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Abstract
Risk evaluation is a critical component of decision making. Risk tolerance is relevant in both daily decisions and
pathological disorders such as attention-deficit hyperactivity disorder (ADHD), where impulsivity is a cardinal
symptom. Methylphenidate, a commonly prescribed drug in ADHD, improves attention but has mixed reports on risk-
based decision making. Using a double-blinded placebo protocol, we studied the risk attitudes of ADHD patients and
age-matched healthy volunteers while performing the 2-step sequential learning task and examined the effect of
methylphenidate on their choices. We then applied a novel computational analysis using the hierarchical
drift–diffusion model to extract parameters such as threshold (‘a’—amount of evidence accumulated before making a
decision), drift rate (‘v’—information processing speed) and response bias (‘z’ apriori bias towards a specific choice)
focusing specifically on risky choice preference. Critically, we show that ADHD patients on placebo have an apriori bias
towards risky choices compared to controls. Furthermore, methylphenidate enhanced preference towards risky
choices (higher apriori bias) in both groups but had a significantly greater effect in the patient population
independent of clinical scores. Thus, methylphenidate appears to shift tolerance towards risky uncertain choices
possibly mediated by prefrontal dopaminergic and noradrenergic modulation. We emphasise the utility of
computational models in detecting underlying processes. Our findings have implications for subtle yet differential
effects of methylphenidate on ADHD compared to healthy population.

Introduction
Evaluation of risk is one of the core constructs critical to

decision making. Risk-taking can involve the evaluation of
explicit risk where the likelihoods of benefit (reward) or
harm (loss) are known; or ambiguity, where the like-
lihoods are unknown1. Attention-deficit hyperactivity
disorder (ADHD) is a neurodevelopmental disorder
characterised by inattention, impulsivity, and decision-
making deficits2. Higher risk-taking behaviours are a
common feature of ADHD, which include substance
abuse3 and gambling behaviours4.
A meta-regression analysis comparing multiple studies

on risk-taking behaviour including multiple implicit (Iowa
Gambling Task (IGT), Balloon Analogue risk task

(BART)) and explicit forms (Game of dice, Card Playing
Task, Cambridge Gambling Task (CGT) & Probabilistic
discounting task)) showed greater risk-taking in ADHD5.
Methylphenidate (MPH), a commonly prescribed medi-
cation has a differential influence on ADHD patients
relative to healthy controls based on the sub-type of
impulsivity (Table 1). These mixed differential effects call
out for novel approaches to understand mechanistic dif-
ferences and identify behavioural markers associated with
the pathophysiology.
Recently, computational psychiatry has sought to

explain how these behaviours are underpinned by altered
computational processes during decision making6–8.
Drift–diffusion models (DDM) assess and extract para-
meters corresponding to the underlying neural processes
of decision making, by posing it as an evidence accumu-
lation problem9. The three main parameters i.e., decision
threshold (a) or boundary separation, an index of the
amount of evidence accumulated prior to a decision; drift
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rate (v), an index of the speed of evidence accumulation;
and response bias (z), the apriori tendency or bias towards
one choice or another, represent different processes in
choice reaction time paradigms.
Computational modelling in ADHD using DDM pre-

dominantly focused on either understanding the rela-
tionship between its parameters with proposed
pathophysiological mechanisms such as reduced gluta-
matergic cortical drive; dopamine transfer deficit theory
(or the deficit in transfer of dopaminergic responses to
unconditioned rewards) and moderate brain arousal the-
ory10 or task-related attention deficits, such as drift rate
being an index of attention rather than measure of
information processing10. Here we focus on the concept
of risk or uncertainty tolerance with higher real world and
clinical implications.
In this study, we exploit the capacity of a hierarchical

modelling framework to decode the neural mechanisms
of decision making specific to risk attitudes. We
emphasise the role of response bias (z) currently
underexplored in the ADHD literature, in risk-based
decision making. Response bias is suggested to reflect
the ‘apriori’ bias of an individual towards a specific
choice, correlating with activity of fronto-parietal and
fronto-basal ganglia networks11,12. Using hierarchical
drift–diffusion modelling (HDDM), we previously ana-
lysed the two-step sequential learning task in compulsive
disorder patients (obsessive compulsive disorder and
alcohol dependence), in the context of uncertainty and
conflict irrespective of choice preference7. Using the
same task, we now apply a novel analysis, focusing on
choice preference (risk attitudes) in ADHD and Healthy
volunteers (HV) and compare the effects of MPH on
each of the groups.

