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Highlights
Anovelmathematicalmodel of AIDS-associatedKaposi sarcoma: analysis and optimal control
RF Kaondera-Shava,E Lungu,B Szomolay

• A new mathematical model of AIDS-associated Kaposi sarcoma is presented which incorporates the effect of
viral loads in the proliferation terms of the immune cell populations

• We distinguish between weak and strong viral source terms – the latter accounting for non-adherence to HAART
for example. These scenarios are able to capture and predict potential outcomes of AIDS-KS

• Rigorous stability analysis and optimal control analysis is presented; the latter shows that combined antiretroviral
therapy is able to remove the viral reservoirs efficiently

• The results suggest early treatment for HIV-1 in order tomaintain low viral load and hence preventingAIDS-related
KS
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ABSTRACT
Kaposi sarcoma (KS) has been the most common HHV-8 virus-induced neoplasm associated
with HIV infection. Although the standard KS therapy has not changed in 20 years, not all cases
of KS will respond to the same therapy. The goal of current AIDS-KS treatment modalities is to
reconstitute the immune system and suppress HIV-1 replication, but newer treatment modalities
are on horizon. There are very few mathematical models that have included HIV-1 viral load
(VL) measures, despite VL being a key determinant of treatment outcome. Here we introduce
a mathematical model that consolidates the effect of both HIV-1 and HHV-8 VL on KS tumor
progression by incorporating low or high VLs into the proliferation terms of the immune cell
populations. Regulation of HIV-1/HHV-8 VL and viral reservoir cells is crucial for restoring a
patient to an asymptomatic stage. Therefore, an optimal control strategy given by a combined
antiretroviral therapy (cART) is derived. The results indicate that the drug treatment strategies
are capable of removing the viral reservoirs faster and consequently, the HIV and KS tumor
burden is reduced. The predictions of the mathematical model have the potential to offer more
effective therapeutic interventions based on viral and virus-infected cell load and support new
studies addressing the superiority of VL over CD4 cell count in HIV pathogenesis.

1. Introduction
Kaposi sarcoma (KS) is a cancer causedHuman herpesvirus-8 (HHV-8), also known asKaposi’s sarcoma-associated

herpes virus (KSHV), a virus which is usually transmitted sexually, via blood transfusion, organ transplant or saliva
[38, 46]. Appearance of the cancer can be in several parts or a specific part of the body [43]. KS remains the most
common cancer in sub-Sahara Africa and the second most common cancer in HIV-infected patients worldwide [26].
Infection with HIV afflicts approximately 37.9 million people worldwide (end 2018) [47] and results in impaired
immune responses which may affect defenses against pathogens [48]. Consequently, the highest risk group to acquire
KS is patients with suppressed immune systems [7, 23]. Despite the introduction of highly active antiretroviral therapy
(HAART), KS still continues to be diagnosed in HIV-infected patients [7]. The distribution of KS is concentrated in
sub-Sahara Africa where the heaviest burden of HIV-AIDS is concentrated [7, 26]. Since HIV is an immunosuppressive
virus, it promotes the development of KS in individuals dually infected with both viruses, HIV-1 and HHV-8, a
combination which has proved to be fatal [26].

This cancer became more widely known as one of the AIDS defining illnesses in the 1980s when it appeared in
young gay men in America [7, 10, 13]. Chang et al. [6] identified the herpesvirus-like DNA sequences in AIDS-KS.
This study [6] as well as other studies for example [44] showed that AIDS-KS depends upon prior infection to HHV-8.
In competent immune systems, however, acquisition of HHV-8 does not necessarily guarantee the development of
KS, as many people can remain latently infected with HHV-8 throughout their entire life without developing clinical
symptoms [14]. Foreman’s review article [13] supported the suggestion that HIV-1 virions play an important role in
the development of KS tumor cells by activating latently infected B-cells which rapture leading to the increase in the
HHV-8 VL.

If the VL is high, T-helper cells tend to be destroyed more quickly. Therefore, the aim of antiretroviral treatment is
to keep the VL as low as possible. As recommended by theWorld Health Organization (WHO) [34], VL is the preferred
monitoring approach to diagnose and confirm HAART treatment failure. WHO [32] has recommended a threshold
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of 100 HIV-1 copies/mL above which an individual must receive ART treatment. Chiereghin et al. [8] indicated a
threshold of 500HHV-8 copies/mL. Despite the recommendation to use VL over CD4 cell count when predicting HIV
transmission and pathogenesis, in the past 20 years only 6% of studies related to HIV simulation included consideration
of VL or VL testing [15]. This is surprising, even though the superiority of VL over CD4 cell count in HIV progression
on patients receiving ART has been shown mathematically [40].

Although HHV-8 seroprevalence is relatively low in Western countries and Asia, but it is as high as 50% in
sub-Saharan Africa and even higher in HIV positive individuals [51], thus representing a potentially large population
that can develop KS. Nevertheless, only a very few KS mathematical models describing within-host dynamics have
been published. The few examples include the mathematical models by Nani and Jin [30, 31] and Szomolay and Lungu
[44]. The study of Nani and Jin’s [30, 31] describes the dynamics of AIDS-KS during HAART, concluding that both
HAART and adoptive immunotherapy are necessary to annihilate both HIV and KS. The framework developed by
Szomolay and Lungu [44] included the adaptive immune system and the effect of adhering to cART therapy. Their
findings established that adherence to treatment has a significant impact on the prognosis of KS.

Using mathematical modelling, we study a dynamic model in Figure 1 comprising of the interactions between
infected B and CD4+ T-cells, KS cells, HIV-1 and HHV-8 virions and virus-specific effector cells. The model
consolidates the effect of low and high VL in the proliferation terms of the infected cells and virus-specific effector
cells. Denoting x6 the HIV-1 VL and x7 the HHV-8 VL, we define a weak viral source model (H1(x6, �) = x�6 and
H8(x7, 
) = x
7) and a strong viral source model (H1(x6, �) = x�6 + x6 and H8(x7, 
) = x
7 + x7) by incorporating
the H1, H8 functions into the proliferation terms of immune cells. By considering different parameter scenarios for
0 ≤ �, 
 ≤ 1, we show that the two models can correctly predict the pathogenesis of AIDS-KS. We apply optimal
control to the model with weak viral source and determine the efficacy levels for cART (HAART plus KS therapy) that
minimize the KS cell and infected CD4+ T-cell burden and the associated costs. The conclusions will be the same for
the model with strong viral source.

The paper is organized as follows: In Section 2, we propose the model with weak viral source which describes the
interactions between the KS tumor cells and components of the immune system in the presence of HIV-1 and HHV-8
infection. The model analysis is given in Section 3 which deals with the local and global stability of equilibrium
points for the model and we discuss the biological meanings of these steady states. This is followed by a sensitivity
analysis of the parameters with respect to the reproduction numbers in Section 4. Numerical results without optimal
control are presented in Section 5. In Section 6 we consider the model with strong viral source due to non-adherence to
medication, additionally, numerical simulations are also presented. Optimal control methods are considered in Section
7 and finally, some concluding remarks follow in Section 8.

2. Weak Viral Source Model withH1(x6, �) = x�6 andH8(x7, 
) = x
7
We construct a mathematical model describing the dynamics of viruses and associated immune cells as defined

in Figure 1. Denote x1, x2, x3, x4, x5, x6, x7 the infected B-cells, KS cells, HIV-1-specific effector cells, infected
CD4+ T-cells, HHV-8-specific effector cells, HIV-1 VL and HHV-8 VL, respectively. The proliferation terms in the
equations of the infected cells and effector cells will be of the type H1(x6, �) = x�6 and H8(x7, 
) = x
7, where the
magnitude of proliferation is expressed by 0 ≤ � ≤ 1 for HIV-1 and 0 ≤ 
 ≤ 1 for HHV-8 VLs.

Infected B-cell dynamics:

ẋ1 = rx1H8(x7, 
) − �x1x1 − �1x1x5 (1)
Equation (1) describes the rate of change of actively infected B-cells, x1. In this model we have ignored the class

of latently infected B-cells. The actively infected B-cells are generated by infection of susceptible B-cells by HHV-8
as well as proliferation of infected B-cells. We account for these two mechanisms through the first term. The second
and third terms describe the loss due to lytic death and the killing of infected B-cells by HHV-8-specific effector cells.

