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Abstract. High-entropy alloys (HEAs) offer a new approach to the design of superior 

metallic materials, wherein alloys are based on multiple principal elements rather than 

just one. Deep Neural Networks (DNNs), machine learning tools that are efficiently 

used for prediction purposes, are transforming fields, from speech recognition to 

computational medicine. In this study, we extend DNN applications to the field phase 

prediction of high-entropy alloys. Using the built-in capabilities in TensorFlow and 

Keras, we train DNNs with different layers and numbers of neurons, achieving a 90% 

prediction accuracy. The DDN prediction model is examined in detail with different 

datasets to verify model robustness. Due to the high cost of HEAs and in order to save 

time, it is important to predict phases in order to design alloy composition. Through this 

study, we show trained DNNs to be a viable tool for predicting the phases of high-

entropy alloys, where 90% phase prediction accuracy was achieved in this work.  

Keywords: Deep learning, machine learning, artificial intelligence, prediction, high-

entropy alloys. 

1.  Introduction  

Machine learning (ML), a branch of artificial intelligence (AI), is based on the concept that computers 

(machines) can use data and learn to identify patterns and make predictions. These predictions and 

pattern-identification capabilities can be done with minimal programming instructions. The high 

computing power in ML comes from the use of Artificial Neural Networks (ANNs), which are basically 

computing systems with several interconnected processing elements called neurons that map an array 

of input variables (features) to one or more outputs (labels). Figure 1 shows schematic of an ANN where 

the circles refer to the neurons (the processing elements of ANNs) and the arrows refer to the connections 

between these neurons; the direction of the arrow shows the direction of the data flow through the 

network.   
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Figure 1: Schematic of Artificial Neural Networks [1] 

 

The parameters of the ANN shown in Figure 1 are listed in Table 1 below. 

 

Table 1. List of the ANN parameters [1]. 

Parameter  Description  

ni Number nodes in the input layer 
nj Number of nodes in the hidden layer 
nk Number of nodes in the output layer 
Vji Weight between (j) hidden node and (i) input node  
Wkj Weight between (k) output node and (j) hidden node  
Pj1 Weight between (j) hidden node and bias node  
Pk2 Weight between (k) output node and bias node 
h Hidden layer node 
zi Input of (i) input node 
Ok   Output of (k) output node 
H  Activation function  

 

The following steps explain the calculation of the output of ANN: 

1. The input data are applied to the input layer. In this layer, the data will not be processed. 

2. The data are then passed to the hidden layer, and the output of each neuron at the hidden 

layer is calculated as follows: 

)( jj hHhnet =  (1) 

Where hj represents the jth neurons in the hidden layer, and hnetj represents the jth 

neurons in the hidden layer.  

1
1

jji

ni

i

ij PbiasVzh +=
=

 (2) 
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3. The output of the output layer is then calculated as follows: 


=

+=
nj

j

kkjjk PbiasWhnetO
1

2  (3) 

It is easy to determine the number of neurons at the input layer of any neural network by simply counting 

the number of independent variables that will be fed into the neural network. The same idea can be 

applied to the output layer, where the number of neurons is equal to the number of dependent variables. 

However, choosing the number of neurons at the hidden layer represents a significant challenge that still 

attracts the interest of many researchers. A binary search technique was used to estimate the number of 

neurons in the hidden layer where the number chosen was 1, 2, 4, 8, 16, 32, 64, and [2]. However, the 

binary search method in this work achieved up to 80% accuracy. A comprehensive systematic review 

of the techniques to count the number of neurons in the hidden layer was conducted by [3]. Based on 

the literature and for the purposes of this work, Table 2 lists the techniques used to count the number of 

neurons in the hidden layer in this work where: 

Ni: number of neurons in the input layer  

No: number of neurons in the output layer 

Nh: number of neurons in the hidden layer 

Nt:  number of training pairs (size of the training dataset)  

 

Table 2. List of techniques for counting the number of neurons in the hidden layer. 

No. Technique Reference 

1 𝑁ℎ =
√1 + 8𝑁𝑖 − 1

2
 [4] 

2 𝑁ℎ = 𝑁𝑖 − 1 [5] 

3 𝑁ℎ =
1

2
∙

𝑁𝑡

𝑁𝑖 𝑙𝑜𝑔𝑁𝑡
 [6] 

4 𝑁ℎ =
𝑁𝑡

𝑁𝑖 
 [6] 

5 𝑁ℎ =  √𝑁𝑖 𝑁𝑜 [7] 

6 𝑁ℎ =  𝑙𝑜𝑔2(𝑁𝑖 + 1) − 𝑁𝑜 [8] 

7 𝑁ℎ =  
4 𝑁𝑖2 + 3

𝑁𝑖2 − 8
 [3] 

8 𝑁ℎ =
√1 + 8𝑁𝑖 − 1

2
 [4] 

 

Deep neural networks are now transforming many research fields, including computational medicine, 

speech recognition and computer vision [9]. A continuous function can be approximated by a neural 

network with one hidden layer if this layer has a sufficient number of neurons. However, multi-variable 

and complex functions are not easy to be approximated with a single hidden layer ANN. This difficulty 

in approximation can be solved by adding more hidden layers to the ANN (going deeper) [10-13]. 

