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Abstract 

Objectives: To improve clinical lymph node staging (cN-stage) in esophageal adenocarcinoma 

by developing and externally validating three prediction models; one with clinical variables only, 

one with positron emission tomography (PET) radiomics only, and a combined clinical and 

radiomics model. 

Methods: Consecutive patients with fluorodeoxyglucose (FDG) avid tumours treated with neo-

adjuvant therapy between 2010 and 2016 in two international centres (n=130 and n=60, 

respectively) were included. Four clinical variables (age, gender, clinical T-stage and tumour 

regression grade) and PET radiomics from the primary tumour were used for model 

development. Diagnostic accuracy, area under curve (AUC), discrimination and calibration were 

calculated for each model. The prognostic significance was also assessed. 

Results: The incidence of lymph node metastases was 58% in both cohorts. The AUCs of the 

clinical, radiomics and combined models were 0.79, 0.69 and 0.82 in the developmental cohort, 

and 0.65, 0.63 and 0.69 in the external validation cohort, with good calibration demonstrated. 

The AUC of current cN-stage in development and validation cohorts was 0.60 and 0.66, 

respectively. For overall survival, the combined clinical and radiomics model achieved the best 

discrimination performance in the external validation cohort (X2=6.08, df=1, p=0.01).  

Conclusion: Accurate diagnosis of lymph node metastases is crucial for prognosis and guiding 

treatment decisions. Despite finding improved predictive performance in the development 
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cohort, the models using PET radiomics derived from the primary tumour were not fully 

replicated in an external validation cohort. 

Advances in knowledge:  

1. This international study attempted to externally validate a new prediction model for lymph 

node metastases using PET radiomics. 

2. A model combining clinical variables and PET radiomics improved discrimination of lymph 

node metastases, but these results were not externally replicated. 

 

Keywords: Neoplasms; Esophagus; Radiomics; Positron-Emission Tomography; Lymphatic 

Metastasis 

 

Abbreviations  

AJCC   American Joint Committee on Cancer  
AUC   Area under curve 
PET   Positron-emission tomography 
FDG  Fluorodeoxyglucose 
AUC   Area under curve 
EC  Esophageal carcinoma 
CT   Computed tomography 
EUS   Endoscopic ultrasound 
EUS-FNA EUS fine needle aspiration 
PET/CT  Positron-emission tomography-computed tomography 
TNM   Tumour node metastasis 
UICC  Union for International Cancer Control 
MRI   Magnetic resonance imaging 
NCT   Neo-adjuvant chemotherapy 
NCRT   Neo-adjuvant chemoradiotherapy 
TRG  Tumour regression grade 
GTV  Gross tumour volume 
ATLAAS Automatic Decision Tree Learning Algorithm for Advanced Segmentation 
CERR  Computational Environment for Radiological Research 
SUV  Standardised uptake value 
SPAARC Spaarc Pipeline for Automated Analysis and Radiomics Computing 
IBSI  Image Biomarker Standardization Initiative 

https://meshb.nlm.nih.gov/record/ui?ui=D049268
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RFE  Recursive feature elimination 
LASSO Least absolute shrinkage and selection operator 
Rad-score Radiomics score 
MTV  Metabolic tumour volume 
TLG  Total lesion glycolysis 
pLNMS  Pathological lymph node metastasis 
CI  Confidence interval 
PPV  Positive predictive value 
NPV  Negative predictive value 
TRIPOD  Transparent Reporting of a multi-variable prediction model for Individual 

Prognosis or Diagnosis 
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Introduction 

Esophageal carcinoma (EC) is the eleventh most common cancer and the sixth leading cause 

of cancer-associated death worldwide1, 2 with adenocarcinoma being the most common 

histological cell type in many Western countries. The overall five-year survival rate of EC 

patients is 15%, with less than 40% of patients suitable for potentially curative therapy at 

presentation.3 Importantly, lymph node metastases (LNMs) are a significant prognostic indicator 

of survival in EC.4 Accurate knowledge of LNMs influences patient stratification, selection for 

radical therapy, treatment decision-making and planning.  

