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Abstract 

 

The non-invasive study of cortical oscillations provides a window onto neuronal processing. Temporal 

correlation of these oscillations between distinct anatomical regions is considered a marker of 

functional connectedness. As the most abundant inhibitory neurotransmitter in the mammalian brain, 

γ-aminobutyric acid (GABA) is thought to play a crucial role in shaping the frequency and amplitude of 

oscillations, which thereby suggests a role for GABA in shaping the topography of functional activity 

and connectivity. This study explored the effects of pharmacologically blocking the reuptake of GABA 

(increasing local concentrations) through oral administration of the GABA transporter 1 (GAT1) 

blocker tiagabine (15 mg). We show that the spatial distribution of tiagabine-induced activity changes, 

across the brain, corresponds to group-average flumazenil PET maps of GABAA receptor distribution.  

 

In a placebo-controlled crossover design, we collected resting magnetoencephalography (MEG) 

recordings from 15 healthy male individuals prior to, and at 1-, 3- and 5- hours post, administration of 

tiagabine and placebo pill. Using leakage-corrected amplitude envelope correlations (AECs), we 

quantified the functional connectivity in discrete frequency bands across the whole brain, using the 

90-region Automatic Anatomical Labelling atlas (AAL90), as well as quantifying the average 

oscillatory activity across the brain. 

 

Analysis of variance in connectivity using a drug-by-session (2x4) design revealed interaction effects, 

accompanied by main effects of drug and session. Post-hoc permutation testing of each post-drug 

recording against the respective pre-drug baseline revealed consistent reductions of a bilateral 

occipital network spanning theta, alpha and beta frequencies, and across 1- 3- and 5- hour recordings 

following tiagabine, but not placebo.  

 

The same analysis applied to activity, across the brain, also revealed a significant interaction, with 

post-hoc permutation testing demonstrating significant increases in activity across frontal regions, 

coupled with reductions in activity in posterior regions, across the delta, theta, alpha and beta 

frequency bands.  

 

Crucially, we show that the spatial distribution of tiagabine-induced changes in oscillatory activity 

overlap significantly with group-averaged maps of the estimated distribution of GABAA receptors, 

derived from scaled flumazenil volume-of-distribution (FMZ-VT) PET, hence demonstrating a possible 

mechanistic link between GABA availability, GABAA receptor distribution, and low-frequency network 

oscillations. We therefore propose that electrophysiologically-derived maps of oscillatory connectivity 

and activity can be used as sensitive, time-resolved, and targeted receptor-mapping tools for 

pharmacological imaging at the group level, providing direct measures of target engagement and 

pharmacodynamics. 
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Introduction 

 

There is a pressing need to develop time-resolved non-invasive markers of pharmacological effects 

within the brain, that can be used to both drive our understanding of brain function but also 

demonstrate the action and temporal dynamics of novel pharmacological agents. This could help 

reduce the very significant costs associated with the development of new drugs, by helping to 

demonstrate direct target engagement, and therefore accelerate the development of novel treatments 

for diseases that have significant societal burdens. One strong candidate for such a marker are neural 

oscillations, either modulated by task or characterised at rest. Unlike indirect methods, such as 

functional magnetic resonance imaging (fMRI), neural oscillations measured using non-invasive 

methods, such as magnetoencephalography (MEG), arise directly from the synchronous oscillatory-

activation of post-synaptic currents in ensembles of principal cells in cortex (Brunel & Wang, 2003; 

Buzsáki et al., 2004; Wang, 2010), predominantly those in superficial layers (Buzsáki et al., 2012; 

Xing et al., 2012). Converging evidence from experimental (Kramer et al., 2008; Whittington et al., 

1995) and computational (Brunel & Wang, 2003; Pinotsis et al., 2013; Shaw et al., 2017) studies 

suggests that the attributes of these oscillations – the peak frequency and amplitude – are determined 

by more fundamental, unobserved, neurophysiological processes. For example, the peak frequency 

of oscillations within the alpha range (8 – 13 Hz) may be a mechanistic consequence of synchronised 

firing (action potentials) at the same rate (Halgren et al., 2017; Lorincz et al., 2009), while the peak 

frequency of oscillations across many frequency bands has been linked with inhibitory 

neurotransmission (Buzsáki et al., 2004; Hall et al., 2011; Roopun et al., 2006; Whittington et al., 

2000) mediated by γ-aminobutyric acid (GABA). 

