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a b s t r a c t

In the frame of biomass valorization, a novel and simple cyclic glyceryl sulfate was efficiently prepared in
two steps from glycerol. It was shown to react efficiently with primary, secondary as well as tertiary
amines to afford either the corresponding anionic or zwitterionic surface-active agents.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
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Scheme 1. Previous work on sulfation of polyols and synthesis of sulfate betaines.
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In the last few years, the synthesis of bio-based surfactants has
become an active field of research with emphasis on the selection
of novel hydrophilic building blocks from biomass. In particular,
glycerol has attracted great interest since it is ubiquitous in nature.
It is found in vegetal as well as animal fats and oils in its triesteri-
fied form.1 At industrial level, glycerol is mainly obtained as a
byproduct in the synthesis of biodiesel from the transesterification
of triglycerides to their corresponding fatty acid methyl esters. This
process unavoidably generates a large quantity of glycerol (ca.
100 kg per ton of biodiesel), which in turn makes this innocuous
chemical widely available. Nowadays, it even suffers from a world-
wide oversupply despite its traditional use in the pharmaceutical,
food, and consumer care sectors.1 Therefore it is highly desirable
to seek new uses and applications to valorize this renewable feed-
stock further.

In this context, much attention has been paid recently to the
synthesis of valuable chemicals from glycerol, such as acrolein
via dehydration reactions,2 glyceric acid via oxidations3 or glycerol
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Scheme 2. Looking for a facile synthesis of novel surfactants.
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carbonate among many others.4 Of particular interest is the
replacement of the ethoxylated functionalities in traditional sur-
face-active agents (surfactants) by glyceryl moieties,5 since their
 license.
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synthesis usually relies on petroleum-based epoxide derivatives.
Poly- as well as monoglyceryl surfactants are indeed popular and
rather common, especially in the food and cosmetic industries ow-
ing to their unique physical properties.5

The traditional preparation of these surfactants encompasses a
first glycerol activation step via the formation of higher reactive
intermediates (e.g., glycidol, epichlorohydrin, glyceryl carbonate),6

followed by sulfation to afford the corresponding glyceryl sulfate
surfactants. The sulfation of a free hydroxyl group is typically car-
Table 1
Test of CGS (3) as an entry point to novel surfactantsa
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a Reactions were performed in THF at room temperature using equimolar amounts of
b Amines 4i, k were used in slight excess (1.5 equiv).
c Isolated yields.
ried out with sulfuric acid, chlorosulfonic acid, sulfuryl chloride
(SO2Cl2), amidosulfonic acid or complexes of sulfur trioxide
(Et3N�SO3, py�SO3 or DMF�SO3 are common), involving unavoidably
the generation of salts. Unfortunately, the latter methods are dis-
couraged for polyols (e.g., glycerol derivatives) due to their modest
selectivities.7 Different strategies have been reported to tackle this
problem, but relying most often on a multi-step sequence (see for
instance, Eq. 1 in Scheme 1).8 Moreover, these synthetic ap-
proaches involve the generation of carcinogenic dioxane,9 or make
use of oxirane-based materials (Scheme 1, Eqs. 2 and 3), being de-
rived either from a non-renewable source (e.g., ethylene) or glyc-
erol itself.10,11

Betaines are well-known zwitterionic surfactants widely used
in formulations. They are traditionally manufactured by the
reaction of tertiary amines with hydrophilic intermediates, such
as 2-chloroacetic acid, involving the concomitant and inevitable
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CGS and amine on a 0.1 mol scale.



Z. Fan et al. / Tetrahedron Letters 54 (2013) 3595–3598 3597
production of large amounts of salts.12 To our knowledge, betaines
featuring a free (unprotected) hydroxyl group in the embedded
glyceryl unit have been reported so far only with terminal sulfate
groups (Scheme 1, Eq. 3).13 In this Letter, we sought a novel, facile,
green, and convergent synthesis of sulfate betaines 1 employing
glycerol as a bio-based raw material (Scheme 2).