Methods
Participants and Protocol
A total of 49 participants (25-ADHD patients and 24-HV,

a standard for behavioural studies with medication chal-
lenges between groups8,13,14) were recruited from a specia-
list clinic at Sussex Partnership NHS Foundation Trust and
HV via classified advertisements and university mailing lists.
The patient assessment included semi-structured interviews
using the Diagnostic Interview for ADHD in adults (DIVA),
completion of the Conner’s self-report Adult ADHD ques-
tionnaire, and review of school reports wherever possible.
All patients had confirmed DSM-IV diagnoses of ADHD
(See8 for complete details of selection/exclusion criteria).
Local and national ethical approvals were obtained from
Brighton and Sussex Medical School (14/014/HAR; 12/131/
HAR) and the East of England (Hertfordshire) National
Research Ethics Committee (reference: 12/EE/0256) and
written informed consent was obtained. The demographics
and clinical measures are reported in Table 2.
Exclusion criteria included any neurological or psychiatric

history past or current, except for anxiety and/or unipolar
depressive disorder currently in remission, history of sig-
nificant head injury, and current drug or alcohol abuse. Each
patient was managed on a stable regimen of methylphenidate
(minimum 18mg) or dexamphetamine (minimum 10mg)
for at least 2 months before study enrolment. For healthy
controls, a history of serious cardiovascular conditions
including cardiomyopathy, coronary artery disease, ven-
tricular arrhythmia or hypertension, heart failure, current or
recent use of monoamine oxidase inhibitors, anticoagulants,
anticonvulsants or antipsychotics or a diagnosis of glaucoma
were on exclusion criteria. Moreover, ADHD participants
were routinely screened for these potential contra-
indications to stimulant medication at clinical assessment.

Table 1 Effect of methylphenidate on impulsivity subtypes in healthy controls and attention-deficit hyperactivity
disorder.

Dimension Effect on controls Effect on ADHD

Response Inhibition Enhanced correct Go responses39,40 associated with fronto-parietal

activity40 in a Go-Nogo task, Improved response inhibition in a

modified stop signal task41

Improved response inhibition on stop signal task to that of

non-medicated controls13,42

Delayed reward Decreased delay discounting23 Decreased delayed discounting in ADHD children24

Risk-taking No difference in number of gambles or response time in controls43.

Increase in gambles despite an increase in loss38
Mixed results in betting behaviour with both decreased5

and no effect reported5,44. Improved IGT score in

inattention sub-type44

Reflection Impulsivity No effect on Information Sampling Task in both controls and

ADHD5. In controls, MPH differentially modulated the performance,

depending on baseline impulsivity45

Waiting Impulsivity Increased premature responding in a 4 choice serial time task in

controls45
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The experimental design was a double-blinded placebo-
controlled study with all participants completing two
sessions of testing separated by a minimum of 1 week.
ADHD patients were required to refrain from their reg-
ular medication on the test as well as 2 days before the day
of testing. A.S who conducted the experiment and the
entire participant testing was blind to treatment alloca-
tion. N.A.H (a qualified doctor) was aware of treatment
allocation for safety reasons but was not involved in actual
testing. During the first session, the participant in a ran-
domised manner received either MPH or placebo in
sealed envelopes. The alternate treatment was allocated in
the second session. Patients with ADHD were given their
normal morning medication dose or an inactive placebo
whereas HV received 20 mg of MPH or placebo.

The sequential learning task
The widely tested and published sequential learning

task7,15,16 consists of two stages; In stage 1, participants are
presented with a stimulus pair (Fig. 1a). Upon selection,

depending on the participant’s choice and stage 1 transition
probability (P= 0.70 or 0.30), the second stage stimuli pair
were then presented. The choice of a stimulus at stage 2 led
to a reward (£1 or no reward). The reward probabilities of
stage 2 stimuli were dynamic, based on a slow random
Gaussian walk (P= 0.2–0.75, Fig. 1b). Subjects were
allowed a decision time of 2 s at each stage, a 1.5 s transition
time between stages, and observed the outcome for 1 s.
Participants underwent a computerised self-paced training
lasting 15–20min and completed all 134 trials.