 

The link between GABA and macroscopic oscillations observed in MEG is likely mediated by the 

functional inhibitory role of GABA receptors, which are broadly categorised as fast, ionotropic GABAA 

and slower G-protein coupled GABAB, although there exist subtypes of each (Belelli et al., 2009; 

Vargas, 2018; Whiting, 2003). The currents mediated by both of these receptor types have been 

implicated in oscillation generation through control of recurrent excitation-inhibition (Atallah & 

Scanziani, 2009; Brunel & Wang, 2003; Galarreta & Hestrin, 1998; Kohl & Paulsen, 2010; Krupa et 

al., 2014), whereby the GABAergically-mediated inhibitory currents exert temporal control over the 

firing and activity of excitatory principal cells (Bartos et al., 2007; Whittington et al., 2000). In the case 

of higher-frequency oscillations, including beta (13 - 30 Hz) and gamma (30+ Hz), the peak frequency 

may be dependent on the balance of excitatory and inhibitory currents (Brunel & Wang, 2003; Kujala 

et al., 2015; Shaw et al., 2017), implicating excitatory glutamatergic receptor types, such as α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA). 

 

Pharmaco-MEG studies provide a framework for examining the effects that pharmacological 

manipulation of neurotransmitter or neuromodulator systems has on oscillatory activity. To date, 

studies of GABAergic drugs have primarily examined changes in task-induced fluctuations in 

oscillation metrics, usually confined to the analysis of one particular sensory system. For example, in 
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the motor cortex, benzodiazepines, such as diazepam, modulate the amplitude of movement-related 

beta oscillations (Hall et al., 2011; Jensen et al., 2005). In visual cortex, propofol, an agonist of 

GABAA receptors, increased the amplitude of gamma oscillations and concurrently suppressed the 

amplitude of alpha oscillations (Saxena et al., 2013). Tiagabine, a GABA re-uptake inhibitor, reduced 

the frequency of stimulus-induced gamma oscillations (Magazzini et al., 2016). Alcohol, which has a 

complex binding profile including benzodiazepine-mediated GABAA effects, decreased the frequency 

and increased the amplitude of gamma in the visual cortex (Campbell et al., 2014). For a summary of 

other GABAergic pharmaco-MEG studies, see (Muthukumaraswamy, 2014; Nutt et al., 2015) These 

results clearly demonstrate a role for GABA in shaping oscillatory responses, however they are 

confined to observations of task-related, local dynamics.  

 

Non-task induced recordings of oscillatory activity, at ‘resting state’, focus on both activity and 

correlation of fluctuations in different brain regions, within specific frequency bands. This ‘functional 

connectivity’ approach rests on the assumption that those discrete regions of the brain whose band-

limited amplitude envelopes are correlated, are functionally connected. Since GABA plays a role in 

shaping the oscillations of local (within-region), task-induced dynamics, it is expected that it also 

shapes the topography of the networks formed by these regions interacting.  

 

No pharmaco-M/EEG studies have examined GABAergic manipulation of functional connectivity 

across the brain, although studies examining other compounds have. Antagonism of NMDA receptors 

by ketamine decreased alpha and beta networks spanning motor, parietal and occipital regions 

(Muthukumaraswamy et al., 2015) while antagonism of AMPA receptors by perampanel increased 

alpha and beta in similar posterior visual and parietal regions (Routley et al., 2017). Comparison of 

the spatial distribution of these reductions with recent maps of receptor distributions (Zilles & 

Palomero-Gallagher, 2017) revealed that these areas also have higher-than-average densities of 

NMDA and AMPA receptors in superficial cortical layers, as well as higher-than-average densities of 

GABAA and GABAB receptors (where the average is calculated over the 44 cortex-wide regions 

tested) (Zilles & Palomero-Gallagher, 2017). 

