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Abstract. Additive manufacturing (AM), as a fast-developing technology for 

rapid manufacturing, offers a paradigm shift in terms of process flexibility and 

product customisation, showing great potential for widespread adoption in the 

industry. In recent years, energy consumption has increasingly attracted attention 

in both academia and industry due to the increasing demands and applications of 

AM systems in production. However, AM systems are considered highly com-

plex, consisting of several subsystems, where energy consumption is related to 

various correlated factors. These factors stem from different sources and typically 

contain features with various types and dimensions, posing challenges for inte-

gration for analysing and modelling. To tackle this issue, a hybrid machine learn-

ing (ML) approach that integrates extreme gradient boosting (XGBoost) decision 

tree and density-based spatial clustering of applications with noise (DBSCAN) 

technique, is proposed to handle such multi-source data with different granulari-

ties and structures for energy consumption prediction. In this paper, four different 

sources, including design, process, working environment, and material, are taken 

into account. The unstructured data is clustered by DBSCAN so to reduce data 

dimensionality and combined with handcrafted features into the XGBoost model 

for energy consumption prediction. A case study was conducted, focusing on the 

real-world SLS system to demonstrate the effectiveness of the proposed method. 

Keywords: Additive Manufacturing, Energy Consumption, Modelling, Ma-

chine Learning, Multi-Source Data 

1 Introduction 

AM is often referred to as a 3D printing technology and defined as a process of adding 

materials layer by layer to fabricate products based on 3D model data [1]. Compared 

with conventional manufacturing techniques, AM provides the feasibility for complex-

shaped parts [2]. Besides, AM allows a short time to fabricate products from a concept, 
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and it shows the significance of processing and improving material properties of prod-

ucts with low material consumption [3]. Therefore, AM is applied in the variety of 

industrial and medical usages, such as aerospace, automobile and dental equipment [4]. 

However, the growing environmental concerns on sustainability, particularly on en-

ergy consumption, have been considered [5]. Therefore, improving energy manage-

ment in AM systems is urgent. So far, more and more researchers and manufacturers 

have increased their attention towards this aspect. AM has the potential to achieve a 

larger yield of product, resulting in an increasing amount of energy consumed. The eco-

design is necessary at an early stage in the manufacturing system, supporting designers 

and manufacturers in energy management, decision-making and improvement in the 

process [6]. However, it is challenging to improve energy management, as the subsys-

tems of AM will generate numerous data during the entire process. As investigated by 

Ahuett-Garza and Kurfess [7], the production process of an AM system consists of six 

stages, including 1) conversion, 2) positioning and orientation, 3) adding support struc-

ture, 4) slicing, 5) fabrication and 6) post-processing. The variety of data sources leads 

to the complexity of processing data due to the different dimensions and structures of 

the data in energy consumption prediction. According to Qin et al. [8], four categories 

of data related to design, process, working environment and material are considered, 

which are also known as the multi-source data. The multi-source data contains valuable 

information that uncovers the correlations between the selected features and energy 

consumption. Compared with traditional manufacturing techniques, the complexity of 

AM systems is very challenging for energy consumption analysis. However, the appli-

cation of IoT technology can perform real-time monitoring from multiple processes. 

This makes a single model not suitable for this situation. Therefore, this paper proposes 

a hybrid ML method for predictive modelling of energy consumption. 

The method is integrated by using supervised and unsupervised learning, which are 

proposed as XGBoost and DBSCAN, respectively. The data were obtained from an 

SLS system with different sources, where energy consumption is affected. The primary 

function of the DBSCAN algorithm is to get informative data and simultaneously re-

duce data dimensionality, combining selected features into the XGBoost model for en-

ergy consumption prediction. Root mean squared error (RMSE) and the model correla-

tion coefficient (MCC) is used to assess the model performance. 

Section II reviews the factors that influence energy consumption in AM systems and 

existing studies of ML techniques to establish predictive modelling in various AM sys-

tem under different scenarios. Section III describes the detailed framework supporting 

the adoption of DBSCAN and XGBoost. Section IV demonstrates the outcome of the 

proposed methodology in the specific SLS system.  Section V concludes the paper. 

