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Atomic force microscopy (AFM) studies of living
biological cells is one of main experimental tools
that enable quantitative measurements of deformation
of the cells and extraction of information about
their structural and mechanical properties. However,
proper modelling of AFM probing and related
adhesive contact problems are of crucial importance
for interpretation of experimental data. The Johnson-
Kendall-Roberts (JKR) theory of adhesive contact has
been often used as a basis for modelling of various
phenomena including cell-cell interactions. However,
strictly speaking the original JKR theory is valid only
for contact of isotropic linearly elastic spheres, while
the cell membranes are often prestressed. For the
first time, effects caused by molecular adhesion for
living cells are analytically studied taking into account
the mechanical properties of cell membranes whose
stiffness depends on the level of the tensile prestress.
Another important question is how one can extract
the work of adhesion between the probe and the
cell. An extended version of the Borodich-Galanov
(BG) method for non-direct extraction of elastic and
adhesive properties of contacted materials is proposed
to apply to experiments of cell probing. Evidently,
the proposed models of adhesive contact for cells
with prestressed membranes do not cover all types of
biological cells because the structure and properties
of the cells may considerably vary. However, the
obtained results can be applied to many types of
smooth cells and can be used to describe initial stages
of contact and various other processes when effects of
adhesion are of crucial importance.
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Probing of adhesive cells

1. Introduction
A quantitative understanding of the cell mechanical properties is of importance for various
fields of medicine and biology. There are many tools for experimental studies of these properties
[18,63,75]. These include such popular techniques as atomic force microscopy (AFM) and
micropipette aspiration. If the former technique may be used for topographic imaging of surfaces,
measurement of interactive forces, in the range down from microNewtons to nanoNewtons [49],
estimation of material properties and manipulation of very small objects [51], the latter one is very
specific for quantifying cell mechanics [64]. The contact mode AFM technique involves touching
cells by mechanical probes. AFM elastic cantilevers with tips of various shapes, e.g. pyramidal,
spherical, flat ended cylindrical (plateau), may be used (see, e.g. [63,70,74]). However, the tipless
cantilevers are also used [5,76].

To interpret experimental data obtained by AFM indentation, one needs to employ both
mechanical models of cells and contact theories. Various solutions to contact problems are
employed to model interactions between the AFM tip and a cell membrane [74]. In particular,
these include solutions for sphere (approximated as a paraboloid of revolution), derived by
Hertz [39], and other non-adhesive contact problems. On the other hand, it is known that
adhesion is important when the contacting bodies are sufficiently small or sufficiently compliant
[67] and living cells satisfy often both conditions. Cell adhesion is of crucial importance for
numerous physiological and pathological processes, including embryonic development, and
cancer metastasis, as well as for numerous biotechnological applications [57]. Therefore, the
models of adhesive contact such as the JKR (Johnson-Kendall-Roberts) [44] and DMT (Derjaguin-
Muller-Toporov) [22] models, are also used to consider cell-indenter and cell-cell interactions. It is
important to note that although the original JKR model was used for describing adhesion of two
cells [20,52], strictly speaking the model in its original form is valid only for contact of isotropic
linearly elastic spheres. Therefore, one has to modify the JKR theory to take into account some
specific features of cell membranes and to model their contact properties.

Here we follow the approach used in mechanics of composite materials: a cell will be modelled
as a sample made of a material with some effective properties. To consider the contact problems
for cells, we assume that first the sample made of the effective non-linear material is prestressed
and then it comes into contact with a probe or another cell; the stress field due to the contact is
just a small perturbation of the large initial stresses; and the initial stress field can be considered
as homogeneous. In our previous papers, it has been shown that the JKR theory for a spherical
indenter can be extended to transversely isotropic [13] and prestressed materials [7]. Here we will
apply our results to effective material of the cell. Following [21], the cell effective materials are
described as materials of the neo-Hookean type, i.e. the Treloar potential is used.

Evidently, the present approach does not cover all types of biological cells because the
structures and properties of biological cells may vary. Nevertheless the obtained results can be
applied to many types of smooth cells, in particular to red blood cells (RBCs). The RBCs are often
regarded as a ’model system’ in the study of single living cells [21] and they have been extensively
studied as a relatively simple example of biological cells. Thus, the problems under consideration
cover the large variety of contact problems for biological cells such as (i) nanomanipulation of
biological cells; (ii) probing of cell membranes by AFM; (iii) determination of the elastic modulus
of biological materials and biological samples; and (iv) determination of the work of adhesion for
two cells or a cell and an artificial material of a probe.

