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Abstract 

Cerebrovascular dysregulation is a hallmark feature of Alzheimer’s disease (AD), where 

alterations in cerebral blood flow (CBF) are observed decades prior to symptom onset. 

Genome-wide association studies (GWAS) show that AD has a polygenic aetiology, providing 

a tool for studying AD susceptibility across the lifespan. Here, we ascertain whether AD 

genetic risk effects on CBF previously observed  (Chandler et al., 2019) remain consistent 

across the lifespan. We further provide a causal mechanism to AD genetic risk scores (AD-

GRS) effects by establishing spatial convergence between AD-GRS associated regional 

reductions in CBF and mRNA expression of the proximal AD transcripts using independent 

data from the Allen Brain Atlas. We analysed grey matter (GM) CBF in a young cohort (N=75; 

aged 18-35) and an older cohort (N=90; aged 55-85). Critically, we observed that AD-GRS 

was negatively associated with whole brain GM CBF in the older cohort (standardised b -0.38 

[-0.68 – -0.09], P = 0.012), consistent with our prior observation in younger healthy adults 

(Chandler et al., 2019). We then demonstrate that the regional impact of AD-GRS on GM CBF 

was spatially consistent across the younger and older samples (r = 0.233, P = 0.035). Finally, 

we show that CBF across the cortex was related to the regional expression of the genes 

proximal to SNP’s used to estimate AD-GRS in both younger and older cohorts (ZTWO-TAILED = 

-1.99, P= 0.047; ZTWO-TAILED = -2.153 P = 0.032, respectively). These observations collectively 

demonstrate that AD risk alleles have a negative influence on brain vascular function and likely 

contribute to cerebrovascular changes preceding the onset of clinical symptoms, potentially 

driven by regional expression of proximal AD risk genes across the brain. Our observations 

suggest that reduced CBF is an early antecedent of AD and a key modifiable target for 

therapeutic intervention in individuals with a higher cumulative genetic risk for AD. This study 

will further enable identification of key molecular processes that underpin AD genetic risk 

related reductions in CBF that could be targeted decades prior to the onset of 

neurodegeneration.   
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Introduction 

Variability of cerebrovascular function is heritable and partly explained by additive 

effects of genetic factors that converge across several neurobiological processes (Ikram et 

al., 2018). In Alzheimer’s disease (AD), cerebrovascular dysregulation is a key concomitant 

factor (Kelleher & Soiza, 2013), and is one of the earliest markers of AD pathophysiology 

(Iturria-Medina et al., 2016; Kelleher & Soiza, 2013). Decreases in cerebrovascular function 

are observed both in patients with AD and young individuals with an increased risk of dementia 

(Chandler et al., 2019; Filippini et al., 2011; Montagne et al., 2020; Wolters et al., 2017) This 

broadly suggests that altered cerebrovascular function is a risk factor for AD, rather than a 

consequence of the disease, which may be present across an individual’s lifespan.  

Genome-wide association studies (GWAS) demonstrate that AD is also highly 

polygenic, where potentially thousands of common risk alleles confer susceptibility for disease 

(Kunkle et al., 2019). Although polygenic analysis has shown utility in predicting AD (Escott-

Price, Shoai, Pither, Williams, & Hardy, 2017; Escott-Price et al., 2015), the neurobiological 

mechanisms by which these loci confer risk remains poorly understood, particularly in relation 

to cerebrovascular function. Furthermore, the impact of these risk alleles across the lifespan 

has been seldom explored. Several studies have suggested that the influence of AD risk 

alleles may be age-dependent (Matura et al., 2016), while other large studies demonstrate 

that the impact of AD risk alleles on risk factors such as cognition are influential across the 

entire lifespan (Hill et al., 2016). However, the impact of AD risk alleles on in-vivo measures 

of brain function has not been investigated across the lifespan. 

 In our previous work we used arterial spin labelling (ASL) with MRI to quantify regional 

cerebral perfusion in young healthy individuals (18-35 years) and observed negative 

associations between AD- polygenic risk and regional perfusion, as well as lower CBF in those 

who possess a copy of the APOE-ε4 allele. Our findings suggest that vascular alterations in 

those with a broad increased genetic risk for AD manifest decades prior to symptom onset 

(Chandler et al., 2019). While our prior work provided insight into the influence of genetic risk 
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factors on the cerebrovasculature in early adulthood, it is not yet known whether the influence 

of AD genetic risk scores on GM CBF remains consistent across the lifespan.  