KS cell dynamics:

ẋ2 = (1 − �c)�x1
(

1 −
x2
!

)

− �3x2x5 (2)
Equation (2) describes the rate of change of KS cells, x2. The first term assumes logistic growth for these cells

[49, 17] and the second term represents the killing of KS cells by HHV-8-specific effector cells. The growth of this
population is dependent on the population of infected B-cells, x1, but it is self-regulated. When the KS population
RF Kaondera-Shava et al.: Preprint submitted to Elsevier Page 2 of 27
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Table 1
Model variables and parameters.

Symbols Description

x1 density of infected B-cells
x3 density of HIV-1 specific effector cells
x5 density of HHV-8 specific effector cells
x4 density of infected CD4+ T-cells
x2 density of KS cells
x6 density of HIV-1 virions
x7 density of HHV-8 virions
sx3 , sx5 source of virus-specific effector cells
rx1 growth rate of infected B-cells
rx4 growth rate of infected CD4+ T-cells
rx3 , rx5 growth rate of virus specific effector cells
! maximum carrying capacity of KS cells
�1 lysis of infected B-cells
�3 lysis of infected KS cells
�4 lysis of infected CD4+ T-cells
�x1 lytic death of infected B-cells
�x3 , �x5 natural death of virus specific effector cells
�x4 lytic death of infected CD4+ T-cells
�x6 natural death of HIV-1 virions
�x7 natural death of HHV-8 virions
� growth rate of KS cells
� proliferation rate of HIV-1 virions
Nx6 maximum carying capacity of infected CD4+ T-cells
Nx7 maximum carying capacity of infected B-cells
�c efficacy of KS therapy
�p efficacy of PIs
�r efficacy of RTIs

increases towards the carrying capacity,!, the cancer goes into remission. This can be also achieved due to KS therapy,
expressed by the efficacy function (0 ≤ �c ≤ 1).

HIV-1 specific effector cells dynamics:

ẋ3 = sx3 + rx3x3H1(x6, �) − �x3x3 (3)
The dynamics of HIV-1 specific effector cells is given by Equation (3). The first two terms represent the constant

source of the effector cells and the proliferation due to the presence of HIV-1, respectively. The third term accounts
for natural death.

Infected CD4+ T-cells dynamics:

ẋ4 = (1 − �r)rx4H1(x6, �) − �4x3x4 − �x4x4 (4)
Equation (4) describes the rate of change of infected CD4+ T-cells, x4. This population increases by infection of

healthy CD4+ T-cells by HIV-1 and proliferation. These two sources are represented by the first term which is assumed
to depend on the density of HIV-1, x6. The second term accounts for the killing of infected cells by HIV-1 specific
effector cells. The infected cells are lysed at a rate of �x4 due to which new HIV-1 particles are produced. The efficacy
function �r represents the effect of reverse transcriptase inhibitors (RTIs)that are a component of HAART therapy.

HHV-8 specific effector cells dynamics:

ẋ5 = sx5 + rx5x5H8(x7, 
) − �x5x5 (5)
The HHV-8-specific effector cells are replenished at a constant rate sx5 , undergo proliferation in the presence of

HHV-8 and are lost due to natural death.
RF Kaondera-Shava et al.: Preprint submitted to Elsevier Page 3 of 27
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Figure 1: Schematic presentation of the mathematical model showing the interactions between KS and the immune cells
in the presence of HIV-1 and HHV-8. Blocked arrows indicate killing of infected cells by the effector cells and sharp arrows
indicate interaction.

HIV-1 dynamics:

ẋ6 = (1 − �p)Nx6�x4x4 − �x6x6 (6)
Following Perelson and Nelson [36], the HIV-1 dynamics are governed by two processes: the first term describes the
release of new free viral particles due to lytic death of infected CD4+ T-cells and the second term accounts to loss
due to natural death. The efficacy function �p represents the effect of protease inhibitors (PIs) that are a component of
HAART therapy.

HHV-8 dynamics:

ẋ7 = Nx7�x1x1(1 + �H1(x6, �)) − �x7x7 (7)
The first term describes the production of free HHV-8 virions due to lysis of infected B-cells and their enhancement
by HIV-1 at a rate �. The last term accounts for loss due to natural death.

In what follows, we will assume there is no cART therapy (e.g. �c = �p = �r = 0) and the effect of cART will
be investigated using optimal control in Section 7. We now investigate how the infection characteristics are altered for
the cases when 
 = � and when 
 ≠ �. More specifically, we consider three cases when the infection parameters (
, �)
are zero, which represents constant source terms for the infected and effector cell dynamics. Secondly, we consider
the case when one infection parameter (for HHV-8) is zero, that is 
 = 0, but the infection parameter for HIV-1 is
non-zero, that is � = 1. Lastly, we consider the case when both infection parameters 
 and � are nonzero. These cases
are summarised as follows: (i) 
 = � = 0, (ii) 
 = 0 and � = 1, (iii) 
 = � = 1.

RF Kaondera-Shava et al.: Preprint submitted to Elsevier Page 4 of 27
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3. Model Analysis
Here we will show local stability for (ii)-(iii) and global stability for (i)-(iii) of the equilibrium points and describe

the parameter choices. Throughout this paper it will be assumed that �x3 > rx3 and �x5 > rx5 andMij for i, j = 1…7
will denote matrix entries of M defined in A.1.
3.1. Virus Free Equilibrium (VFE) 0 for 
 = � = 0

In case when all cell populations have constant source terms, the VFE, for which
x1 = x2 = x4 = x6 = x7 = 0 ⟹ rx1 = rx4 = 0 (8)

is given by
0 = (0, 0,

∗
x3, 0,

∗
x5, 0, 0) where ∗

x3 =
sx3

(�x3 − rx3 )
> 0,

∗
x5 =

sx5
(�x5 − rx5 )

> 0, �x3 > rx3 , �x5 > rx5 .

The equilibrium point 0 is locally stable and 0 = 0.
3.2. Stability Analysis of VFE 0For the case (i)-(iii), the system (1)–(7) can be rewritten in matrix form as ẋ = Ax
 + Bx where the matrices A
and B are given below:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 M17
0 0 0 0 0 0 0
0 0 0 0 0 M36 0
0 0 0 0 0 M46 0
0 0 0 0 0 0 M57
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 0 0 0 0 0 0

M21 M22 0 0 0 0 0

0 0 M33 0 0 0 0

0 0 0 M44 0 0 0

0 0 0 0 M55 0 0
0 0 0 M64 0 M66 0
M71
1+� 0 0 0 0 0 M77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(9)

3.2.1. Stability Analysis Case (ii)
Consider the case of HIV-1-dependent and HHV-8-independent proliferation terms (
 = 0 and � = 1). The system

(1)–(7) reduces to ẋ = Hx, where H is given by

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 0 0 0 0 0 0
M21 M22 0 0 0 0 0
0 0 M33 0 0 M36 0
0 0 0 M44 0 M46 0
0 0 0 0 M55 0 0
0 0 0 M64 0 M66 0
M71
1+� 0 0 0 0 0 M77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10)

The matrix H has five negative eigenvalues:
�1 = −�x3 , �2 = −(�x5 − rx5 ), �3 = −�3

sx5
(�x5 − rx5 )

, �4 = −�x7 , �5 = −
(

�x1 + �1
sx5

(�x5 − rx5 )

)

.