2 Literature Review 

2.1 Analysis of Energy Consumption in AM Systems 

AM has promoted a new manufacturing pattern that is involved in small-batch manu-

facturing with customisation, satisfying customers' demand [9]. According to different 

working principle and material supplies, some typical AM techniques include electron 
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beam melting (EBM) [10], fused deposition modelling (FDM) [6], selective laser sin-

tering (SLS) [11] and selective laser melting (SLM) [12]. 

Table 1. The List of Different AM Systems in terms of Working Principles, Material Supply and 

Energy Consumption 

AM 

System 

Working Principles Material Supply Unit Energy 

Consumption 

(kW/h) 

EBM Utilisation of high-intensive 

electron beam to melt the mate-

rial powder 

Ti-6Al-4V, 316L stainless 

steel  

17-49.2 

FDM The nozzle of printer extrudes 

fused thermoplastic material 

Acrylonitrile Butadiene 

Styrene (ABS), Polycar-

bonate (PC)  

23.1-346.4 

SLS Laser sinters the material pow-

der 

Polyamide, nylon  14.2-40.0 

SLM Laser melts the material pow-

der 

Ti-6A-4, 316L stainless 

steel  

23.1-163.3 

Noticeably, different working principles and types of supplied material used in AM 

systems play a vital role in affecting the energy consumption according to Table I. Other 

impact factors from process, design, working environment and material are also con-

sidered. Many researchers have investigated those impact factors in different AM sys-

tems. For instance, an investigation was given by Paul and Anand [13], who conducted 

numerical studies, demonstrating the impact factors, including layer thickness and part 

orientation. Baumers et al. [14, 15] conducted experiments to determine the four rele-

vant factors during the AM process by comparing two different working platform. In 

their research, the processing stage, scanning, recoating, and Z-height consumed en-

ergy. Peng [16] focused on the process of 3D printing and broadened the analysis in 

terms of primary and secondary energy. Primary energy referred to direct energy con-

sumption such as material form and properties, while secondary energy highly de-

pended on in-process energy consumption. Watson and Taminger [2] computed an en-

ergy consumption model to illustrate the flow of energy consumption, considering the 

life cycle from feedstock to the end of product life. Differently from other authors, they 

highlighted that the transportation distance influenced the energy consumed in the AM 

system. Liu et al. [17] investigated the machine and process level in AM system that 

could have a significant impact on energy consumption. Furthermore, they also con-

centrated on material characteristics from the micro-level, which has an indirect impact 

on energy consumption. 

For the investigations and studies above, it is found that various factors from differ-

ent sources have a significant impact on the energy consumption of the AM systems. 

These contribute to a better understanding of applying the predictive model in practice. 

With regards to different scenarios, it is essential to set up specific models which are 

progressive to the specific task. The following contents in this section briefly review 

the machine learning (ML) for predictive modelling in different AM systems. 
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2.2 Machine Learning for Predictive Modelling in AM System 

In general, AM systems are complicated manufacturing systems, including many sub-

systems and the sensors and processors which generate massive amounts of data with 

various features and types under the IoT environment [9]. Hence, the time cost of pre-

processing often makes up the largest proportion of time used during the entire predic-

tion tasks. With consideration of the redundancy and irrelevance of some data, it is 

crucial to extract the relevant information by advanced data analytics. Machine learning 

(ML) and deep learning (DL) show merit to tackle the issue.  

In the experiments by Bhinge et al. [18], data were collected from a FANUC con-

troller and using a high-speed power meter to handle process data and power time-

series data, respectively. The work applied the Gaussian Process regression model to 

cope with the small amount of data with high dimensionality. The model showed the 

significance of illustrating the correlation between features and energy usages in ma-

chine tools, which helps with depicting the tool path of the target machine for energy 

management.  