Classical ANNs (with one hidden layer of neurons) have been used in the field of computational 

materials science and engineering in the nineties of the last century [14, 15]; however, deep ANNs have 

only recently been used in this field [16-18]. 
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High-entropy alloys are defined as alloys with five or more principal elements having equal atom 

percentage. Each principal element should have a concentration between 5 and 35 atom%. Significant 

research interest did not develop until after independent papers by Jien-wei Yeh and Brain Cantor. Yeh 

coined the term ‘high-entropy alloy’, attributing the high configurational entropy as the mechanism 

stabilising the solid solution phase. Yeh explored the area of multicomponent alloys independently from 

1995 [19], later theorising that a high mixing entropy would play an essential factor in reducing the 

number of phases in this high order of mixing and resulting in valuable properties [20]. To understand 

these properties, it is necessary to characterise the chemical ordering and identify order-disorder 

transitions through efficient simulation and modelling of thermodynamics. One of the main challenges 

of working on high entropy alloys is the selection of relevant and effective structures of these alloys. 

The structure represents the basic attributes for alloy or constituent elements of the alloy system. A 

multicomponent equiatomic alloy will form a single-phase BCC, FCC and multi-phase or more solid 

solution phases or intermetallic compounds (IM) or an amorphous phase. Designing and implementing 

an artificial intelligence-based tool to predict those phases will help to implement high entropy alloys 

design. The main objective of this paper is to utilise deep ANNs that predict body-centred-cubic and 

face-centred-cubic phases in high-entropy alloys.  

1.1.  Dataset  

The dataset used in this paper to predict the phases of the high-entropy alloys was taken from the work 

of Miracle and Senkov [21]. The dataset has 18 attributes representing different elements (components 

of the alloys), and the last attribute is called a phase, which represents the phase of the alloys. A total of 

17 elements were chosen as inputs for modelling: Al, Co, Cr, Cu, Fe, Ni, Ti, Mn, Pd, V, Mo, Nb, Si, Ta, 

Hf, Zr, and W. Figure 2 shows a snapshot of the dataset showing all the variables.  

 

 
Figure 2: Snapshot of the dataset 

 

The values of the ‘phase’ are 0, 1, and 2, which stand for the FCC, Multiphase and BCC phases, 

respectively. The dataset was split into training and testing datasets. The training dataset (80% of the 

overall dataset) was used to train the DNN prediction model, and the rest of the data (20% of the overall 

dataset) was used as testing data to evaluate the model performance. The dataset was uploaded and 

examined for any missing values, and it was randomly shuffled to make sure there were no patterns or 

pre-set data.  

1.2.  Prediction Model Architecture 

The deep neural networks prediction model in this work has an input layer with 17 neurons to handle all 

the 17 variables values and an output layer with one neuron that represents the ‘phase’ variable. The 

main function of this model was to read the values of the 17 elements and make a decision (prediction) 

about the type of the phase:  FCC = 0, Multiphase =1 and BCC = 2. In terms of hidden layers and after 

trying the different techniques in Table 2, the model was constructed by using two hidden layers with 

30 neurons in the first hidden layer and 20 neurons in the second hidden layer. All neurons of the hidden 

layers have a sigmoid activation function. Figure 3 illustrates the architecture of the DNN prediction 

model. 
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In this work, Python programming language was used to develop the artificial intelligence-based 

prediction models. Python is a general-purpose and high-level programming language, which was 

created by Guido van Rossum and first released in 1991 [22]. The philosophy of Python emphasises 

code readability to help programmers write clear, logical code for small and large-scale projects [23]. 

TensorFlow, which is a machine learning system that operates on a large scale and in heterogeneous 

environments, is also used in this work to develop the prediction model. TensorFlow supports a variety 

of applications, but it particularly targets training and inference with deep neural networks [24].  

 

 
Figure 3: DNN prediction model architecture 

 

2.  Results and Discussion   

The DNN prediction model was trained for 70k epochs, and the training target was to reduce the error 

in prediction (loss) to the minimum. Figure 4 shows the performance of the training process and how 

the loss function declines through the training. The loss function settled after 60k epochs, or 12.33% at 

the final step of the training process. 