Lymph nodes are assessed using computed tomography (CT), endoscopic ultrasound (EUS) 

and positron emission tomography with CT (PET/CT) as part of clinical Tumour Node 

Metastasis (TNM) staging.5 Recent data suggests that the accuracy of lymph node staging with 

CT, EUS and PET/CT is poor (54.5%, 55.4% and 57.1%, respectively)6. The poor accuracy has 

been attributed to a high incidence of micro-metastases within morphologically normal-sized 

lymph nodes. These data are supported by a similar study which also demonstrated suboptimal 

N-staging accuracy (75.6%, 77.2% and 74.5%, respectively)7. This poor diagnostic accuracy 

translates to suboptimal patient selection and clinical outcomes because, despite aggressive 

treatment, the 2-year overall survival after neo-adjuvant chemotherapy and oesophagectomy 

ranges from 40-70%8 with a 20% recurrence rate9. Thus, existing EC staging techniques are 

unlikely to detect small LNMs, so alternative biomarkers that improve diagnostic accuracy 

should be sought. The current difficulty in identifying LNMs is likely to be a contributor of poor 

treatment outcomes. 

Advances in quantitative medical image data-mining techniques, broadly known as radiomics, 

enable the non-invasive decoding of tumour heterogeneity by translating medical images into 

abstract numerical features for analysis. In retrospective, single-centre studies, CT-derived 
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radiomics have enabled superior prediction of LNMs in colorectal cancer10, bladder cancer11, 

and esophageal cancer12, 13. These preoperative CT studies achieved satisfactory detection of 

LNMs for esophageal squamous cell carcinoma, reporting area under curve (AUC) statistics of 

0.806 and 0.758 in development cohorts, and 0.771 and 0.773 in the validation cohorts, 

respectively.12, 13 However, these results have not been reproduced in multi-centre or external 

validation studies, and therefore their clinical value remains unproven. Similar results have been 

reported using magnetic resonance imaging (MRI) radiomics, although MRI is often not routinely 

performed in the diagnostic pathway.14  

PET radiomics have been significantly associated with overall survival15, response to 

neoadjuvant therapy16 and metastases17, but the performance of PET radiomics extracted from 

the primary oesophageal adenocarcinoma to predict LNMs has not been tested. Increasing 

scientific evidence demonstrates that metastatic spread from the primary tumour is driven by 

biological changes in the underlying microenvironment of the primary tumour.18 Generally, the 

additional value of radiomics extracted from small regions of interest, such as lymph nodes, 

over that of simple metrics such as volume is felt to be limited.19 Accurate delineation is difficult 

and time-consuming which hinders the clinical utility of lymph node radiomics, unlike larger 

primary tumours which are more reliably outlined with less error.20 Therefore, our study 

attempted to improve currently poor lymph node staging accuracy by extracting pre-treatment 

PET radiomics from the primary tumour to quantify its metastatic potential and predict the 

presence of LNMs following surgery. 

In this study, we investigated the predictive value of PET radiomic features for LNMs by 

comparing three models: (1) a model based on clinical variables alone; (2) a model based on 

PET radiomics alone and (3) a combined model developed by clinical variables and PET 

radiomic features. The prognostic significance of developed LNM models was also assessed. 
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Materials & Methods 

This study was a review board-approved Transparent Reporting of a multi-variable prediction 

model for Individual Prognosis or Diagnosis (TRIPOD) type 3 study (model development and 

external independent validation).21  Research ethics committee approval was granted (reference 

19/WA/0119). 

Patients 

To minimise selection bias, consecutive patients (n=190) with biopsy proven FDG-avid 

esophageal adenocarcinomas treated with neo-adjuvant therapy and surgery between 2010 and 

2016 were included in this retrospective study. The development cohort (hereafter called 

“STAGE”) comprised 130 patients receiving either surgery alone, neo-adjuvant chemo (NCT) or 

neo-adjuvant chemoradiotherapy (NCRT) followed by surgery in the blinded.22 The external 

validation cohort (hereafter called “CROSS”) comprised 60 patients who underwent NCRT at 

blinded. In both cohorts, the neo-adjuvant treatments were administered over a 12-week period. 