Risk in the sequential learning task
In this study, the risk associated with a stage 2 choice

was calculated based on their variance in reward prob-
ability (Fig. 1c, calculated using Eq. 1)17. This formulation
comes from a theoretical framework of risk/uncertainty17

supported by experimental human imaging studies, where
dopaminergic, striatal, and midbrain neural activity
resemble the inverted U-curve while coding for risk17,18.
This definition also controls for the confounding effect of

Table 2 Lists the (mean ± standard deviation) of the demographics, clinical measures, behavioural measures and the
reinforcement learning estimates between attention-deficit hyperactivity disorder group and Healthy Controls.

Parameter ADHD HV p-value

Age 33.48 ± 9.8 31.04 ± 8.24 ns

FSIQ 108.77 ± 6.63 108.85 ± 6.83 ns

BDI 14.36 ± 8.7 6.63 ± 6.9 0.001

ADHD Index 24.16 ± 5.72 8.96 ± 5.03 <0.001

STAI Trait 54.28 ± 11.44 37.7 ± 10.88 <0.001

Medication duration (months) 32 ± 40.8 Not applicable

DSM—Inattentive 18.96 ± 4.8 7.16 ± 4.4 <0.001

DSM—hyperactivity/Impulsivity 18.04 ± 6 4.7 ± 3.3 <0.001

Gender—Male (Female) 15 (10) 16 (8) Χ2(1) = 0.234, p= ns

Behvaioural measures and Reinforcement Learning estimates

Measure Controls-Placebo Controls-MPH ADHD-Placebo ADHD-MPH

Percentage of risky choices 0.52 ± 0.06 0.53 ± 0.06 0.53 ± 0.06 0.54 ± 0.07

Response time of risky choice (ms) 841 ± 163.7 804.2 ± 121 840 ± 222.5 833.1 ± 220.6

Response time of Non-risky choice (ms) 822.4 ± 147.6 800.7 ± 137.1 830 ± 214 840 ± 222.5

β1-Randomness Stage1 4.1 ± 3.7 5.7 ± 4.01 4.3 ± 2.6 4.45 ± 3.1

β2-Randomness Stage2 3.2 ± 1.68 3.7 ± 1.92 2.7 ± 1.76 3.48 ± 2.13

η1-Learning rate Stage1 0.52 ± 0.3 0.52 ± 0.27 0.46 ± 0.33 0.44 ± 0.35

η2-Learning rate Stage2 0.41 ± 0.25 0.43 ± 0.28 0.45 ± 0.31 0.42 ± 0.25

ps-Perseveration 0.13 ± 0.2 0.14 ± 0.17 0.1 ± 0.1 0.14 ± 0.18

w-Model free - model based 0.36 ± 0.26 0.36 ± 0.29 0.29 ± 0.23 0.24 ± 0.22

MPH methylphenidate, ADHD attention-deficit hyperactivity disorder, HV healthy volunteers, FSIQ Full Scale Intelligence Quotient, ADHD Index, BDI Beck Depression
Inventory, STAI State-Trait Anxiety Inventory measures of healthy controls and patient group.
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the expected value of the choice from risk.

Ri
x;j ¼ Pi

x;jð1� Pi
x;jÞ; ð1Þ

where Ri
x;jis the risk variable, Pi

x;jis the reward probability
of the transitioned stimulus ‘x’ at stage 2 for trial i and
subject j. The riskiest choice was the stimulus whose
reward probability was at chance level (P= 0.5), i.e.,
associated with the greatest variance in outcomes and
the least risky choice was associated with either P= 0.25
or P= 0.75 with a greater likelihood of either winning or
not winning and hence greater certainty (or lower
uncertainty).
Using Eq. 1, we calculated the risk associated with the

two choices (Fig. 1c) for each trial and labelled the option

with the highest variance as the risky one (Fig. 1d). This
information was then compared with the subject’s actual
choice in a given trial, to classify it as either a risky or a
non-risky choice. This was repeated for all the trials and
subjects.

Hierarchical drift–diffusion model (HDDM)
HDDM falls under the class of sequential sampling

methods which utilise Bayesian methods to estimate the
DDM parameters such as the threshold (a) and the drift rate
(v), response bias (z), and non-decision time (t) (Fig. 1e, f).
We focus our analysis on the first three parameters as
t primarily concerns motor and non-decision-making pro-
cesses. The Bayesian-based HDDM estimates parameters as
posterior probability distributions with the mean of the