It is argued that the values of the effective contact modulus for two cells or between a cell
and material of the probe and the work of adhesion for the same pairs may be quantified from
a single test using a simple and robust BG method [8,12] or its extension [58]. The method is
based on an inverse analysis of a stable region of the force-displacements curve obtained from
the depth-sensing indentation of a sphere into an elastic sample. Of course, the results for the
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effective contact modulus depend on the employed model of non-linear elasticity. It is shown that
if the cell membranes are described as materials of the neo-Hookean type, then the solutions may
be given explicitly as a function of prestress of the membrane.

2. Specific features of cells and their mechanical models
There arise many questions related to modelling of cells, in particular the following ones. What are
the sources of cell adhesion and how can it be quantified? Is a cell membrane incompressible two-
dimensional (2D) or three-dimensional (3D) material? What contact models should be involved?

(a) Sources of adhesion of living cells
Adhesive interactions of cells are not a simple phenomenon. There are different opinions about
the sources of cell adhesion. It is often argued that cell adhesion occurs from the action of
complex proteins such as selectins, fibronectins, integrins, and cadherins. These proteins are
called cell adhesion molecules or adhesins. It is often claimed that these molecules are sources of
selective adhesion of cells, the so-called ‘lock-and-key’ model, and that the main determinants of
adhesion energy at the cell contact are the adhesion molecules (see, e.g. [56]). Even if the cell–cell
adhesion in soft biological materials may be caused by interactions among special proteins
cadherins ("calcium-dependent adhesion"), the calculations showed that the van der Waals (vdW)
interactions between cadherins could be the main physical mechanism for the measured adhesion
[68]. Moreover, Kendall and his co-workers [49,50] provided arguments to state that in spite of
enormous amount of work done by thousands of scientists to study the lock-and-key molecules,
they are not the dominant mechanism of cell adhesion, while the key cause of adhesion are van
der Waals forces. They demonstrated that effects from geometry, elasticity and surface molecules
must all add on to the basic cell attractive force. The lock-and-key mechanism is important only
if there are such molecules (adhesins) present on the cell membrane (their distribution is very
specific and varies depending on the cell types) and their adhesive action depends not only on
vdW, but also on chemical bonds.

We believe that an analogy between adhesion of living cells and polymer materials may be
useful [53]. Studies of adhesion of polymer films showed the fundamental role of additional
physical mechanism of adhesion of the films, namely the electrical forces. Derjaguin (Deryagin)
and his co-workers [23] argued that in many cases electrical phenomena are the most important
factor in determining the resistance of a film to detachment. The importance of this source of
adhesion is also found in cell adhesion, in particular, it was found that electric double layer
interactions play an important role in bacterial adhesion to surfaces, as adhesion has been shown
to depend on ionic strength and pH of the suspending solution and on the surface potentials
of bacteria and substrata [62] (see also [48] for details of the DLVO (Derjaguin, Landau, Verwey,
Overbeek) theory and further aspects of adhesion phenomenon).

Actually, division of adhesion on phisiosorption and chemisorption is convenient but not very
strict. Indeed, as it was noted by Derjaguin and his co-workers: "from the viewpoint of quantum
mechanics, the analysis of van der Waals forces and analysis of chemical bonding forces involve an
examination of limiting cases of one and the same problem: the determination of the wave function and
the calculation of energy for a complex multielectron system ... the question of where and when chemical
forces begin to act, and when and in which compounds we must speak of a van der Waals bond between two
molecules, does not have any significance in the strict sense."

Thus, one can follow the opinion of researchers studied polymers (see, e.g. [53]): adhesion
between macromolecular polymers has several different sources that include physisorption (van
der Waals interactions), direct molecular bonding, i.e. creation of chemical bonds, and electrical
forces including formation of an electric double layer. We can repeat here the prophetic words
of Robert Hooke about sticky materials: [40] "it is evident, that the Parts of the tenacious body, as I
may so call it, do stick and adhere so closely together, that though drawn out into long and very slender
Cylinders, yet they will not easily relinquish one another ... And this Congruity (that I may here a little
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further explain it) is both a Tenaceous and an Attractive power; for the Congruity, in the Vibrative motions,
may be the cause of all kind of attraction, not only Electrical, but Magnetical also, and therefore it may be
also of Tenacity and Glutinousness.".