 

In the present study, we examined the effect of pharmacologically blocking the reuptake of GABA 

using tiagabine, a GABA-transporter 1 (GAT1) blocker. We anticipated that, at rest, increased GABA 

availability would lead to increased activation of GABAergic receptors and thereby GABAergic 

inhibition, which would have a macroscopic effect of reducing functional connectivity strengths across 

frequency bands.  

 

Having identified regions demonstrating tiagabine-induced band-limited changes in oscillatory activity, 

we next examined the degree to which these changes overlap with the spatial distribution of GABAA 

receptors in a group-average map of scaled flumazenil volume-of-distribution (FMZ-VT) PET. Here, 

we expected that brain regions showing the highest volume-of-distribution of FMZ-VT (interpreted as 
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the density of GABAA receptors) would also demonstrate the biggest drug-induced changes in 

oscillatory activity. 

 

Materials and Methods 
 

MEG Methods 

 

Sample 

Fifteen healthy individuals (1 female, 14 male) aged between 20 – 32 (mean 25.5) completed a 

single-blind, placebo-controlled crossover study of 15mg oral tiagabine (Gabitril) and placebo. Study 

days were separated by at least a week, with each day consisting of 4 MEG scans; an initial ‘pre-drug’ 

recording, followed by post-ingestion scans at 1, 3 and 5 hours. MEG data from the active task 

protocols in this study, including a full overview of the design, has been published previously 

(Magazzini et al., 2016; Muthukumaraswamy et al., 2013). All study participants gave informed 

consent and the study procedures were approved by the UK National Research Ethics Service (South 

East Wales). Volunteers were excluded if they reported personal history of psychiatric or neurological 

diagnosis, current recreational or prescription drug use, or impaired liver function, indicated by 

conventional liver function test. 

 

Data Acquisition 

Whole head MEG recordings were obtained using a CTF275 radial gradiometer system, with 

participants seated upright. Task-free, ‘resting’ recordings of 10 minutes were obtained at 1200 Hz 

and analysed as synthetic third-order gradiometers (Vrba, 2001). Participants were fitted with three 

electromagnetic head coils (nasion and bilateral pre-auriculars), which remained fixed throughout the 

study day, and were localized relative to the MEG system immediately before and after recording. All 

study participants had a T1-weighted MRI (1mm isotropic) available for subsequent source-space 

analysis. Co-registration was achieved by placement of fiduciary markers at fixed distances from 

anatomical landmarks easily identifiable on an anatomical MRI (tragus, eye centre). Offline, 

recordings were downsampled to 600 Hz and segmented into 2 s epochs. Each epoch was visually 

inspected for gross artifact (e.g. movement, clenching, eye blinks) and removed from the analysis if 

present.  

 

Resting-state analysis pipeline 

The present analysis sought to compute the functional connectivity between a set of spatially resolved 

brain loci. We chose to compute this using the amplitude envelope correlation (AEC) metric, which is 

interpretable, robust and repeatable (Colclough et al., 2016). This coupling was computed separately 

for 7 distinct frequency bands using conventional definitions; delta (1 – 4 Hz), theta (4 – 8 Hz), alpha 

(8 – 13 Hz), beta (13 - 30 Hz) and 3 gamma windows (40 – 60, 60 – 80 and 80 – 100 Hz). Figure 1 

shows a graphical representation of the analysis pipeline, which is detailed below. 
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Figure 1. Schematic overview of the analysis and statistical pipeline. RM-ANOVA: repeated measures analysis of variance 

 

Source analysis was performed using the linearly constrained minimum-variance (LCMV) 

beamformer, a spatial filtering method, as implemented in Fieldtrip (Oostenveld et al., 2011). Using a 

local-spheres conductivity (forward model). the beamformer estimated the temporal activity of each 

location of a 6 mm grid (inside the head), as linear combinations of the MEG channels. This step was 

repeated for each of the frequency bands of interest, with the covariance of the MEG channels being 

recomputed from appropriately band-pass filtered data. For each of the locations on this 6mm grid, 

the estimated source timeseries for each trial was then concatenated to form a single timeseries that 

was then taken forward for both connectivity and activity analysis. 