In the current study, we aim to determine the impact of AD risk alleles on CBF in an 

older population (mean age= 70). We anticipate that the combined influence of AD risk alleles 

will be associated with a reduction in global CBF (similar to our findings in Chandler et al., 

2019). Here, one predicts that either i) the effects of AD risk alleles on CBF remain consistent 

or ii) demonstrate a more pronounced influence later in life. As AD risk alleles are likely to 

confer susceptibility by influencing expression of proximal genes, we further anticipate that 

regional CBF is spatially related to the expression of these AD risk alleles. In order to address 

this hypothesis, we probe the Allen Human Brain Atlas (AHBA) to understand the relationship 

between AD risk gene expression and regional CBF across the cortex to determine if the 

influence of AD risk alleles can be explained by the regional co-expression of gene transcripts 

proximal to these AD risk loci (Arnatkevic Iute, Fulcher, & Fornito, 2019). Specifically, we 

sought to investigate whether brain-wide AD-related gene expression covaries with regional 

variation in CBF.  These analyses will establish the regional cortical co-expression of AD risk 

genes and AD-risk gene related CBF reductions, providing a plausible mechanistic link 

between AD risk loci and a well-established pathophysiological process in AD.  
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Methods 

Participants 

ADNI cohort  

A total of ninety participants, classified as either healthy controls (N = 30) or having mild 

cognitive impairment (MCI, N = 60) took part in a series of MRI scans as part of their 

involvement in the ADNI protocol. Participants were removed if they also contributed to IGAP 

AD GWAS (N=2). Some participants were scanned at several timepoints, where the final 

number of discrete data points NOBSERVATIONS = 131, where NPARTICIPANTS = 48 completed one 

scan and NPARTICIPANTS = 42 completed more than one scan for the final analysis. See Table 1 

for further demographic information.  

Table 1. MCI  = Mild cognitive impairment; Education = years; ICV = Intracranial Volume.  

Cardiff cohort  

Our younger sample was identical to our previous sample (Chandler et al., 2019) and 

consisted of seventy-five (NFEMALE = 47), right-handed individuals of western European 

descent, aged between 19-35. For further sample characterisation (including ethics, exclusion 

criteria, genotyping methods, see Chandler et al., (2019).  

 Combined Sample  

N=90 

APOE e4 (-)  

N=62 

APOE e4 (+) 

N=28 

P  

Sex M=40 / F=50  M=35 / F=27 M= 15 / F=13 .979 

MCI  M = 30 / F = 60  M  = 20 / F = 42   M  = 10 / F = 18  .935 

 M SD M SD M SD  

Age 70.25 6.50 70.33 6.53 70.08 6.55 .866 

Education 16.68 2.59 16.94 2.63 16.11 2.44 .151 

ICV 1.5E+06 1.4E+05 1.5E+06 1.4E+05 1.5E+06 1.7E+05 .682 
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Creation of polygenic scores  

Polygenic score calculations were performed according to the procedure described by the 

International Schizophrenia Consortium, using the --score command in PLINK, via a wrapper 

function provided in the PRSice v1.25 software package (Euesden, Lewis, & O'Reilly, 2015).  

Training data were from a recent AD GWAS (Kunkle et al., 2019), where SNPs were removed 

from summary statistics / genotype data if they had a low minor allele frequency (P < 0.01) 

and data were pruned for linkage disequilibrium removing SNPs within 500 kb and R2 > 0.1 

with a more significantly associated SNP. For the creation of the AD-GRS, we considered 

SNPs that were associated with AD that surpassed the GWAS threshold (PT < 5 × 10−8), as 

performed and to make comparable to our original study (Chandler et al., 2019).  Individual 

APOE e4 status was independently modelled in all analyses. Twenty-six SNPs were 

considered in the final AD-GRS calculation (see Figure 2). To minimise potential confounding 

from population stratification linked to AD-GRS  we included the first five principle components 

from a linkage-disequilibrium (LD) pruned version of the genotypes as covariates in all 

analysis (Choi, Mak, & O'Reilly, 2020).  