Surfaces of polymer solids may be considered as covered by hair-like brushes of
macromolecules. Due to high flexibility of macromolecules, they are able to create easily very close
contacts with many rough surfaces. The amount of energy of elastic deformation spent during
bending of these macromolecules is very small. The adhesion of these ’brushes’ may be caused by
both van der Waals interactions and chemical bonding. Separation of the polymer solids involves
the abrupt reduction of the adhesive force caused by van der Waals interactions between the bulk
and further reduction of the force in a discrete manner due to separation of the macromolecules
and the counterpart surface. Similarly to polymer brushes may be observed on living cells, e.g.
cells with brush-layers consisting mainly of microvilli, microridges and cilia have been intensively
studied by Sokolov and his co-workers (see, e.g. [42]), and discrete reduction of the adhesive force
was observed on living cells [46].

Thus, we employ the concept of the work of adhesion w per a unit surface that is defined
as equal to the tensile force integrated through the distance necessary to pull the two surfaces completely
apart [38]. This concept is quite close to the concept of surface energy used by Griffith [36] who
noted that "in the formation of a crack in a body composed of molecules which attract one another, work
must be done against the cohesive forces of the molecules on either side of the crack." However, the
use of w enables us to unite all sources of adhesive interactions including vdW and chemical
(cohesive) forces. Hence, we will study the load-displacement curves within the range of positive
compressive forces without any further discussion on the physical or chemical nature of adhesive
interactions between living cells. Because w is the characteristic of a pair of interacting materials,
the AFM tip can be functionalized (see, e.g. [65]) in order to get the work of adhesion values of
the seeking pair of materials.

(b) Adhesive and non-adhesive contact models for cell membranes
To model cell-probe interactions, results of solutions to non-adhesive Hertz-type contact problems
[64] are often employed, in particular results for spheres [39], cones [33], and for arbitrary blunt
indenters of revolution [34] (note that the results by Love and Galin are often attributed to
Sneddon).

The non-adhesive Hertz-type contact problem formulation assumes that initially there is only
one point of contact between the indenter tip and the half-space. Let the origin (O) of Cartesian
x1, x2, x3 coordinates be at the point of initial contact between the indenter and the elastic half-
space x3 ≥ 0. The cylindrical coordinate frame r, z, φ, r=

√
x2 + y2, z = x3 and x1 = r cosφ, x2 =

r sinφ. Hence, the equation of the indenter whose shape is given by a function f , can be written
as x3 =−f(x1, x2), f ≥ 0. If the problem is axisymmetric then it does not depend on the
coordinate φ and we can write z =−f(r).

It follows from the Hertz contact theory [35,43] that the problem of contact between a rigid
indenter (a punch) and an isotropic linear elastic half-space characterised by the Young’s modulus
E and the Poisson ratio ν depends on a contact modulus (reduced modulus) of the half-space E∗

E∗ =
E

1− ν2
. (2.1)

In turn, the problem of contact between two elastic bodies having contact moduli E∗
1 and E∗

2

respectively is mathematically equivalent to the problem of contact between an isotropic elastic
half-space with contact modulus E∗

I

1

E∗
I

=
1

E∗
1

+
1

E∗
1

(2.2)

and a curved body whose shape function f is equal to the initial distance between the surfaces,
i.e. f = f1 + f2, where f1 and f2 are the shape functions of the solids. Usually the AFM probes are
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much harder than the soft biological materials or living cells. If one of the solids is much harder
than another one, i.e. E∗

2 >>E
∗
1 then one can put E2 =∞ and E∗

I =E∗
1 .

For contact between two elastics spheres of radii R1 and R2 respectively, one gets the
equivalent indenter as a sphere of radius R,

1

R
=

1

R1
+

1

R2
. (2.3)

For example, an RBC can be locally approximated as a sphere of radius R1 = 8µm. If the shape
of a sharp AFM tip near its nose is approximated as a sphere of radius R2 = 10 nm, then the
curvature of the cell may be neglected because the effective radius R∼= 10 nm. However, to apply
a geometrically linear contact theory for this radius of the tip, the depth of indentation should be
below 1 nm. If a tipless AFM probe is used then R2 =∞ and R=R1. If an AFM tip has spherical
shape of radius R2 = 8µm (see, e.g. [54]) then R=R1/2 = 4µm. If an elastic sphere (a cell) of
radius R1 is rested on a hard flat surface and it is compressed by a spherical AFM tip of radius
R2 then the total approach of the AFM tip and the sphere δ can be found as a sum δ= δ1 + δ2
where δ1 and δ2 can be found by solving contact problems for spheres of effective radii R1 and
R1R2/(R1 +R2) respectively. The described contact configuration of a spherical particle resting
on a rigid substrate has been recently discussed in detail [2].