 

Analysis of Amplitude-Amplitude Connectivity 

Our analysis proceeded using the methods we previously employed in Koelewijin et al (2019). We first 

reduced the spatial dimensionality of the source reconstructed data to a set of 90 anatomical loci, 

described by the Automatic Anatomical Labelling (AAL90) atlas (Tzourio-Mazoyer et al., 2002). We 

chose one grid source to represent each AAL90 region, selected based on the voxel having the 

largest temporal standard deviation across the resting-state experiment. 

 

Having reduced to a set of 90 regions, the temporal activity of these sources was orthogonalized with 

respect to each other region using symmetric orthogonalization (Colclough et al., 2015), which further 

reduces source leakage. Next, the amplitude envelopes of each region were extracted using the 
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absolute of the (complex) analytical signal derived by Hilbert transform (in MATLAB).  This timeseries 

was then downsampled to a temporal resolution of 1s in order to study connectivity mediated by slow 

amplitude envelope changes (Brookes et al., 2011). A median filter was used at this point to remove 

any spikes or transients within the envelope. 

 

The functional connectivity of the 90 regions was then calculated using cross-correlations of the 

amplitude envelopes of each region. Since correlations are undirected, only the upper triangular 

portion (minus the diagonals) of the 90-by-90 correlation matrix was computed, requiring 4005 

computations for each of the frequency bands tested, for each subject. In order to make these 

correlations more suitable for statistical analysis, and to correct for the varying length of the final 

timeseries for each person, each of these correlation coefficients were then transformed to variance-

normalised Fisher z-statistics, using a procedure that estimates the effective temporal variance of the 

node timeseries’ null distribution using surrogates generated by randomisation.  

 

We additionally adjusted each person/session’s connectivity matrix to correct for global session 

effects (Siems et al., 2016). These effects can be generated by experimental session confounds, 

effecting SNR, such as head-size, head-motion and position within the MEG helmet. Such correction 

procedures are common in fMRI connectivity analyses, although there is much debate as to the 

optimum algorithm to be used for post-hoc standardization (Yan et al., 2013). Here we adopted a 

variant of z-scoring, in which the null mean and standard-deviation of connectivity, across the matrix, 

is estimated by fitting a Gaussian (Lowe et al., 1998) to the noise peak (+/- 1SD) of the distribution. 

This estimated mean and SD is then used to Z-score each Fisher’s Z connectivity value for that 

person/session. 

 

Finally, in order to only analyse connections which are strongly present in every person/session, we 

estimated the mean rank of every connection in the matrix and removed the weakest 80%.  

 

Source Activity Analysis 

For each of the beamformer voxels on the 6x6x6mm reconstruction grid (5061 voxels), we estimated 

source activity for each voxel, frequency, person and session. Estimating raw power estimates from 

MEG/EEG data, in source-space, and comparing these across people and sessions is problematic 

because geometrical effects, which vary from session to session and across the brain, can lead to 

artefactual inter-session differences (Luckhoo et al., 2014). This is particularly important for 

beamformer reconstructions in which typical corrections for depth-biases in single-state filter weights 

can exacerbate these artefactual differences. Here, therefore, we use a normalised measure of 

“activity”, in which we estimate the amplitude envelope at each of the 5061 locations, using the Hilbert 

methods described above, and calculate the temporal coefficient of variation (CoV) i.e. the temporal 

standard deviation of the envelope, divided by the mean of the envelope. Finally, we also z-scored 

these activity measures using the same gaussian-fit procedure described above for our connectivity 

measures.  
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PET Flumazenil Methods 

 

Sample 

A group of 16 healthy participants (females: 4, age range: 26-61 years, mean age: 46 years) had 

been recruited as healthy controls for a larger clinical PET study. No participants included in the study 

reported a history of neuropsychiatric or neurological conditions or were on any prescribed 

medications. None of the participants consumed alcohol within 48 hours prior to their PET-FMZ scan. 

All participants provided written informed consent according to the Declaration of Helsinki. Approvals 

from the UK Administration of Radioactive Substances Advisory Committee (ARSAC) and the Ethics 

Committee, Imperial College, Hammersmith Hospital, were obtained. For the creation of the FMZ 

template, data from six healthy participants with global values close to the mean were selected and 

raw and right-left reversed (flipped) data were used (12 scans). 