 
Figure 4: Loss function during the training process 
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The DNN prediction model was then evaluated by using different datasets (the testing dataset). In order 

to evaluate the model, the following parameters will be calculated: 

• True Positives (TP): these are the correctly predicted positive phases, which means that the 

value of the actual phase (the one in the testing dataset) is the same as the value of the predicted 

phase. 

• True Negatives (TN): these are the correctly predicted negative phases, which means that the 

value of the actual phase is not correct, and the value of the predicted phase is not correct as 

well. 

• False Positives (FP): these are the values when the actual phase is not correct, and the predicted 

phase is correct.  

• False Negative (FN): these the values when the actual phase is correct and the predicted phase 

in not. 

Table 3 explains how to find the TP, TN, FP and FN values: 

 

Table 3. Calculation of TP, TN, FP and FN values. 
 

Predicted Class 

Actual Class 

 Class = YES Class = NO 

Class = YES True Positive  False Negative  
Class = NO False Positive True Negative  

 

Once the TP, TN, FP, and FN values are calculated, the following model measures performance, 

including accuracy, precision, recall, and F1 scores, which represents the most popular adopted metrics 

in classification tasks [25]. Accuracy is the most important performance measure of the DNN prediction 

model, and it is simply a ratio of correctly predicted observation to the total observations and is 

calculated as follow: (TP+TN) / (TP+FP+FN+TN). Model precision represents the ratio of correctly 

predicted positive observations to the total predicted positive observations and is calculated as follows: 

TP / (TP+FP). Recall, which is also called Model Sensitivity, represents the ratio of correctly predicted 

positive observations to all observations in actual class – yes – and is calculated by using the following 

formula: TP / (TP+FN). Finally, the F1 score, which is a weighted average of Precision and Recall, is 

calculated as follows: 2 × (Recall × Precision) / (Recall + Precision).  

The DNN prediction model achieved an overall accuracy of 90%. Table 4 shows the other measures 

of the DNN prediction model performance: 

 

Table 4. DNN prediction Model Performance. 

Phase   Precision     Recall  F1 Score  

FCC 0.93 0.86 0.89 
Multi-Phase  0.74 0.91 0.82 
BCC 1.00 0.93 0.96 

 

 

In addition to the above measures, a feature importance test was conducted by using random forest 

methodology. The aim of this test is to figure out the importance of each input variable. Figure 5 shows 

the importance level of each input (element) in the model. However, further work is ongoing to examine 

further methodologies for calculating variable importance.  
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Figure 5: Variable Importance 

 

3.  Conclusion   

Deep Neural Networks (DNNs) were developed in this work to predict body-centred-cubic, multi-

phased and face-centred-cubic phases in high-entropy alloys. Using the built-in capabilities in 

TensorFlow and Keras, the authors trained DNNs with different layers and numbers of neurons, 

achieving a 90% prediction accuracy. The DDNs prediction model was examined in detail with different 

datasets to verify the model robustness. DDNs models used in this work were able to precisely predict 

the formation of solid solution and intermetallic phases in at least 90% of the cases on datasets. The 

model performs well on the prediction of the FCC & BCC dual-phase solid-solution as shown in Table 

4, possibly due to phase ambiguities. Through this study, trained DNNs are shown to be a viable tool to 

predict the phases of high-entropy alloys. Further work is ongoing to develop the prediction model and 

better estimate the variable importance levels.  

Authors Contribution 

Conceptualisation, Alaa Abdulhasan Atiyah (A.A.A.); methodology, Zeyad Yousif Abdoon Al-

Shibaany (Z.Y.A.A.); validation, A.A.A. and Z.Y.A.A.; formal analysis, Nadia Alkhafaji (N.A.),  Yaser 

Al-Obaidi (Y.A.) and Z.Y.A.A.; investigation, Z.Y.A.A., N.A., and Y.A.; writing—original draft 

preparation, Z.Y.A. and N.A.; writing—review and editing, Z.Y.A. and A.A.A.. All authors have read 

and agreed to the published version of the manuscript. 

References 

 

[1] Z. Y. Al-Shibaany, J. Hedley, and R. Bicker, "Design of an adaptive neural kinematic controller 

for a National Instrument mobile robot system," presented at the 2012 IEEE International 

Conference on Control System, Computing and Engineering, 23-25 Nov. 2012, 2012.  

[2] C. A. Doukim, J. A. Dargham, and A. Chekima, "Finding the number of hidden neurons for an 

MLP neural network using coarse to fine search technique," in 10th International Conference 

on Information Science, Signal Processing and their Applications (ISSPA 2010), 2010, pp. 606-

609: IEEE. 