If AFM is used in indentation mode then the depth-sensing indentation (DSI) approach is
widely used, when the contact effective elastic modulusE∗ is often estimated using the slope S of
the P − δ curve at the unloading branch and the following BASh (Bulychev-Alekhin-Shorshorov)
relation derived for the Hertz-type contact problems

S =
dP

dδ
= 2E∗a or S =

dP

dδ
=

2
√
A√
π
E∗ (2.4)

where P is the force (the load applied to a probe) and δ is the displacement or the approach of the
distant points of the probe and the material surface, a is the contact radius, and A is the contact
area (see for details [7]).

The above Hertz-type contact problems and corresponding analytical tools do not take
adhesion between the sample and the indenter into account. However, due to adhesive effects
these models should not be involved. On the other hand, the proper mathematical interpretation
of DSI tests requires to take into account not only mechanical but also adhesive properties of
contacting materials [7]. For an axisymmetric indenter whose shape is described by an arbitrary
function f , it is possible to derive using the JKR theory that the slope of the P − δ curve is

dP

dδ
= 2E∗a


[∫a

0 r∆f(r)(a
2 − r2)−1/2dr − 1.5 (2πw/E∗)1/2 a−1/2

]
∫a
0 r∆f(r)(a

2 − r2)−1/2dr − 0.5 (2πw/E∗)1/2 a−1/2

 . (2.5)

Here ∆ is the Laplacian. Using the original JKR approach to mechanics of adhesive contact, one
can show that for spherical probe of radius R, the above expression is reduced to

dP

dδ
= 2aE∗

[
1− 3

√
(πR2w)/(8E∗a3)

1−
√

(πR2w)/(8E∗a3)

]
. (2.6)

The above expression may be written explicitly not as function of the contact radius but rather
the force or the displacement [10]. Evidently, if one neglects adhesion, i.e. w= 0 then the above
expression reduces to the classic BASh formula. Thus, the use of the original BASh formula may
lead to wrong estimations of the contact modulus. The above adhesive corrections are especially
important for sticky soft materials.

(c) Effective material approach to cell membranes
Living cells consist of cytoplasm surrounded by a membrane wall that comprises a double layer
of phospholipids, the underlying spectrin network and transmembrane proteins; the membranes
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are commonly modelled as an incompressible effective material [21]. It is often argued that
the RBC membrane may be easily deformed keeping the constant area [30,69], hence, it was
suggested to model the membranes as a 2D incompressible material. On the other hand,it was
stated that the RBC modelled as a nonlinearelastic membrane filled with an incompressible
fluid [69]. In fact, the internal space of the cell is not just fluid, but a kind of a fibrous composite
material containing some fibres specialised to withstand tension and the others specialised in
withstanding compression, i.e. it has hierarchical molecular structure that is stabilized based on
tensegrity principles [41]. Very simple geometrical estimations show that the assumption of 2D
incompressible material in application to all cell membranes is not correct. Indeed, let the initial
cell shape be spherical of diameter D (radius R=D/2) and the cell is fully filled by the fluid.
After complete aspiration of the cell by a micropipette of the internal diameter d (radius r= d/2)
the cell shape can be described as a cylinder of some length L and radius r having two semi-
spherical caps of radius r. If one denotes the ratios m=R/r and n=L/r then the ratios of the
initial volume Vi of a cell and its surface area Ai to the final values Vf and Sf of the volume and
surface are respectively

Vi/Vf =m3/(0.75n+ 1), Ai/Af =m2/(0.5n+ 1). (2.7)

In experiments on chondrocyte cells (see Fig. 4 in [45] that shows almost ideally spherical cell fully
filled by the fluid), one can observe thatm∼= 1.48 and n∼= 2.96. Hence, one has Vi/Vf = 1.007 and
Ai/Af

∼= 0.88, i.e. while the volume of the cell after complete aspiration is approximately the
same, the surface would increase over 13%. An assumption that the cell surface area is constant
leads to the conclusion that n= 2(m2 + 1). If for instance, one takes m= 3 then it follows from
(2.7) that Vi/Vf ∼= 2.08, i.e. the volume would reduce more than twice. This is in disagreement
with the assumption that the membrane contains an incompressible fluid.