The remaining two are obtained from the characteristic polynomial P (�) = �2 + a1� + a2, where
a1 =

[(

�x4 + �4
sx3

(�x3 − rx3 )

)

+ �x6

]

> 0, a2 =
[ �x6
(�x3 − rx3 )

[�x4 (�x3 − rx3 ) + �4sx3 ]
]

(1 −0) > 0

for0 =
rx4Nx6�x4 (�x3 − rx3 )

[

�4sx3 + �x4 (�x3 − rx3 )
]

�x6
< 1. The stability results are summarised in the following theorem:

Theorem 1. For 
 = 0 and � = 1 the VFE, 0, for the system (1)–(7) is stable if 0 < 1.
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3.2.2. Stability Analysis Case (iii)
Consider the case of HIV-1- and HHV-8-dependent proliferation terms (
 = � = 1.) Then system (1)–(7) can be

written as ẋ = Cx, where C = A + B is given by

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 0 0 0 0 0 M17
M21 M22 0 0 0 0 0
0 0 M33 0 0 M63 0
0 0 0 M44 0 M64 0
0 0 0 0 M55 0 M57
0 0 0 M64 0 M66 0
M71
1+� 0 0 0 0 0 M77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11)

Three of the eigenvalues of the matrix C are as follows: �1 = −�x3 , �2 = −�x5 and �3 = −�3
sx5

(�x5 − rx5 )
. The

other four eigenvalues are determined using the Routh-Hurwitz criterion from the characteristic polynomial P (�) =
�4 +

3
∑

j=1
aj�4−j . Define

0x6 =
rx4Nx6�x4 (�x3 − rx3 )

[

�4sx3 + �x4 (�x3 − rx3 )
]

�x6
, 0x7 =

rx1Nx7�x1 (�x5 − rx5 )
[

�1sx5 + �x1 (�x5 − rx5 )
]

�x7
, 0xi = Max[0x6 ,0x7 ]

Then, if 0xi < 1, it is easy to see that the coefficients of ai for i = 1, 2, 3, 4 are all positive as shown in A.2. To
conclude stability, it suffices to show that a1a2a3 − a23 − a21a4 > 0. It is shown in A.3 that this condition is satisfied
provided �x1 > 2�x6 and 0xi < 1. Our result is summarised as follows:
Theorem 2. For 
 = � = 1 the VFE, 0, for the system (1)–(7) is stable if 0xi < 1 and �x1 > 2�x6 .

3.2.3. Global Asymptotic Stability of VFE, 0The global asymptotic stability (GAS) is established using the approach given in Castillo-Chavez et al. [5]. Define
two classes: a class of non-infected states W = (x3, x5) and a class of infected states Z = (x1, x2, x4, x6, x7). We
rewrite the system (1)–(7) in the form of

Ẇ = F (W ,Z) and Ż = G(W ,Z)

such thatG(W , 0̂) = 0̂, 0̂ = (0, 0, 0, 0, 0),W ∈ ℝ2 andZ ∈ ℝ5. The functions F (W ,Z) andG(W ,Z) denote classes
of non-infected and infected states, respectively, where

F (W ,Z) =
⎛

⎜

⎜

⎝

sx3 + rx3x3x


6 − �x3x3

sx5 + rx5x5x


7 − �x5x5

⎞

⎟

⎟

⎠

, G(W ,Z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

rx1x


7 − �x1x1 − �1x1x5

�x1
(

1 − x2
!

)

− �3x2x5

rx4x
�
6 − �4x3x4 − �x4x4

Nx6�x4x4 − �x6x6

Nx7�x1 (1 + �x
�
6)x1 − �x7x7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We redefine the virus-free equillibrium as ̄0 = (W ∗, 0̂), whereW ∗ =
( sx3
(�x3 − rx3 )

,
sx5

(�x5 − rx5 )

)

. This theorem on
GAS is proved in Castillo-Chavez et al. [5].
Theorem 3. (a) The equillibrium point ̄0 = (W ∗, 0̂) is GAS for 
 = � = 0 and0 = 0.
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(b) The equillibrium point ̄0 = (W ∗, 0̂) is GAS for 
 = 0 and � = 1 if 0 < 1.
(c) The equillibrium point ̄0 = (W ∗, 0̂) is GAS for 
 = � = 1 if 0xi < 1.

Proof. 3(a): The case 
 = � = 0. Setting the infection variables of F (W ,Z) to zero, we have
F (W , 0) = (sx3 − (�x3 − rx3 )x3, sx5 − (�x5 − rx5 )x5)

T .

Consider the system

Ẇ = sx − �xW , W =
(

x3
x5

)

, �x =
(

�x3 − rx3
�x5 − rx5

)

, sx =
(

sx3
sx5

)

(12)

Then, the solution is given by
W (t) =

(

W (0) −
sx
�x

)

e−�xt +
sx
�x

Since F (W , 0̂) is a limiting function of Ẇ = F (W ,Z), that is lim
t→∞

W (t) =

(

sx3
(�x3 − rx3 )

,
sx5

(�x5 − rx5 )

)T

= W ∗,
then F (W ∗, 0̂) is GAS.
Let y3 = sx3 − (�x3 − rx3 )x3 and y5 = sx5 − (�x5 − rx5 )x5. Then F(W, 0̂) can be written as

(

ẏ3
ẏ5

)

=

⎛

⎜

⎜

⎜

⎝

− 1
(�x3 − rx3 )

0

0 − 1
(�x5 − rx5 )

⎞

⎟

⎟

⎟

⎠

(

y3
y5

)

,

where the eigenvalues are �3 = − 1
(�x3 − rx3 )

< 0 and �5 = − 1
(�x5 − rx5 )

< 0. It follows that W ∗ is asymptotically
stable. Now consider,

DZG(W ∗, 0)Z−G(W ,Z) =

⎛

⎜

⎜

⎜

⎜

⎝

M11 0 0 0 0
M21 M22 0 0 0
0 0 M44 0 0
0 0 M64 M66 0
M71 0 0 0 M77

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1
x2
x4
x6
x7

⎞

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜
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⎞

⎟
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⎟
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⎟

⎟

⎠

= 0̂T

by (8). Hence, 0 is GAS.
Proof 3(b): For 
 = 0 and � = 1, it can be shown that

Ĝ(W ,Z) = DZG(W ∗, 0)Z − G(W ,Z) =
(

−rx1 ,
�x1x2
!

, rx4 − rx4x6, 0,−Nx7�x1�x6
)T

= 0̂T

by (8). Hence, ̂0 is GAS.
Proof 3(c): The case 
 = � = 1 is similar to 3(b).

3.3. Model Parameters
The parameter values are as given in Table 2 where the estimated parameters are derived from the simulations.

We consider the chronic phase of HIV-1 infection, that is two years post infection.
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Table 2
Variables and parameter values.

Variables Initial values Units Reference

x1 x1(0) = 5 × 102 cells mL−1 [19]
x2 x2(0) = 2 × 102 cells mL−1 Estimated
x3 x3(0) = 5 × 105 cells mL−1 [1]
x4 x4(0) = 102 cells mL−1 [4]
x5 x5(0) = 5 × 102 cells mL−1 Estimated
x6 x6(0) = 2 × 105 virions mL−1 [4]
x7 x7(0) = 6.4 × 104 virions mL−1 [19]

Parameters Range Value Units Reference
Death/ clearance rates
�x1 [0.2, 0.5] 0.33 day−1 [22, 39]
�x3 [0.001, 0.04] 0.03 day−1 [18]
�x4 [1.1 × 10−4, 2.5 × 10−4] 1.87 × 10−4 day−1 [28, 50]
�x5 [0.008, 0.4] 0.3 day−1 [22, 39]
�x6 [0.1, 5 ] 0.1 day−1 [1, 18]
�x7 [0.35, 0.69] 0.57 day−1 [12]
Source terms
sx3 [3 × 102, 9 × 105] 3 × 103 cells mL−1 [44]
sx5 [103, 2 × 103 ] 1.1 × 103 cells mL−1 Estimated
Proliferation rates
rx1 [1, 12] 5 day−1 Estimated
rx3 [2 × 10−9, 10−5] 2 × 10−6 day−1 [18, 42]
rx4 [1, 12] 3 day−1 Estimated
rx5 [10−9, 10−6 ] 1.2 × 10−8 day−1 Estimated
� [3 × 10−8,3 × 10−4] 3 × 10−8 day−1 Estimated
Constants