Another application of ML and DL in anomaly detection was achieved by Zhang et 

al. [19]. A high-speed camera captured the images from the SLM system. Firstly, the 

conducted work was to apply principal component analysis on feature selection, reduc-

ing data dimensionality. Secondly, the image data were combined into the support vec-

tor machine and convolutional neural network (CNN) to classify the image data accord-

ing to features with 90.1% and 92.7% of accuracy, respectively.  

Other researchers benefited from ML techniques for the feature selection and extrac-

tion in AM systems. For instance, Wu et al. [20] conducted a numerical study to apply 

data integration method at the feature level, to process signals received by monitoring 

as the input, which was applied in ML models, followed by predicting the surface 

roughness of builds in the AM system. Some contributions were investigated in [8] and 

[21]. In [8], Qin et al. proposed a hybrid ML and DL approaches to deal with unstruc-

tured data with different features, types and dimensions in a complex AM system. The 

advantage is that it achieves considerable information compression. In [21], the focus 

of this paper was to integrate heterogeneous data to uncover the hidden knowledge with 

correlations between different features to help designers make decisions. 

3 Methodology 

This section will elaborate on the proposed methodology, targeting the multi-source 

data from an SLS system by using DBSCAN to cluster the unstructured data, which is 

then integrated into the XGBoost model to predict the energy consumption. The main 

stages of the experiment consist of three main stages, i.e. 1) data sensing and collection, 

2) the hybrid ML-based approach for predictive modelling and 3) model validation and 

evaluation. 
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3.1 Multi-Source Data Sensing and Collection 

The original data is collected from the target AM system, where the data can be cate-

gorised into four different types. They are operation process, material, working envi-

ronment and design. In Fig. 1, process data stem from the parameter settings collected 

from the SLS machine, such as the measured values from the dispenser, recoater speed 

and the laser power used in sintering, which relies on the experience and knowledge of 

the operators. With regards to material data, it depends on the material itself. In this 

case, the type of material is known, referring to two kinds of nylon powder. Design data 

is the data collected from computer-aided design (CAD) models created by designers, 

often including design parameters for each layer [5], which are often determined at the 

beginning stage of the entire process. The working environment can be monitored by 

sensors and data stored in the conditional monitoring files for the illustration. This kind 

of data source collected from the working environment by an IoT platform is considered 

as the layer level from real-time monitoring. Some monitoring files can demonstrate 

these data to better comprehend the structure of the data. 

 

 

Fig. 1. The Multi-Source Data Collection from AM System. 

AM
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Working Environment

Material 
Supply

Sensing

Operator / Designer

Data Collection

Material Condition

Product Design

Process Operation



6 

 

 

Fig. 2. The Framework of Proposed Methodology for Energy Consumption Prediction  

Fig. 2 demonstrates the framework of the proposed methodology in pre-processing and 

modelling. The entire process is divided into three stages, corresponding to their re-

spective roles. At the first stage, the input data are collected from the SLS system and 

categorised into four types of datasets according to their sources. The working environ-

ment data contains different quantities in each separate file, which is essential for inte-

grating these data with using DBSCAN to unify the structure of layer-level data. Sec-

ondly, the dimensionality of the integrated dataset is reduced through DBSCAN clus-

tering, and this dataset is fed into the XGBoost decision tree. Finally, the energy con-

sumption is obtained, and the performance of the XGBoost model is evaluated using 

RMSE and MCC. 

3.2 The Hybrid ML Approach for Energy Consumption Prediction 

Advanced data analysis and ML methods show the ability to predict the model. ML is 

usually divided into supervised learning, unsupervised learning and reinforcement 

Predictive Modelling: XGBoost

Energy Consumption Prediction

Process OperationProduct Design

Working Environment

Material Condition

Layer-level Dataset Build-level Dataset

Multi-Source Data Integration

Data Pre-Processing

DBSCAN

Clustering
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learning according to the learning method [22]. This work uses a hybrid method that 

combined unsupervised learning and supervised learning, i.e. unsupervised learning 

aims to integrate different dimensional datasets, while supervised learning is utilised to 

predictive the energy consumed in the SLS system. 