Thus, further we will study contact problems for cells. It will be assumed that the cell shape
may be locally described as a sphere of radiusR1 and it is in contact with a rigid indentor of radius
R2. Although it is known that the cell membrane rupture and deformations are time-dependent
phenomena (see, e.g. [66]), we will not consider here the viscoelastic effects. Following [21], the
effective properties of the cell are described as a non-linear elastic material of neo-Hookean type
whose principal stretches satisfy the condition of incompressibility. Because the membrane is
incompressible, its thickness may vary.

3. Contact probing of prestressed cells
An important factor that can affect a variety of cellular functions such as motility, cell division
and endocytosis is plasma membrane tension and corresponding lateral stresses [18]. A simple
equation can be used to describe atomically thin membranes under homogeneous lateral tension
(see, e.g. [9]), however, a cell membrane is relatively thick and simple equations are not applicable.
The equations for prestressed plasma membrane should follow from the description of effective
material of the cell.

The above mentioned Hertz-type contact problems and the JKR and DMT theories are based
on the geometrically linear formulations of boundary-value problems, while the cell prestress
and other factors may cause large deformation of initial shape of a cell (see, e.g. [73]). The
changes of cell shapes that lead to geometrically non-linear formulations are excluded from the
consideration. If a cell membrane has initial large stretches, however its shape may be locally
modelled as spherical, then the contact problem will be formulated as a contact problem for solids
with initial stress (prestress) [3,4,6,24,32]. This means that a membrane with the initial stretches
is considered as a solid, whose effective elastic properties depend on the level of the prestress,
while the additional stresses caused by action of the probe are just a small perturbation of the
initial stress field. These perturbations of the stress field and corresponding displacements will be
studied in a linearized formulation.

The formulations of boundary value problems for prestressed elastic half-space or plate may
be found elsewhere (see, e.g. [3,6,47]). Let us consider a homogeneous, incompressible, elastic
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membrane M which possesses a natural unstressed state Mu. Let us assume that the non-linear
material ofM is deformed and, therefore it has some preliminary tension (prestress). It is assumed
that probing of the membrane by a spherical AFM tip causes only small perturbations of the
prestressed membrane. We denote by Md and Mp the finitely deformed and the perturbed
configurations of the membrane respectively. Following [47], we denote by XA; xi(XA) and
x̃i(XA) the position vectors of a representative particle of M , relative to a common Cartesian
coordinate system coincident with the principal axes of the primary deformation in Mu, Md and
Mp, respectively. Then one can write

x̃i(XA) = xi(XA) + ui(xj) (3.1)

where ui(xj) is the component of small perturbed displacement caused by contact between the
probe and the membrane, i.e. u(xj) in (3.1) is the vector of small superimposed displacements.

Even if the state Mu of the effective material is initially isotropic then the equations of
linearized elasticity for the perturbed state Mp are anisotropic. For example, many biological
materials demonstrate high deformability at relatively small stresses and hyperelastic samples
of these materials may show highly nonlinear stress-strain curves leading to material hardening
with increasing deformation (see, e.g. [26]). Hence, a sample of such materials subjected to
uniaxial stretch is much stiffer in the stretch direction than in the non-stretched directions. If
all quantities are referred to the area in Md state then the components of the stress tensor of Mp

state may be connected to strains (derivatives of u(xj)) using the fourth-order elasticity tensor
Bijkl [47]. Thus, the equations of linearized elasticity for the perturbed state Mp are similar
to equations of linear anisotropic elasticity. However, the linearized elasticity is formally more
complicated then the linear case. In the later case one can reduce the fourth-order elasticity tensor
Cijkl to just 21 independent components, in the former case the tensor Bijkl has less symmetry
of the indexes than Cijkl [37].

It was suggested to employ various models of effective nonlinear elastic materials of cells,
e.g. models of hyperelastic materials whose elastic properties are described by Mooney-Rivlin
potential [77] or by Treloar potential [21]. The later potential may be written as

W =
1

2
µ(λ21 − 1 + λ22 − 1 + λ23 − 1), (3.2)

where λi is the extension ratio in the xi direction, µ is the initial shear modulus of the material of
the natural unstressed state Mu.