 [0,1] variable
� [0,1] variable
Growth rates
� [2, 6] 2 day−1 Estimated
Killing rates
�1 [1.2 × 10−4, 10−2] 9.9 × 10−3 mL cell−1 day−1 [22, 39]
�3 [8 × 10−7, 5 × 10−4 ] 3 × 10−4 mL cell−1 day−1 [25]
�4 [10−5, 2 × 10−4] 9 × 10−5 mL cell−1 day−1 [42]
Maximum cell population
! [1.2 × 105, 5 × 106] 1.2 × 105 cells mL−1 [44]
Maximum carrying capacity
Nx6 [103, 5.4 × 104] 1000 virions cell−1 [20]
Nx7 [2 × 102, 103] 900 virions cell−1 [19]

3.3.1. Model Variables and Parameters
We consider x1(0) = 5 × 102 cells mL−1 and x7(0) = 6.4 × 104 virions mL−1 as in Hadinoto et al. [19]. Based

on Bajaria [1], we take the initial HIV-1 specific effector cell population to be x3(0) = 5 × 105 cells mL−1, the initial
infected CD4+ T-cell population to be x4(0) = 102 cells mL−1 and the initial HIV-1 population to be x6(0) = 2 × 105
virions mL−1 based on Boer et al. [4]. The estimated initial KS cell population is taken to be x2(0) = 2 × 102 cells
mL−1 based on a study by Louzoun et al. [25] and we estimate x5(0) = 5× 102 cells mL−1 in accordance with a study
by Szomolay and Lungu.

Huynh [22] and Shapiro et al. [39] took the death rate of infected B-cells for the Epstein-Barr virus (EBV) infection
to be �x1 = 0.33 day−1. HHV-8 and EBV are different viruses but due to absence of a clinical value for this parameter,
we used �x1 = 0.33 day−1 (as in [22, 39]). We assume the death rates for HIV-1 and HHV-8 specific effector cells to
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be �x3 = 0.03 day−1 as in Gumel et al. [18] and �x5 = 0.3 day−1 as in [22, 39]. Based on the research by Mclean [28]
and Weston [50], we took the lytic death rate of infected CD4+ T-cells to be �x4 = 1.87 × 10−4 day−1. The estimated
clearance rate of HIV-1 virus, �x6 , is taken to be in the range 0.1 − 5 day−1 based on a study by Bajaria and Gumel
[1, 18]. Due to the absence of estimates for the virus half life of HHV-8, we will use the value in a study by Foglieni
et al. [12] which is �x7 = 0.57 day−1.

Based on a study by Szomolay and Lungu [44], we take the range sx3 = 3 × 102 − 9 × 105 cells mL−1 and we
estimate the value of sx5 to be 1.1 × 103 cells mL−1.

The proliferation rate of HIV-1 specific effector cells are taken from studies by Gumel [18] and Stilianakis [42].
In these studies rx3 is assumed to be 2 × 10−6 day−1. Due to absence of HHV-8 proliferation rates, we have estimated
rx5 = 1.2 × 10−8 day−1. We estimate rx1 and rx4 to be in the range 2 − 12 day−1, the range for � is estimated to be in
the region 3 × 10−8 to 3 × 10−4 day−1.

We estimate the cancer growth rate � to be 2 day−1 and we have used the killing rate of infected B-cells �1 =
9.9×10−3 mL cell−1 day−1. Based on Louzoun [25], the killing rate of KS cells is taken to be �3 = 3×10−4 mL cell−1
day−1. The killing rate of infected CD4+ T-cells is �4 = 9 × 10−5 mL cell−1 day−1 as in Stilianakis [42]. Following
Szomolay and Lungu [44], we take ! = 1.2 × 105 cells. We take the total burst size of infected CD4+ T-cells, Nx6to be in the range 103 − 5 × 104 virions day−1 as in Boer [4]. The range for Nx7 is taken to be 2 × 102 − 103 virions
cell−1 based on Hadinoto [19].

4. Sensitivity Analysis for the Weak Viral Source Model
In determining how best to treat KS infection, it is necessary to know the relative importance of the different factors

responsible for its transmission. In this section we analyse the sensitivity of 0x6 and 0x7 to the parameters in the
model. If the reproduction number is very sensitive to a particular parameter, then a perturbation of the conditions
that connect the dynamics to such a parameter may prove useful in identifying policies or intervention strategies that
reduce KS prevalence.

We explore the parameter space by performing an uncertainty analysis using Latin Hypercube Sampling (LHS)
method as described by Blower and Gomero [3, 16]. Coeffcients (PRCC) are used to evaluate the contribution of vital
parameters on the model dynamics, most specifically to establish the parameters that have significant influence on the
HIV-related KS. MATLAB software was used for the PRCC analysis with a sampling size, n = 1000.
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Figure 2: Sensitivity of 0x6 and 0x7 to some of the parameters.

PRCC is the tool we use to evaluate the impact of changes of each parameter on 0x6 and 0x7 . It is informative
on what parameters to target in order to achieve specific goals for example how to effectively reduce VL and KS.
Figure 2(a) shows the PRCC results which illustrate the dependence of0x6 on each parameter. The positive signs of
their PRCCs indicate that if the parameters are increased, the value of 0x6 increases and vice versa. The following
parameters have a statistically significant PRCC value and a negative influence on0x6 : �4, sx3 and �x6 while the the
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opposite is true for rx4 , Nx6 , �x4 , rx3 and �x3 . Predominantly, sx3 has the greatest influence on 0x6 . Figure 2(b)
shows the PRCC results which illustrate the dependence of0x7 on each parameter. The following HHV-8 associated
parameters have a statistically significant PRCC value and have the potential to positively influence infection: rx1 ,Nx7 ,
�x1 and �x5 and the opposite is true for �1, sx5 , rx5 and �x7 . The most significant control parameter for 0x7 is �1.The significance of the PRCC for each parameter is determined by calculating a p-value for each using the methods
described by Marino et al. [27]. The PRCC values with a p-value less than 0.01 are considered statistically significant.
From Tables 3 and 5, it can be seen that rx3 and rx5 are not statistically significant.

In order to test for independence between the parameters which affect the reproduction numbers, we apply the
Fisher transformation to the PRCC as described by Fieller et al.[11]. We use R software is to test for independence.
We corrected the resulting p-values for false discovery using the false discovery rate (FDR) method of Benjamini
and Hochberg [2]. Using the parameters whose PRCC values were found to be significant, we performed pairwise
comparisons with Fisher transformed values [11], hence produces the results given in Table 4. A red TRUE indicates
independence between two parameters a black FALSE indicates the opposite. The independence test indicates that sx3may be influenced by �x6 as illustrated in Table 4.

Table 3
PRCC for 0x6 and p-values resulting from the sensitivity analysis.

Variable PRCC p − value

rx4 0.3350 0.000
Nx6 0.4195 0.000
�x4 0.1183 1.842 × 10−4
�x3 0.3771 0.000
�4 −0.31534 0.000
sx3 −0.4399 0.000
�x6 −0.3673 0.000
rx3 0.0145 6.482 × 10−1

Table 4
Pairwise comparisons for 0x6 parameters. .

Nx6 �x4 �x3 �4 sx3 �x6
rx4 TRUE TRUE FALSE TRUE TRUE TRUE
Nx6 TRUE FALSE TRUE TRUE TRUE
�x4 TRUE TRUE TRUE TRUE
�x3 TRUE TRUE TRUE
�4 TRUE FALSE
sx3 FALSE
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Table 5
PRCC for 0x7 and p-values resulting from the sensitivity analysis.

Variable PRCC p − value

rx1 0.3944 0.000
Nx7 0.2890 0.000
�x1 0.1771 1.784 × 10−8
�x5 0.4705 0.000
�1 −0.5217 0.000
sx5 −0.1035 1.082 × 10−3
�x7 −0.1552 8.521 × 10−7
rx5 −0.0320 3.138 × 10−1

Table 6
Pairwise comparisons for 0x7 parameters.