The clustering problem is related to an unsupervised learning problem. According 

to predefined rules, the clustering problem is used to find the uncovered patterns to be 

classified with similar characteristics between data [23]. DBSCAN is a data clustering 

algorithm targeting unstructured data. Specifically, DBSCAN used a density-based 

clustering approach, which is the most commonly used in clustering the spatial data. 

This algorithm adopts the concept of density-based clustering, which requires the num-

ber of points lied in a specific region of the clustering space, with minimum numbers 

of objects (𝑀𝑖𝑛𝑃𝑡𝑠) and it should exceed the given threshold. The following equations 

demonstrate the nature of DBSCAN and the random point 𝑝 in its neighbourhood is 

defined in equation (1) 

 𝑁𝐸𝑝𝑠 = {𝑞 ∈ 𝐷/𝑑𝑖𝑠𝑡 (𝑝, 𝑞) < 𝐸𝑝𝑠} (1) 

 𝑁𝐸𝑝𝑠(𝑃) > 𝑀𝑖𝑛𝑃𝑡𝑠 (2) 

where 𝐸𝑝𝑠 is the neighbourhood of the radius, given the collection of objects 𝐷. The 

core point  𝑃 is defined in equation (2) if it contains minimal numbers of points.  

In other words, a core point, a boundary point or an outlier is determined by two 

indicators: 𝑀𝑖𝑛𝑃𝑡𝑠 and 𝐸𝑝𝑠, and the outlier is removed. The algorithm connects core 

points under the condition of equation (2), allocating the boundary point to the closest 

core point and finally obtaining the clustering results [24]. 

When comparing to k-means clustering, DBSCAN is faster in terms of clustering 

speed and more effective in processing noise points, handling abnormal data, and in 

exploring spatial clusters of random shapes. Besides, the unbiased-shaped clusters do 

not need to divide the number of clusters [25, 26]. A satisfactory clustering algorithm 

needs to have the following characteristic: 1) to determine knowledge from inputs, es-

pecially for the large datasets, 2) capable of finding arbitrary shaped clusters and 3) 

efficient to handle large datasets [27]. The working environment data is collected layer 

by layer over thousands of data in separate files with various types from the entire pro-

cess, as a consequence of large data volume and heterogeneity. Therefore, DBSCAN is 

expected to tackle the issues. Furthermore, this algorithm was applied at the beginning, 

and it demonstrates the mean values which can be a representative of the entire cluster. 

These values can be combined into design-relevant datasets on the build-level, in order 

to unify the format of each working environment data file. 

XGBoost refers to a tree-based ensemble learning using tree algorithm, proposed by 

Chen and Guestrin [28]. This boosting method is an effective ML method. XGBoost 

uses regression trees ensembles which have the same decision rules as the decision tree 

(DT), containing one score in each leaf value. Two aspects allow it to be distinguished 

from other tree boosting machine. Firstly, XGBoost has a different objective function. 

For each regression tree, this ensemble method accumulates the sum of scores as the 

prediction value for all tree. Assuming there are k trees, the output for tree ensemble is 

defined as follow: 
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 𝑦̂𝑖 = ∑ 𝑓𝑥(𝑥𝑖),𝐾
𝑘=1 𝑓𝑥 ∈ ℱ (3) 

Moreover, the objective function, which is the sum of training loss and complexity of 

the trees to control overfitting, is defined as follow:  

 𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ Ω(𝑓𝑘), 𝑓𝑥 ∈ ℱ𝐾
𝑘

𝑛
𝑖=1  (4) 

 Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2 (5) 

where 𝑦̂𝑖 is the predicted value of the model,  𝑦𝑖  stands for the 𝑖th feature label, 𝑓𝑘 rep-

resents the 𝑘th tree model, 𝑇 is the number of nodes and 𝑤 is the collection of score 

combinations. In the reduction of the objective function, predicted value adds a new 

function  𝑓 in each iteration. This additive training defines a new objective function to 

optimise and search for a new tree model. 

