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“As far as the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality.”

Albert Einstein
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Abstract

As a part of a wide and term project, where quantum micro and nano-electromechanical
(MEMS NEMS) implemented in a superconducting quantum interference device (SQUID)
made of boron doped diamond (BDD) to be explored, experimental and theoretical in-
vestigations, and solutions for related technical issues linked to these investigations, are
presented in this thesis. Experimentally, current-voltage, I(V ), characteristics and the
differential resistance measurements have been performed for SIS tunnel junctions, and
nanobridge devices made of BDD. On the basis of analyses of these measurements, tem-
perature dependence of the critical current, Ic(T ) of a nanobridge device with bridge
dimensions of L = 118 nm, and W = 109 nm, shows an exponential like behaviour,
Ic(T ) ∝ exp(−L

√
T ). Such dependence was attributed to the proximity effect described

by Likharev’s theory of SNS weak-link junctions. Furthermore, temperature dependence
of I(V ) characteristics between 20 and 700 mK for another device with W = 108 nm,
and L = 78 nm, shows resistive steps in the transition region of the I(V ) curves around
Ic. As phase slip events may arise due to vortex kinematics and the granularity of the
superconducting films, the observed steps have been attributed to vortex kinematics, and
granularity of BDD films from which the device have been fabricated. On the other side,
for SIS junctions, fitting for I(V ) characteristics measured for a typical SIS junction of
a 6 nm vacuum gap, shows good agreement with the RSCJ model. An SIS junction
with a wide vacuum gap of 76 nm, have been also investigated, where the measured tem-
perature dependence of the I(V ) characteristics of the junction, shows two transitions,
the first transition, Ic1(T ) was observed in the superconducting region, while the second
one, Ic(T ), occurs just before the normal state. The transition Ic(T ) was attributed to
Ambegaokar and Baratoff formula and BCS theory. Other measurements for I(V ), and
R(T ) curves of superconducting strips of different strictures, have been performed. The
measurements show resistive steps around transition regions of the I(V ) curves, and cor-
responding spikes have been observed in the R(T ) curves. Such behaviour is attributed
to a collective effect that involves kinematic vortices, thermal fluctuations and/or quasi-
particles diffusion (SBT model), and the granularity of BDD films from which the strips
have been made. Technically, as superconducting devices are being influenced by a con-
siderable amount of noise such as radio frequency (RF) noise, high performance RF filters
were developed and fabricated. As results, the fabricated filters have shown that they are
quite competitive to the earlier RF filters, efficient tools to attenuate the RF noise, and
appropriate to be used for simultaneous measurements that take place in a cryogenic sys-
tem where the temperatures down to few mK. In terms of theoretical aspect, simulations
to quantitatively describe the interaction between a dc SQUID and an integrated doubly
clamped cantilever were performed, where the unscaled dc SQUID equations coupled to
the equations of motion of an integrated cantilever, have been numerically solved. In these
simulations, an existing experimental configuration was selected to explore the motion of
the integrated cantilever, and the voltage-displacement traces of a displacement detector
were determined. Furthermore, the effect of the back-action between the SQUID and the
doubly clamped cantilever have been analysed via the shift in the cantilever frequency,
the line width, intensity, and shift in the position of the normal state. The simulations
show how a sharp transition state drives the system into a nonlinear-like regime, and
modulates the cantilever displacement amplitude, by tuning the bias current Ib, and the
external flux Φext, which set the system in different regions of V (Φ) curve.
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1 Introduction

1.1 General overview, the long term project &
motivations

1.1.1 General overview

The detection of linear and nonlinear micro and nanomechanical resonators have been a
theme [1, 2, 3, 4, 5, 6, 7, 8] of great interest in recent years, as they provide an exten-
sive knowledge for quantum phenomena associated with the macroscopic scale. In terms
of technology they can be exploited as superconducting quantum circuits and supercon-
ducting quantum bits (qubits). Such systems work at extreme conditions i.e., at ultra
low temperature, and in very well isolated environments, at which the systems enter the
quantum state, such as nanomechanical resonators implemented in superconducting quan-
tum interference devices (SQUIDs), that can be manipulated using an external current,
magnetic flux, or/and a gate voltage, and enable the system to be controlled within the
framework of a two level system (TLS). A qubit implementation allows the information
science to be expressed in terms of quantum effects by considering a two level, or multilevel
quantum systems that can be successfully and efficiently employed for implementations of
qubits. Several physical implementations of qubits are being investigated such as electron
spins in semiconductor where quantum dots are used as qubits for quantum information
processing [9], nuclear magnetic resonance quantum computing (NMRQC) [10]. In terms
of superconducting circuits, Josephson junctions, micro or nano-electromechanical sys-
tems (MEMS & NEMS) and quantum phase slip junctions are involved to manipulate
quantum systems.

To simplify the idea behind the quantum circuits, one may consider, e.g. an inductance-
capacitance (LC) circuit such that shown in Fig. 1.1(a), and looks over the possibility
of bringing this circuit into a quantum region, where the system can be manipulated
between the ground and the first exited states. In classical region, the circuit follows
di(t)/dt+ω2

0i(t) + 1
L
i(t) = 0, where ω2

0 = 1
LC

in which ω is the resonance frequency of the
LC circuit, with a maximum quality factor Qmax = (2EC)1/2 as given in Fig. 1.1(b). To
enable such circuit to enter the quantum regime, three main conditions must be satisfied:
(i) the resistance of the circuit components must vanish, (ii) the circuit must be sufficiently
isolated from the surrounding environment, and (iii) the thermal energy of the circuit
environment must be lower than the resonance energy of its first excited state. On the
basis of the first condition, the circuit must be made of a superconducting material, where
the resistance becomes negligible, which results in much lower dissipation. The second
condition is mainly related to the radio frequency (RF) noise that causes a quantum
dissipation and decoherence. To achieve the second condition, the need for an efficient RF
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1 Introduction

filter becomes important. Ultra low temperature measurements system, such as a dilution
refrigerator is required to satisfy the third condition. If these conditions are satisfied, the
system can be considered as an open quantum system such that demonstrated in Fig.
1.1(c), in which the energy spectrum becomes quantized. As Josephson effect provides
a highly conserved energy, Josephson junctions, as shown in Fig. 1.1(d), are used for
most technological purposes, as they allow the standard representation of the Josephson
voltage.

L

L CL

(a) (b)

(c) (d)
(e)

C

C

e
gg

e

𝑖(𝑡)

Figure 1.1: (a) and (b) Classical LC circuit with a quality factor Q = 1
R

√
L
C , and Qmax =

(2EC)1/2, (b) quantum LC circuit in which three conditions to be satisfied: (i) dissipation
vanishes as the resistance R→ 0, (ii) the energy difference between the ground state g and the
first exited state e is ω � kBT , and (iii) the circuit is well isolated from the environment. (d)
An extension of the the circuit that involves a Josephson junction J, and (e) scheme for the dc
SQUID displacement detector in which the two Josephson junctions are labelled by J1 and J1.
The cantilever displacement is out-of-plane, and the applied magnetic field, B, is in-plane.

1.1.2 The long term project & motivations

This thesis is a part of a wide and long term project that aims to study quantum micro and
nano-electromechanical systems implemented in a superconducting quantum interference
device (SQUID) made of boron doped diamond (BDD). To achieve such goal several pro-
cesses, techniques, and experimental and theoretical investigations, are required starting
from fabricating and characterising Josephson junctions (JJs), or weak links, from which
a SQUID is developed, to finally, implementing a micro or nano-mechanical cantilever in
the fabricated SQUID loop such that shown in Fig. 1.1(e). Etaki, et al [2] have demon-
strated that a dc. SQUID made of Niobium (Nb), could be utilised to detect the motion
of a 2 MHz mechanical resonator. However, the measured position resolution was about
133 fm. Though such value, 36 times the quantum limit, was still far from the quantum
regime, subsequent experimental progress in the detection of resonators that enter the
quantum ground state, has been achieved by capacitive coupling to superconducting flux
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1 Introduction

qubits [11], and quantum state control of a mechanical drum resonator in a supercon-
ducting resonant circuit has been achieved by phonon-photon coupling [12, 13]. In the
framework of a quantum two level system, to detect the motion of a quantum macro-
scopic mechanical resonator at T = 50 mK, the frequency of the resonator must be higher
than 1 GHz. As the fundamental frequency of a mechanical resonator is determined [15]

by, f0 = 1.028
√

E
ρ
d
L2 , in which, E is the Young’s modulus, ρ is the density, and L and

d are the length and thickness of the cantilever respectively, BDD has been selected in
this project as it has the highest Young’s modulus [14], and that enables the system to
enter a macroscopic quantum ground state at such temperatures, where a single phonon
mode is occupied. Consequently, BDD will allow the quantum limit to be approached
and measured in a simple integrated single circuit. Moreover, BDD based system can
be easily scalable and inserted into a SQUID loop, which may create multiple entangled
macroscopic quantum states through the coupling of the superconducting qubits and the
area change dominated by the resonator positions.

1.1.3 Challenges

The main challenges in this project arise from two issues: (i) the short coherence length
(ξ) of the BDD films, and (ii) the granular superconducting properties in the films. Since
SQUID devices with typical Josephson junctions, i.e., a sinusoidal current phase rela-
tionship (CPR) can be only satisfied when a SQUID having dimensions (length L and/or
width W ) are shorter than ξ of the superconducting film, a challenge arises due to the fact
that ξ ≈ 15 nm [17] for the BDD films. Technically, this makes the fabrication of typical
Josephson junctions, with such short weak links, extremely difficult. RF noise was an-
other technical challenge that has been overcome through the course of this work, where a
competitive RF filter has been developed and successfully fabricated. In terms of the the-
oretical aspect, junctions with L > ξ requires to calculate CPRs such as that analytically
described in [16] or those obtained [18, 19, 20] by numerically solving Ginzburg Landau
equations for nanobridges with dimensions greater than ξ of the film. Due to the granular
superconducting properties of BDD films, complex calculations are required in terms of
Ginzburg Landau theory, where multiple and irregular boundaries conditions must be
applied, and that is quite challenging. Furthermore, a full description of the SQUID-
cantilever interaction requires a comprehensive model to provide information about the
effects associated with this system, such as the influence of back-action of the system,
and its responsivity, which must be calculated by linking the cantilever displacement to
the SQUID voltage. Thus, the need for quantitative treatments of the unscaled SQUID
equations coupled explicitly to the equation of motion for the implemented cantilever
becomes important. Though, such treatments are complicated and challenging [25], they
have been performed numerically during the course of this thesis. Moreover, during the
course of this work, I(V ) curves and differential resistance measurements for junctions
with different structures, have been performed. Measurements of, e.g, superconductor-
insulator-superconductor (SIS) junction with a vacuum gap of 76 nm which is quite large
relative to the coherent length of BDD films, require more theoretical work to provide a
deeper understanding for the features observed in these measurements.
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1.2 The thesis scope

The work presented here includes theoretical and experimental studies, simulations, and
technical solutions for the issues associated with this project. Apart of the conclusions pre-
sented in Ch. 8, this thesis involves seven chapters, which are distributed as the following:

• In Ch. 2, fundamental concepts and theories of superconductivity, have been pre-
sented. The chapter also includes numerical solution of the time dependent Ginzburg
Landau (TDGL) equations for a square sample. Langer, Ambegaokar, McCumber
and Halperin (LAMH) theory, Skocpol, Beasley and Tinkham (SBT) model, and
theoretical and earlier experimental investigations for superconducting strips, are
reviewed.