Fig. 1 Sequential learning task, risk-probability formulation and hierarchical drift–diffusion model(HDDM) (a) 2-step sequential learning task (b)
Evolution of all stage 2 choice reward probabilities across trials (c) risk/uncertainty as a function of second stage reward probability (Eq. 1) which
follows an inverted U-curve (d) An example plot with reward probabilities of two stage2 choices, their corresponding risk(Eq. 1) and trial-wise risky
choice among the two choices (e) pictorial representation of the drift–diffusion model with its parameters (threshold—a, drift rate-v and response
bias-z) and (f) pictorial representation of the HDDM structure with input variables and estimates.
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distribution representing the group’s average. The model
utilises the Markov Chain Monte Carlo sampling method to
estimate the distributions. The prior distribution for each
parameter was based on 23 studies that reported the best
fitting DDM parameters for multiple cognitive tasks19. The
pre-analysis code was written in MATLAB version 2017a
and the built-in HDDM python package by19 was used for
parameter estimation.
Trials with response times less than 50ms were dis-

carded from the analysis to ensure model convergence
and to constrain the data to realistic response times. The
parameters were estimated by drawing 120,000 samples
with the first 10,000 samples being discarded as burn-in
and saving only every 10th sample. The convergence of the
model was assessed by both visual inspection and com-
putation of the Gelman-Rubin statistic, which indicated
convergence (R^ < 1.1)20.
Additionally, we also estimated the parameters for

accuracy (see7 for details on methods). We estimated all
the three HDDM parameters (a, v, and z) in HV and
ADHD in placebo and MPH conditions.

Statistical Analyses
In line with the HDDM estimation of parameters, we

used Bayesian methods as implemented in JASP for sta-
tistical analysis. Bayesian repeated measures ANOVA was
used to test the significance across groups, conditions, and
their interactions and, if significant, post-hoc Bayesian
paired, and independent t-tests were used to assess the
mean difference. Evidence for hypothesis testing was
inferred from the Bayes Factor (BF10), with a BF10 > 3
indicating moderate evidence and >100 strong evidence in
support of the alternate hypothesis20. The Bayes Factor
used to report the evidence for (or against) a hypothesis
was obtained from JASP. Based on JASP guidelines, the
normality and homogeneity of variance was met by the
HDDM estimates. The behavioural (response time and
accuracy) and demographic measures were analysed using
frequentist repeated measures ANOVA and post-hoc
Bonferroni corrected independent paired and sample two-
tailed t tests using SPSS version 25. The correlation was
performed using Bayesian statistics.

Results
Behavioural measures—healthy volunteers and ADHD
population
Repeated measures ANOVA showed no significant

main effects of drug or group or their interaction in terms
of response time or percentage of risky choices (See Table 2).

Reinforcement learning parameters
Repeated measures ANOVA on the reinforcement

learning (RL) parameters (beta (β1, β2), learning rate (η1
and η2), and perseveration (ps), model free-model based

weight (w)) of ADHD and HV subjects during placebo
and MPH condition showed no main effect of drug or
group or drug by group interaction. The individual esti-
mates of the parameters are reported in Table 2.
To assess the effects of depression and anxiety on the

behavioural measures and reinforcement learning esti-
mates, we ran repeated measures ANOVA of reinforce-
ment learning parameters during placebo and MPH
condition with depression and anxiety scores as covari-
ates. We observed no main effect of drug or depression or
anxiety or any interaction effects. Similarly, repeated
measures ANOVA with covariates on the behavioural
outcomes (risk and reaction time) that form the primary
inputs to the HDDM model also showed no main effect of
drug or group or risk or effect when adjusted for
depression and anxiety covariates.

HDDM model estimates of Healthy volunteers and ADHD
population
Using the extracted choice (risky vs non-risky) and

response time information (Fig. 1f), we estimated the
parameters (a, v and z) for ADHD and HV population
when on drug or placebo. At baseline on placebo, both
ADHD and HV had a response bias (z) towards the
more certain choice suggesting lower uncertainty
tolerance.
Bayesian repeated measures ANOVA showed no evi-

dence for the main effect of the drug, group, or its
interaction for either threshold or drift rate.
For response bias (z), repeated measures Bayesian

ANOVA (Fig. 2) showed a very strong evidence for a main
effect of drug (BF10= 6.03 × 1011), group (BF10= 86344)
and group by drug interaction (BF10= 3.65 × 106). Post-
hoc Bayesian independent sample t-tests showed very
strong evidence for the patient group to have a higher
preference towards the risky choice when on MPH rela-
tive to HV (BF10= 8.94 × 1014) and strong evidence when
on placebo relative to HV (BF10= 20.9). To check the
effect of drug individually on each of the groups, we also
ran Bayesian paired sample t-tests and show strong evi-
dence for the drug to induce a preference towards the
risky choice particularly in ADHD (BF10= 1.16 × 1010)
but also in HV (BF10= 397.1).
The inclusion of clinical scores such as depression