Imaging procedures and analysis of CBF 

ADNI cohort 

A 3T siemens PICORE MRI sequence (Wong, Buxton, & Frank, 1997) with  pulsed 

ASL (or Q2TIPS) (Luh, Wong, Bandettini, & Hyde, 1999). The sequence parameters include 

repetition time (TR) = 3400 ms, echo time (TE) = 12 ms, TI1 = 700 ms, TI2 = 1900 ms, field of 

view (FOV) = 256 mm × 256 mm, number of slices: 24 axial, slice thickness = 4 mm, and 

image matrix size = 64 × 64. Pre-processing steps were conducted in SPM8 and included 

motion correction of individual ASL frames by rigid body transformation and least squares 

fitting. To obtain perfusion weighted images, the ASL data were then split into tag and control 
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images and the mean-untagged data were subtracted from the mean-tagged data. The first 

volume of the ASL scan was used in place of an M0 (providing fully relaxed signal) to estimate 

blood-water-density proxy and used for calibration. A 3D MPRAGE T1-weighted sequence 

was collected for registration with the following parameters: TR = 2300ms, TE = 2.98ms, TI 

=900ms, 176 sagittal slices, FOV = 256×240mm2, voxel size=1.1×1.1×1.2mm3, flip angle=9°. 

The perfusion data were registered to T1 space and rescaled to obtain CBF in ml/100g/min. 

For both cohorts, GM CBF values were sampled in native space across 82 cortical and 

subcortical parcellations as segmented using a FreeSurfer template (Desikan et al., 2006; 

Potvin, Dieumegarde, Duchesne, & Alzheimer's Disease Neuroimaging, 2017). Full analysis 

including details of distortion correction, registration and partial volume correction can be 

found via the ADNI web page (http://adni.loni.usc.edu). 

Cardiff cohort 

Imaging data were collected on a 3T General Electric (GE) MRI scanner. Anatomical T1-

weighted images were acquired with a 3D fast spoiled gradient echo sequence (FSPGR). 

Sequence parameters included: 172 contiguous sagittal slices with a slice thickness of 1 mm, 

TR = 7.9, TE = 3ms, inversion time of 450ms, flip angle = 20°, a FOV of 256 × 256 × 176 mm, 

matrix size 256 × 256 × 192 to yield 1 mm isotropic voxel resolution images. Resting CBF data 

were collected using a pseudo-continuous arterial spin labelling (PCASL) sequence. The 

study consisted of a single MRI session (which also comprised other functional and structural 

scans), and the PCASL sequence that lasted approximately 6 minutes. A PCASL sequence 

was acquired and included a 3D fast spin echo (FSE) spiral multi-slice readout. The sequence 

parameters included: number of excitations = 3, time to echo=32ms, echo time train 

length=64, TR=5.5seconds, matrix size=48×64×60, FOV=18×23×18cm, tag= 1500ms, PLD = 

1500ms. For detail regarding ASL pre-processing pipeline see (Chandler et al., 2019). 

Gene expression analysis  
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Publicly available human gene expression data from six post-mortem donors (NFEMALE = 1), 

aged 24-57 (42.5±13.38) were obtained from the Allen Institute (Hawrylycz et al., 2012). 

Data reflect the microarray normalization pipeline implemented in March 2013 

(http://human.brain-map.org) and analyses were conducted according to the guidelines of 

the Yale University Human Subjects Committee. Normalised brain-wide gene transcript 

expression was mapped to eighty-two cortical /subcortical regions of interest as defined by 

the Desikan-Killiany atlas in abagen v0.0.3 (Arnatkevic Iute et al., 2019) available to 

download at https://zenodo.org/record/3688800 - .XnoejVKcYWo.  