Patients with oesophageal stents in situ were excluded from the study. The PET/CT was 

performed prior to any treatment, but not repeated after neo-adjuvant therapy. This is common 

practice in many countries because the examination is expensive23 and evidence for its cost-

effectiveness in clinical practice is currently lacking. A proportion of these patients have 

previously been reported; 138 of 403 STAGE patients were reported in15 and 46 of 60 CROSS 

patients in24.  These prior articles developed a prognostic model for overall survival and 

validated the results in an external cohort. In the present study, we use standardised features to 

predict LNMs using radiomics from the primary tumour. The CROSS cohort were treated with 

the CROSS regimen25-27 followed by resection of the esophagus after NCRT. Figure 1 details 

the number of patients and exclusion criteria in each cohort.  

Clinical Parameters 
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Routine clinical demographics were collected. Age was recorded at the time of diagnosis. 

Tumour location was recorded from a combination of endoscopic and radiological examinations. 

Radiological staging was assigned according to TNM 7th edition, which was used during the 

study period.28 Tumour regression grade (TRG) was defined using the Mandard classification.29 

The primary outcome was LNM status, determined by histopathological examination. Overall 

survival was defined in months from the date of diagnosis until date of death or last follow-up. 

Radiomics Feature Extraction and Tumour Segmentation 

To reduce interobserver variability, esophageal primary gross tumour volumes (GTVs) were 

systematically delineated on PET images using “Automatic Decision Tree Learning Algorithm for 

Advanced Segmentation” (ATLAAS).30 ATLAAS was implemented in MATLAB (The Mathworks, 

Natick, USA) as a plug-in to the Computational Environment for Radiological Research 

(CERR).31 PET images were re-sampled into 0.5 standardised uptake value (SUV) equally sized 

bins, which has been recommended.32 Voxel size was interpolated to 2 x 2 x 2 mm prior to 

feature extraction. In total, 154 radiomic features were extracted from the GTV using the 

Spaarc Pipeline for Automated Analysis and Radiomics Computing (SPAARC).33 SPAARC 

radiomic features comply with the Image Biomarker Standardization Initiative (IBSI).34 Different 

scanners and imaging protocols were used across the two centres. Radiomic features could be 

changed significantly as a function of scanner, image acquisition or reconstruction settings, 

hence we performed the post-reconstruction Combat harmonization method35 to harmonize 

features extracted from images acquired across different centres. Detailed information about 

image acquisition and parameter settings are included in the supplementary materials. 

Feature Selection and Prediction Model Development 
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Model development was performed blinded to pathological assessment. Missing data were 

excluded from model development. A flowchart describing feature selection and model 

development in the STAGE cohort is shown in Figure 2. Recursive Feature Elimination (RFE) 

and a Least Absolute Shrinkage and Selection Operator (LASSO) method were used to select 

the optimal clinical feature combination (selected from age, gender, tumour location, histological 

cell type, clinical T-stage, type of neo-adjuvant treatment and tumour regression grade 

(Mandard score)), using the AUC measurement from the receiver operator curve (ROC). Clinical 

N-stage (cN-stage) was collected for comparative analysis and to evaluate the baseline staging 

accuracy in each cohort, but was not included in the multivariable models to avoid multi-

collinearity and prevent influencing the model by using potentially inaccurate data. 

For radiomics features, pair-wise Pearson correlation of radiomic features was calculated and 

the threshold was set to 0.85. The cut-off logic assessed the mean absolute correlation of each 

radiomic feature and removed the feature with the largest mean absolute correlation. A non-

parametric Kolmogorov-Smirnov test statistic was calculated for each feature between resected 

node positive (pN+) and negative (pN0) outcomes and only features with a p-value <0.05 were 

retained to ensure the two classes were significantly distinguished. A LASSO method was used 

to tabulate the most frequently-selected radiomic features over 500 repetitions of internally 

separating STAGE into training (70%) and validation (30%) subsets. The best lambda of 

LASSO was automatically selected in each repetition based on AUC. Finally, we used RFE with 

5-fold cross validation to search for combinations of features with non-zero frequency, to find an 

optimal combination by its AUC. 