To this aim, we present here a facile and scalable synthesis of a
novel activated form of glycerol. This unprecedented compound
was termed CGS (3) for Cyclic Glyceryl Sulfate (Scheme 3).14 This
original synthon was shown to undergo facile nucleophilic attack
of primary, secondary, and tertiary amines leading to a wide range
of novel betaines and anionic surfactants substituted by a sulfate
group at the glyceryl C-2 position.15

The one-step direct sulfation of glycerol with DMF�SO3, H2SO4,

and SO2Cl2 was initially attempted but yielded several byproducts.
Sulfuryl chloride is indeed known to give chlorination side reac-
tions thereby lowering significantly the yields of the desired
sulfates.16

Eventually, CGS (3) could be easily prepared from glycerol
employing a two-step procedure via cyclic glyceryl sulfite 2 using
a protocol adapted from the literature.17 Treatment of 1 mol of
glycerol with one equivalent of thionyl chloride (SOCl2) in dichlo-
romethane at �5 �C afforded the desired crude sulfite 2 as a 1:1
mixture of diastereoisomers with sufficient purity to be engaged
directly in the next step.18 Gratifyingly, the catalytic RuO4 oxida-
tion method originally developed by Sharpless and Gao in the late
80s19 affected the desired transformation without compromising
the unprotected primary alcohol. The structure of sulfate 3 was se-
cured by 1H NMR and 13C NMR.20

This unprecedented activated form of glycerol is relatively sta-
ble at neutral pH and room temperature (ca. three days). Above
50 �C, self-polymerization becomes a serious issue, especially un-
der extreme acidic or basic conditions. In addition, in order to im-
prove its shelf life, storage of well-sealed fresh samples in a
refrigerator is recommended.

Considering the very good reactivity of cyclic sulfates toward
nucleophiles15 and our continuous interest in developing and
bringing to the market new efficient surfactants,21 3 was reacted
with various bio-based fatty amines (4a–k) (Table 1).

Slow addition of 3 to a THF solution of primary (4a–b) or sec-
ondary amines (4c) afforded the desired anionic surfactants 1a–c
in good yields through regioselective ring opening at the primary
position of the cyclic sulfate moiety (Table 1, entries 1–3).22 A typ-
ical work-up involved the addition of sodium hydroxide (10%
aqueous solution), which led to the product precipitate. The result-
ing white solid was obtained after filtration, washing, and drying in
vacuo. On the other hand, the reaction of tertiary amines 4d–k (Ta-
ble 1, entries 4–11) with 3 led smoothly to the corresponding sul-
fate betaines 1d–k in generally good yields. Reactions involving
fatty (C22) amines including amide functionalities (4i and 4k)
exhibited lower reaction rates, but the conversion to the desired
surfactants could be increased further by adding an extra half-
equivalent to the reaction mixture.23 All compounds 1a–k were
new and were thus fully characterized by LCMS (ELSD), 1H NMR,
and 13C NMR.24

In summary, we have developed a new bio-sourced hydro-
philic cyclic sulfate (CGS, 3) as an alternative to oil-based cyclic
ethylene sulfates for surfactant synthesis. This novel synthon
was efficiently synthesized from glycerol by a simple procedure
in good overall yield. Its reaction with a wide range of different
amines (4a–k) gave a straightforward access to a series of new
surfactants (1a–k) under very mild conditions with easy isolation
and no salt formation. These unprecedented surfactants showed
very promising properties in different applications, notably pre-
senting encouraging perspectives for the replacement of classical
betaines.
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24. Analytical data for 1e: 1H NMR (400 MHz, DMSO-d6): dH = 5.09 (dd, J = 6.4,
4.8 Hz, 1H), 4.53–4.50 (m, 1H), 3.75–3.71 (m, 1H), 3.49–3.31 (m, 5H), 3.12 (d,
J = 5.2 Hz, 6H), 1.77–1.59 (m, 2H), 1.24 (br s, 30H), 0.85 (t, J = 6.8 Hz, 3H) ppm;
13C NMR (100 MHz, DMSO-d6): dC = 71.6, 64.4, 64.2, 62.0, 51.7, 51.6, 31.8, 29.5–
29.4 (9C), 29.3, 29.2, 29.0, 26.2, 22.6, 22.2, 14.4 ppm; IR (neat): mmax = 3316,
2916, 1467, 1273, 1210, 719 cm�1; MS (ESI+): m/z = 452 [M+H]+. HRMS (ESI+):
calcd for C23H49N1Na1O5S1 [M+Na]+: 474.3224, found: 474.3245.
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