Another difference is the division of nodes. There are four proposed splitting algo-

rithms from Chen and Guestrin's work. XGBoost adopts (1) basic exact greedy algo-

rithm, (2) approximate algorithm, (3) weighted quantile sketch and (4) sparsity-aware 

split finding methods. Among these four split finding algorithms, algorithm (2) and (3) 

is to solve the problem that the data fails to load into memory at once or algorithm (1) 

is not distributed efficiently. The XGBoost approach calculates the gain of each feature 

in parallel and chooses the feature with the largest information gain to split.  

XGBoost provides an idea for processing sparse data and enables the handling of 

instance weights in tree learning. Compared with the traditional tree model, it shows 

the merits of regularisation in controlling the model complexity and reducing the vari-

ance of the model to avoid overfitting. This model is used to predict the energy con-

sumption in the SLS system. By targeting this specific task, XGBoost integrates the 

weak learner to form a stronger learner to increase the accuracy.  In addition, the spar-

sity-aware split finding method of XGBoost can process the missing values in the com-

bined datasets. Also, it increases the learning rate effectively by controlling the model 

complexity, which is important when dealing with large datasets.  

3.3 Validation of Prediction Model 

Various subsystems consume electric power in the SLS system [29]. The consumption 

is noted as 𝐸𝑈, referring to the unit energy consumption in kWh/kg and it is: 

 𝐸𝑈 =
𝐸𝑇

𝑀𝑇
 (6) 

where  𝐸𝑇  is the total energy consumed in the AM system and 𝑀𝑇  means the total 

weight of fabricated products. 

The performance of the predictive model XGBoost decision tree can be evaluated 

by RMSE and MCC [29-31]. RMSE identifies the actual value (𝑎𝑡) and the predicted 

value (𝑝𝑡). The low value of RMSE determines the high accuracy of the model, which 

is given by: 
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 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑝𝑡 − 𝑎𝑡)2𝑁

𝑡=1  (7) 

 𝑀𝐶𝐶 =
𝑆𝑃𝐴

√𝑆𝑃𝑆𝐴
 (8) 

 𝑆𝑃𝐴 =
∑ (𝑝𝑖−𝑝̅)(𝑎𝑖−𝑎̅)𝑖

𝑛−1
; 𝑆𝑃 =

∑ (𝑝𝑖−𝑝̅)2
𝑖

𝑛−1
 ; 𝑆𝐴 =

∑ (𝑎𝑖−𝑎̅)2
𝑖

𝑛−1
 (9) 

In equation (8) and (9), MCC reveals the correlations between the predicted and 

actual data obtained from the model, where 𝑝̅ is the mean value of predicted data, and 

𝑎̅ is the mean value of the entire data. 

4 Case Study 

The case study was based on an SLS machine (EOS P700) using nylon powder 

(PA2200 and PA3200GF) to create builds. The data was collected from 2016 to 2018. 

The working environment data has different quantities, and pre-processing is consid-

ered. 

4.1 Experimental Setup 

Data description – The data collected from the SLS system are divided into four cate-

gories, including process, material, working environment and design. These four da-

tasets obtained from different sources can be distinguished from their data structure.  

By inspecting the datasets, the variety of data types is taken into accounts, such as 

time-series data (build date), nominal data (material types) and numeric data (data col-

lected from the four described sources). Different types of data sources make it com-

plicated to analyse data directly, while data pre-processing is critical before predictive 

modelling. In details, the layer- and build-level data are allocated based on four kinds 

of datasets.  

For instance, in the working environment dataset, data has different dimensions be-

cause each parameter or feature was collected layer by layer, indicating the different 

height of prints. With regards to the design data, combining with information of mate-

rial supply and operation process, this combined dataset consists of build date, process 

parameters, material supply and unit energy consumption of each build. Fig.3 illustrates 

the statistical distribution of energy consumption. It can be observed that most of the 

values are located in the range of 200 to 400 kWh/kg. However, the energy consump-

tion of each build showed the difference. 