• Several types of weak link devices are presented in Ch. 3, where the junctions were
classified depending on the their dimensions relative to coherence length. The device
properties were discussed in terms of previous theoretical studies such as Aslamazov-
Larkin model, Kulik-Omelyanchuk model, dirty limit (KO-1), Kulik-Omelyanchuk
model, clean limit (KO-2), and the quasiparticle theory. The operation principle
of SQUIDs is based on the Josephson effect, and the flux quantization of a su-
perconducting ring, that makes SQUIDs highly sensitive to detect extremely small
magnetic field. On this basis, the operation principle of SQUIDs is quantitatively
demonstrated in this chapter. As a phase slip event emerges due to highly disorder
systems such as granular superconducting films that can be treated as an array of
Josephson junctions (JJs), a brief overview for the later topic is presented.

• As the RF noise significantly influences the quantum state of quantum circuits, and
micro and nanomechanical resonators implemented in SQUID loops, filtering out
the RF noise is a critical issue. Thus, an efficient microwave powder filter was de-
veloped to considerably attenuate such noise. The functioning principles, prototype,
basic materials and components, implementation, construction of the developed fil-
ter, and measurements performed on the filter are presented in Ch. 4.

• As BDD is the material from which JJs, SQUIDs, micro and nanomechanical res-
onators to be made, Ch. 5 goes over the properties and fabrication process of
superconducting diamond, and briefly reviews the related earlier experimental and
theoretical studies, as well as, the earlier junctions, SQUIDs, and mechanical res-
onators, made from superconducting diamond.

• Several junctions and nanobridges devices made of BDD with different structures,
fabricated by a research partner in Cradiff University, and measured at ultra low
temperatures, and up to the critical temperature of the superconducting diamond.
I(V ) characterises, differential resistance, and magnetic field dependence measure-
ments, were performed for devices with two types of weak links: (i) nanobridges of
different lengths and widths, and (ii) vacuum gaps of different widths. The mea-
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surements are dissuaded in terms of the theoretical criteria, presented in the earlier
chapters, are discussed in Ch. 6. The last section of this chapter is specified to
discuss the measurements performed to investigate the transport properties of su-
perconducting strips.

• Simulations to quantitatively describe the interaction between a dc SQUID and
an integrated doubly clamped cantilever, have been performed using the SQUID
equations described by resistivity and capacitively shunted junction (RCSJ) model
coupled to the equation of motion of a damped harmonic oscillator. These Simula-
tions are presented in Ch. 7, and led to a scientific paper published in Journal of
Applied Physics [1].
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2 Fundamental Theories of
Superconductivity

2.1 Superconductivity

2.1.1 Zero-resistivity and perfect diamagnetism

In 1911, three years after liquefying Helium, superconductivity was discovered by Heike
Kamerlingh Onnes where the resistance of a solid mercury wire immersed in liquid Helium
suddenly vanished at 4.2 K. Onnes has called [1] this new phenomenon the “supercon-
ductive state”. Besides zero-resistivity, a new and separate physical property for super-
conductors was discovered in 1933 by W. Meissner and R. Ochsenfeld. In this discovery
[3] it was shown that a magnetic field is expelled from a superconductor upon cooling to
below the superconducting transition, Tc. The second phenomenon becomes known as the
Meissner-Ochsenfeld effect. As the total magnetic field inside the superconductor must
be zero upon applying an external field, an internal field arises to leave the total field
zero. This is satisfied only if the internal field is opposite in the direction and equal in the
magnitude to the external field. Obviously the emergence of the internal magnetic field
requires screening currents flowing around the edges of the superconductor. Maxwell’s
equations can be used to describe [4, 5] the screening currents jint in a magnetic medium
with jtot = jext + jint, where jext is the external currents related to the external field H as
jext = ∇×H, and jtot is the total currents that defined in terms of the total field B by
jtot = ∇×B. Inside the superconductor a magnetization M emerges due to jint and the
magnetization per unit volume reads: jint = ∇×M. Now the total field B is related to
the external field H and magnetization M by:

B = µ0(H + M), (2.1)

where µ0 is the permeability of free space. Since ∇ · B = 0, and ∇×H = jext, two
boundary conditions are applied: (i) the components of B perpendicular to the surface
must remain constant, i.e, ∆B⊥ = 0, and (ii) the components of B parallel to the surface
remain constant, i.e, ∆H‖ = 0. The Meissner-Ochsenfeld condition requires the total field
B = 0, thus Eq. 2.1 leads to H = −M. As the magnetic susceptibility χ is given by

dM
dH

∣∣∣∣
H=0

, the susceptibility χ for a superconductor reads

χ = −1, (2.2)

Such value for χ implies that the external field in superconductors is completely screened
out, and this is usually known as perfect diamagnetism.
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2 Fundamental Theories of Superconductivity

2.1.2 Type I and type II superconductivity

So far, the susceptibility χ is defined in presence of a weak external field H. However,
in presence of a strong external field one of two phase transitions occur depending on
the material from which the superconductor is made. Accordingly, superconductors are
classified into the two classes shown in Fig. 2.1. In type I, as the external field remains
below critical value Hc, the B field remains zero inside the superconductor, and the
magnetization subjects to M = −H. However, the superconducting state is destroyed
when H > Hc. Two different critical fields present in a type II superconductor: the
lower critical field Hc1, and the upper critical field Hc2. Here, when H < Hc1, the
magnetization subjects to M = −H, and when Hc1 < H < Hc2, the magnetic flux density
gradually increases by increasing H, until finally H = Hc2 at which the superconductivity
is destroyed and the magnetization becomes zero.

(a)

Normal State
 

Meissner State 

Tc

Type I

Hc1

Ex
te

rn
al

 F
ie

ld

Temperature

(b)

Normal State
 

Vortex State
 

Meissner State 

Hc2

Tc

Type II

Hc1

Temperature

𝑀𝑀 𝐻
𝐻 (c)

𝐻 𝐻

𝐻#$
𝐻#

𝐻#%

Type I Type II

Normal State
Normal State

Figure 2.1: The two superconductor classes in which, (a) and the inset(a) shows the H-T
and M -H phase diagrams of type I superconductors respectively, while (b) and inset(b) are the
diagrams of type II superconductors. (c) The first experimental evidence [6] of Abrikosov vortex
lattice as observed on the surface of lead rod at T = 1.1 K.

Abrikosov predicted [7] the phase diagram of type II superconductors given in Fig. 2.1
in terms of Hc1 and Hc2. Abrikosov showed that the magnetic field can penetrate the
superconductor surface in the form of vortices each of which consists of a region where
a supercurrent circulates around a small central core of a normal metal. As the external
magnetic field increases, the number of vortices Nv per unit area A increases until the
vortices combine together at H point at which the sample is completely turned from
a superconducting phase to normal metal phase. Quantitatively, Nv is related to the
screening field B according to the following Nv

A
= 2eB

h
, where e the electron charge, and h

is the Planck’s constant.

2.1.3 The London equations

The Meissner-Ochsenfeld effect could be explained by a theory developed [8] by F. London
and H. London. In this theory which has been originally suggested for superfluid 4He, the
conduction electrons can have two classes: (i) the normal electrons with a finite resistivity,
and (ii) the superconducting electrons that can move without dissipation. The number
density of superconducting carriers is denoted by ns, and two London equations expressed

10



2 Fundamental Theories of Superconductivity

in terms of the electric and magnetic fields E and B within the superconductor:

∂js
∂t

=
nse

2

me

E, (2.3)

∇× js = −nse
2

me

B, (2.4)

where js is the superconducting current density, and me is the rest mass of electron. By
applying Ampere’s law in which ∇ × B = −µ0js, the second London’s equation can be
written as ∇2B = 1

λ2
B. Here, λ = ( me

µ0nse2
)
1
2 which is the London penetration depth that

characterizes the distance at which a magnetic field penetrates a superconductor is equal
to exp(−1) times of the magnetic field at the surface. The magnetic field that penetrates
a superconductor at depth x from the surface is Bz(x) = B0 exp(−x

λ
), where B0 is the

magnetic field at the superconductor surface and z denotes the field direction relative to
the boundary.

2.2 Ginzburg–Landau theory

The Ginzburg–Landau theory has been developed on the basis of the Landau’s theory
of second order phase transitions [9]. Here, the Meissner, vortex, and normal states are
quantitatively described in terms of the phase ϕ as ψ(r) = (iϕ), that can be obtained by
solving the Ginzburg-Landau equations, from which an order parameter ∆ is defined by
∆ = |ψ(r)|2. The order parameter is zero when T ≥ Tc, one for a pure superconducting
state, and it has a nonezero value (below one) for the vortex state.

2.2.1 Thermodynamics of superconducting phase

A transition from a superconducting state to normal state can be described using a Gibbs
function in which free energy per unit volume F (T ) is defined using a Taylor series for
the order parameter ∆ = |ψ(r)|2 around Tc

F (T ) = Fn + α(T )|ψ(r)|2 +
1

2
β|ψ(r)|4 + γ|ψ(r)|6, (2.5)

where Fn is the free energy in the normal phase, α(T ), β(T ), and γ are in the initial
argument treated as phenomenological parameters. Since the energy is more appropriate
to be in the normal state when T > Tc, the Gibbs function must have a minima at ψ = 0,
thus

∂F

∂ψ

∣∣∣∣
ψ=0

= 0. (2.6)

When T → Tc, the last term in above equation is negligible, and the Gibbs function
becomes

F (T ) = Fn + α(T )|ψ(r)|2 +
1

2
β|ψ(r)|4, (2.7)
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2 Fundamental Theories of Superconductivity

and the combination of the last two equations gives αψ + βψ3 = 0 which results in two

solutions: ψ0 = 0 which accounts for T > Tc region, or ψ∞ = ±
√

α
β

for T < Tc region.