Further details related to values of shear modulus µ and membrane thickness for RBCs may
be found in [21]. We would like to underline that we do not employ the constant membrane area
constraint, i.e. the condition that λ1λ2 = 1. It is assumed here that Mu is isotropic and the shear
modulus µ=E/2(1 + ν). For an incompressible material, one has ν = 0.5 and

λ1λ2λ3 = 1. (3.3)

It is also assumed further that the initial prestress of the cell is homogeneous and this is equivalent
to the following conditions for a stretch λ of the membrane

λ1 = λ2 = λ, λ3 = λ−2. (3.4)

The problem of contact between the cell and a spherical probe is still axisymmetric due to
conditions of homogeneous prestress of the membrane (3.4). Although the problem satisfies the
condition of rotational symmetry of elastic properties for small perturbations of the stress field,
and therefore, it is similar to the contact problem for a transversely isotropic solid, the problem
for prestressed membrane is formally more complicated as it has been mentioned above. For
transversely isotropic solid, the non-adhesive contact problem can be solved just by replacing the
contact modulus (2.2) by the corresponding contact modulus E∗

TI that depends on the constants
of the transversely isotropic material (see, e.g. [6,7]). In the frameworks of the JKR and DMT
formalisms, the adhesive contact problem for transversely isotropic solid was also solved [13,29].
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Fortunately, the linearized boundary value problems of contact for homogeneously prestressed
materials can be also solved. A 2D contact problem for a prestressed plane whose elastic
properties are described by Mooney potential was solved in [31]. The contact problems for
incompressible materials of the neo-Hookean type were solved independently in [32] and [24].
It was shown that the solution of the Boussinesq problem for a concentrated load P acting on an
elastic half-space whose properties and prestress are described by (3.2) and (3.4) respectively, may
be written as

u3(r, 0) =
P

4πµr
N(λ) (3.5)

where the coefficient N is

N(λ) =
2λ4(1 + λ3)

λ9 + λ6 + 3λ3 − 1
. (3.6)

It can be written in an equivalent form (see, [7] for details)

N =−2 1− k2

λ23[(1 + k2)2 − 4k]
, (3.7)

where k= λ/λ3 = λ3. Because for incompressible solids ν = 0.5, (3.5) can be written as

u3(r, 0) =
P

E∗πr
N(λ) =

P

4µπr
N(λ). (3.8)

Hence, the integral equation of an arbitrary contact problem for equally and uniformly
prestressed solids differs from the integral equation of the corresponding classic contact problem
only by a constant coefficient N(λ). Later it was shown that all Hertz-type contact problems
between a punch and a non-linear elastic homogeneously prestressed half-space coincide with
the mixed problem for the harmonic potential of the contact problem for an isotropic linear elastic
half-space up to a multiplier [3,4,6].

For a non-linear elastic homogeneously prestressed half-space, the contact modulus E∗
PS is

E∗
PS =E∗

I /N(λ) = 4µ/N(λ) (3.9)

where N(λ) depends on the initial deformations λ within x1x2 plane and the non-linear strain
potential of the material. The same statement is valid for contact between a transversely isotropic
probe and a prestressed half-space [6], however the effective contact modulus E∗

eff should
be taken as (E∗

eff )
−1 = (E∗

TI)
−1 + (E∗

PS)
−1. For neo-Hookean materials, the expression of

multiplier N(λ) is given by (3.6).
Thus, an extension of the JKR theory in application to AFM probing of cells leads to the

following relation between the external load P acting on the spherical probe and the adhesive
contact radius a

P = (4E∗
PS/3R)a

3 −
√

8πwE∗
PSa

3 (3.10)

and
δ2 = a2/R−

√
2πw(E∗

PS)
−1a (3.11)

where R is the effective radius of the spheres (2.3) and EPS = 4µ/N(λ). Note that the parametric
expressions (3.10) and (3.11) for P and δ can be united as an explicit P (δ) relation.

4. Determination of elastic modulus and work of adhesion for
prestressed cells

Evaluation of elastic and adhesive properties of cells is important not only for proper theoretical
and numerical modelling of interactions between a cell and an AFM probe or among cells, but
it has been argued that these properties are in connections with cell biological functionality (see,
e.g. [42,70]). Hence, these questions were actively discussed. Both non-adhesive and adhesive
contact models were involved in the studies (see, e.g., [19,25,72,78]. Usually elastic and adhesive
characteristics of contacting materials are evaluated employing two independent and rather
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different indentation tests: (i) DSI of sharp pyramidal indenters for extraction of the effective
contact modulus E∗ from the unloading branch of the P − δ curve, see the BASh relation (2.4);
and (ii) extraction of work of adhesion w from direct measurements of the pull-off force (the
adherence force Padh which is assumed to be negative) of a spherical indenter from the material
sample

w=−2

3

Padh

πR
. (4.1)

and sometimes using in the calculation few other points of the indentation P − δ curve [27,72]. As
it has been argued above, the BASh relation (2.4) may cause considerable errors due to neglecting
adhesive effects (see (2.5) and (2.6)), while direct measurements of Padh and calculations by (4.1)
are prone to errors due to effects of roughness and surface contaminations. Therefore, Padh is
often calculated after many tests [72].