(BDI), anxiety (STAI-T), Inattention (DSM-I) and
hyperactivity (DSM-H) scores as covariates, did not alter
the strong evidence for the main effect of drug (5.88 ×
1011), group (BF10= 88086) and their interaction (BF10=
3.9 × 106) without any covariates. There was no evidence
for an effect of BDI score (BF10= 2.7) but was observed
for anxiety (BF10= 36), DSM-I (BF10= 138) and DSM-H
(BF10= 352). We further show evidence for an interaction
effect between drug and anxiety (BF10= 46), drug and
DSM-I scores (BF10= 1287) and drug and DSM-H scores
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(BF10= 213) but not group interaction effects with
depression or inattention or hyperactivity
To further understand this interaction effect between

drug and clinical scores (anxiety, DSM-I and DSM-H), we
calculated Bayesian correlations within individual groups
between response bias and clinical scores in drug and
placebo conditions. Anxiety and ‘z’ were not correlated
within each group (Fig. 3a, b) for drug (rHV= 0.17, BF10=
0.3; rADHD= 0.17, BF10= 0.3) or placebo (rHV=−0.01,
BF10= 0.25; rADHD= 0.08, BF10= 0.3). Similarly, inatten-
tion and ‘z’ were not correlated within each group (Fig. 3c,
d) for drug (rHV= 0.03, BF10= 0.26; rADHD=−0.13,
BF10= 0.3) or placebo (rHV=−0.24, BF10= 0.47;
rADHD= .005, BF10= 0.25). Hyperactivity and ‘z’ were also
not correlated within each group (Fig. 3e, f) for drug
(rHV= 0.01, BF10= 0.25; rADHD=−0.2, BF10= 0.4) or
placebo (rHV= 0.26, BF10= 0.52; rADHD=−0.09 BF10=
0.27). Our findings suggest the drug alone influences
response bias in ADHD subjects irrespective of clinical
features.
To highlight the specificity of MPH on risky decision

making, we also extracted the parameters (a and v) per-
taining to accuracy (See7 for details). Repeated measures
ANOVA did not show any evidence for the main effect of
group or drug or their interaction for both thresholds as
well as drift rate.

Discussion
We show that ADHD patients when off medication

have an apriori bias towards risky uncertain choices
compared to controls. Methylphenidate enhanced pre-
ference towards risky choices (higher apriori bias) in both
groups but had a significantly greater effect in the patient
population. Thus, methylphenidate appears to shift

tolerance towards risky uncertain choices possibly medi-
ated by prefrontal dopaminergic and noradrenergic
modulation. Using this novel application of HDDM to the
sequential learning task, we focus on choice preference for
risk and show the capacity to detect subtle differences, a
unique strength of computational psychiatry relative to
sole reliance on behavioural outcomes6,7,21.
We have previously dissociated contextual conflict and

uncertainty with HDDM using this sequential learning
task but did not take into account choice preference7.
Here, we focused on choice preference, defining risk as
greater outcome variance. This task captures an index of
implicit risk as the probabilities are not explicitly known
or defined and must be inferred or learned from out-
comes. Although it might be tempting to interpret the
findings as enhanced risk biases, they are consistent with a
more adaptive or functional interpretation of MPH
modulating uncertainty processing22 as the behavioural
outputs remain unaltered.
Although ADHD has a higher response bias towards

risky uncertain choice compared to healthy controls, at
baseline both groups displayed greater underlying
uncertainty intolerance with a bias towards the more
certain choice. Uncertainty intolerance may be an
important component of decisional impulsivity with
choices made to avoid risky uncertain conditions. For
instance, delay discounting may reflect intolerance of the
uncertainty surrounding the likelihood of receiving the
delayed choice or rapid decisions in the context of
uncertainty or conflict that may similarly reflect dis-
comfort with uncertainty. Thus, our results are consistent
with results obtained from previous delay discounting
studies, where both controls and ADHD participants
chose higher delayed rewards in the presence of MPH23,24

Fig. 2 Effect of methylphenidate (MPH) on the starting or response bias in control and patient groups. (a, b) Comparison of response bias (z)
in healthy volunteers (HV) and attention-deficit hyperactivity disorder (ADHD) on (MPH) and placebo (c) Comparison of response bias (z) of HV on
MPH or placebo and (d) Comparison of response bias (z) of ADHD on MPH or placebo and (e) Pictorial representation of evidence accumulation
process and the effect of MPH.
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possibly also indicating a higher tolerance towards
uncertainty.
Our findings show a specific effect of methylphenidate

on response bias, which reflects the priors or pre-existing

expectations or biases towards the selected choice (here,
the risky uncertain choice). This effect of methylphenidate
on ADHD is unrelated to comorbid clinical features such
as depression or anxiety or ADHD subtypes.