Feature value normalization before RFE was performed using the mean and standard deviation 

of selected features in STAGE. Prediction models were developed using multivariable logistic 

regression in the STAGE cohort and a radiomics score (Rad-score) for each patient was then 

computed using the coefficients weighted by regression model. A combined model was 
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developed using the selected clinical variables and the Rad-score. External validation in 

CROSS was performed using the same data transformations that were applied in STAGE.  

Statistical Analysis 

Statistical analyses were performed in R (v3.30). Clinical demographic differences between 

STAGE and CROSS were examined by two-sided t-test (continuous variables) or chi-

square/fisher test (categorical variables). Estimates of 95% confidence intervals were derived 

from 2000 stratified bootstrap replicates. Appropriate calibration of the models were assessed 

using calibration plots and Hosmer-Lemeshow test statistics. 

Prognostic significance was explored by entering the selected clinical variables and radiomics 

features to a Cox proportional hazards model with censoring. We computed the Harrell 

concordance index and performed log-rank tests of significance for the survival models. To 

ensure the higher-order radiomics variables were not just surrogates for simple tumour 

characteristics, we also compared the concordance indices and log-rank tests against primary 

metabolic tumour volume (MTV) and total lesion glycolysis (TLG). 

Results 

The patient characteristics of the STAGE and CROSS cohorts are detailed in Table 1. The 

incidences of pathological lymph node metastasis (pLNMs) were 58% (75/130) and 58% (35/60) 

in STAGE and CROSS, respectively. In STAGE, the majority (62.3%) had NCT whereas all 

CROSS patients had NCRT. The cohorts differed significantly for cN staging and tumour location. 

mean follow-up times were 25.6 months (95% confidence interval (CI): 22.7-28.4) in the STAGE 

and 28.5 months (95% CI: 23.6-33.4) in the CROSS cohorts, respectively. A log-rank hypothesis 

test showed no significant difference in actuarial survival between the STAGE and CROSS 

cohorts (p=0.237). 

https://www.r-project.org/
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Four clinical features; age, clinical T-stage, neo-adjuvant therapy and Mandard classification, 

were included in the multivariable model after applying RFE method optimized for AUC. These 

features were within the top four most-frequently selected directly through LASSO during 500 

random splits of STAGE. This multivariable clinical model yielded mean AUCs of 0.79 (95% CI: 

0.71-0.88)) in STAGE and 0.65 (95% CI: 0.50-0.78) in CROSS. In the same cohorts, a cN-based 

model resulted in mean AUCs 0.60 (95% CI: 0.52-0.69) and 0.66 (95% CI: 0.55-0.78), 

respectively. 

 

Nine radiomic features were selected for a radiomics-based model, but resulted in lower mean 

AUCs of 0.69 (95% CI: 0.59-0.77) in STAGE and 0.63 (95% CI: 0.47-0.77) in CROSS. A combined 

clinical and radiomics-based model yielded mean AUCs of 0.82 (95% CI: 0.74-0.89) and 0.69 

(95% CI: 0.54-0.82) in these cohorts, respectively. In the validation cohort, there was no 

statistically significant difference in AUC performance across the three models. Figure 3 shows 

the ROC plots of the above models with their respective mean AUCs.  Results of AUC, accuracy, 

sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) are 

reported in Table 2. cN-stage results for each cohort were calculated and are included in Table 

2 for comparison with each of the three models. 