The BG method was introduced as an alternative approach for identifying elastic modulus
and w from a single depth-sensing indentation test involving a spherical indenter [8]. The BG
methodology intrinsically takes adhesion into account and the method is based on optimal
fitting of the experimental data to possible adhesive P − δ curves. The BG method assumes that
the experiments should be described by a mathematical model of the indentation process. The
theoretical P − δ curve is used and it is written as the following dimensionless function F :

F

(
P

Pc
,
δ

δc

)
= 0. (4.2)

Here Pc > 0 and δc > 0 are so-called scaling parameters of the problem. The exact form of this
relation depends on the assumed physical model of adhesive contact.

In contrast to other methods of extraction the mechanical and adhesive properties of soft
material samples, the BG method uses the entire set of data points of unloading branch of the
force-displacement curve on a selected interval of loads rather than some specific points on it. In
particular, it can be applied just to an interval of compressive loads [11,12] when the P − δ curves
are definitely stable.

The scope of the original BG method was limited to the classic JKR and DMT theories. For
example, for the classic JKR theory applied to a spherical probe of radius R, (4.2) can be written
as 

(3χ− 1)

(
1 + χ

9

) 1
3

− δ

δc
= 0 for χ≥ 0,

δ

δc
≥−3−2/3,

(3χ+ 1)

(
1− χ
9

) 1
3

− δ

δc
= 0 for

2

3
≥ χ≥ 0, −3−2/3 >

δ

δc
≥−1

(4.3)

where χ=
√

1 + P
Pc

. The characteristic parameters Pc and δc are connected to the reduced
Young’s modulus of material E∗ and work of adhesion w by means of the following formulae:

Pc =
3

2
πwR, δc =

3

4

(
π2w2R

E∗2

)1/3

. (4.4)

In the case of the JKR theory the parameters Pc and δc have clear physical meanings, e.g. Pc is the
maximum possible absolute value of the pull-off force during unloading phase of indentation.

The experimental force-displacement curve may be represented as an array (Pi, δi), i=
1, . . . , N of measured values of the compressing load P ≥ 0 and corresponding values of the
displacement δ≥ 0. HereN is the number of points of the experimental measurements. According
to the BG method, one needs to find the parameters Pc and δc along with the shift of the origin of
the displacement coordinate (δs) in order to fit the experimental data by an appropriate theoretical
curve, i.e. one can select the dimensionless JKR curve (4.3). Substituting the measured values
(Pi, δi), i= 1, . . . , N into the selected expression of the theoretical curve (4.2), one obtains an
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array of equalities

F

(
Pi

Pc
,
δi
δc

)
= 0, i= 1 . . . N. (4.5)

that could be satisfied by a single pair of the scaling parameters Pc and δc only in the following
ideal case: (i) the cell deformations can be described ideally well by the selected model of
adhesive contact (4.2); and (ii) all measurements are error-free. Evidently, this cannot happen
in a real experiment. Therefore, the problem of finding the scaling parameters boils down to
an optimization problem of finding the optimal values of Pc, δc that provide the best fit of the
theoretical force-displacement curve (4.5) to the experimental data according to some metric.
Originally, the BG method used the least-squares metric (see, e.g. [11]). However, later it was
suggested to employ in the extended BG (eBG) method another objective functional based on the
concept of orthogonal distance curve fitting [58–60].