Since F must not decrease for large ψ values, β must be always positive, while α must be
positive for T > Tc, and negative for T < Tc. Thus an expression for α can be written in
terms of temperature as: α = α0(T − Tc). The free energy dependence on ψ is illustrated
in Fig. 2.2.

F

ψ

 T > Tc

 T < Tc

Figure 2.2: The free energy for the normal (red) and superconducting (black) state.

In presence of an external of magnetic field Bext, the free energy reads

F (T ) = Fn +
1

2m

∣∣∣∣(~
i
∇− qA

)
ψ

∣∣∣∣2 − α|ψ|2 +
β

2
|ψ|4 +

1

µ0

|Bext −Bi|2, (2.8)

where A is the vector potential, Bi = ∇×A is the magnetic filed inside the superconduc-
tor, and q = 2e is the cooper pair charge. The last term in Eq. 2.8 is the energy density
uB = 1

µ0
|Bext −Bi|2.

2.2.2 Time independent Ginzburg–Landau equations

The equilibrium states are determined by minimizing the free energy with respect to
variations in the order parameter and the vector potential. Obtaining the minima of the
free energy results in the time independent Ginzburg–Landau (TIGL) equations. The
derivation of TIGL equations can be found in [10, 11]. The final form of the TIGL
equations leads to the expressions given by Eqs. 2.9 and 2.10

1

2m

(
~
i
∇− qA

)2

ψ − αψ +
β

2
|ψ|2ψ = 0, (2.9)

and the supercurrent Js is given by

Js =
q~

2mi
(ψ∗∇ψ − ψ∇ψ∗)− q2

m
ψ∗ψA +

1

µ0

∇×Bext. (2.10)
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If the applied magnetic field is uniform, the current does not flow out of the superconduct-
ing surface, or in other words, ∇×Bext = 0. This statement leads to the first boundary
condition: (

~
i
∇ψ − qAψ

)
· n = 0. (2.11)

As the magnetic field must be continuous, another boundary condition is given by

Bext = Bi (2.12)

The second London equation given earlier in Eq. 2.4 can be obtained from the second
time independent Ginzburg–Landau equation by considering the following: in the Meiss-
ner phase the vector potential A can be neglected. This leads to the earlier result for
ψ∞ that can be obtained by ∂F

∂ψ
= 0 in Eq. 2.8 with |ψ∞|2 = α

∂β
. The expression for ψ∞

is then inserted into Eq. 2.10 to get the supercurrent Js = − q2α
mβ

A which leads to the
second London equation by taking the curl of both sides. This finally leads again to the
London penetration depth λ obtained in Sec. 2.1.3. Coherence length ξ is another char-
acteristic parameter for superconductors that can be obtained from the TIGL equations
by normalizing Eq. 2.9 with ψ → ψ

ψ∞
. This leads to

~2

2mα

(
1

i
∇− q

~
A

)2

ψ − ψ + |ψ|2ψ = 0. (2.13)

In the Meissner phase A is negligible. Thus Eq. 2.13 becomes

− ~2

2mα
∇2ψ(r)− ψ(r) + |ψ(r)|2ψ = 0. (2.14)

By assuming a model with an interface between a normal metal and superconductor, in
which the interface lies in the yz plane with x < 0 is the normal metal region and x > 0
is the superconductor region. In such model for all x > 0, Eq. 2.14 has a real solution

ψ(x) = tanh(
x√

2ξGL
), (2.15)

where ξGL is Ginzburg–Landau coherence length and is given by:

ξGL =

√
~2

2m|α(T )|
. (2.16)

It should be noted here that the Ginzburg-Landau coherence is temperture dependent,
where

ξGL = ξ0

∣∣∣∣1− T

Tc

∣∣∣∣− 1
2

. (2.17)
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In Fig. 2.3, ψ(x) is plotted versus x
ξGL

as obtained from Eq. 2.15. It’s obvious from
the figure that a superconductors with shorter coherence lengths results in a higher order
parameter |ψ|2, which also leads to approaching to Meissner phase at which |ψ|2 = 1.

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

ψ
  (x

)

x/ξ

Figure 2.3: Order parameter of a superconductor near a surface for a normal metal-
superconductor interface lying in yz plane.

Critical magnetic fields Bc, Bc1 and Bc2 discussed in Sec. 2.1.2 and shown in Fig. 2.1 in
terms of magnetic field strength H, can be also obtained from the TIGL equations. Here,
I only show the final results, and the full details can be found in Ref [7, 12]. For type I
superconductor, the critical magnetic fields reads

Bc =

∣∣∣∣µ0
α2

β

∣∣∣∣ 12 , (2.18)

and for type II superconductor the lower critical field is [13]

Bc1 =
1

κ
ln(κ+ 0.008)Bc, (2.19)

and the upper field reads

Bc2 =
√

2κBc, (2.20)

where κ is called the Ginzburg–Landau parameter that defined by

κ =
m

~q

√
2β

µ0

. (2.21)

The Ginzburg–Landau parameter κ is used to classify superconductors as: (i) for type
I superconductors κ < 1√

2
, and (ii) for type II κ > 1√

2
. Finally, in terms of coherence

length and penetration depth, the Ginzburg–Landau parameter can be written as

κ =
λL
ξGL

. (2.22)
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2.2.3 Normalized time dependent Ginzburg Landau (TDGL)
equations

So far, several superconducting parameters have been defined by time independent Ginzburg
Landau equations. This subsection is an extension for the Ginzburg Landau theory where
more details about superconductor vortices are simulated by solving TDGL equations nu-
merically. Here, I start directly with the normalized [24] TDGL equations which are
coupled with Maxwell equations as

∂ψ

∂τ
= −1

η

[
(−i∇−A)2ψ + (1− T̃ )(|ψ|2 − 1)ψ

]
+ F̃ , (2.23)

∂A

∂τ
= (1− T̃ )<[ψ̄(−i∇−A)ψ]− κ2∇×∇×A, (2.24)

with

Jn = −∂A

∂τ
, (2.25)

and

Jn = (1− T̃ )<[ψ̄(−i∇−A)ψ], (2.26)

In these equations the spatial dimensions (x, y) are scaled in units of ξ0, time τ in unit of
t0 = π~

96kBTc
, temperature in units of Tc, and the vector potential A in units of Hc2ξ0. Here,

kB is the Boltzmann constant, η in Eq. 2.23 is a positive constant (a ratio of characteristic
times for ψ and A, and < in Eq. 2.24 refers to the real part. Two boundary conditions
for ψ and A are imposed: the applied field Hext in the z direction, can be time-dependent
and spatially uniform. Thus the continuity of the field implies

Bz = ez · ∇ ×A = Hext. (2.27)

This condition is another form for the boundary condition given in Eq. 2.12. The second
boundary condition is imposed for ψ where supercurrent density perpendicular to the
boundary must be zero. This condition can be expressed as

n · (−i∇−A) = 0, (2.28)

As the total current across the superconductor vacuum interface is zero, the condition
given in Eq. 2.27 implies the normal current Jn is also zero. This can be proved by
combining Eqs. 2.24 - 2.26 which lead to

Jn + Js = κ2∇×∇×A. (2.29)
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The normal n have components (nx, ny, 0), thus

n · (Jn + Js) = κ2

(
∂

∂x
− ∂

∂y

)
Bz. (2.30)

Since

(
∂
∂x
− ∂

∂y

)
is a tangential derivative, the applied field Hext is uniform, the right-

hand side of Eq. 2.30 vanishes implying that the total current across the boundary is
zero. Finally, the magnetization Mz is defined [15] as

Mz(τ) =

∫ (
Bz(x, y, τ)−Hext

)
dxdy

4π

∫
dxdy

(2.31)

2.2.4 Numerical treatment of TDGL equations

The TDGL equations can be numerically solved using both finite element [15, 16] and
finite difference [17, 18, 19, 20, 21] methods. However, a specific finite difference method
that is known [24, 22, 23] as ψU -method is very common procedure in the numerical
treatment of TDGL equations. In this method the vector U is introduced in terms of two
auxiliary fields (Ux,Uy) which are given by

Ux(x, y, τ) = exp

(
− i
∫ x

x0

Ax(ξ, y, τ)dξ

)
, (2.32)

Uy(x, y, τ) = exp

(
− i
∫ y

y0

Ay(x, η, τ)dη

)
, (2.33)

where (x0, y0) is an arbitrary point, and the discrete analogs of Ux and Uy can be defined
[24] at the nodes as

Uxi,j =
i−1∏
k=1

Ux
i,j, Uyi,j =

j−1∏
k=1

Ux
i,j. (2.34)

This leads to:

Ux
i,j ≡ Ūxi,jUxi+1,j = exp

(
− i
∫ xi+1

xi

Ax,i,jdx

)
= exp(−iAx,i,j∆x), (2.35)

and

Uy
i,j ≡ Ū

y
i,jU

y
i,j+1 = exp

(
− i
∫ yi+1

yi

Ay,i,jdy

)
= exp(−iAy,i,j∆y), (2.36)
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where Ax,i,j = Ax(xi + ∆x
2
, yj), and Ay,i,j = Ay(xi, yi + ∆y

2
). Since ∂Ux

∂x
= −iUxAx, the

term (−∇−A)2 reads

(−∇−A)2ψ = −Ūx ∂
2

∂x2
(Uxψ)− Ūy ∂

2

∂y2
(Uyψ). (2.37)

By combining Eqs. 2.36 and 2.37, and using the second order of the FEM scheme, the
second order approximation at (xi, yj) reads

(−∇−A)2ψ

∣∣∣∣
(xi,yj)

= −
Ux
i,jψi+1,j − 2ψi,j + Ūx

i−1,jψi−1,j

axx

−
Uy
i,jψi,j+1 − 2ψi,j + Ūy

i−1,jψi,j−1

a2
y

+O(a2
x + a2

y).