[3] K. G. Sheela and S. N. Deepa, "Review on methods to fix number of hidden neurons in neural 

networks," Mathematical Problems in Engineering, vol. 2013, 2013. 



ZICMSE 2020
IOP Conf. Series: Materials Science and Engineering 987 (2020) 012025

IOP Publishing
doi:10.1088/1757-899X/987/1/012025

8

 

 

 

 

 

 

[4] J.-Y. Li, T. W. Chow, and Y.-L. Yu, "The estimation theory and optimisation algorithm for the 

number of hidden units in the higher-order feedforward neural network," in Proceedings of 

ICNN'95-International Conference on Neural Networks, 1995, vol. 3, pp. 1229-1233: IEEE. 

[5] S. i. Tamura and M. Tateishi, "Capabilities of a four-layered feedforward neural network: four 

layers versus three," IEEE Transactions on Neural Networks, vol. 8, no. 2, pp. 251-255, 1997. 

[6] S. Xu and L. Chen, "A novel approach for determining the optimal number of hidden layer 

neurons for FNN’s and its application in data mining," in 5th International Conference on 

Information Technology and Applications, 2008, 2008. 

[7] K. Shibata and Y. Ikeda, "Effect of number of hidden neurons on learning in large-scale layered 

neural networks," in 2009 ICCAS-SICE, 2009, pp. 5008-5013: IEEE. 

[8] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski, "Selection of proper 

neural network sizes and architectures—A comparative study," IEEE Transactions on 

Industrial Informatics, vol. 8, no. 2, pp. 228-240, 2012. 

[9] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cambridge, 

2016. 

[10] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, "The expressive power of neural networks: A view 

from the width," in Advances in neural information processing systems, 2017, pp. 6231-6239. 

[11] M. Telgarsky, "Benefits of depth in neural networks," arXiv preprint arXiv:1602.04485, 2016. 

[12] N. Cohen, O. Sharir, and A. Shashua, "On the expressive power of deep learning: A tensor 

analysis," in Conference on learning theory, 2016, pp. 698-728. 

[13] R. Eldan and O. Shamir, "The power of depth for feedforward neural networks," in Conference 

on learning theory, 2016, pp. 907-940. 

[14] A. Skinner and J. Broughton, "Neural networks in computational materials science: Training 

algorithms," Modelling and Simulation in Materials Science and Engineering, vol. 3, no. 3, p. 

371, 1995. 

[15] B. HKDH, "Neural networks in materials science," ISIJ international, vol. 39, no. 10, pp. 966-

979, 1999. 

[16] J. Schmidt, M. R. Marques, S. Botti, and M. A. Marques, "Recent advances and applications of 

machine learning in solid-state materials science," npj Computational Materials, vol. 5, no. 1, 

pp. 1-36, 2019. 

[17] A. Agrawal and A. Choudhary, "Deep materials informatics: Applications of deep learning in 

materials science," MRS Communications, vol. 9, no. 3, pp. 779-792, 2019. 

[18] M. Picklum and M. Beetz, "MatCALO: Knowledge-enabled machine learning in materials 

science," Computational Materials Science, vol. 163, pp. 50-62, 2019. 

[19] C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, and T.-T. Shun, "Wear resistance and high-temperature 

compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition," Metallurgical and 

Materials Transactions A, vol. 35, no. 5, pp. 1465-1469, 2004. 

[20] J. W. Yeh et al., "Nanostructured high‐entropy alloys with multiple principal elements: novel 

alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, no. 5, pp. 299-

303, 2004. 

[21] D. B. Miracle and O. N. Senkov, "A critical review of high entropy alloys and related concepts," 

Acta Materialia, vol. 122, pp. 448-511, 2017/01/01/ 2017. 

[22] J. Guttag, Introduction to computation and programming using Python: With application to 

understanding data. MIT Press, 2016. 

[23] D. Kuhlman, A python book: Beginning Python, advanced Python, and python exercises. Dave 

Kuhlman Lutz, 2009. 

[24] M. Abadi, "TensorFlow: learning functions at scale," presented at the Proceedings of the 21st 

ACM SIGPLAN International Conference on Functional Programming, Nara, Japan, 2016. 

Available: https://doi.org/10.1145/2951913.2976746 

https://doi.org/10.1145/2951913.2976746


ZICMSE 2020
IOP Conf. Series: Materials Science and Engineering 987 (2020) 012025

IOP Publishing
doi:10.1088/1757-899X/987/1/012025

9

 

 

 

 

 

 

[25] D. Chicco and G. Jurman, "The advantages of the Matthews correlation coefficient (MCC) 

over F1 score and accuracy in binary classification evaluation," BMC Genomics, vol. 21, no. 

1, p. 6, 2020/01/02 2020. 

 