 

PET scan parameters and image analysis 

All PET data were collected on a 953B Siemens/CTI PET scanner. Dynamic 3D PET data were 

collected, which consisted of 20 frames over a 90-minute time period. Scans were obtained with axial 

planes parallel to a horizontal plane passing through the anterior and posterior commissures. The 

tracer, ~370 MBq of [11C]FMZ, was injected intravenously and arterial blood samples were collected  

in order to calculate the plasma input function with metabolite correction (Hammers et al., 2003; 

Lammertsma et al., 1993).  

 

Voxelwise parametric maps of [11C]FMZ total volume-of-distribution (VT) were calculated from the 

time-series data and arterial plasma input functions with spectral analysis (Cunningham & Jones, 

1993; Lassen et al., 1995), allowing for a blood volume fraction, as detailed previously (Hammers et 

al., 2008). 

 

Template creation 

Statistical Parametric Mapping software was used to create the [11C]FMZ PET template (SPM99, 

Wellcome Trust Centre for Human Neuroimaging, University College London, London, UK, 

https://www.fil.ion.ucl.ac.uk/spm/software/spm99/).  

 

PET data were coregistered to the corresponding MRI data, and left-right-reversed, but not resliced. 

The MRIs were then normalised to the Montreal Neurological Institute standard space (MNI152). The 

PETs were spatially normalised using the same transformations as for the MRI images and written out 

with voxel sizes of 2 mm x 2 mm x 2 mm. Data were then averaged with a softmean function and 

smoothed with an 8 mm (FWHM) Gaussian kernel to yield the final template. 

 

Statistical Analyses 
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For the connectivity and activity analyses, we employed a repeated-measures analysis of variance 

(RM-ANOVA), of drug (tiagabine, placebo) by session (pre and 1, 3 and 5 hours post). Where drug x 

session interaction effects were present, we employed post-hoc paired-t testing to explore how effects 

evolved dynamically across sessions (time). 

 

For the connectivity analysis, which was computed in AAL90 template space for computational 

tractability, we employed randomisation based post-hoc testing with omnibus-correction (Nichols & 

Holmes, 2001). For the activity analysis, which was performed at the voxel level (‘voxelwise’), 

permutation testing was not computationally tractable; as such we instead employed false-discovery-

rate (FDR) correction (Benjamini & Hochberg, 1995). 

 

For the comparison of the spatial distribution of activity effects with the PET FMZ VT template, we 

used randomisation-based Pearson’s correlation (5000 permutations) with omnibus correction.  

 

Results 

 

Functional Connectivity 

Figure 2 shows connections (edges) demonstrating significant drug-by-session interaction for each 

frequency band (top row), as well as edges showing a main effect of drug (middle row) and session 

(bottom row), as computed by RM-ANOVA. Connections showing significant interaction effects were 

observed in alpha (n=83), beta (62), theta (61) and delta (7) bands, with most connections clustered 

around posterior regions (occipital / parietal). There were no edges in the gamma range 

demonstrating an interaction effect (figure 2 demonstrates only gamma1, 40 – 60 Hz, however the 

negative result was also observed in the higher gamma bands). Connections showing a main effect of 

drug were observed in theta (n=96 edges), alpha (58), beta (33) and delta (20), largely confined to 

posterior regions but including interactions with cingulate and temporal regions in the alpha band. 

Effects of session were observed across all frequency bands (n=130 edges in alpha, 111 in beta, 48 

in theta, 22 in delta and 3 in gamma1). Again, these were posteriorly focussed but included 

interactions with frontal, deep (delta) and temporal (theta) regions. A list of the top-5 strongest 

(significant) edges for each frequency band, and each term (effect), are listed in supplementary table 

1. 
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Figure 2. Topographical representation of the significant (p<.05) connections (edges) from the RM-ANOVA, showing interaction 

effects (top row), as well as drug (row 2) and session effects (row 3). Colour key at bottom describes regions, left/right 

represents hemisphere (left=left). 

