

COO
-
  Carboxylate ion  

Cu
-
   Copper ion 

DSEAK Descemet's stripping endothelial keratoplasty 

EDC  1-ethyl-3-(3 dimethyl aminopropyl) carbodiimide 

FACIT  Fibril associated collagens with interrupted triple helices 

Gly  Glycine 

HCl  Hydrochloric Acid 

K
+  

Potassium ion 

kDa  Kilodalton  

MCD-I  Macular corneal dystrophy type I 

MgCl2  Magnesium Chloride 

ml  Millilitre 

mm  Millimetre    

mM  Millimole 

M  Moles 

Na
+  

Sodium ion 

NaOH  Sodium hydroxide 

NH2  Ammonia 

NHS  N-hydroxysuccimide  

nm  Nanometre 

PBS  Phosphate buffered saline 

PEG  Poly ethylene glycol 

PO4
-
   Phosphate ion 

Ser  Serine 

SLRP  Small leucine-rich proteoglycans 

SO4
-  

Sulphate ion 

Thr  Threonine 

WO4
2-

  Tungsten oxide ion 

µL  Microlitre 

μm  Micrometer 
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Chemicals      Supplier 

 

Acid freeze-dried type I porcine atelocollagen Nippon Meat Packers/CosmoBio Co. Ltd 

Tarivid (ofloxacin) ophthalmic ointment  Santen, Japan 

Levofloxacin ophthalmic ointment    Santen, Japan 

Araldite Monomer CY212    TAAB/Agar Scientific 

BDMA Accelerator     TAAB/Agar Scientific   

Chloroform       TAAB/Fischer 

Colloidal gold (10nm)     BB International 

Cuprolinic blue      BDH 

DDSA Hardener     TAAB/Agar Scientific 

DPX mounting fluid     TAAB 

EDC       Wako pure chemicals, Japan/Fischer 

Eosin       TAAB 

Ethanol      TAAB/Sigma-Aldrich 

Ethylene dichloride      Sigma-Aldrich 

2.5% Glutaraldehyde      TAAB/Agar Scientific 

Haematoxylin      TAAB 

Ketamine hydrochloride     Sankyo, Tokyo, Japan 

Lead nitrate      TAAB/Agar Scientific 

Magnesium chloride      TAAB 

NHS        Thermo science, USA/Acros Organics 

1% Osmium tetroxide     TAAB 

Paraformaldehyde      Sigma 

Phosphototungstic acid    TAAB 

Polyetherimide granules    Goodfellow 

Propylene oxide     TAAB/Agar Scientific 

Sodium acetate     TAAB 

Sodium cacodylate     TAAB 

Sodium citrate      TAAB/Agar Scientific 

Sodium tungstate     TAAB 

Uranyl acetate      TAAB/BDH 

Xylazine       Bayer, Munich, Germany 

Xylene       TAAB 
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Equipment      Supplier 

 

Biorevo BZ-9000 Fluorescent Microscope  Keyence, Japan 

Coated microscope slides     TAAB 

Diamond knife      Diatome 

EM UC6 Microtome     Leica 

EMKMR2 glass cutter    Leica 

EZ Test series Universal Testing Instrument   SHIMADZU, Japan 

Glass for knives     Leica 

2218 Historange microtome    LKB bromma 

H7600 Transmission electron microscope  Hitatchi 

JEM1010 Transmission electron microscope  Jeol 

Kodak MegaPlus 1.4/digital CCD camera  Gatan 

Leur-lock syringes     Terumo 

Mesh grids      TAAB 

ORIUS SC1000 CCD camera    Gatan 

Slot grids (2mm x 1mm)     TAAB 

Ultracut Microtome      Reichart-Jung 

UV/vis-spectrophotometer     SHIMAZU, Japan  

T-shaped stopcock valves    Terumo/The West Group 
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8.1. Appendix 1 

Proteoglycan dimension measurments in the developing avian corneal stroma. 

 
Proteoglycan length and width measurements were calculated using a known pixel size of 0.33nm 

and Fiji software. 10nm gold fiducial markers were used for calibration. Measurements were 

taken from a transverse section micrograph, and were restricted to those proteolgycans whose 

whole length was contained within the section. 

 

        

Length (pixels) Width (pixels) Length (nm) Width (nm) 