Nx7 �x1 �x5 �1 sx5 �x7
rx1 TRUE TRUE TRUE TRUE TRUE TRUE
Nx7 TRUE TRUE TRUE TRUE TRUE
�x1 TRUE TRUE TRUE TRUE
�x5 TRUE TRUE TRUE
�1 TRUE TRUE
sx5 FALSE

5. Numerical Simulations for the Weak Viral Source Model without Optimal Control
In order to examine the progression of the infection, we consider the following scenarios: (i) 
 = � = 0, (ii)


 = 0 and � = 1 and (iii) 
 = � = 1. Figure 3 shows the prognosis of the infection for 
 = � = 0. This case
demonstrates a scenario when both infected CD4+ T-cells and B-cells divide at a constant rate (Cho et al. [9]). Figure
3(a) shows that after reaching a peak during the primary stage, the HIV-1 VL, x6, decays below a detectable level of
100 virions per microliter of blood [32]. A similar pattern is observed for HHV-8, x7. In response, both HIV-1 and
HHV-8 specific effector cells, x3 and x5, respectively increase to a peak and remain constant throughout the chronic
stage (3(b)). Figure 3(a) shows that the infected B- and CD4+ T-cells, x1 and x4, respectively decrease due to lysing
by the increasing populations of respective effector cells. Figure 3(b) shows that the population of KS cells declines.
KS cannot develop into a clinical condition for 
 = � = 0. The WHO guidelines are not available for us to conclude
whether this steady state, below 100 copies∕mL, is detectable or undetectable for KS.

Figure 4 illustrates the case when the infected B-cells are dividing slowly and the infected CD4+ T-cells are dividing
rapidly. We demonstate the case for 
 = 0 and � = 1. We can see that HIV-1 VL is high but HHV-8 VL is low. The
infected CD4+ T-cell population is also high but the infected B-cell population is low. The prognosis for the KS is low
suggesting that cell division for infected B-cells plays a very important role. The high population of HHV-8 specific
effector cells, x5, suggests a high rate of lysing of KS cells.

Figure 5 describes disease progression for 
 = � = 1. This case represents a scenario when both infected CD4+
T-cells and B-cells divide rapidly. Figure 5(a) shows prolonged and severe viremia for both HIV-1 and HHV-8. The
VLs remain detectable throughout the chronic stage. Figure 5(a) shows a high population level for infected CD4+
T-cells. The HIV-1 and HHV-8 specific effector cell populations remain high throughout and consequently the KS
cells population remains high improving the chances of KS development. (Figure 5(b)). With a low cancer burden
representing only 0.001% of maximum carrying capacity of KS cells, the HHV-8 load will reach equilibrium that is
either below the level of detection (
 = 0 and � ≥ 0), or above (
 = � = 1). In the latter case, over 3000-fold increase
in HHV-8 load is obtained compared to the level off detection and the KS load increases to 2.7% of the maximum
carrying capacity (Figure 13 in Appendix A.4).
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Figure 3: Population dynamics with 
 = � = 0.
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Figure 4: Population dynamics with 
 = 0 and � = 1.
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Figure 5: Population dynamics with 
 = � = 1.

RF Kaondera-Shava et al.: Preprint submitted to Elsevier Page 12 of 27



A novel mathematical model of AIDS-associated Kaposi sarcoma

6. Strong Viral Source Model withH1(x6, �) = x�6 + x6 andH8(x7, 
) = x
7 + x7
In this section, we consider the model with strong viral source that may be caused by many factors such as

non-adherence to treatment. Adherence to HAART helps maintain low to undetectacle VL. However, non-adherence
leads to higher number of infected cells and consequently to an increase in the VL as indicated by Turner and WHO
[45, 33]. The new system (1)*–(7)* will be essentially the same as (1) – (7) except that H1(x6, �) = x�6 + x6 and
H8(x7, 
) = x
7 + x7. We note that (1)*–(7)* can be rewritten as ẋ = Ax
 + Cx, where matrix A is defined in (9) and
matrix C is defined in (11). We consider the cases (i)-(iii) as in Section 2.
6.1. Stability Analysis Case (i)

Consider the case 
 = � = 0. The system (1)*–(7)* reduces to ẋ = Mx, where the matrix M is given in A.1. The
coefficients of the characteristic polynomial P (�) = �4 +

4
∑

j=1
aj�4−j , associated with M, are given by a1, a2, a3, and

a4 (shown in A.2). In this case the term (1 − 0xi ) is replaced by (1 − ⋆
0xi

) with ⋆
0xi

= Max[⋆
0x6
,⋆

0x7
], where

⋆
0x6

= 0x6 and⋆
0x7

= (1 + �)0x7 .
Theorem 4. For 
 = � = 0 the VFE, 0, is stable if ⋆

0xi
< 1, otherwise it is unstable.

Remark 1. In this case the reproduction number is not zero as in Section 3.

6.2. Stability Analysis Case (ii)
When 
 = 0 and � = 1, the system (1)*–(7)* becomes ẋ = Nx, where

N =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 0 0 0 0 0 M17
M21 M22 0 0 0 0 0
0 0 M33 0 0 2M36 0
0 0 0 M44 0 2M46 0
0 0 0 0 M55 0 M57
0 0 0 M64 0 M66 0
M71
1+� 0 0 0 0 0 M77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The term (1 − 0xi ) in the coefficients of the characteristic polynomial given in A.2, is replaced by (1 − ̄0xi ). We
have ̄0xi = Max[̄0x6 , ̄0x7 ] where ̄0x6 = 20x6 and ̄0x7 = 0x7 .
Theorem 5. For 
 = 0 and � = 1 the VFE, 0, is stable if ̄0xi < 1, otherwise it is unstable.

6.2.1. Stability Analysis Case (iii)
When 
 = � = 1, the system (1)*–(7)* can be written as ẋ = Dx, where D = A+C and matrix A is defined in (9)

and matrix C is defined in (11). The term (1 −0xi ) in the coefficients of the characteristic polynomial given in A.2,
is replaced by (1 − ̄0xi ), where ̂0xi = 20xi .
Remark 2. The case 
 = � = 1 leads to doubling of the reproduction number. Non-adherence to treatment results in
increased reproduction number and can complicate treatment. Nachega et al. [29] has pointed out that adherence to
HAART supresses viral replication and leads to slow cell division.

Remark 3. Generally some patients are immunologically susceptible to high VL production. Such patients should be
identified through screening (regular checkups) and made to start their treatment early.

6.3. Numerical Simulations
Figure 6 depicts the population dynamics of virions and cell population when the VL is high for the case when


 = � = 0. HIV-1 and HHV-8 VLs remain high throughout the chronic stage, consequently, high levels of infected
CD4+ T-cells and B-cells are observed in Figure 6(a). This results in high levels of KS as shown in Figure 6(b). The
immune response remains high due to the high levels of infected CD4+ T-cells and B-cells (Figure 6(b)). The pattern
observed here is similar to that observed in Figure 5 for the low VL model when 
 = � = 1.
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Figure 6: Population dynamics with 
 = � = 0.
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Figure 7: Population dynamics with 
 = 0 and � = 1.
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Figure 8: Population dynamics with 
 = � = 1.
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Figure 7 illustrates the case when 
 = 0 and � = 1. HIV-1 and HHV-8 VLs remain above detectable levels
throughout the infection as seen in Figure 7(a). Due to high levels of HIV-1 and HHV-8VLs, the infected CD4+ T-cell
and B-cell populations remain high as shown in Figure 7(a). Consequently (as seen in Figure 7(b)), the KS population
remains high due to high levels of HHV-8. In response, the HIV-1 and HHV-8 specific effector cell populations remain
high as illustrated in Figure 7(b). The cell levels in Figure 7 are significantly higher than those in Figure 6.

Figure 8 shows the case when 
 = � = 1, that is when both infected CD4+ T-cells and infected B-cells divide faster.
A similar behavior to that in Figure 7 is observed. From Figures 7 and 8, we conclude that the higher the proliferation
of HHV-8 due to enhancement by HIV-1 has more impact on the development of KS than the increase in the infected
B-cell population.

Although the equilibria for the strong viral source model when 
 = 0 and � ≥ 0 do not change substantially, there
is a profound impact on KS and HHV-8 burden when 
 = � = 1. In the latter case the KS load increases to over
80% of the maximum carrying capacity of KS cells and the HHV-8 load over 200000-fold above the level of HHV-8
detection, surpassing even the HIV-1 load (Figure 14 in Appendix A.4).