(2.38)

Another term in Eq. 2. 2.23 is (|ψ|2 − 1)ψ, which can be approximated as

(|ψ|2 − 1)ψ = (ψ̄i,jψi,j − 1)ψi,j. (2.39)

The term <[ψ̄(−i ∂
∂x
− Ax)ψ] can be discretized using the identity, (−i ∂

∂x
− Ax)ψ =

iŪx ∂
∂x

(Uψ) which follows

<
[
ψ̄(−i ∂

∂x
− Ax)ψ

]∣∣∣∣
xi+

ax
2
,yj

= =
[ Ūxi,jψ̄i,j + Ūxi+1,jψ̄i+1,j

2
·
Uxi+1,jψi+1,j − Uxi,jψi,j

a2
x

]
+O(a2

x)

1

ax
=(ψ̄i,jŪxi,jψi+1,jUxi+1,j) +O(a2

x)

=
1

ax
=(ψ̄i,jU

x
i,jψi+1,j) +O(a2

x),

(2.40)

where = refers to the imaginary part. Analogously, the y component the term reads

<
[
ψ̄(−i ∂

∂y
− Ay)ψ

]∣∣∣∣
xi,yj+

ay
2

=
1

ay
=(ψ̄i,jU

y
i,jψi,j+1) +O(a2

y). (2.41)

To discretize the term ∇ × ∇ ×A(= ∇ × B) given in Eq. 2.24, the following auxiliary
variable is introduced

Li,j = Ux
i,jU

y
i+1,jŪ

x
i,j+1Ū

y
i,j, (2.42)

with

Li,j = exp

(
− iaxayBz(xi +

ax
2
, yj +

ay
2

)(
1 +O(a2

x + a2
y)
)
. (2.43)
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Here, B = (0, 0, Bz) with which ∇ × B =
(
∂Bz

∂y
, ∂Bz

∂x
, 0
)
, and the components

(
∂Bz

∂y
, ∂Bz

∂x

)
follow

∂Bz

∂y

(
xi +

ax
2
, yj
)

=
i

axa2
y

(
L̄i,j−1Li,j − 1

)
+O(a2

x + a2
y), (2.44)

∂Bz

∂x

(
xi, yj +

ay
2

)
= − i

a2
xay

(
L̄i,jLi−1,j − 1

)
+O(a2

x + a2
y), (2.45)

The last term in Eq. 2.24 is ∂A
∂τ

which can be discretized from

∂

∂τ

(
Ūx(x, y, τ)Ux(x+ δ, y, τ)

)
= −iŪx(x, y, τ)Ux(x+ δ, y, τ)

∫ x+δ

x

∂

∂τ
Ax(ξ, y, τ)dξ

= iδŪx(x, y, τ)Ux(x+ δ, y, τ)
∂

∂τ
Ax
(
x+

δ

2
, y, τ

)
+O(δ2).

(2.46)

Thus,

∂

∂τ
Ax
(
xi +

ax
2
, yj, τ

)
=

i

ax
Ūx
i,j

∂

∂τ
Ux
i,j +O(a2

x). (2.47)

Similarly,

∂

∂τ
Ay
(
xi, yj +

ay
2
, τ
)

=
i

ay
Ūy
i,j

∂

∂τ
Uy
i,j +O(a2

y). (2.48)

By substituting Eqs. 2.37 -2.48 in the TDGL equations given by Eqs. 2.23 and 2.24, the
discretized TDGL equations follow

∂ψi,j
∂τ

=
Ux
i,jψi+1,j − 2ψi,j + Ūx

i−1,jψi−1,j

ηa2
x

+
Uy
i,jψi,j+1 − 2ψi,j + Ūy

i,j−1ψi,j−1

ηa2
y

+
1− T̃
η

(ψ̄i,jψi,j − 1)ψi,j + F̃i,j,

(2.49)

∂xi,j
∂τ

= −i(1− T̃ )Ux
i,j=
[
ψ̄i,jU

x
i,jψi+1,j

]
− κ2

a2
y

Ux
i,j(L̄i,j−1Li,j − 1) (2.50)

∂yi,j
∂τ

= −i(1− T̃ )Uy
i,j=
[
ψ̄i,jU

y
i,jψi,j+1

]
− κ2

a2
x

Uy
i,j(L̄i−1,jLi,j − 1) (2.51)

To discretize the time variable with time step dτ , Euler scheme can be used

∂ψi,j
∂τ

=
ψi,j(τ + dτ)− ψi,j(τ)

dτ
. (2.52)
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Similarly, the terms Ux
i,j, and Uy

i,j can be discretized. The random force F̃i,j can be treated
[24] as a vortex variable.
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Figure 2.4: (a) The computational cells used for the discretization of the TDGL equations,
and (b) scheme of the computational mesh with the boundaries of the square sample used in
calculations.

For the aligned boundary in y-axis, the zero-current condition (− ∂
∂x
− Ax)ψ = 0 that

equivalent to −iŪx ∂
∂x

(Uxψ) = 0 can be written using first order approximation as:

ψ1,j = Ux
1,jψ2,j, ψNx+1,j = Ūx

Nx,jψNx,j (2.53)

ψi,1 = Uy
i,1ψj,2, ψi,Ny+1 = Ūy

i,Ny
ψi,Ny (2.54)

The west and east boundaries shown in Fig. 2.4(b) are vertically aligned at i = 1 and
i = Nx + 1 respectively, while the south and north boundaries are horizontally aligned
at j = 1 and j = Ny + 1 respectively. To update the link variables values on the
boundary, it should be noted that as the total circulation of the vector potential around
propagates inside the computational domain, the only product of the two link variables
can be numerically obtained for the cells with two edges on the boundary [24]. This
issue leaves an unknown link variable for each cell on the boundary, with the other three
link variables defined in Eqs. 2.50 and 2.51. However, the unknown link variable can be
obtained from

Li,j = Ux
i,jU

y
i+1,jŪ

x
i,j+1Ū

y
i,j = exp(−iaxayHext). (2.55)
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2.2.5 Example results

A result for the numerical calculations of TDGL equations is finally obtained by consider-
ing a square sample with dimensions 64ξ0 × 64ξ0. The calculations have been performed
using Fortran in which the following parameters have been implemented in the code: the
mesh spacing along x and y axes are ax = ay = 0.5, scaled temperature T = 0.5, with

κ = 2 and η = 1. The time step ∆τ must satisfy the Euler method so that ∆τ ≤
(
h2η
4
, h

2

4κ2

)
with h2 = 2

1

a2x
+ 1

a2x

. At τ = 0, a perfect Meissner state is initialized with ψ|τ=0 = 0, and

A|τ=0 = 0. Thus ∆τ is selected to be 0.010. The external field is increased linearly
within 2500 steps from Hext = 0 at τ = 0 to Hext = Hc2 and along 106 time steps. With
these parameters, the magnetization Mz defined in Eq. 2.31 is numerically calculated
and plotted in Fig. 2.5. It’s quite obvious from the figure that when Hext ≤ 0.214 the
sample remains in a Meissner state and the sample enters in the vortex state as the field
is increased above Hc1 until the sample becomes completely normal at Hc2. It should be
noted here that the numerical noise associated with solving TDGL equations results in
the oscillations appear in the mixed state region (H > Hc1) of the figure.

0.0 0.2 0.4 0.6 0.8 1.0

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

H
c1

M
z

Hext/Hc2

Figure 2.5: The magnetization curve versus the normalised applied field Hext/Hc2. When the
field Hext/Hc2 < 0.203, the sample remains in a Meissner state. As the field is increased above
Hc1 vortices emerge [see Fig. 2.6] and |Mz| decreases and the vortices density increases gradually
until the sample enters the normal state at Hc2. The results agrees with these obtained in [24].
The oscillations appear in the mixed state region of the figure is due to the numerical noise
associated with solving TDGL equations.

The spacial distribution of order parameter |ψ|2 of the sample is calculated at several
values of the external field between 0.0 ≤ Hext ≤ Hc2 and presented in the density plot
shown in Fig. 2.6. The figures show that the superconducting state is consistent with
magnetization curve given in Fig. 2.5, where sample enters the normal state when Hext >
Hc2 and the superconducting state start significantly depressed when Hext = 0.40 where
the number of vortices increases gradually until their density becomes large enough which
finally makes the sample entirely normal at Hext = Hc2. However, the superconducting
state remains preserved at the edges of the sample when the applied field is lower the Hc2.
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Figure 2.6: Density plots of the order parameter 4 = |ψ|2 for different external fields between
0.0 ≤ Hext ≤ Hc2
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2.3 Bardeen–Cooper–Schrieffer (BSC) theory

2.3.1 General overview

A prominent microscopic theory of superconductivity is Bardeen-Cooper-Schrieffer (BCS)
theory [25, 26, 27, 28]. Electrons classified as fermions in the normal conductor are consid-
ered as Bosons (Cooper pairs) in the BCS theory where they can coherently condensate
into a single quantum state. Several experimental observations discussed in the previ-
ous sections, as zero electrical resistance, perfect diamagnetism and the phase transition
below or at Tc, are formulated and tackled whiten the frame of the BCS theory. BCS
theory is essentially based on three views: (i) the interaction between electrons can be an
attractive potential mediated by the phonons, (ii) for a system of two electrons (single
Cooper pairs) outside an occupied Fermi surface, Cooper found that, from solution of the
Schrodinger equation of the system, electrons form a stable pair bound state, no matter
how weak the attractive force is. And (iii) finally, Schrieffer constructed a many-body
wave function from which he showed that all the electrons near to the Fermi surface are
paired up, which leads to a coherent state wave function. As consequence, BCS energy
gap emerges, that is defined as the energy required for breaking up a pair into two free
electrons.