49.396 12.806 16.30068 4.22598 

107.87 14.56 35.5971 4.8048 

176.59 19.142 58.2747 6.31686 

68.118 15.232 22.47894 5.02656 

65.054 19.799 21.46782 6.53367 

157.277 18.088 51.90141 5.96904 

117.047 14.56 38.62551 4.8048 

151.605 20.591 50.02965 6.79503 

123.369 21.633 40.71177 7.13889 

109.636 17.205 36.17988 5.67765 

129.8 21.633 42.834 7.13889 

64.498 16.492 21.28434 5.44236 

49.193 21.26 16.23369 7.0158 

107.517 20.881 35.48061 6.89073 

109.836 21.633 36.24588 7.13889 

212.038 24.083 69.97254 7.94739 

142.338 16.492 46.97154 5.44236 

82.098 16.125 27.09234 5.32125 

60.729 15.232 20.04057 5.02656 

89.889 14 29.66337 4.62 

86.371 14.56 28.50243 4.8048 

74.243 22.361 24.50019 7.37913 

65.115 14.422 21.48795 4.75926 

63.246 18.868 20.87118 6.22644 

84.853 22 28.00149 7.26 

154.402 21.541 50.95266 7.10853 

142.239 19.698 46.93887 6.50034 

128.577 16.492 42.43041 5.44236 

42 14.3 13.86 4.719 

120.416 25.06 39.73728 8.2698 

76.368 14.142 25.20144 4.66686 

77.279 22 25.50207 7.26 

115.815 18.439 38.21895 6.08487 

50.636 14.56 16.70988 4.8048 

146.055 17 48.19815 5.61 

Developmental Day 12 
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Length (pixels) Width (pixels) Length (nm) Width (nm) 

137.605 19.698 45.40965 6.50034 

84.095 20 27.75135 6.6 

100.319 20 33.10527 6.6 

104.938 17.088 34.62954 5.63904 

84.38 13.416 27.8454 4.42728 

86.833 21.633 28.65489 7.13889 

171.593 26 56.62569 8.58 

111.212 20.591 36.69996 6.79503 

70 20.396 23.1 6.73068 

120.416 20.396 39.73728 6.73068 

77.897 20 25.70601 6.6 

90.355 19.799 29.81715 6.53367 

121.606 25.06 40.12998 8.2698 

60.465 15.62 19.95345 5.1546 

141.676 23.324 46.75308 7.69692 

103.73 23.409 34.2309 7.72497 

108.849 26.833 35.92017 8.85489 

83.187 19.698 27.45171 6.50034 

144.014 28.636 47.52462 9.44988 

83.522 14.142 27.56226 4.66686 

83.952 18.974 27.70416 6.26142 

107.464 24.739 35.46312 8.16387 

186.507 33.541 61.54731 11.06853 

101.823 19.799 33.60159 6.53367 

211.849 22.361 69.91017 7.37913 

36.878 16.125 12.16974 5.32125 

51.884 11.662 17.12172 3.84846 

52.345 16.971 17.27385 5.60043 

58.31 18 19.2423 5.94 

104.48 26.683 34.4784 8.80539 

145.121 20.396 47.88993 6.73068 

119.867 26.077 39.55611 8.60541 

101.863 18.439 33.61479 6.08487 

130.43 19.698 43.0419 6.50034 

79.624 14.56 26.27592 4.8048 
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Length (pixels) Width (pixels) Length (nm) Width (nm) 

169.706 18.439 56.00298 6.08487 

168.012 30.067 55.44396 9.92211 

149.345 26.306 49.28385 8.68098 

113.278 16.971 37.38174 5.60043 

82.873 16.125 27.34809 5.32125 

71.218 17.889 23.50194 5.90337 

108.812 18.974 35.90796 6.26142 

115.447 16.125 38.09751 5.32125 

120.88 21.26 39.8904 7.0158 

102.956 17.889 33.97548 5.90337 

75.71 16.125 24.9843 5.32125 

188.997 23.409 62.36901 7.72497 

77.795 21.633 25.67235 7.13889 

116 18.439 38.28 6.08487 

176.433 20.881 58.22289 6.89073 

66.483 18.439 21.93939 6.08487 

129.321 25.06 42.67593 8.2698 

141.484 21.541 46.68972 7.10853 

125.3 16 41.349 5.28 

109.636 20 36.17988 6.6 

114.63 20.591 37.8279 6.79503 

131.045 18 43.24485 5.94 

182.242 32.802 60.13986 10.82466 

123.968 24.739 40.90944 8.16387 

65.054 19.799 21.46782 6.53367 

133.062 22.361 43.91046 7.37913 

181.511 18.868 59.89863 6.22644 

129.273 19.71 42.66009 6.5043 

217.34 23.808 71.7222 7.85664 

98.162 21.414 32.39346 7.06662 

78.355 18.372 25.85715 6.06276 

119.706 18.439 39.50298 6.08487 

76.026 21.26 25.08858 7.0158 

169.158 30.284 55.82214 9.99372 

214.568 32.807 70.80744 10.82631 
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8.2. Appendix 2 

Publications 

 

Duncan T, Tanaka Y, Shi D, Kubota A, Quantock A J, Nishida K (2010) Flow manipulated, 

cross-linked collagen gels for use as corneal equivalents. Biomaterials 31 (34) 8996-9005. 

Tanaka Y, Baba K, Duncan T J, Kubota A, Asahi T, Quantock A J, Yamato M, Okano T and 

Nishida K (2011a) Transparent, tough collagen laminates prepared by oriented flow casting, 

multi-cyclic vitrification and chemical cross-linking. Biomaterials 32 (13) 3358-3366. 

Tanaka Y, Kubota A, Matsusaki M, Duncan T, Hatakeyama Y, Fukuyama K, Quantock A J, 

Yamato M, Akashi M and Nishida K (2011b) Anisotropic mechanical properties of collagen 

hydrogels induced by uniaxial-flow for ocular applications. J Biomater Sci Polym Ed 22 (11) 

1427-1442. 

 