Fig. 3 Relationship between clinical scores and the response bias (z) parameter of the hierarchical drift diffusion model. Shows the scatter
plot between response bias (z) and anxiety, inattention and hyperactivity scores in methylphenidate and placebo conditions in patient (orange) and
healthy control (blue) groups (a) and (b) show the correlation between the anxiety score (STAI-trait) and response bias in placebo and drug
respectively. c, d correlation between response bias and clinical inattention sub-type score (DSM-I) and (e) and (f) correlation between response bias
and clinical hyperactivity sub-type score (DSM-H) in placebo and drug conditions.
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Mechanistically, the response bias parameter has been
observed to correlate with the activity of fronto-parietal
and fronto-basal ganglia networks11,12, areas dysfunc-
tional in ADHD2. Within the fronto-parietal-basal ganglia
circuitry, Lopez and colleagues observed the response bias
parameter (estimated from a DDM) to correlate with the
activity of ventromedial prefrontal cortical (vmPFC)
during a multi-categorical value-based decision-making
task25. The vmPFC, in addition to encoding value26,27, is
implicated in risk-taking26,28,29, with structural abnorm-
alities such as lower volumes, presence of stroke lesions
and volume of damage in the medial orbito-frontal
(mOFC) region of the vmPFC associated with increased
risk-taking30,31. ADHD adolescents who are at high risk of
developing substance abuse had higher vmPFC activation
compared to age-matched controls while processing
riskier outcomes32. Similar to the task used by Lopez and
colleagues, the sequential learning task used in this study
is also a value learning task, which requires the partici-
pants to learn the values (reward probabilities) of the
choices and estimate the risk or uncertainty associated
with them. Further imaging studies should focus on the
vmPFC, which encodes both value and risk, as a potential
anatomical candidate underlying the risk response bias
parameter (z).
Mechanistically, MPH enhances the prefrontal dopa-

minergic and noradrenergic levels by inhibiting the DA
and NE transporters and by indirectly activating D1-
dopaminergic and α2-norepinephrine

33. In ADHD
patients, MPH enhanced the hypoactive vmPFC on pla-
cebo comparable to the observed levels of healthy con-
trols2. Dopaminergic medications increase risk-taking by
changing the subjective weighting of the reward prob-
abilities34 or by increasing the baseline gambling ten-
dency35. In this study, it is very likely to have similar
effects where MPH via D1 and α2-norepinephrine
receptors enhanced the vmPFC activity (one of brain’s
core valuation system36) and altered the subjective value
of the choices. This altered representation may then be
reflected as a shift in the ‘apriori’ bias (response bias
parameter) towards the risky choice. Further studies are
required on risk representation to systematically under-
stand the effects of MPH in ADHD subjects.
This study is not without its limitations. We have not

systematically varied the dosage of MPH and assessed
dose-related effects on risk-taking and response bias. The
task primarily designed to be an implicit-value learning
task rather than a risk evaluation task may influence the
behaviour and the outcome.
To summarise, using a novel computational analysis on

choice preference, we show that ADHD subjects have an
apriori bias towards risk, enhanced with MPH compared
to healthy controls. These findings might suggest a higher
tolerance towards risk or uncertainty. Computational

estimates may act as potential biomarkers capturing
subtle effects of medication on risk behaviours not man-
ifested in behaviours7,36,37. Our findings have relevance
not just in ADHD but also in the impulsive-compulsive
disorder spectrum, or the effects of cognitive enhancers. A
risk-based study in Parkinson’s disease previously showed
similar effects between MPH and pramipexole, a D2/D3
dopamine receptor antagonist prescribed for PD38. Criti-
cally we show using a single task commonly used to assess
goal-directed and habit control, the capacity to assess
both contextual uncertainty and conflict7 and risk
uncertainty preferences. Our findings highlight the sen-
sitivity of computational models to identify the subtle
changes in disease and the effect of drug.
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