7. Optimal Control for the Weak Viral Source Model
We will apply optimal control methods to find the optimal dosage scheme for cART comprising of HAART and

KS therapy that minimizes the infected CD4+ T-cell count, KS tumor burden and drug toxicity. HAART involves
the usage of multiple forms of antiretroviral agents, typically RTIs and PIs, whose efficacy is denoted by �r and �p,respectively. The RTIs are inhibiting the HIV virions from successfully infecting the cell and the PIs prevent the
already infected cells from producing mature infectious virions as highlighted by Perelson [35]. The KS therapy can
involve chemotherapy or interferon therapy and its efficacy is expressed by �c .We formulate an optimal control problem (OCP) by considering cART to minimise the number of infected CD4+
T-cells, KS cells and the cost of treatment (e.g. drug toxicity, cytokine storm) over a given time interval [0, tf ]. Ourgoal is to determine the efficacy functions 0 ≤ �r, �p, �c ≤ 1 that minimize the objective functional given by

J (�r, �p, �c) = ∫

tf

0
(A1x4 + A2x2 + A3�

2
r + A4�

2
p + A5�

2
c ) dt, (13)

where x2, x4 are solutions of the system (1)–(7) withH1(x6, �) = x�6 andH8(x7, 
) = x
7.The efficacy functions �r, �p,
�c are bounded and Lebesgue integrable as was indicated by Lenhart and Workman [41]. The case �r = �p = �c = 1
represents total efficacy for the RTIs, PIs and KS therapy, respectively, and �r = �p = �c = 0 represents no treatment.
As studied in Holash et al. [21], the delivery time frame for anti-angiogenesis treatment is two to three weeks. This
research defines the treatment time as 30 days in order to compare with the clinical studies already done, and allows
for an easier transition from current practice to the proposed dosing scheme.

The coefficients Ai where i = 1, 2, 3, 4, 5 are positive weights to balance the factors and the term A1x4 and A2x2are cost of infection while A3�2r , A4�2p and A5�2c are the cost associated with controls. The quadratic control in the
treatment terms has the advantage of keeping the infection in check both when it is small or large in size, see for
example, Kirschner et al. [24] and Pillis et al. [37]. Furthermore, the quadratic control allows for optimal treatment
to minimize the toxicity while permitting the system to maintain a low KS tumor burden. It is worth noting that �2r ,
�2p and �2c parameters in the integrand of Equation (13) denote what is refferred to as a continuous optimal control.
Continuous optimal control ensures that the drugs are being applied continuously over the entire treatment period and
ensure that there is no biological drug clearance from the patient’s system.

We seek efficacy functions �r, �p and �c such that
J (�∗r , �

∗
p , �

∗
c ) = min{J (�r, �p, �c) ∶ �r, �p, �c ∈ U},

where U is the control set defined by
U = {(�r, �p, �c) ∶ �r, �p, �c is Lebesgue measurable, 0 ≤ �r, �p, �c ≤ 1, t ∈ [0, tf ]}. (14)

7.1. Existence and Uniqueness of Optimal Control
Theorem 6. There exists an optimal control u ∗= (�∗r , �

∗
p , �

∗
c ) such that min�r,�p,�c∈UJ (�r, �p, �c) = J (�∗r , �

∗
p , �

∗
c )

subject to the OCP (1)–(7) with (13) and non-negative initial conditions.
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Proof. To prove the existence of an optimal control we note that the control and state variables are nonnegative values.
In this minimizing problem, the necessary convexity of the objective functional in �r, �p and �c is satisfied. The set ofall the control variables (�r, �p, �c) ∈ U are also convex and closed by definition. The optimalitty system is bounded
which determines the compactness needed for the existence of the optimal control. In addition, the integrand in the
functional (13), A1x4 +A2x2 +A3�2r +A4�2p +A5�2c is convex on the control set U . There exist a constant � > 1 and
positive numbers �1 and �2 such that J (�r, �p, �c) ≥ �2 + �1(|�r|2 + |�p|2 + |�c|2)�∕2. This implies that

A1x4 + A2x2 + A3�
2
r + A4�

2
p + A5�

2
c ≥ �2 + �1(|�r|2 + |�p|

2 + |�c|
2)

where �2 depends on the upper bound on x2 and x4 and �1 > 0 since A3 > 0, A4 > 0 and A5 > 0. The uniqueness
of the optimal control follows from the uniqueness of the optimality system which is guaranteed by the finite time
interval.
7.2. Necessary Conditions for the Existence of Optimal Control

In order to find the optimal solutions, we first trace the Lagrangian and Hamiltonian for the OCP (1)–(7) with (13).
The Lagrangian of the OCP is given by:

L(x1, x2, x3, x4, x5, x6, x7, �r, �p, �c) = A1x4 + A2x2 + A3�
2
r + A4�

2
p + A5�

2
c (15)

Pontryagin’s Maximum Principle (see Lenhart and Workman [41]) is applied to determine the conditions for effective
control. This principle converts the system (1)–(7) with (13)-(14) into a problem ofminimising aHamiltonian pointwisely
with respect to �r, �p and �c . We define the Hamiltonian,H , for the OCP:

H = L(x1, x2, x3, x4, x5, x6, x7, �r, �p, �c) +
7
∑

i=1
�ifi

where L is the Lagrangian function (15), �i, i = 1, 2...7 are the adjoints variables (co-state variables) for the states
x1, x2, x3, x4, x5, x6, x7. and fi is the right hand side of the differential equation of i-th state variable. Our aim is to
seek an optimal control pair (u∗, X∗) where u ∗= (�∗r , �

∗
p , �

∗
c ) and X∗ = (x∗1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7), that minimizes the

Hamiltonian of the system given by:

H = A1x4 + A2x2 + A3�
2
r + A4�

2
p + A5�

2
c + �1[rx1x



7 − �x1x1 − �1x1x5] + �2[(1 − �c)�x1

(

1 −
x2
!

)

− �3x2x5]

+ �3[sx3 + rx3x3x
�
6 − �x3x3] + �4[(1 − �r)rx4x

�
6 − �4x3x4 − �x4x4] + �5[sx5 + rx5x5x



7 − �x5x5]

+ �6[(1 − �p)Nx6�x4x4 − �x6x6] + �7[Nx7�x1x1(1 + �x
�
6) − �x7x7]

Pontryagin’s Maximum Principle gives the necessary conditions for the existence of an optimal solution. The results
of applying Pontryagin’s Maximum Principle lead to the following theorem:
Theorem7. (Optimal Control for the TreatmentModel). There exists an optimal control �∗r , �

∗
p , �

∗
c and the corresponding

solutions (x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7) that minimizes J (�r, �p, �c) over U . Furthermore, there exists adjoint variables �i,

i = 1, 2...7 which satisfy

�̇1 = �1(�x1 + �1x5) − �2�(1 − �c)
(

1 −
x2
!

)

− �7Nx7�x1 (1 + �x
�
6),

�̇2 = �2[(1 − �c)�
x1
!

+ �3x5] − A2,

�̇3 = �4�4x4 − �3(rx3x
�
6 − �x3 ),

�̇4 = �4(�4x3 + �x4 ) − �6(1 − �p)Nx6�x4 − A1,

�̇5 = �1�1x1 + �2�3x2 − �5(rx5x


7 − �x5 ),

�̇6 = �6�x6 − �3rx3�x3x
�−1
6 − �4(1 − �r)rx4�x

�−1
6 − �7Nx7�x1��x1x

�−1
6 ,
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�̇7 = �7�x7 − �1rx1
x

−1
7 − �5rx5
x5x


−1
7

with transversality conditions �i(tf ) = 0 for i = 1, 2, ...7. The optimal control is given by

�∗r = max
{

0, min
(�4rx4x

�∗
6

2A3
, 1
)}

, �∗p = max
{

0, min
(�6Nx6�x4x

∗
4

2A4
, 1
)}

(16)

�∗c = max
{

0, min
(

1
2A5

(

�2�x
∗
1

(

1 −
x∗2
!