 

Post-hoc permutation-based randomisation testing of within-drug session effects revealed significant 

reductions (figure 3, blue lines) of edge strength for tiagabine at 1, 3 and 5 hr vs. pre, across delta, 

theta, alpha and beta. Analysis of the topography revealed these reductions were confined to occipital 

cortices. Increases were observed at two frontal edges (1 at 3 hours, 1 at 5 hours) in the delta band. 

Significant increases in edge strength were observed between frontal and temporal regions (3 hours 

vs pre) and temporal and deep regions (5 hours vs pre) across all three gamma windows for placebo. 

No other within-drug-vs.-pre changes in edge strength were observed for placebo. A list of all 

significant edges for each frequency band and each comparison (n=6; 1, 3 and 5 hours vs. pre for 

each drug) are listed in supplementary table 2. Figure 4 summarises the ‘time-course’ of effects on 

occipital connectivity for each post-drug session vs pre. 
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Figure 3. Topographical representation of the post-hoc permutation-based (5k) tests, showing only significant (p<.05) 

connections, for within-drug comparisons to baseline (1-, 3- and 5- hours vs. pre). Colour represents direction (red = increased 

vs. pre, blue = decreased vs. pre). 

 

 
Figure 4. Time course of mean occipital connectivity effects for post-drug vs. baseline, for placebo (PLA) and tiagabine (TGB). 

Colours represent frequency bands. Note that the Placebo and Tiagabine sessions were performed on different days. 

 

Source Activity 

Figure 5 shows the voxels whose ‘activity’ demonstrated significant drug-by-session interaction, for 

each frequency band (i.e. voxels with p < 0.05 after false recovery rate correction (FDR)) (Benjamini 
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& Hochberg, 1995). Significant drug x session interaction effects on activity were observed in alpha (n 

= 3133 voxels), beta (n = 1900), theta (n = 1776) and delta (n = 1539, see figure 6(A)) but not 

gamma. Within each band, peak F-statistics in size order were F(1,14) = 120.37 (theta), F(1,14) = 

106.43 (beta), F(1,14) = 72.87 (delta) and F(1,14) = 67.62 (alpha). These are summarised in figure 

6(B).  

 

 

 
Figure 5. Surface representation of the voxels demonstrating significant (p<.05) drug-by-session interaction effects on source 

activity (from RM-ANOVA). Red-Yellow colour axis represents relative strength of F-statistic for significant voxels (p<0.05 FDR 

corrected). Black = n.s. 
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Figure 6. Summary plots for the voxelwise drug-by-session repeated-measures ANOVA, for source activity, showing (A) the 

number of significant voxels in each frequency band (p < 0.05 FDR corrected) and (B) the maximum F-statistic in each 

frequency band. 

 

Post-hoc paired-t tests between post-drug time points versus the pre-drug recording, were computed 

for voxels demonstrating significant interaction effects in the repeated measures ANOVA. The 

resulting t-difference maps for each frequency band, shown for tiagabine in figure 7, depict a pattern 

common across frequencies whereby frontal regions demonstrated increased activity and posterior 

regions decreased activity, in post-tiagabine sessions relative to pre-drug (this is shown only for 

tiagabine in figure 7, not placebo). Figure 8 summarises the time-course of these paired-t effects over 

all sessions (all post-drug vs pre, for both tiagabine and placebo sessions). 
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Figure 7. Surface representation of the significant (p < 0.05 FDR corrected) post-hoc paired-t values for post-tiagabine vs pre, 

for activity measures in each frequency band. The post-drug session depicted was chosen based on the session showing the 

maximum number of significant voxels (see figure 8). For delta and theta, this was 3 hr post tiagabine vs pre, whereas for alpha 

and beta it was 5 hr post tiagabine vs pre. Colour axis represents direction of effect, with red/yellow representing significant, 

positive t-values, blue/purple representing significant negative t-values and black representing non-significant voxels. 
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Figure 8. Summary of the source activity post-hoc paired-t effects for post-drug vs pre for each session. (A) shows the number 

of significant (p < 0.05 FDR corrected) voxels for each frequency band. (B) shows the corresponding peak significant paired t-

value for each comparison (x-axis) and frequency band. For clarity, the strongest positive and negative t-values are presented 

separately. Note that the session demonstrating the peak number of voxels for each frequency band in (A) was selected for 

graphical representation in figure 7. Note also that the Placebo (PLA) and Tiagabine (TGB) sessions were performed on 

different days. 