2.3.2 Single Cooper pair

BCS theory is based on three different views. Regarding to the first and the second
ones, two electrons with and attractive potential are considered. Thus, the Schrödinger
equation for these electrons is given [29] by(

− ~2

2m
∇2

r1
− ~2

2m
∇2

r2
+ V (r1 − r2)

)
ψ(r1, r2) = Eψ(r1, r2), (2.56)

where ψ(r1, r2) is the wave-function, E is the energy, m the electron mass, and V (r1−r2)
is the attractive potential. By changing the variables to the relative displacement r =
r1 − r2, and to the center of mass coordinates R = 1

2
(r2 + r2), the Schrödinger equation

becomes (
− ~2

2m∗
∇2

r −
~2

2µ
∇2

R + V (r)

)
ψ(r,R) = Eψ(r,R), (2.57)

where m∗ = 2m is the total mass and µ = m
2

is the reduced mass. The potential is
independent of coordinate of the center of mass coordinate R, therefore the solution can
be written as Ψ(r,R) = ψ(r) exp(iK ·R). Thus, the Schrödinger equation becomes(

− ~2

2µ
∇2

r + V (r)

)
ψ(r) =

(
E− ~2K2

2m∗

)
ψ(r). (2.58)

The eigenvalue E− ~2K2

2m

∗
is minimised when the momentum of the center of mass vanishes

(K = 0), i.e. the two electrons have opposite momenta. By introducing the Fourier
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transform on the wavefunction, ψ(k) =
∫
d3rψ(r) exp(−ik · r), The Schrödinger equation

gives

∫
d3k′

(2π)3
V (k− k′)ψ(k′) = (E − 2Ek)ψ(k), (2.59)

where a change of variables are made as q = k − k′, and Ek = ~2k2
2m

. By modifying the
wave function ∆(k) = (E − 2Ek)ψ(k), the Schrödinger equation becomes

∆(k) = −
∫

d3k′

(2π)3

V (k− k′)

(E − 2Ek′)
∆(k′). (2.60)

By (i) considering an attractive potential V (k − k′) = −V0 for Ek, Ek′ < ωD and zero
elsewhere, where ωD is the Debye frequency 1, (ii) considering a constant solution with
∆(k)= ∆ that implies an even spatial wave-function ψ(r)=ψ(−r) which satisfies the
singlet state where the spins of the two electrons must be anti-parallel, and (iii) defining

the density of states per spin of a two-electron system: ρ(E) = m3/2
√

2~3π2

√
E , Eq. 2.60 leads

[29] to

V0m
3/2

√
2~3π2

[
√
ωD −

√
−E
2

arctan

(√
2ωD
−E

)]
= 1, (2.61)

Eq. 2.61 determines the value of the bound state energy with E < 0 in terms of the
attractive potential V0. To obtain the minimum value of V0,min, E is set to E → 0−. Thus

V0,min =

√
2~3π2

m3/2
√
ωD

. (2.62)

This implies that there will be a bound state only if the attractive interaction is strong
enough. However, in the actual many-body system, only the electrons near the Fermi
level will be affected by the attractive interaction which can be tackled by (i) considering
the an attractive potential V (k− k′) = V0 for the unoccupied electronic states above the
Fermi energy, and (ii) by approximating the density of states for its value at the Fermi
level EF . Thus Eq. 2.60 becomes [29]

2

V0ρ(EF )
= ln

(
2EF − E + 2ωD

2EF − E

)
. (2.63)

By defining the binding energy Eb = 2EF −E, and for small V0ρ(EF ) << 1, the E → 2EF ,
therefore the term 2EF − E + 2ωD ≈ 2ωD. Thus the binding energy reads

Eb = 2ωD exp(− 2

V0ρ(EF )
), (2.64)

1The Debye frequency ωD is the maximum vibrational frequency in a lattice.
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This implies that a bound state is formed without taking into account the value of the
attractive potential, whether it’s small or not. This bound state is what called a Cooper
pairs.

2.3.3 Cooper pairs in terms of many-body system

Using mean-field theory, the problem of single cooper pair can be extended for a system of
many Cooper pairs. Detailed analysis of the BCS state for many Cooper pairs is beyond
the scope this thesis, where I here cover some results as obtained on the basis of BCS state
using mean-field theory. Based on the these results, the gap equation reads [29, 30, 31]

∆k = −1

2

∑
k,q

Vkq∆q

2Eq
tanh

(
Eq

2kBT

)
, (2.65)

from which the nonzero solution for the gap ∆(T ) can be obtained below a critical tem-
perature Tc. At T < Tc, the properties of the system are qualitatively different from the
normal metal. To simplify this, the scattering potential was approximated as Vk,q = −V0

for |Ek| < ~ωD, and zero for Vk,q = −V0 for |Ek| > ~ωD. With this approximation the
second-order transition temperature in zero magnetic field leads to

kTc = 1.14~ωD exp

(
− 1

ρFV0

)
, (2.66)

where ρF is the density of states at the Fermi surface. At zero temperature, the gap reads
[29, 30, 31]

∆0 = 1.764kTc. (2.67)

By combining the last two equations, the gap at T = 0 becomes [29, 30, 31]

∆0 ≈ 2~ωD exp

(
− 1

ρFV0

)
. (2.68)

Thus an arbitrarily small attractive interaction V0 gives rise to a finite gap at zero tem-
perature.
Near the critical temperature there is another form for the gap suggested by M. J. Buck-
ingham [30, 31, 32]

∆(T → Tc) ≈ 3.06 kBTc
√

1− (T/Tc) (2.69)

One of main predictions of the BCS theory is the presence of an energy gap at the Fermi
level. Such a gap is an interpretation for the experimental observation of an exponential
decay of superconductors specific heat at low temperatures which suggests that the energy
spectrum of a superconductor is gapped. This gap is not observed in normal metals due
to the fact that the low cost of excitation energy of the most energetic electrons near the
Fermi level.
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A direct consequence of the energy gap is the specific heat suppression of superconductor.
Another experimental observation is the isotope effect [33], where it has been shown that
the critical temperature Tc decays with M1/2 where M is the mass of the isotope. As the
mass reflects the lattice formation, this indicates the role of phonons in the superconduct-
ing state formation.

2.4 Langer, Ambegaokar, McCumber and Halperin
(LAMH) theory & Skocpol, Beasley Tinkham (SBT)
model

2.4.1 LAMH theory

For a superconductor of one-dimensional geometry, the Mermin-Wagner-Hohenberg the-
ory [34, 35] state that a long-range order is impossible. In such superconducting system
(long and thin wire), the order parameter fluctuates to zero at some point along the wire,
allowing the relative phase across the point to slip by 2π [36]. Phase slip events cause
voltage pulses which finally lead to resistive steps in the I(V ) curves of the wire. Langer,
Ambegaokar, McCumber and Halperin (LAMH) [37, 38] have developed a theory in which
a phase slip event is attributed to thermal activation when the system passes over a free-
energy barrier proportional to the cross-sectional area of a wire. Experimentally, LAMH
theory was confirmed [39] using tin whiskers of 0.5 µm diameter.
Resistive fluctuations in a narrow wire, or the variations in the magnitude of the super-
conducting order parameter can be described by the Ginzburg-Landau theory in which
the free energy of a superconductor wire with length L and cross-sectional area A = πR2

can be written in the form

F = A

∫ L

0

(
|∇ψ(x)|2 + α|ψ(x)|2 +

β

2
|ψ(x)|4

)
dx, (2.70)

where α and β are arbitrary parameters chosen to normalize the order parameter |ψ(x)|2
that defined for 1D by ψ(x) = ∆(x) exp[iϕ(x)], and assumed to vary slowly along the x-
direction and be essentially constant in the transverse directions. The Ginzburg-Landau
equation is a results of the stationary condition dF

dψ
= 0, from which one obtains

−∇2ψ(x) + αψ(x) + β|ψ(x)|2ψ = 0. (2.71)

In presence of magnetic field, the operator ∇ is replaced by ∇− −2ie
~c A. Eq. 2.71 leads to

following helix solution:

ψ(x) =

√
α− k2

β
exp

[
− iϕ(x)

]
, (2.72)

where ϕ(x) = kx, and k is the allowed wavevectors with k = 2π
L
n, in which n is an integer
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that satisfies periodic boundary conditions ϕ(x + L) = ϕ(x) + 2πn. Here, it should be
taken into account the flux quantization condition which reads∮

∇ϕ · ` = 2nπ. (2.73)

Furthermore, the potential difference V between a finite wire terminals is a time derivative
of the total phase difference which is by Josephson relation, d∆ϕ

dt
= 2eV

~ , where ∆ϕ =
ϕ(L) − ϕ(0). According to this relation, when V = 0, the phase difference is constant,
which implies that the current oscillates forming an ac current. This relation also implies
for a finite voltage, the phase difference ϕ is linearly proportional with time.
Phase slips, which are described by the LAMH theory [40, 38] leads to a nonzero resistance
for any 1D wire at any finite temperature. The nonzero resistance is a result of phase
jumps by 2π of the phase difference. For unbiased samples the number of the phase
slip events in which ∆ϕ = 2π is the same as number of anti-phase-slip events in which
∆ϕ = −2π. When the sample is biased, the number of phase slips becomes larger than
number of anti-phase-slips. As result, a voltage emerges on the sample with V = ~∆ϕ̇

2e
. As

the order parameter is suppressed to zero, the energy of the system during a phase slip
event increases. As result of the TDGL theory for the case of a long and thin wire, the
attempt frequency Ω(T ) derived is given by [38]

Ω(T ) =
L

ξ(T )

1

τGL

(
∆F

kBT

)1/2

, (2.74)

where the wire and L is the length of the wire, ξ(T ) is the GL coherence length, and τGL
is the relaxation time of the time dependent GL theory, which reads

τGL =
π~

8kB(T − Tc)
, (2.75)

in which

(
∆F
kBT

)1/2

, is a correction factor for the overlap of fluctuations at different regions

of the wire, and the factor L
ξ(T )

gives the number of statistically independent regions in

the wire [38, 41]. For a single phase slip, the barrier of the free energy reads [37, 42]

∆F =
8
√

3

3

H2
c (T )

8π
Aξ(T ), (2.76)

in which H2
c (T )
8π

is the condensation energy density, and 8
√

3
3
Aξ(T ), is the effective volume,

where A the cross-section area of the wire. The time averaged of the nonzero voltage V
caused by a bias current I is given by

V =
~Ω(T )

e
exp

(
−∆F

kBT

)
sinh

(
I

I0

)
, (2.77)
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where I0 = 4ekB/h. Thus, the differential resistance reads

dV

dI
=

~Ω(T )

eI0

exp

(
−∆F

kBT

)
cosh

(
I

I0

)
. (2.78)

In the limit of low currents I � I0, one can assume that there is a linear resistance coming
from Ohm’s law. Thus

RLAMH = Rq

(
πΩ(T )

kBT

)
exp

(
−∆F

kBT

)
, (2.79)

where Rq = h
(2e)2

= 6.5 kΩ. With this approach, the fluctuation resistance does not
explicitly depend on the normal resistance of the wire.