))

, 1
)}

(17)

Proof. Due to the convexity of the integrand of J in equation (13), a priori boundedness of the state solutions and
the Lipschitz property of the state system with respect to the state variables, the adjoint equations and transversality
conditions can be obtained by using Pontryagin’s Maximum Principle such that �̇i = −)H

)xi
, with transversality

conditions �i(tf ) = 0 for i = 1, 2, ...7. The characterisation of the optimal control obtained by solving the optimality
condition )H

)�r
= )H
)�p

= )H
)�c

= 0 gives the following characterisations of the controls:

)H
)�r

= 2A3�r − �4rx4x
�
6 = 0, )H

)�p
= 2A4�p − �6Nx6�x4x4 = 0 )H

)�c
= 2A5�c − �2�x1

(

1 −
x2
!

)

= 0 (18)

Solving (18) gives �∗r =
�4rx4x

�∗
6

2A3
, �∗p =

�6Nx6�x4x
∗
4

2A4
and �∗c = 1

2A5

(

�2�x∗1

(

1 −
x∗2
!

))

.
The standard control arguments on the controls are such that

�∗r =

⎧

⎪

⎨

⎪

⎩

0 if m∗
1 ≤ 0

m∗
1 0 < m∗

1 < 1
1 m∗

1 ≥ 1
where m∗

1 =
�4rx4x

�∗
6

2A3
(19)

�∗r =

⎧

⎪

⎨

⎪

⎩

0 if m∗
2 ≤ 0

m∗
2 0 < m∗

2 < 1
1 m∗

2 ≥ 1
where m∗

2 =
�6Nx6�x4x

∗
4

2A4
(20)

�∗r =

⎧

⎪

⎨

⎪

⎩

0 if m∗
3 ≤ 0

m∗
3 0 < m∗

3 < 1
1 m∗

3 ≥ 1
where m∗

3 = 1
2A5

(

�2�x
∗
1

(

1 −
x∗2
!

))

(21)

Equations (19), (20) and (21) can be written in compact form as in Equations (16)-(17).
7.3. Optimal Control Simulations

Here we show the numerical results of the OCP and we will assume that 
 = � = 1 since the simulations remain
largely unaffected by the other cases. The algorithm for simulating the system using the forward-
backward sweep method is adopted from Lenhart and Workman [41]. The state system with an initial guess is solved
forward in time and then the adjoint system is solved backward in time. The controls are updated at the end of each
iteration using the formula for optimal controls. The iterations continue until convergence is achieved.

We take tf = 30 days which represents the time in which treatment is stopped. The values of the weight function
are taken as A1 = 10, A2 = 0.01, A3 = 200, A4 = 100 and A5 = 1000. It should be pointed out that the weights
used in the simulations are are not clinically determined but are used to illustrate the control strategies proposed for
this study. The costs correspond to the case of very cheap to very expensive control strategies. The higher the value,
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the more expensive the treatment. The initial variables and parameter values are taken from Table 2. The initial values
are chosen such that they reflect a patient during chronic infection since the WHO recommendations stipulate that all
people living with the HIV be put on HAART irrespective of their CD4+ counts [32]. The reproduction number in the
absence of treatment is R0xi = 5.18 which was obtained from using the parameter values in Table 2.

The results of the system (1)–(7) with and without controls are depicted in Figures (9) – (12). Figure 9(a) shows
the HIV-1 virus population level with and without controls. We can see that the VL when the treatment is not optimal
can result in very high levels. When optimal treatment is administered the VL remains low. As demonstrated by Figure
9(b), the HHV-8 population starts to decline slowly after day 3.
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Figure 9: Virions with and without controls.

We see from Figure 10(a) that when there is no control the infected CD4+ T-cell population rises and settles at
some steady state level. With optimal treatment the infected CD4+ T-cell population declines and remains significantly
lower than the population without controls. The infected B-cell population on the other hand starts to decline slowly
after day 2 when treatment is optimal (Figure 10(b)).
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(b) Infected B-cells

Figure 10: Infected cells with and without controls.

Figure (11) shows that when treatment is optimal, the HIV-1 and HHV-8 specific effector cells are not affected by
treatment as expected.

Figure (12) demonstrates how the optimal treatment affects the KS development. Without treatment the KS cell
population grows very fast, but when there is optimal treatment the KS cell population remains constant for most of
the treatment period (Figure 12(a)). Figure 12(b) illustrates the control profiles where controls �r and �c are at upper
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(a) HIV-1 specific effector cells
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Figure 11: Effector cells with and without controls.

bound in the drug level till day 6 and 18, respectively before gradually declining to the final time. The control �p is atminimum dosage before rising to its upper bound, a level it maintains until the end of the intervention.
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Figure 12: KS with and without control and the control profiles.
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8. Conclusion
AIDS-KS continues to be diagnosed in HIV infected patients despite the introduction of HAART. This is an

indication that the first-line and second-line antiretroviral regimens as recommended by WHO might not work for
all patients to prevent HIV-1 related infections. In this study we have formulated mathematical models based on
viremia levels for both HIV-1 and HHV-8 to study the prognosis of KS and to make recommendations on optimal
dosage regimen for HIV-1 that would clear the viral infections (both HIV-1 and HHV-8), prevent tumor growth and
minimize drug toxicity.

We have found that for constant infected CD4+ T-cell and B-cell sources (both from infection and proliferation)
that is 
 = � = 0, both HIV-1 and HHV-8 infections, measured by viral and infected cell levels, decline to below
detectable levels. This result is true even for high constant initial infected CD4+ T-cell and B-cell sources (large rx1and rx4 ). For constant infected CD4+ T-cell and B-cell sources the respective effector cells (E1 and E8) are able toproliferate to levels that dominate and overcome the viral replenishment.

If the source for infected B-cells is constant (
 = 0) but the source for infected CD4+ T-cells is strong (� = 1) then
KS fails to develop since the HHV-8 VL which is responsible for KS development declines to below a detectable level
even for a high constant initial source of infected B-cells. This is the case describing a scenario when HIV-1 infected
individuals never suffer from KS throughout the period of their HIV-1 infection.

When both sources for infected CD4+ T-cells and B-cells are strong (
 = � = 1) both HIV-1 and HHV-8 levels
are above their detectable levels, the KS level is also high and the development of clinical KS is possible. This result
is true even when the proliferation rates for infected CD4+ T-cells and B-cells rx1 and rx4 are low.From the three special cases considered above, that is, 
 = � = 0, 
 = 0, � = 1, 
 = � = 1 (before controlled
treatment is administered) and the other cases 0 < 
 < 1 and 0 < � < 1 (not shown in the paper as it is inferred in the
special cases), it can be deduced that the success of viral invasion of the host hinges on viral production from variable
infected T and B cell sources being continuously variable. The variability of viral production is a necessary condition
to ensure that the immune effector cells are unable to mount a sufficient response to overcome the viral replication.

For the strong viral sources 
 = 1, � = 1 discussed above, we have shown that when treatment control parameters �r,
�p and �c representing efficacies for reverse transcriptase inhibitors, protease inhibitors and chemotherapy, respectively
are introduced, it is possible to find optimal treatment levels �∗r , �∗p and �∗c above which the HIV-1 infection declines
to below detectable level resulting in the clearance of HHV-8.

We simulated the case 
 = � = 1 above which yielded high VLs and a possibility of clinical KS. The conclusion
when �r ≥ �∗r , �p ≥ �∗p , �c ≥ �∗c , 
 = � = 1 yielded a different outcome as in this case the VL for both HIV-1 and
HHV-8 declined to undetectable levels for any source of infected CD4+ T-cella and B-cells.