Statistical analysis 

To maximise consistency of regression models across both samples, we included the same 

covariates for both cohort analyses. Predictors were regressed against i) whole GM CBF and 

ii) regional GM CBF for the eighty-two cortical / subcortical regions as defined by the Desikan-

Killiany-Tourville (DKT) Atlas (Potvin et al., 2017). The fixed effects of AD-GRS (PT < 5 ´ 10-8 

) and APOE  (modelled via the absence / presence (0 / 1) of an e4 allele) were modelled while 

controlling for age, biological sex, education, ICV and the first five genetic principal 

components, acquired via the LD-pruned datasets. For the ADNI cohort, we further included 

fixed effect covariates for i) diagnostic status (healthy control / mild cognitive impairment) ii) 

years of education and iii) site and random effects for iv) visit code and v) subject, modelled 

as repeated measures.  We employed outlier labelling / detection (Hoaglin & Iglewicz, 1987) 

to dynamically remove data points for each GM CBF dependent variable to minimize the 

impact of outlier data points. In order to control for false positives for each regional gene 

expression analysis, we compare each correlation to i) 10,000 randomly generated regional 

gene expression profiles equalling NUNIQUE-GENES = 46 and ii) randomly generated brain-wide 

regional ‘phenotypes’ where we simulate 10,000 normal distributions for eighty-two effect 

sizes scaled to either CBF or AD-GRS effects on CBF. In order to assume that the strength of 

the gene expression – CBF covariation is more pronounced than expected by chance, the 
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observed z-transformed correlation must surpass the alpha tail (Z > 1.96 / 95% CI: two-tailed) 

for both (simulated gene expression and brain-wide CBF / AD-GRS effects) simulated 

distributions. 
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Results 

3.1 Cerebral blood flow across the lifespan 

First, we observed that regional GM CBF showed a consistent pattern of positive covariation 

between the younger and older cohorts (Figure 1A-B), where cortical regions that showed 

higher perfusion (ml/100g/min) in the younger sample was also comparably higher in the older 

sample (r = 0.328: P = 0.002; Figure 1C), suggesting a pattern of consistent, regional variation 

in GM CBF across the lifespan.  

 

Figure 1. Regional GM CBF (ml/100g/min) in a) the younger cohort (aged: 18-35) previously 
described in Chandler et al., 2019 and b) an older cohort (aged: 55-85) and c) Regional GM 
CBF (ml/100g/min) comparison for young (y-axis) and old (x-axis) across all eighty-two cortical 
/ subcortical regions.  
 
 

3.2. AD-GRS effects on whole brain cerebral blood flow (ml/min/100g)  

Similar to our original discovery (Chandler et al., 2019), we observed a significant negative 

association between whole brain GM CBF and AD-GRS in the older (55-85 years) ADNI 

sample (b = -0.38; P = 0.012) after controlling for all covariates. Unlike our observation in 

younger individuals (Chandler et al., 2019) we did not observe a significant association 

between APOE e4 absence / presence and whole brain GM CBF in the older cohort (b = 0.41; 

P = 0.177). For all fixed effects and confidence intervals observed in the whole brain GM CBF 

analysis, see Table 2.   
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Predictor b estimate  CIs (95%) P  

AD-GRS -0.38 -0.68 -0.09 0.012 

MCI 0.1 -0.32 0.52 0.640 

APOE 0.41 -0.19 1.01 0.177 

Age 0.01 -0.02 0.04 0.595 

Sex -0.28 -0.74 0.17 0.223 

Education 0.05 -0.15 0.24 0.650 

Site -0.00 -0.00 0.00 0.569 

Table 2. Fixed effect predictors (b estimate and 95% confidence intervals) regressed against 
whole brain GM CBF in the final sample of ADNI participants controlling for the top five 
principal components (PCs) as additional covariates of no interest and visit code / subject as 
random effects. MCI = mild cognitive impairment. 
 

In order to assess the impact of each of the twenty-six SNPs in our AD-GRS model, we 

performed a linear regression analysis where each individual SNP was regressed in an 

additive model against whole brain GM CBF, controlling for all aforementioned covariates. 