According to Little’s model [41, 43, 44], Eq. 2.79 was modified to estimate the contribution
of thermally activated phase slips (TPS), where RWL = RN exp(−∆FWL/kBT ). As a
result, the free energy barrier reads

∆FTPS =

[
− 0.83kB

βwdRq

ρnξ0

(
1− T

Tc

)3/2

Tc

]
, (2.80)

Thus, the final expression for the normal resistance of the wire reads

RTPS = RN

[
− 0.83

βwdRq

ρnξ0

(
1− T

Tc

)3/2
Tc
T

]
, (2.81)

where w is the width of the bridge, d is thickness of the film, ρn is the normal resistivity,

A = wd, and the parameter β = 8
√

2ξ(T )
3

measures the ratio of the phase slip length along
the bridge to the effective length of a phase slip in a 1D wire.

2.4.2 Skocpol, Beasley and Tinkham (SBT) model

A model of the resistive current state in an extended 1D system was proposed by [45]
Skocpol, Beasley and Tinkham (SBT). In this model, the framework of the quasiparti-
cle diffusion [46] was integrated with phase slip processes. The model suggests, when a
superconducting wire is biased with current I < Ic, where the voltage drop between the
two ends of the wire is ideally assumed to be zero, thermal fluctuations and/or quasi-
particle diffusion cause a small but nonzero voltage. As this voltage is related to the
phase by dϕ/dt = 2eV/~, the phase increases. To the maintain steady state, the phase
will keep increasing until instantaneously slips by 2π [45]. Within this short period of
time, the superconducting energy gap vanishes and the order parameter suppresses at the
core of what called phase-slip centres (PSCs) that considered as a source for dissipation
and fluctuations. Historically, SBT models was restricted for 1D superconductors before
extending it for wider superconducting wires (2D system or quasi 1D superconductors) in
terms of what called phase slip lines (PSL). As consequence of PSCs, steps occur around
transition region in the I(V ) curve of the system. The extrapolation for slopes of the
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linear part following the resistive steps converge to a nonzero current Is at zero voltage.
Within this framework, the generated voltage by PSCs reads

V (I) = R(IIs)
2nΛ

L
tanh

(
L

2nΛ

)
, (2.82)

where R is the normal state resistance of the track, n is the number of PSCs, L is the
track length, is the quasiparticle diusion length, and Is is the intercept of the slopes on
the current axis determined by the time-average supercurrent at the center of the PSC.

2.5 Transport properties of thin superconducting strips

As already demonstrated in Sec. 2.2.5, if a superconducting film is placed in magnetic field
with H > Hc, Abrikosov vortices penetrate the film and form a lattice. When transport
current is applied to the film, the vortices experience the Lorentz force of the current.
As a result of vortex motion, the energy of system dissipates, finite voltage and electrical
field in the superconductor emerge. In other words, this causes a hysteresis behaviour in
the I(V ) characteristic according to Larkin and Ovchinnikov (LO) prediction [47]. At the
end of the 1970s it was speculated that lines with fast vortex motion called phase slip
lines (PSLs) should appear in the superconductor at the transition point [48]. However,
as the analytical calculations are strongly restricted due to the mathematical complexity
of the problem, only a semi-quantitative analysis was made using the assumption that
phase-slip lines are already exist in the sample [48, 49, 50]. In this section, theoretical
and experimental investigations for superconducting strips are reviewed.

2.5.1 Theoretical investigations

In Ref [48, 49] nonequilibrium processes in a superconducting stripe in the presence of a
transport current have been investigated, where the influence of the finite length of the
stripe and it’s normal current contacts on the I(V ) characteristics have been theoretically
considered using the TDGL theory, where the dynamics of superconducting vortices for a
model with superconducting stripe with computational unit cell of lateral dimensions L
and W , and thickness d is smaller than the coherence length ξ and the penetration depth
λ. For such model, a current is applied along the x, and the TDGL equations can be
written as:

u√
1 + γ2|ψ|2

(
∂

∂t
+ iϕ

γ2

2

∂|ψ|2

∂t

)
ψ = (∇− iA)2ψ + (1− |ψ|2)ψ, (2.83)

∂A

∂t
= <[ψ∗(i∇−A)ψ]− κ2∇×∇×A, (2.84)

the parameter γ = 2τin∆(T )/~ is the product of the inelastic collision time τin for electron-
phonon scattering [48], and ∆(T ) = 4kBTcu

1/2/π
√

1− T/Tc is the order parameter at
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temperature T which follows from Gor’kov’s derivation [11] of the Ginzburg-Landau equa-
tions.

(a)
(b)

(d)
(c)

Figure 2.7: (a) The model system: a superconducting film (width W and with periodic bound-
ary condition in the x direction) under applied dc current (I). A density plot of the order
parameter |ψ|2 of a superconducting film, in which the direction of moving vortices/antivortices
indicated by white/black arrows. Time-averaged voltage against current-density I(V ) charac-
teristics of the sample with width W = 1 µm (a) and W = 3 µm (d) at temperatures T = 0.92Tc
(solid black curve), and T = 0.98Tc (dashed red curve). The length of the computational unit
cell is L = 1 µm and the GL parameter is κ = 10. Inset in (d) shows the lower part of the I(V )
curve. (c) Panels 1-7 show snapshots of the density plot of the order parameter |ψ|2 for current
values indicated on the I(V ) curves. Black square in panel 3 shows the annihilation region of a
vortex-antivortex pair and black circles in panel 4 indicate the positions of a fast-moving vortex
(on top) and an antivortex (bottom). Adapted from [49].

Eqs. 2.83 and 2.84 are scaled to be dimensionless, where the temperature is written
in terms of the critical temperature Tc, the vector potential A = (Ax, Ay, 0) and the
momentum p = ∇φ−A are scaled relative to Φ0/2πξ, the order parameter ψ = ψ0 exp(iϕ)
is scaled relative to ∆0, the film coordinates are scaled in units of the coherence length
ξ(T ) = (8kB(Tc − T )/π~D)1/2 (D is the diffusion constant), the time is scaled relative
to Ginzburg-Landau relaxation time τGL = π~/8πTcu, the voltage V is scaled using the
normal-state conductivity (σn) relative to ϕ0 = σn~/2eτGL, the magnetic field is scaled
relative toHc2 = Φ0/2πξ

2, and the current density is scaled relative to J0 = σn~/2πeτGLξ0.
In those calculations [48], the parameter u has been selected to be 5.79 following the
value given in [11]. TDGL equations have been numerically solved to obtain the I(V )
characteristic in the absence of an external applied magnetic field. The transport current
I, was introduced via the boundary condition for the vector potential in the x-direction
of the film with ∇ ×A|z(x = 0,W ) = H ±HI , where HI = 2πI/c is the magnetic field
induced by the current I (per unit length in the z-direction), and H is the applied magnetic
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field. The potential differences can be calculated using the integral form expressed by [51]

V (t) =

∫ L

0

(
1

W

∫ W

0

(
dA

dt
dy

))
dx, (2.85)

where L and W are the dimensions of the superconducting stripe away from the super-
conducting/normal interface. TDGL equations describe the oscillations of the order pa-
rameter in superconductors which occurs in form of waves propagating across the sample.
Such waves that carries the the order parameter, are called kinematic vortices [49, 48, 52].
In Ref [53], Vodolazov et al have shown that a phase-slip line occurs at time t, consists
of a line of counter propagating as vortices and antivortices which are created on the
opposite edge of the film [Fig. 2.7(a)], and overlap at the center of the sample where they
annihilate.

In Ref [49], calculations for a superconducting stripe with length L = 1 µm, and different
values of the width W with coherence length ξ0 = 10 nm, were considered as a representa-
tive example. To construct the I(V ) characteristics of the sample, the voltage signal has
been averaged over a time interval much larger than the characteristic voltage variations.
For the system with W = 1 µm, the zero resistance of the sample has been maintained
up to a threshold current jc at the point indicated by 1 in Fig. 2.7(a), above which the
system goes into the resistive state with a finite jump in the output voltage indicated by
point 2. By increasing temperature the system transports from the Meissner state into
the normal state as shown by the dashed line plotted in Fig. 2.7 which also shows a
none-resistive state. Fig. 2.7(c) shows the I(V ) characteristics of the sample with W = 1
µm. The figure was linked to the panel given in the figure, where vortices are created
periodically at the opposite edges of the sample and annihilate in the middle as marked
by a black square in panel 3 linked to point 3 in the I(V ) characteristics. With increasing
the applied current, a larger nucleation rate of vortex-antivortex pairs are induced, vortex
lattice gets distorted, and a rectangular lattice of vortices can be observed. This can be
seen in the panel 4 of Fig. 2.7(d), where a phase-slip line enters the sample (in the middle
where the order parameter |ψ|2 ≈ 0), and causes the finite transition indicated by point
4 in the I(V ) curve. By increasing the applied current to higher values, more channels
(phase-slip lines) appear as these shown in panel 5 which associated with a new transition
in the I(V ) curve indicated by point 5. However, for panel 6 the number of phase-slip
lines decreases with temperature in comparison to panels 5 and 7. This due to the fact
that the sample in units of the characteristic length scales, i.e, ξ(T ), and λ(T ), becomes
shorter at high temperatures, which finally makes accommodating more phase-slip lines
difficult.

In Ref [49], V (t) characteristics for a system with L = 1 µm and W = 2 µm have
been investigated. Fig. 2.8 shows the time evolution of V (t) curves at different values
of dc applied currents with duration 1000t0, where t0 = 10 ps. Curves I and II in Fig.
2.8(a) have been calculated at currents J = 0.12J0, and J = 0.14J0 respectively, in
which the output voltage oscillates in time with well defined maxima that correspond to
a vortex penetration (panel 1), or an annihilation of a vortex-antivortex pair (panel 2).
An increase in the applied current results in formation of phase-slip lines such that shown
in the panels 3 and 4, which significantly increases the output voltage as shown in Fig.
2.8(b). A further increase in the applied current increases the nucleation rate of vortex-
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antivortex pairs, as well as the number of phase-slip lines, and the output voltage. The
voltage reaches a maxima just before the formation of phase-slip lines (point 5), which are
due to nonequilibrium effects (see panel 5). A further increase in applied current increases
the number and velocity of vortex-antivortex pairs which leads to the appearance of local
hot spots in which the density of Cooper pairs reduces to zero. These spots indicated
by the blue areas in the panel 6, are first created near the sample edges at t ≈ 100t0,
and quickly propagate to middle of the sample at t > 200t0 (panel 7). At this state, the
average of the voltage signal increases, and the sample becomes more resistive. The area
of the hot spots evolves with time and spreads to occupy more space, which results in a
further increase in the average of the voltage signal until the entire system goes into a
transition to the normal state.