 

 

Correlation between the spatial distribution of drug effects and mean Flumazenil PET measures 

We observed significant correlations (randomisation testing with 5000 permutations and omnibus 

correction) in the spatial distribution of the mean drug effects on activity (i.e. absolute paired-t value of 

drug vs pre) with scaled FMZ VT, across delta (r=0.15, 0.25 and 0.2 at 1, 3 and 5 hours, respectively), 

theta (r=0.15, 0.26 and 0.19 at 1, 3 and 5 hours, respectively), alpha (r=.18, 0.22 and 0.24 at 1, 3 and 

5 hours, respectively) and beta (r=0.21, 0.23 and 0.24 at 1, 3 and 5 hours, respectively). These 

correlations suggest that the magnitude of drug effects on activity, irrespective of sign, tended to be 

bigger in regions with higher FMZ VT (figure 9). 
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Figure 9. Spatial distribution of scaled flumazenil FMZ VT correlations with effects of drug (absolute t value) on activity across 

frequency bands delta (top), theta, alpha and beta (bottom). Dots represent individual voxels, colour coded by AAL region to 

which they belong. Statistics (r and p-value) are derived from randomisation-corrected Pearson correlations with omnibus 

correction for multiple comparisons. Note that because of inherent spatial smoothing within both the PET and MEG beamformer 

maps, the p-values listed here are likely to be artificially small. 
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Figure 10. Summarising the spatial correlation of flumazenil volume-of-distribution with drug effects on activity across MEG 

sessions. Individual correlations for the tiagabine sessions are shown in figure 9. Note that the Placebo (PLA) and Tiagabine 

(TGB) sessions were performed on different days. 

 

Discussion 

 

Our results indicate that pharmacologically increased GABA availability leads to reductions of both 

local activity and regional connectivity across low frequencies from delta, through to higher, beta 

frequencies. Connectivity effects are localised to posterior brain regions, with predominant effects in 

occipital lobe. Figure 4 summarises the time course of mean effects for the connectivity, averaged 

across occipital regions, showing delta, theta, alpha and beta. Voxelwise analysis of ‘activity’ 

(temporal coefficient of variation) in each frequency band also demonstrated tiagabine induced 

reductions in posterior regions (figure 7), that were accompanied by increases in activity in frontal 

regions. Figure 8 summarises the time course of activity effects for each frequency band. 

 

As summarised in figure 10, the effects of tiagabine on functional connectivity across the four 

frequency bands show a similar temporal pattern, suggesting a common mechanism for the observed 

effects that is not frequency specific. This wide-band effect is consistent with theories of GABAergic 
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function as a crucial component of oscillation generation, whereby inhibitory GABAergic currents exert 

temporal control over principal excitatory populations.  

 

Using a ‘template’ map of flumazenil VT, which is a quantitative measure of flumazenil binding at 

GABAA receptors, we demonstrated that the distribution of drug-induced effects in activity, as 

measured by the absolute paired-t value of post-drug vs pre, correlated with the distribution of GABAA 

receptors across the brain (figure 9). In other words, regions with higher flumazenil binding also 

demonstrated bigger effects of drug on activity in delta, theta, alpha and beta bands. The ‘time 

course’ of this correlation across MEG session is summarised in figure 10. 

 

Previous studies have suggested that tiagabine is not directly active at GABAA sites, instead exerting 

effects on the GABAergic system through inhibiting reuptake of GABA predominantly through GABA 

transporter 1 (GAT1) (Madsen et al., 2011; Ransom & Richerson, 2009) and the extrasynaptic 

betaine/GABA transporter BGT1 (Madsen et al., 2011).  