 

The calibration plots of the models in both cohorts are shown in Supplementary Figures 1. The 

Hosmer-Lemeshow test indicated that the combined model was well calibrated in for development 

(p=0.11) and validation (p=0.47), although calibration was suboptimal for clinical only (p=0.02) 

and radiomics only models (p=0.01) in the development cohort. 
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In univarable analysis, the AUC for MTV to predict LNMs was 0.58 (95% CI: 0.48-0.66) and 0.60 

(95% CI: 0.47-0.72) in STAGE and CROSS cohorts, respectively. For TLG, the AUC was 0.58 

(95% CI: 0.48-0.66) and 0.58 (95% CI: 0.45-0.71), respectively. 

 

Results of survival analysis are tabulated in Supplementary Table 1 and 2 (ST-1, 2) and Kaplan-

Meier curves are given in Supplementary Figure 2, 3, 4 (SF-2, 3, 4). In both STAGE and CROSS 

cohorts, the true pathological lymph node status (X2 13.76, df 1, p < 0.001, and X2 4.36, df 1, p = 

0.04, respectively, ST-1&2) was significantly associated with overall survival. In addition, the 

combined clinical and radiomics model was also significantly associated with overall survival in 

the external CROSS cohort (X2 6.08, df 1, p = 0.01, Supplementary Figure 4) and performed 

better than the other developed models. Finally, Supplementary Figure 5, 6, 7 (SF-5, 6, 7) show 

the performance of the three types of models in the development cohort according to the 

subgroups divided by treatment types. 

Discussion 

In this study, we developed and externally validated three prediction models; a model using 

clinical variables only, PET radiomics only and a combined clinical-radiomics model. A 

combined clinical and radiomics model developed in the STAGE cohort showed potentially 

improved diagnostic performance compared with current cN-stage results but this was not 

replicated in the external validation CROSS cohort.  

In terms of prognostic significance, a combined clinical-radiomics model demonstrated good 

discrimination between patient groups in the external cohort but this was not the case in the 

development cohort. The external cohort included patients recruited into the CROSS trial27, in 

which the pathological stage following NACRT (ypTN+ stage) was significantly associated with 

overall survival. There were significant differences in cN-stage status between cohorts, with a 
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higher proportion of patients having cN+ disease in the external CROSS cohort. This was 

reflected in the sensitivity and specificity results obtained. The sensitivity was reduced in the 

STAGE compared to CROSS cohorts with the opposite true for specificity, indicating that 

radiologists were more likely to ‘under-stage’ disease in STAGE compared to radiologists in 

CROSS. The variability in staging classification maybe explained by reporting practice 

differences between the two countries. 

Failure to replicate models is a common finding in external validation studies. The lack of full 

validation may be attributable to the relatively small sample size of the external validation 

cohort, inter-scanner differences such as varying slice thickness, voxel size and acquisition 

parameters, and inter-patient differences such as time from injection to imaging. However, PET 

radiomics have been shown to have potential clinical value in EC when incorporated into a 

prognostic model.15 

Initially, the results showed that PET radiomics derived from the primary tumour volume may 

have added predictive value for LNM detection, but this effect was not replicated. Common 

concerns are that firstly, clinical PET images have a spatial resolution too large for radiomic 

analysis and secondly, higher order radiomic variables are surrogates of simple MTV.36 

However, simpler PET metrics such as MTV and TLG were excluded as potential confounders, 

through a detailed process of radiomic feature selection. Furthermore, MTV and TLG had no 

predictive value for LNMs or overall survival. Despite comprehensive clinical and radiological 

data, we failed to show that a radiomics signature was significantly superior to either cN-stage 

or the clinical multivariable model for predicting LNMs in esophageal adenocarcinoma. 

Our results add evidence that current cN-staging accuracy remains poor.6, 7 The Union for 

International Cancer Control (UICC) Tumour Node Metastasis (TNM) classification is largely 

reliant on anatomical definitions.28 CT has sensitivity for LNMs as low as 18%37 because it relies 
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on morphology, and cannot differentiate between occult malignant metastases and normal-sized 

lymph nodes. It is now thought that exosomes are excreted by aggressive primary tumours into 

the bloodstream. This circulating tumour DNA (ctDNA) seeds in lymph nodes, giving rise to 

synchronous micro-metastases.38 Patients with esophageal adenocarcinomas commonly 

present with LNMs due to lack of esophageal serosa.39 EC staging must become more accurate 

and better at risk-stratifying patients. 