The multi-source data makes it complicated to model directly with these heteroge-

neous data. By observing the collected datasets, 31 attributes are recorded in the corre-

sponding datasets. These datasets are allocated into two new classes: layer-level and 

build-level, which layer-level datasets include working environment data and build-

level data constitute design, process operation and material. For parameters that remain 

constant during the process, such as scan speed, the material type and the height of 

builds, they can be classified as build-level data, corresponding to process, material and 
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product design data, respectively. Conversely, the working environment data are col-

lected from each layer where the information tends to be different during the manufac-

turing process. In addition, the informative data monitored and collected from the work-

ing environment are placed into layer-level datasets, such as the chamber temperature 

and the oxygen content. 

 

Table 2. Data Categories in terms of Sources and Types. 

Data Types Data Sources Data Attributes 

Build-level data Process operation Dispenser values, Scan speed, Recoater 

speed, etc. 

Product design Number of builds, Build height, Filling de-

gree, etc. 

Material Type of material supply 

Layer-level data Working environment Chamber temperature, Frame temperature, 

Oxygen level, scanner temperature, etc. 

 

 

Fig. 3. The Distribution of Unit Energy Consumption from Datasets. 

 

Data pre-processing – Prior to the establishment of the predictive model, this stage 

is used to minimise the data noise and outliers from the datasets. Some instances or 

features containing massive missing values, they were replaced by mean values or re-

moved from the whole dataset.  Considering the complexity and heterogeneity of work-

ing environment data, DBSCAN provides a clustering method to select a specific value 

which can represent the cluster, targeting the working environment data. This is utilised 

to select the valuable feature to conduct training from existing features, simultaneously 

reducing the dimensionality to unify the datasets. Differently from DL techniques, ML 

techniques need labelled and handcrafted features. This method aims to extract a series 
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of the most representative data point from the clusters, which is also constructive to 

dimensionality reduction.  

Model setups – The proposed methodology is to use XGBoost decision tree to pre-

dict energy consumption. Three other algorithms are adopted to the prediction task as 

benchmarks to compare the performance. These are SVR with linear kernel, gradient 

boosting regression tree (GBRT) and convolutional neural network (CNN). By com-

parison, the prediction performance of the proposed model is more convincing. 

Model validation – The model adopts five-cross validation for testing. XGBoost 

and benchmarks can be evaluated by RMSE and MCC. 

4.2 Results and Discussion 

There are three ML and one DL algorithms adopted in energy consumption prediction 

of the case study. The working environment data was trained then combined with other 

types of datasets into the proposed ML technique and three other benchmarks. After 

applying XGBoost, RMSE, and MCC to determine the performance of the model, the 

effectiveness of the proposed approach is demonstrated. Fig. 4 illustrates the compari-

son between the four algorithms with using layer-level, build-level and combined da-

tasets. It can be observed that XGBoost appears the highest value of MCC, 0.708 when 

applying combined datasets, which shows the best degree of fitting to the experimental 

data when DBSCAN is applied. In general, this coefficient lies in the range of -1 to 1, 

representing negative correlation and positive correlation, respectively. It can be seen 

that all variables are positively correlated with the output value, that is, energy con-

sumption. Followed by the MCC of XGBoost, that of SVR and GBRT's MCC obtains 

similar values (0.669 and 0.676, respectively), indicating that these two models are 

suitable for prediction. Regarding CNN, this DL technique often processes image data 

and performs classification tasks. The application of regression is uncommon. In addi-

tion, when applying the multi-source data into the predictive models, the results show 

that some of the performance of algorithms (GBRT and XGBoost, known as ensemble 

methods, based on the tree learner) will be optimised, while other methods yield a slight 

decrease in MCC. SVM yields the best results when applying the layer-level datasets, 

while it obtains the lowest MCC when only using build-level datasets. 