Consistent with broad polygenic modelling assumptions, we observed a general propensity 

for SNPs that increase risk for AD (odds ratio (OR) > 1) to associate with reduced whole GM 

CBF, while alleles that conferred relative protection (OR < 1) for AD where associated with an 

increase in whole GM CBF (Figure 2; sign test for direction of effects: P = 0.002; independent 

samples t-test for mean risk / protective beta estimates: t = 2.55, P = 0.018).   
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Figure 2. Diagnostic plot, demonstrating individual effects of AD risk (red) and protective (blue) 
SNPs on whole brain GM CBF, controlling for covariates in the older sample (55-85 years old). 
Circles / lines represent adjusted effect sizes and 95% confidence intervals.  
 

 

3.3. Comparing AD-GRS effects on cerebral blood flow in early adulthood and older 

age.  

As we observed an association between AD-GRS and whole brain GM CBF for both younger 

and older samples (Figure 3a), we proceeded to explore the association at a regional level.  

We repeated the linear mixed-model analysis across eighty-two cortical / subcortical regions. 

Building upon our initial analysis in the younger cohort (Chandler et al., 2019, replotted here 

in Figure 3b), we observed a significant relationship between regional effect sizes across the 

brain, where the most / least pronounced effects of AD-GRS were comparable between young 

and older samples (Figure 3d). However, in the ADNI sample of older individuals (55-85 years 

old) we found no specific regions with significant effects after correcting for false discovery 

rate (lowest PUNCORRECTED = 0.006; left hemisphere, insula), We did not observe the influence 

of APOE e4 status on a) whole brain GM CBF in the older sample and b) a regional effect of 
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APOE e4 on the younger sample, so did not proceed to investigate similarity between samples 

for APOE e4 GM CBF effects at a regional level. 

 

 

Figure 3. Standardised AD-GRS effects on A) whole brain GM CBF for the young (18-35) and 
older (55-85) cohorts; * indicates P < 0.05, error bars represent 95% confidence intervals. 
Regional influence of AD-GRS on b) the young cohort (previously described in Chandler et 
al., 2019) and c) the ADNI cohort, both PUNCORRECTED  < 0.05, for visual purposes. D) Linear 
relationship of effect sizes across the brain when comparing standardised beta estimates for 
all cortical regions between sample B & C, where data points represented as asterisk reflect 
P < 0.05 in both samples. Each point in the scatter plot represents one cortical / subcortical 
region.  
 

 

3.4.  Regional AD risk gene expression overlap 

We calculated the average transcript expression of AD risk genes proximal to the twenty-six 

SNPs used in AD-GRS model (NUNIQUE-GENES =46) for the eighty-two cortical / subcortical 

regions (Figure 4A). We then correlated regional mean AD risk gene expression with 1) 

regional CBF (ml/100g/min) for the younger and older samples. We observed that mean AD 

risk gene expression was negatively associated with regional GM CBF in the young (Z = -

1.99, P = 0.047) and the older sample (Z = -2.153, P = 0.031), suggesting that AD risk gene 

expression is highest in cortical regions where GM CBF is generally lower, regardless of AD 

genetic risk.  
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Figure 4. A) Mean, normalised AD risk gene expression across eighty-two cortical / subcortical 
regions. B-C (lower) Scatter plots show relationship between regional mean AD gene 
expression (A) and regional CBF for the 18-35 year old (B) and 55-85 year old (C) cohorts. B-
C (upper) Distribution of 10,000 simulated i) randomly selected mean gene expression profiles 
(purple curve) and ii) randomly simulated regional values (scaled to CBF range; orange curve). 
Solid black vertical lines represent the actual, observed correlation between mean AD gene 
expression (B-C, lower). 
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Discussion 

We sought to further investigate the impact of common AD genetic risk alleles on 

cerebral perfusion. Critically, the negative association we observed between AD-GRS and 

whole brain GM CBF in our prior work (Chandler et al., 2019) was also evident in the older 

population. This observation was further supported by evidence that regional effects of AD-

GRS on GM CBF were correlated across samples. This suggests that the regional impact of 

AD-GRS on regional CBF remains consistent across the lifespan, and preferentially influences 

specific cortical structures previously implicated in preclinical models of AD related 

pathophysiology. Together these observations show that the cumulative impact of AD risk loci 

on this hallmark feature of AD pathogenesis is consistent across the lifespan.  