Commonly, treatment decisions often hinge on the accurate diagnosis of a lymph node. (Figure 

4) For example, equivocal lymph nodes located away from the primary tumour may be 

considered un-resectable or be outside of the maximum radiotherapy field possible.40 Often, 

tissue confirmation is attempted with EUS fine needle aspiration (EUS-FNA) but on occasions 

where the aspirate is normal or insufficient, concerns over under-sampling exist. Additional 

predictive information would add confidence to this important treatment decision. Similarly, 

improved diagnostic accuracy of non-regional lymph nodes in the abdomen that are 

inaccessible by FNA or core biopsy may prevent a harmful major resection that is unlikely to 

yield long-term survival gain. Finally, in the case of T1-T2 N0 tumours, the decision to proceed 

directly to surgery is standard practice. However, the risk of pLNMs is 45–75% for T2 tumours 

and 80–85% for >= T3 tumours.41  Administration of neo-adjuvant therapy would be preferable in 

these scenarios. Non-invasive imaging biomarkers that suggest that the primary tumour has 

high metastatic potential would guide the clinical decision towards neo-adjuvant treatment prior 

to surgery. Further research that focusses on this disease stage group is warranted but would 

require a large sample size to adequately power such a study. 

Strengths of study 

External validation studies are rarely performed, particularly in the field of radiomics. To 

eliminate the inter-observer variability of delineation, we used a standardised auto-segmentation 
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approach (ATLAAS) to outline the tumour on PET images. Standardised biomarkers (IBSI) were 

also used. These reproducible methods allow further validation in different centres. 

Furthermore, a reproducible radiomic feature selection method was employed. In principle, as 

fewer important features are used in the model, the chance of model overfitting reduces. A 

common criticism of radiomics studies are that large numbers of predictor variables are used for 

a relatively small cohort size.42 Therefore, we performed a relatively strict feature reduction 

approach to maximise the event per variable ratio.  

Limitations 

The main limitation was the lack of PET radiomics following neo-adjuvant therapy. As 

discussed, PET/CT is not repeated prior to surgery in many countries due to limited evidence 

about its cost-effectiveness, therefore quantifying the change in radiomics over time is not 

possible. As a result, lymph node response to neo-adjuvant treatment on PET cannot be 

assessed in this study and subsequently there is indirect comparison between baseline 

radiological features and the final pathological lymph node evaluation following surgery. This 

does, however, reflect real-world practice in many institutions around the world, because PET-

CT re-staging after neoadjuvant therapy but before surgery is generally not performed. 

Arguably, the greatest advance would be the knowledge at baseline that lymph node 

metastases are present so that treatment could be tailored accordingly. Repeat analysis after 

neoadjuvant therapy has been completed offers little change in management, because all 

oncological treatment has been given and the majority of patients will proceed to surgery 

irrespective of the outcome. However, 63% and 40% of patients had a TRG of 4 or 5 in the 

STAGE and CROSS cohorts, repectively, indicating that a substantial proportion of patient had 

little or no response to neo-adjuvant therapy. This provides some reassurance that an indirect 

comparison provides some meaningful data. The differences in TRG rates can be explained by 

the differences in treatment between the two cohorts, with CROSS patients receiving NCRT but 
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the majority of STAGE receiving NCT. Secondly, only primary tumours were analysed. 

Integrated radiomics analysis of the primary tumour and individual lymph nodes may potentially 

provide more prediction information43 but this process is more time-consuming and unlikely to 

be adopted into busy clinical practice. In addition, only FDG-avid adenocarcinomas were 

included in the study. Analyses of squamous cell carcinoma and non FDG-avid tumours would 

be equally valuable.  