RMSE describes the error in the models more intuitively and refers to the loss func-

tion from the regression analysis. Fig. 5 demonstrates the comparison of the RMSE for 

each model. For the RMSE of XGBoost (130.783 kWh/kg), which is within an accepta-

ble range, it measures the deviation between actual and predicted values. This value 

shows the lowest RMSE when applying the entire datasets. After that, the RMSE of 

CNN changes dramatically and has the largest value at 231.958 kWh/kg. For this neural 

net-based algorithm, the best application of industry is associated with pattern recogni-

tion or classification. The adoption of multi-source data will affect the performance of 

predictive models. Fig. 6 is the comparison between test data and predicted data, which 

shows a similar trend for energy consumption. As a result, it can be observed that some 

outliers affected the final results. When utilising more heterogeneous data and combin-

ing them into XGBoost regression tree, the pattern of data fluctuates. However, the 

trend of predicted data and original still demonstrate a big gap as more data enters, 
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which may be caused by irrelevant features from the datasets and can be solved by 

collecting data to create new features. 

 

Fig. 4. Comparison of MCC of XGBoost and Benchmarks. 

 

Fig. 5. Comparison of RMSE of XGBoost and Benchmarks. 

By analysing the nature of different predictive models, ensemble methods (GBRT and 

XGBoost) show the merits in prediction, and statistic-based algorithm (SVM), also has 

good learning performance. CNN, as the neural-net-based algorithm, has applicability 

in processing pattern and mere applications in the regression or prediction. Conse-

quently, it has the lowest outcome in MCC and the highest values in RMSE. Another 
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pattern can be observed by the integration of datasets. The combined dataset is deter-

mined to influence the prediction performance of each model. The consideration of the 

overfitting problem is the most essential. Complicated training models may lead to the 

overfitting of the training data. Furthermore, as one of the challenges of ML, the quality 

of data will influence the performance of models. If training data contains many noise 

and outliers, the performance of the model will be affected. In some situation, it de-

pends on the size of samples, which requires the representative features. Thus, before 

employing heterogeneous data into predictive models, data pre-processing is necessary.  

 

Fig. 6. The Prediction Result between Predicted Values and Original Values. 

This hybrid ML approach has presented better performance among the other three 

algorithms and connected the target and input with high dimensionality when using 

combined datasets. For tackling the real-world issue regarding handling heterogeneous 

data, a single learner cannot be adopted, while the integration of DBSCAN and 

XGBoost suits the case.  

 

5 Conclusions 

AM is a comprehensive manufacturing technique embedded with various technologies, 

which currently employed across many different industries. Manufacturers and re-

searchers are beginning to focus on the sustainability of AM and have started to opti-

mise the process in terms of the energy aspect through data-driven approaches. How-

ever, different subsystems generate this data which makes it complicated to handle data, 
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meaning a single predictive model does not adapt to this complicated situation. Hence, 

a hybrid ML-based approach is proposed. 

The experiment firstly adopted the DBSCAN method to select informative and rep-

resentative data, simultaneously reducing data dimensionality, where the data was clus-

tered and combined into the predictive model. Secondly, this paper applied a tree-based 

ensemble learning technique, XGBoost, and used it to predict the energy consumption 

of the SLS system. The evaluation matrix of XGBoost demonstrated a significance in 

the performance in dealing with heterogeneous data in a complex SLS system. The 

performance of XGBoost outperformed the other benchmarks, demonstrating the high-

est MCC and lowest RMSE compared with other algorithms, which shows that 

XGBoost greatly improves the degree of fitting and accuracy of the model. XGBoost, 

as an ensemble learning algorithm, provides a feasible approach to predict energy con-

sumption in a complex AM system.  

However, the predicted and original value show a significant gap after prediction. 

This may be affected by interfering and irrelevant information from the raw datasets. 

Feature extraction will be considered in future work, which is expected to be imple-

mented in the data pre-processing stage. This could improve the modelling performance 

when the model is built on the data from a large volume. 
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