The mechanisms by which common (e.g. intronic and intergenic) SNPs identified via 

GWAS confer susceptibility are largely unknown. However, a growing body of work suggests 

that these SNP’s act as expression quantitative trait locus (eQTLs) and influence the 

expression of AD risk genes. Here, we tested the hypothesis that the brain-wide CBF variability 

would be spatially convergent with the expression AD risk gene transcripts. We found 

consistent regional covariation between mean AD risk gene expression and regional CBF 

perfusion pattern in both young and old cohorts. These findings demonstrate that the impact 

of AD-GRS on perfusion may confer susceptibility via the altered expression of proximal AD 

genes.  

Cerebral blood flow shows a gradual and steady decrease across the lifespan (Bertsch 

et al., 2009; Devous, Stokely, Chehabi, & Bonte, 1986; Hagstadius & Risberg, 1989; Heo et 

al., 2010; Lu et al., 2011). Here we showed spatial convergence of CBF variation between the 

young and old cohorts, suggesting that regional variability in GM CBF across the cortex 

remains largely consistent across age. It is not entirely understood why there is variability in 

GM CBF at rest across the brain. However, prior evidence has shown that brain perfusion 

closely correlates with brain function and metabolism (Detre, Wang, Wang, & Rao, 2009), 

suggesting that variability in regional perfusion may reflect differences in energy demand 

across the cortex at rest.  
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 In the second analysis, we showed that the association between regional CBF and 

AD-GRS in the young cohort correlated positively with the association between regional CBF 

and AD-GRS in the older cohort. The most significant effects were mostly observed in the 

frontal and temporal cortical structures. Critically, this result demonstrates that the AD-GRS 

effects seen in the older cohort are regionally congruent with those in the younger cohort. Our 

findings suggest that SNPs included in the AD genetic/polygenic risk model have consistent 

negative effects on cerebral perfusion from young adulthood and throughout the lifespan. In 

addition to AD-GRS we also investigated the effects of APOE on CBF across the cohorts. We 

saw no influence of APOE e4 status on whole brain or regional CBF in the ADNI cohort (unlike 

in our prior study (Chandler et al., 2019). We suggest that while the AD-GRS influence on 

CBF across the lifespan remains consistent, APOE status may have a more dynamic role in 

shaping CBF (Wierenga et al., 2013) and requires further investigation. 

 In our third analysis we used gene expression data to identify how AD risk genes 

expression across the cortex correlates with regional CBF. Our results show a negative 

association between AD gene expression and regional CBF, suggesting that AD risk genes 

may spatially covary with regional cerebral perfusion. Moreover, our findings demonstrate that 

the regional covariation between cerebral perfusion and AD gene expression occurs 

throughout the lifespan.  

While amyloid and tau-genic hypotheses provide important insight into preclinical AD  

models (Bloom, 2014; Gotz, Chen, van Dorpe, & Nitsch, 2001; Ittner & Gotz, 2011; Lewis et 

al., 2001), vascular dysregulation occurs prior to this AD pathophysiology (Iturria-Medina et 

al., 2016). We provide additional support for vascular dysregulation and hypoperfusion as 

early markers of AD risk that may be observed during young adulthood. Moreover, we suggest 

that cerebral perfusion is a potentially important AD related pathological feature and should 

be considered as a target for therapeutic intervention. 

 Our observations should be considered with the following limitations. First, while we 

observed consistent AD-GRS effects across the lifespan, we did not observe APOE related 

effects in our older sample. This may be explained by dynamic APOE effects that have 
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recently been discovered in recent structural MRI studies (Brouwer et al., 2020) or lower 

statistical power afforded in smaller samples. Third, while we aimed to generate a single 

regional metric of AD gene expression, AD risk SNPs may confer risk by increasing or 

decreasing proximal gene expression, so generating regional expression profiles that consider 

this variation (rather than using average AD gene expression) will be useful in refining the 

impact of AD risk SNPs on regional gene expression,  

 To conclude, we demonstrate a consistent negative influence of additive genetic AD 

risk on cerebral perfusion across the lifespan, which was also related to regional expression 

of proximal AD risk genes across the cortex. Thus, reduced CBF may be a central, and 

proximal, process in the pathophysiology of AD, and a mechanism by which AD risk genes 

exert their adverse effects on brain structure and function.    
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