Conclusions 

Accurate diagnosis of LNMs is crucial for predicting prognosis and guiding treatment decisions 

in esophageal adenocarcinoma, but radiological cN-staging is currently suboptimal. Despite 

obtaining signal for improved prediction in a development cohort, this study showed that models 

using clinical variables and PET radiomics derived from the primary tumour were not fully 

replicated in an external validation cohort from an international centre. We plan to further 

validate and confirm these findings in larger external cohorts. New techniques for improving the 

diagnostic accuracy of LNMs are required. 
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Table and Figure legends: 

Table 1: Patient Characteristics in STAGE and CROSS Cohort. 

Characteristic; 

Frequency (%) 

STAGE Development 

Cohort (n=130) 

CROSS 

Validation 

Cohort (n= 60) 

p-value 

Tumour type 

  Adenocarcinoma 

Age mean ± SD, years 

 

130 (100%) 

64.33 ± 9.54 

 

60 (100%) 

63.15 ± 8.68 

$P = 1.00 
#P = 0.63 

Gender   $P = 0.38 

  Male 111 (85.4%) 54 (90.0%)  

  Female 19 (14.6%) 6 (10.0%)  

Tumor location   +P = 0.0059 

  Distal third esophagus 45 (34.6%) 34 (56.6%)  

Mid third esophagus 

Esophagastric junction 

Pathological LNMs 

  Negative 

  Positive 

Clinical T stage 

  T1 

  T2 

  T3 

  T4a 

Clinical N stage 

  N0 

  N1 

  N2 

  N3 

7 (5.4%) 

78 (60%) 

 

55 (42.3 %) 

75 (57.7%) 

 

5 (3.8%) 

14 (10.7%) 

101 (77.7%) 

10 (7.8%) 

 

60 (46.2%) 

50 (38.5%) 

13 (10.0%) 

7 (5.3%) 

1 (1.7%) 

24 (41.7%) 

 

25 (41.7%) 

35 (58.3% 

 

0 (0.0) 

12 (20%) 

46 (76.7%) 

2 (3.3%) 

 

15 (25.0%) 

17 (28.3%) 

15 (25.0%) 

13 (21.7%) 

 

 
+P = 0.94 
 

+P = 0.12 

 

 
 

 

+P < 0.001 

 

 

 

 

Stage Groups   +P = 0.16 

  Stage 1 17 (13.1%) 4 (6.7%)  

  Stage 2 43 (33.1%) 15 (25.0%)  

  Stage 3 

TRG Score 

  1 

  2 

  3 

  4 

  5 

 Not applicable  

70 (53.8%) 

 

12 (9.2%) 

12 (9.2%) 

13 (10.0%) 

37 (28.5%) 

26 (20.0%) 

30 (23.1%) 

41 (68.3%) 

 

11 (18.3%) 

11 (18.3%) 

14 (23.3%) 

16 (26.7%) 

8 (13.4%) 

0 (0.0) 

 

+P < 0.08 

Neo-adjuvant therapy   +P < 0.001 

  NCRT 19 (14.6%) 60 (100%)  

  NCT 

  Surgery alone 

Overall survival  

81 (62.3%) 

30 (23.1%) 

 

0 (0.0) 

0 (0.0) 

 

 

 

NA 
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Alive 

Dead 

77 (59.2%) 

53 (40.8%) 

28 (46.7%) 

32 (53.3%) 

Radiomics score, mean ± 

SD 

0.49 ± 1.80 0.72 ± 2.78 #P =0.56 

LNMs lymph node metastases; NCT neo-adjuvant chemotherapy; NCRT neo-adjuvant chemoradiotherapy; $ chi-square test; 
# t-

test; 
+ fisher test; NA not applicable 

 

Table 2: The statistic comparison of clinical N-staging, clinical model, radiomics-based model, 

and combined model in the development and external validation cohorts. 