Our work is important in that it supports the recommendation for early treatment for HIV-1 patients as a means to
maintain low VLs and to prevent HIV-1 related infections. Our work also informs HIV-1 infected individuals about the
importance of adhering to treatment to maintain low VLs as this would help to maintain the same treatment regimens
and acceptable toxic levels.
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A. Appendix
A.1. Matrix M

Entries from the following matrixM from Section 3 is used throughout this paper to abbreviate other matrices:

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M11 0 0 0 0 0 M17
M21 M22 0 0 0 0 0
0 0 M33 0 0 M36 0
0 0 0 M44 0 M46 0
0 0 0 0 M55 0 M57
0 0 0 M64 0 M66 0
M71 0 0 0 0 0 M77

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where M11 = −
(

�x1 + �1
sx5

(�x5 − rx5 )

)

, M17 = rx1 , M21 = �, M22 = −�3
sx5

(�x5 − rx5 )
, M33 = −(�x3 − rx3),

M36 = rx3
sx3

(�x3 − rx3 )
, M44 = −

(

�4
sx3

(�x3 − rx3 )
+ �x4

)

, M46 = rx4 , M55 = −(�x5 − rx5 ), M57 = rx5
sx5

(�x5 − rx5 )
,

M64 = Nx6�x4 ,M66 = −�x6 ,M71 = Nx7�x1 (1 + �),M77 = −�x7 .
A.2. Coefficients of the Characteristic Polynomial

These results are for the coefficients of the characteristic polynomial of the 
 = � = 1 case for weak viral source
model and all cases for the strong viral source model.

a1 =
[(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]

+
[(

�4
sx3

(�x5 − rx5 )
+ �x4

)

+ �x6

]

> 0

a2 =

{

[ �x7
(�x5 − rx5 )

(�x1 (�x5 − rx5 ) + �1sx5 )
]

+
[ �x6
(�x5 − rx5 ) − rx3 )

(�4sx3 + �x4 (�x5 − rx5 ) − rx3 ))
]

}

× (1 −0xi ) +
[(

�4
sx3

(�x5 − rx5 )
+ �x4

)

+ �x6

][(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]

>
{[ �x7

(�x5 − rx5 )
(�x1 (�x5 − rx5 ) + �1sx5 )

]

+
[ �x6
(�x5 − rx5 )

(�4sx3 + �x4 (�x5 − rx5 )
]}

× (1 −0xi ) > 0,

a3 =

{

[(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][ �x7
(�x5 − rx5 )

(�x1 (�x5 − rx5 ) + �1sx5 )
]

+
[ �x6
(�x3 − rx3 )

(�4sx3 + �x4 (�x3 − rx3 ))
][(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]

}

(1 −0xi ) > 0,

a4 =
�x6

(�x3 − rx3 )
(�4sx3 + �x4 (�x3 − rx3 ))

�x7
(�x5 − rx5 )

(�x1 (�x5 − rx5 ) + �1sx5 )(1 −0xi )
2 > 0.

since all parameters are positive.

A.3. Proof of Local Stability when 
 = � = 1 for the Weak Viral Source Model
We are going to show that a1a2a3 − a23 − a21a4 > 0. Hence, we have
a1a2a3 − a23 − a

2
1a4 =

[(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

][ �x7
(�x5 − rx5 )

(�x1 (�x5 − rx5 ) + �1sx5 )(1 − R0x7 )
]

×
[(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][ �x7
(�x5 − rx5 )

(�x1 (�x5 − rx5 ) + �1sx5 )(1 −0x7

)]

+
[(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

][(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]
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×
[ �x6
(�x3 − rx3 )

(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 )
][(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]

+
[(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]

×
[(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][ �x7
(�x5 − rx5 )

(�x1 (�x5 − rx5 ) + �1sx5 )(1 −0x7 )
]

+
[(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][ �x6
(�x3 − rx3 )

(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 )
]

×
[ �x6
(�x3 − rx3 )

(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 )
][(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]

+
[(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

][(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]

×
[ �x6
(�x3 − rx3 )

(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 )
][(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

]

+
[(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

][(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

]

×
[ �x7
(�x5 − rx5 )

(�x1 (�x5 − rx5 ) + �1sx5 )(1 −0x7 )
]

×
{[(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

][(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

]

− 2
�x6

(�x3 − rx3 )
(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 )

}

It suffices to show that
[

(�x1 + �1
sx5

(�x5 − rx5 )
) + �x7

][(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

]

− 2
�x6

(�x3 − rx3 )
(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 ) > 0

Now,
[(

�x1 + �1
sx5

(�x5 − rx5 )

)

+ �x7

][(

�4
sx3

(�x3 − rx3 )
+ �x4

)

+ �x6

]

− 2
�x6

(�x3 − rx3 )
(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 )

= 1
(�x5 − rx5 )

[

(�x1 (�x5 − rx5 ) + �1sx5 ) + �x7 (�x5 − rx5 )
]

× 1
(�x3 − rx3 )

[

(�4sx3 + �x4 (�x3 − rx3 )) + �x6 (�x3 − rx3 )
]

− 2
�x6

(�x3 − rx3 )
(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 )

= 1
(�x3 − rx3 )(�x5 − rx5 )

[

�x1 (�x5 − rx5 ) + �1sx5 + �x7 (�x5 − rx5 )
]

[�4sx3 + �x4 (�x3 − rx3 ) + �x6 (�x3 − rx3 )]

− 2
�x6

(�x3 − rx3 )
(�4sx3 + �x4 (�x3 − rx3 ))(1 −0x6 )

= 1
(�x3 − rx3 )(�x5 − rx5 )

[

�x1 (�x5 − rx5 ) + �1sx5 + �x7 (�x5 − rx5 )
]

[�4sx3 + �x4 (�x3 − rx3 ) + �x6 (�x3 − rx3 )]
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− 2
(�x3 − rx3 )(�x5 − rx5 )

(�4sx3 (�x5 − rx5 )�x6 + �x4 (�x3 − rx3 )(�x5 − rx5 )�x6 )(1 −0x6 )

=
[

�x1 (�x5 − rx5 ) + �1sx5 + �x7 (�x5 − rx5 )
]

[�4sx3 + �x4 (�x3 − rx3 ) + �x6 (�x3 − rx3 )]

− 2(�4sx3 (�x5 − rx5 )�x6 + �x4 (�x3 − rx3 )(�x5 − rx5 )�x6 )(1 −0x6 )

= �4sx3�x1 (�x5 − rx5 ) + �x4 (�x3 − rx3 )�x1 (�x5 − rx5 ) + �x6 (�x3 − rx3 )�x1 (�x5 − rx5 ) + �4sx3�1sx5
+ �x4 (�x3 − rx3 )�1sx5 + �x6 (�x3 − rx3 )�1sx5 + �4sx3�x7 (�x5 − rx5 ) + �x4 (�x3 − rx3 )�x7 (�x5 − rx5 )

+ �x6 (�x3 − rx3 )�x7 (�x5 − rx5 ) − (2�4sx3 (�x5 − rx5 )�x6 + 2�x4 (�x3 − rx3 )(�x5 − rx5 )�x6 )(1 −0x6 )

We can show that for 0x6 < 1 the following holds
�4sx3�x1 (�x5 − rx5 ) + �x4 (�x3 − rx3 )�x1 (�x5 − rx5 ) + �x6 (�x3 − rx3 )�x1 (�x5 − rx5 ) + �4sx3�1sx5
+ �x4 (�x3 − rx3 )�1sx5 + �x6 (�x3 − rx3 )�1sx5 + �4sx3�x7 (�x5 − rx5 ) + �x4 (�x3 − rx3 )�x7 (�x5 − rx5 )

+ �x6 (�x3 − rx3 )�x7 (�x5 − rx5 ) − 2�4sx3 (�x5 − rx5 )�x6 − 2�x4 (�x3 − rx3 )(�x5 − rx5 )�x6 > 0

⟹ �4sx3 (�x5 − rx5 )(�x1 − 2�x6 ) + �x4 (�x3 − rx3 )(�x5 − rx5 )(�x1 − 2�x6 ) > 0

⟹ �x1 − 2�x6 > 0 ⟹
�x1
�x6

> 2

Hence, a1a2a3 − a23 − a21a4 > 0 on condition that �x1
�x6

> 2.
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A.4. Contour Plots for the Weak and Strong Viral Source Model
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Figure 13: Contour plots for weak viral source model.
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Figure 14: Contour plots for strong viral source model.
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