Figure 2.8: Calculations of V (t) characteristics of a sample with L = 1 µm [L = 31.6ξ(T )] and
W = 2 µm [W = 63.3ξ(T )] at T = 0.9Tc, and for different values of the applied current. Panels
1-8 are density plot of the order parameter |ψ|2. Inset of (b) shows a narrow window of the V (t)
curves. Adapted from [49].

2.5.2 Earlier experimental investigations

Experimental results on I(V ) characteristics of a mesoscopic superconducting NbN wire
with several superconducting contacts shown in Fig. 2.9(a) have been reported in [54].
Figs. 2.9(b)-(f) show the I(V ) curves of each segment with lengths of 36, 6 and 12 µm re-
spectively. Gray curves in Figs. 2.9(b)-(f) are the I(V ) characteristics when the segments
are driven by voltage. For this case, the nonequilibrium regions become more obvious
compare to those obtained for the same segments driven by current. This indicates that
there is a possibility for the existence of several normal resistive regions simultaneously.
However, for the current sweep down, a continuous behaviour is found without any jump
between different resistive states. The reported normal-state resistance of the segments
just above Tc is quite high 8.5 kΩ/m.

It’s quite obvious from Fig. 2.9 that the measured I(V ) curves show a clear hysteresis
with finite steps, where the number of these steps increases as the length of the segment of
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(a) (b) (c)

(d) (e) (f)

Figure 2.9: (a) A scanning electron microscopy image of a NbN nanowire with attached current
and voltage electrodes. I(V ) characteristic of (b) the segment BF with 36 µm long, 70 nm wide,
and 75 nm thick, (c), (d), (e), and (f) I(V ) characteristic of BC, CD, DE, and EF segments with
6 µm or 12 µm long, 70 nm wide, and 75 nm thick. All curves were measured with current drive
(black curve) and (or) with voltage drive (gray curve) at T = 4.2 K. More finite resistive steps
occur around the transition region of the I(V ) curves as the superconducting segment becomes
longer. This indicates more phase-slip events as theoretically underlined by simulations using
the TDGL equations such that given in Fig. 2.7. Adapted from [54].

the superconducting wire increases. The increase in the number of these steps indicating
an increasing number of phase-slip events, as each step corresponds to phase-slip lines
entering the sample. In other words, the transport properties shown in the figure imply
that the resistive domains of superconducting segments scale with their lengths. Such
argument is supported by numerical simulations using the TDGL equations shown in Fig.
2.7 given in previous subsection.
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3 Superconducting Junctions &
SQUIDs

3.1 Flux quantization

As previously demonstrated, superconductors can be described by a macroscopic wave
function ψ(r, t) = expϕ(r, t). Here, the wavefunction describes the whole ensemble of the
superconducting particles such that ψ∗(r, t)ψ(r, t) = n∗(r, t), where n∗(r, t) is the density
of the superconducting particles.
Based on the London equations given in Sec. 2.1.3, and for a superconducting medium
in a simply connected superconducting region, the magnetic flux threading such region is
actually quantized. Over closed contours C and within a region S, such quantization can
be written as ∮

C

(ΛJs) · d`+

∮
S

B.ds = n
h

2e
= nΦ0, (3.1)

where Λ = ms

nsq22
, and the flux quantum Φ0 = 2.06783384810−15Wb. Here, the quantity

Φ0 represents the flux quantum that is the smallest amount of flux. Experimentally, the
flux quantization in superconducting cylinders and rings has been investigated and proved
[1, 2] in 1961 by R. Doll and M. Näbauer in the Walther-Meissner-Institute in Munich
and W. M. Fairbank at Stanford.

3.2 Josephson effect in superconducting weak links

3.2.1 General overview

The Josephson effect is a macroscopic quantum phenomenon predicted [3, 4, 5] in 1962
by Brian D. Josephson by introducing the mathematical relationships for the current and
voltage across a weak link mediated by two superconductor banks. Several types [6] of
weak links such as tunnelling junctions, or superconductor-insulator-superconductor (SIS)
junctions, superconductor-normal metal- superconductor (SNS) junctions, nanobridge
junctions of a narrow constriction, point-contact junctions, and weak links due to the
proximity effect that are classified into types: a normal film causes local suppression of
the order parameter of a superconducting film, and a small drop of solder on a super-
conducting wire. Fig. 3.1 shows the superconducting weak links mentioned above. It
should be noted here, the theoretical work considered by Josephson was superconductor-
insulator-superconductor (SIS) junctions. Experimentally, the DC Josephson effect had
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3 Superconducting Junctions & SQUIDs

been observed [4, 5] prior to 1962. However, this observation has been interpreted by
”super-shorts” or breaches in the insulating barrier that lead to the direct conduction of
electrons between the superconductors.

Figure 3.1: Some kinds of weak links: (a) SIS tunnelling junction, (b) SNS junction, (c)
nanobridge with a narrow constriction, (d) point-contact junction, (e) and (f) weak links due to
the proximity effect. Adapted from [6].

3.2.2 Dayem bridges

A Dayem bridge is a thin-film of the Josephson junction where two weakly coupled su-
perconductor banks coupled by a weak link which consists of a superconducting bridge
with dimensions in scale of the coherence length ξ. The properties of the whole junction
depend on the width, thickness, and significantly on the ratio L/ξ where L is the length
of the bridge. Here, I consider the two cases of Dayem Bridges: (i) short Dayem bridges
relative to the coherence length (L 6 ξ), and (ii) long Dayem bridges where (L > ξ).

S1 S2L 𝜓"𝜓#

Figure 3.2: Two weakly coupled superconductor banks S1 and S2 with wavefunctions ψ1 and
ψ2. A wavefunction of a superconducting electrode propagates through the interface, interfering
with the other wavefunction propagting from the other electrode.

3.2.2.1 Short Dayem bridges (L 6 ξ)

I start with typical type of the Josephson junctions, where the length of the weak link is
comparable with the coherence length of the superconducting electrodes. Fig. 3.2 shows
two identical superconductor banks S1, and S2 coupled by a weak link (bridge) of length L.
Here, the superconductors are described by the Ginzburg–Landau (GL) order parameter
ψ1 =

√
n∗s,1 exp(iϕ1), and ψ2 =

√
n∗s,2 exp(iϕ2). After establishment of the weak link, each

wave function propagates through the bridging region, where the wavefunction emerged
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in the link region is described by interference between the independent wavefunctions
ψ1, and ψ2. To quantitatively describe such system, the problem is simplified to be
in one-dimensional. Thus, the problem can be solved using the 1D time independent
Ginzburg- Landau Equation. Here, the left and right interfaces are assumed to be located
at x = 0 and x = L respectively. Also, the length of the weak link L is assumed
to be too short relative to the coherence length of the superconducting electrodes, i.e.
L << ξ. By assuming that the value of the superelectron density of the both electrodes are
|Ψ0|2 = n∗s,1 = n∗s,2 , the wavefunction inside the bridge can be written as a superposition:

Ψ(x) = |Ψ0| exp(iϕ1)g(x) + |Ψ0| exp(iϕ2)[1− g(x)], (3.2)

with g(x → 0) = 1, and g(x → L) = 0 which are the functions used to match the
wavefunction values at the interfaces. The first GL equation in 1D reads

− ~2

2m∗
∂2Ψ

∂x2
+ αΨ + βΨ|Ψ|2 = 0, (3.3)

where α and β are in the initial argument were treated as phenomenological parameters.
Now by introducing the reduced wavefunction f(x) with Ψ(x) = |Ψ0|f(x), and using the

relations |Ψ0|2 = −α
β

= |α|
β

, and ξ2 = ~2
2m∗|α| , the GL equation can be rewritten in the

reduced form

ξ2∂
2f

∂x2
+ f − |f |2f = 0. (3.4)

Thus, Eq. 3.2 takes the reduced wavefunction

f(x) = exp(iϕ1)g(x) + exp(iϕ2)[1− g(x)]. (3.5)

If L� ξ, the first term in Eq. 3.4 yields ∂2f
∂x2
≈ f

L2 . Thus

ξ2∂
2f

∂x2
−
(
ξ

f

)2

f >> f. (3.6)

This implies that the gradient term dominants Eq. 3.4. By applying the boundary
conditions given earlier for g(x) in which g(x → 0) = 1, and g(x → L) = 0, the solution
for g(x) can be obtained:

g(x) = 1− x

L
. (3.7)

Thus, the function f(x) given in Eq. 3.5 reads

f(x) =

(
1− x

L

)
exp(iϕ1) +

x

L
exp(iϕ2), (3.8)
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which leads to the wavefunction that follows

Ψ(x) = |Ψ0|
[(

1− x

L

)
exp(iϕ1) +

x

L
exp(iϕ2)

]
. (3.9)

The current-phase relation

Now the supercurrent density Js(x) can be obtained from the second GL Equation

Js(x) = − ie
∗~

2m∗

(
Ψ∗
∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
=
ie∗~
2m∗
|Ψ0|2

(
f ∗
∂f

∂x
− f ∂f

∗

∂x

)
=

e∗~
2m∗
<(f ∗∂xf)

=
2e~
2m∗
|Ψ0|2<

[(
1− x

L
(1− exp(iδ))

)
1

L
(exp(iδ)− 1)

]
=

e∗~
2m∗
|Ψ0|2<

[
exp(iδ)− 1− x

L
|1− exp(iδ)|2

]
=

e∗~
2m∗
|Ψ0|2

1

L
sin(δ),

(3.10)

where < stands for the real part, δ = ϕ2 − ϕ1, and e∗ = 2e. By integrating over the
junction cross-sectional area A the current reads

I = Ic sin(δ), (3.11)

which is the current-phase relation of a typical Josephson junction with a critical current
Ic that yields

Ic =
e∗~
2m∗
|Ψ0|2

A

L
. (3.12)

The voltage-phase relation

So far equilibrium properties of a Josephson junction were considered, where no bias is ap-
plied to the two superconducting electrodes. A problem with applied bias can be tackled
with the time-dependent Ginzburg-Landau (TDGL) Theory. At equilibrium, the wave-
function yields the first GL equation, which has the form of the non-linear Schrödinger
equation given in Eq. 3.4. In this limit, the time-dependent generalization for the GL
wavefunction can simply given by the TDGL equation.

i~
∂Ψ

∂t
= HΨ, (3.13)
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with stationary solutions Ψ(x, t) = exp(− iEt
~ )Ψ(x). Thus the last equations leads to

i~∂Ψ
∂t

= EΨ, or in terms of the phase δ, Eq. 3.13 becomes

Ψ(x, t) = |Ψ(x, t)| exp(iδ(x, t)). (3.14)

By combining the last two equations and setting E = e∗V = 2eV , one obtains

∂tδ =
2eV

~
, (3.15)

which is the second Josephson Equation, i.e. voltage-phase relation.