 Development Cohort External Validation Cohort 

 Clinical N-

stage 

Clinical 

model 

Radiomics 

model 

Combined 

model 

Clinical N-

stage 

Clinical 

model 

Radiomics 

model 

Combined 

model 

Incidence 58% 58% 58% 58% 58% 58% 58% 58% 

AUC 0.60  

(95% CI: 

0.52-0.69) 

0.79  

(95% CI: 

0.71-0.88) 

0.69  

(95% CI: 

0.59-0.77) 

0.82  

(95% CI: 

0.74-0.89) 

0.66 

(95% CI: 

0.55-0.78) 

0.65  

(95% CI: 

0.50-0.78) 

0.63  

(95% CI: 

0.47-0.77) 

0.69  

(95% CI: 

0.54-0.82) 

Accuracy 0.61  

(95% CI: 

0.52-0.69) 

0.79  

(95% CI: 

0.70-0.85) 

0.66   

(95% CI: 

0.57-0.74) 

0.76  

(95% CI:  

0.71- 0.79) 

0.70  

(95% CI: 

0.57-0.81) 

0.57  

(95% CI: 

0.43-0.69) 

0.65  

(95% CI: 

0.52-0.75) 

0.65  

(95% CI: 

0.51-0.76) 

Sensitivity 0.634  

(95% CI: 

0.60-0.65) 

0.88 

(95% CI: 

0.83-0.90) 

0.77  

(95% CI: 

0.83-0.90) 

0.81  

(95% CI: 

0.79-0.92) 

0.89  

(95% CI: 

0.86-0.90) 

0.52  

(95% CI: 

0.44-0.59) 

0.74  

(95% CI: 

0.65-0.77) 

0.63 

(95% CI: 

0.56-0.67) 

Specificity 0.58 

(95% CI: 

0.57-0.60) 

0.65 

(95% CI: 

0.62-0.69) 

0.49  

(95% CI: 

0.47-0.50) 

0.66  

(95% CI: 

0.62-0.69) 

0.44  

(95% CI: 

0.41-0.46) 

0.64 

(95% CI: 

0.44-0.69) 

0.48  

(95% CI: 

0.46-0.54) 

0.64  

(95% CI: 

0.59-0.70) 

PPV 0.67  

(95% CI: 

0.64-0.69) 

0.78  

(95% CI: 

0.74-0.79) 

0.68  

(95% CI: 

0.64-0.71) 

0.76  

(95% CI: 

0.72-0.78) 

0.69  

(95% CI: 

0.67-0.73) 

0.667  

(95% CI: 

0.56-0.69) 

0.67  

(95% CI: 

0.63-0.70) 

0.71 

(95% CI: 

0.69-0.74) 

NPV 0.53  

(95% CI: 

0.51-0.57) 

0.80 

(95% CI: 

0.76-0.82) 

0.61  

(95% CI: 

0.56-0.70) 

0.72  

(95% CI: 

0.70-0.90) 

0.73  

(95% CI: 

0.70-0.756) 

0.49  

(95% CI: 

0.43-0.59) 

0.57 

 (95% CI: 

0.52-0.62) 

0.55  

(95% CI: 

0.53-0.66) 

AUC area under curve; CI confidence interval; PPV positive predictive value; NPV negative 

predictive value. 
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Figure 1: Study flowchart describing the numbers of patients in each cohort and reasons for 

exclusions from the CROSS cohort. 

 
Figure 2: The flowchart of the used feature selection and model development approaches. 
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a) 

b) 
Figure 3: ROC plots of clinical model (blue line), radiomics-based model (green line), and 

combined model (red line) in the (a) development and (b) external validation cohorts. The 

results show the combined model achieved the best performance with AUCs 0.82 (95% CI: 

0.74-0.90) and 0.71 (95% CI: 0.59-0.83) in the development and external validation cohorts. 

95% CI was computed with 2000 times bootstrapping. CI: confidence interval. 
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Figure 4: Clockwise from top left; a non-contrast CT, a magnified maximum intensity projection 

(MIP), a whole body MIP and fused PET/CT image of a patient with a distal esophageal tumour 

(Red box) and two lnms; one supra-clavicular and one high right para-esophageal (black and 

white arrows). 

 