 

Despite this lack of binding profile at GABAA sites, tiagabine increases the decay time of GABAA 

mediated inhibitory postsynaptic currents (IPSCs) (Thompson & Gähwiler, 1992) and increases the 

affinity of GABAA receptors containing the benzodiazepine site to GABA (Frankle et al., 2009). This is 

important, since it links increased availability of GABA (through inhibited reuptake) to a functional 

effect or consequence, in the form of increased affinity and IPSC decay time. In other words, it 

demonstrates that merely increasing the amount of GABA with tiagabine does have a downstream 

effect on GABAergic function, via a GABAA mediated phenomenon. As such, our findings of 

tiagabine-attenuated functional connectivity and activity at low frequencies across posterior cortex 

may reflect enhanced GABAergic function in the form of lengthened IPSCs. The correlation in spatial 

effects between activity and (template, canonical) FMZ VT supports this, because the effects are 

spatially colocalised to regions with a higher density of GABAA receptors.  

 

The above argument cannot, however, explain the significant increases in activity observed in frontal 

regions after administration of tiagabine. Increased frontal power (not activity) of low frequency 

oscillations has been noted previously, albeit at the sensor level, with the GABA enhancing drugs 

tiagabine and gaboxodol, but not zolpidem (Nutt et al., 2015).  

 

Inclusion of template flumazenil VT data allowed us to go a step further than quantifying changes in 

connectivity with enhanced GABA, because we were able to demonstrate evidence that the amount of 

functional change in a region was predicted by that region’s canonical density of GABAA receptors. 

This provided a mechanistic link between the drug target and observed response, clearly 

demonstrating target engagement.  

 

Although we observed connectivity and activity changes across frequency bands ranging from delta to 

beta, we observed no connectivity changes in the gamma band, even when sub-dividing into discrete 
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20 Hz windows. One explanation for this, is that the GABAergic processes altered by tiagabine did not 

disrupt the generative mechanisms of gamma oscillations. However, this is unlikely since the 

generation of (and spectral characteristics of) gamma oscillations are coupled to GABAA dynamics 

(Bartos et al., 2007; Whittington et al., 2000). Instead, we propose that gamma oscillations, which are 

considered locally generated phenomena within cortical columns, are harder to measure between-

region. This is because gamma oscillations, by virtue of being fast, can exist more transiently than 

lower frequencies, and are therefore harder to detect when correlating long amplitude envelopes. If 

this is the case, methods aimed at identifying fast dynamical switching, such as Hidden Markov 

Models, may be more successful for quantifying faster frequencies (Baker et al., 2014).  

 

Limitations 

This study used a template of flumazenil VT derived from existing data, and from different subjects to 

those who took part in the tiagabine MEG study. Using averaged PET data as a canonical reference 

map of GABAA density across the brain permitted us to compare to the average distribution of drug 

effects across the brain, but lacks the specificity afforded by having PET and MEG on the same 

individuals. Future studies should consider this, since having both would allow for detailed analysis of 

individual differences. A caveat here is the relative expense and exposure to radioactivity with PET 

compared with the safety of M/EEG. 

 

Our investigation of the spatial co-distribution of activity with FMZ VT may overestimate correlations 

due to the inherent smoothness in the PET images. This smoothness-induced autocorrelation 

reduces the effective degrees of freedom, thereby rendering inflated statistics in conventional 

correlation measures, such as the Pearson’s correlation employed here (Afyouni et al., 2019; 

Arbabshirani et al., 2014).  

 

Conclusions 

We have demonstrated that pharmacologically increased GABA availability led to increased frontal 

activity and reduced posterior activity – and inter-region connectivity – across multiple frequency 

bands. The spatially distinct pattern of activity changes correlated with the distribution of GABAA 

receptors across the brain. We propose a mechanistic explanation for our results, whereby increased 

GABA availability (by tiagabine) led to increased affinity of GABAA receptors for GABA (Frankle et al., 

2009), lengthening IPSCs (Thompson & Gähwiler, 1992) and consequently reducing low frequency 

oscillatory activity and connectivity (by the lengthened IPSCs ‘dampening’ current fluctuations 

underpinning macroscopic oscillations). While demonstrating a role for GABAergic dynamics in 

shaping the activity and topography of functional connectivity, we have also demonstrated the utility of 

MEG-based measures of connectivity and activity as a tool for time and frequency-resolved 

electrophysiological receptor mapping. 
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