If an AFM probe is spherical then the classic JKR theory that represents the solid as an elastic
half-space, enables us to write explicitly the P (δ) relation. However, for more general cases, the
adhesive contact theory provides the P − δ curves as parametric relations P (a), δ(a) where the
contact radius a is used as the parameter [7]. For problems of adhesive contact between a probe
and a thin layer or a thin bilayer bonded to a rigid half-space, the adhesive force-displacement
relationship cannot be reduced to explicit form unless indenter has a canonical shape, e.g. it is
spherical [14,28]. Solutions to adhesive contact for coated elastic media may have very complex
representation which cannot be reduced to explicit form for any indenter shape [1]; the same is
valid for semi-analytical models containing some correction functions (see, e.g. [71]). Therefore,
the original version of the BG method was not applicable directly for many problems of practical
importance. However, its extended version can be used for determination of elastic and adhesive
properties of elastic structures if they allow for the application of the JKR theory. Hence, the eBG
method can be applied to adhesive indentation of coated, multilayered, and functionally-graded
media [58–60]. It is possible to show that the JKR formalism is applicable to problems of adhesive
contact for any linear or linearized materials and structures that allow the use of the principle of
superposition of solutions [61].

As soon as the optimal values of the scaling parameters Pc and δc are extracted from
experimental data, the contact modulus E∗

PS and the work of adhesion w can be evaluated from
(4.4). Normally, for soft materials and spherical AFM tips, the JKR theory is applicable, however
after the contact modulus and w have been extracted, one needs to check if the value of the
corresponding Tabor parameter is within the interval of applicability of the JKR theory.

Thus, the approach developed here enables us to apply the JKR formalism to prestessed
membranes of living cells and extract the elastic properties and work of adhesion using the eBG
method.

5. Conclusion

It has been argued that the contact probing of living biological cells and depth-sensing
indentation of the cells are effective experimental tools that enable the researchers to obtain
quantitative data on deformation of the cells and extraction of information about their mechanical
properties. However, proper extraction of useful information should be based on theoretical
models that take into account specific features of the process under consideration. These features
include mechanical properties of cell membranes, their adhesive properties and initial tensile
stresses (prestress) of the membranes.

Explicit expressions (2.5) and (2.6) have been derived that showed that the slopes of DSI
force-displacement curves may be significantly affected by adhesion. These expressions are
generalizations of the BASh expression that is the corner stone of modern depth-sensing
nanoindentation tests. The expressions are based on the use of an extension of the JKR theory
to an axisymmetric indenter of arbitrary shape. It has been shown that the direct application of
non-adhesive Hertz-type contact models may lead to significant errors in estimations of contact
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moduli of materials. Although both the original BASh expression and the above mentioned
extension were derived assuming frictionless boundary conditions, this restriction is not very
important because our previous studies [16,17] showed that the maximum error is below 10%.

A similar statement is applicable to the JKR theory. Indeed, the main formulae of the theory
were derived assuming that the material points within the contact region can move along the
probe surface without any friction. However, it is more natural to assume that a material point that
came to contact with the probe sticks to its surface. This means that the non-slipping boundary
conditions could better describe the contact phenomenon. However, again our previous studies
[15] showed that the difference between solutions to frictionless adhesive contact problem and the
problem with non-slipping boundary conditions is very small. Hence, the frictionless boundary
conditions have been used in the above studies.

Following [21], we have modelled the cell membrane as made of effective neo-Hookean
material. It has been argued that the contact mechanics of prestressed solids [3,4,6,24,32] along
with an extension of the JKR theory [7] should be employed to study contact probing of adhesive
cell membranes. It has been showed that the JKR theory is still valid, however the contact
modulus of the material in its natural unstressed state (2.1) should be replaced by the contact
modulus of the prestressed material EPS whose value depends on the multiplier N(λ) that in
turn, depends on the initial stretch of the membrane. In the case of modelling the cell membrane
by a neo-Hookean material, N(λ) is given by (3.6).

Finally, we argued that the effective modulus of the membrane and the work of adhesion may
be extracted from a single DSI test by employing the eBG method. Although it was proved that the
BG method is simple and robust, our previous studies of polymer samples [11,12] showed that the
extracted values of both characteristics (elastic contact modulus and the work of adhesion) may
vary in the same sample. Indeed, the polymer macromolecules are rather long and the contact
area may have interacting molecules in various orientations. We expect that such variations may
be observed in living cell membranes. We expect that the membrane proteins may cause the
variability of the extracted values. Therefore, even if the eBG method allows us formally to extract
the seeking parameters from a single experiment, the statistical approaches may be helpful for
proper understanding of the results. It has been argued that the present approach to both the
JKR type contact problems and eBG method will be valid for more complicated elastic models
of cell membranes. The presented studies demonstrated the ways of studying contact problems
for prestressed living cells under action of AFM probes with spherical tips and extract the elastic
contact modulus and work of adhesion depending on the current values of the cell membrane
prestress.
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