3.2.2.2 Long Dayem bridges (L > ξ)

For several superconducting materials, where the coherence length is too short [7], the
fabrication of typical junctions with a weak link with L > ξ is technically challenging.
The purpose of this subsection is to introduce a quantitative description for a weak link
device with a long bridge with L > ξ based on the GL equation. Here several numerical
methods for GL equation are briefly presented.

Finite element method (FEM) calculations

Hasselbach et el [8] have used this method to model superconducting quantum interfer-
ence devices (SQUIDs) by solving the GL equations to obtain the supercurrent–phase
relationships. Staring from the wave function Ψ written as the complex order parameter
Ψ = |Ψ| exp(iϕ) and substitute it in the 2D form of Eq. 3.3, and by separating the real
and imaginary parts of this equations, one gets

α|Ψ|+ β|Ψ|3 − ~2

2m

[
d2|Ψ|
dx2

− |Ψ|
(
dϕ

dx

)2

− ~2

2m

[
d2|Ψ|
dy2

− |Ψ|
(
dϕ

dy

)2]
= 0,

(3.16)

and

2
dϕ

dx

d|Ψ|
dx

+ |Ψ|d
2ϕ

dx2
+ 2

dϕ

dy

d|Ψ|
dy

+ |Ψ|d
2ϕ

dy2
= 0. (3.17)

By defining the wavefunction as Ψ(x, y) = |Ψ0|f(x, y), and using reduced units in which
x′ = x/ξ(T ) and y′ = y/ξ(T ), Eq. 3.16 becomes

d2f

dx′2
− f d

2ϕ

dx′2
+
d2f

dy′2
− f d

2ϕ

dy′2
+ f − f 3 = 0, (3.18)
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and Eq. 3.17 becomes

2
df

dx′
dϕ

dx′
+ f

d2ϕ

dx′2
+ 2

df

dy′
dϕ

dy′
+ f

d2ϕ

dy′2
= 0. (3.19)

And the supercurrent density Js can be written in terms of f and ϕ as

Js =
e∗~

2mξ(T )
|Ψ0|2f 2

(̂
i
dϕ

dx′
+ ĵ

dϕ

dy′

)
. (3.20)

Figure 3.3: Current–phase relationship as numerically calculated for different values of weak
link length which was obtained for AL and Nb. S refers to the length of the bridge. Adapted
from Hasselbach.

By discretizing the last three differential equations with discrete steps δ using the finite
element method (FEM), one gets the following expression for Eq. 3.18

fi+1,j + fi−1,j + fi,j+1 + fi,j−1

+
[
4− (ϕi+1,j − ϕi,j)2 − (ϕi,j+1 − ϕi,j)2 + δ2

]
fi,j = δ2f 3

i,j,
(3.21)

and Eq. 3.19 yields

ϕi+1,j

[
fi,j + 2(fi+1,j − fi,j)

]
+ fi,jϕi−1,j+

ϕi,j+1

[
fi,j + 2(fi,j+1 − fi,j)

]
+ fi,jϕi,j−1+

ϕi,j
[
− 4fi,j − 2(fi+1,j − fi,j)− 2(fi,j+1 − fi,j)

]
= 0,

(3.22)

and the total current through the junction can be written as:

I = Ic
∑
j=1

f 2
i,j

(
ϕi+1,j − ϕi,j

)
. (3.23)

The last three equations can be reduced to 1D. This gives

fi+1 + fi−1 +
[
2− (θi+1 − θi)2 + δ2

]
fi+1 = δ2f 3

i , (3.24)
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ϕi+1

[
fi + 2(fi+1 − fi)

]
+ fiϕi−1 + ϕi

[
− 4fi − 2(fi+1 − fi)

]
= 0, (3.25)

and

I = Icf
2
i

(
ϕi+1 − ϕi

)
. (3.26)

The last three equations have been self-consistently solved, and the results are shown in
Fig. 3.4 which shows sinusoidal current–phase relationship when L� ξ
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Figure 3.4: Current–phase relationship as numerically calculated from the reduced 1D GL
equation at different values of bridge length. As the bridge becomes shorter the relationship
becomes more sinusoidal.

Numerical integration method

In this method [9] GL equation was employed to study nano-Dayem bridges having dimen-
sions (length L and/or width W ) greater than coherence length of the superconducting
film. The approach presented here has been followed in several studies such as [10, 11, 12].
By transforming the GL equation to the integral form, one obtains two equations describ-
ing the behaviour of the critical current in terms of the phase difference across the Dayem
bridge, and the ratio L/ξ. These equations are:

L

ξ
= 2

∫ 1

a0

da

|
√
a2

0 +
a40
2

+
j20
a20
− a(x)2 + a(x)4

2
+ j(x)4

2
|
, (3.27)

ϕ = 2j0ξ

∫ 1

a0

da

a(x)2|
√
a2

0 +
a40
2

+
j20
a20
− a(x)2 + a(x)4

2
+ j(x)4

2
|
, (3.28)

where the function a(x) satisfies [12] the relations, a(0) = a(L) = 1, and a(x) < 1 in the
region of the nanobridge. Furthermore, it has minimum a0 at the center of the bridge.
The parameters j0 and ϕ are the scaled current density and the phase difference across the
bridge respectively. Scalar nonlinear zero finding function was used [9] to find j0 values
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by varying the a0 parameter in Eq. 3.27. The pairs then (a0, j0) are substituted in Eq.
3.28 to find the corresponding phase values. In such a way, the pairs (ϕ, j0) have been
calculated [9] to obtain the current-phase curve at different values of PL/ξ(ϕ). The results
as obtained in [9] are presented in Fig. 3.5. In this figure the current values are normalized
to the supercurrent values (Is ). The figure shows a sinusoidal behaviour when the length
of the bridge is equal to the coherence length. However, this behaviour is deformed by
increasing the ratio L/ξ. The critical current I0 was also calculated at different L/ξ values
and plotted in the inset of Fig. 3.5, in which I0(L/ξ) behaviour shows an exponential-like
decay as L ≤ ξ at which the critical current density of an infinitely long superconducting
wire is depaired [13].

Figure 3.5: Current-phase relationship at different values of L/ξ. The inset shows the normal-
ized critical current I0 as a function of theL/ξ ratio. Adapted from [9].

3.2.3 Josephson effect in point contacts

So far weak links with relatively short and long bridges have been highlighted. Here three
types of junctions are dissuaded: (i) Aslamazov-Larkin model, (ii) Kulik-Omelyanchuk
model, dirty limit (KO-1), and (iii) Kulik-Omelyanchuk model, clean limit (KO-2).

3.2.3.1 Aslamazov-Larkin model

In the Aslamazov-Larkin model [13, 14] the Josephson coupling occurs due to an overlap of
superconducting wavefunctions of both electrodes in the weak-link region. Two conditions
to be satisfied in this model: (i) the temperature is near Tc, and (ii) the effective length
of the weal-link is much smaller than the coherence length (Leff << ξ). These conditions
lead to the following results for the current phase relationship:

IS =
π∆1∆2

4eRNT
sin(ϕ), (3.29)

Where ∆1,2 are the magnitudes of the pair potentials in the superconducting electrodes,
and RN is the normal state resistance of the weak link. The Boltzmann constant KB in
Eq. 3.29 is set to be 1.
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3.2.3.2 Kulik-Omelyanchuk model, dirty limit (KO-1)

In the dirty limit where electron mean free path is much shorter than the superconducting
coherence length ξ0. A quantitative description for the critical current has been derived
by Kulik and Omelyanchuk known as (KO1) [15]. Point contact as a diffusive quasi 1D
wire has been considered in this model, where conditions to be satisfied are: the length
L�

√
ξ0` with transverse size a� L, where ξ0 = ~vF/2πTc, and `� ξ0 is the electronic

mean free path. If the junction consists of identical superconductor electrodes, then the
current phase relationship is given by:

IS(ϕ) =
4πT

eRN

∑
ωn>0

∆ cos(ϕ/2)

δ
arctan

(
∆ sin(ϕ/2)

δ

)
, (3.30)

with δ =
√

∆2 cos2(ϕ/2) + ω2
n, and ωn = πT (2n + 1) is the Matsubara frequency. Nu-

merical calculations for the current phase relationship given Eq. 3.30 is presented in Fig.
3.6.

A general case for KO1 model can be considered [16] when the superconductor electrodes
are not identical with the pair potentials ∆1,2. Here the current phase relationship is
given by:

IS(ϕ) =
∆1

eRN

[
ln

(
2∆2

∆1[1 + cos(ϕ)]

)]
sin(ϕ) (3.31)

3.2.3.3 Kulik-Omelyanchuk model, clean limit (KO-2)

A clean point contact is a constriction with a size in both transversal and longitudinal
directions are shorter than the electronic mean free path. Kulik and Omelyanchuk [17]
have presented a theory known as KO-2 model to describe the Josephson effect in the fully
ballistic case, where the diffusive parameter D = 1. The calculations performed in this
model were based on the Eilenberger equations [18]. Here the details of these calculations
are not given. However, the final expression for the current phase relationship is given by

IS(ϕ) =
π∆

eRN

sin(ϕ/2) tanh

[
∆ cos(ϕ/2)

2T

]
, (3.32)

with the Sharvin resistance R−1
N =

e2k2FS

4π2~ , where kF is the Fermi wave vector, and S is the
constriction area. It’s important to refer that the conductance of a ballistic point contact
is quantized [19] with G = ne2

h
. At zero temperature, theoretical studies [20, 21] show

that the critical current of impurity-free superconducting constriction increases stepwise
as a function of its width, with step e∆/~. With this result, Eq. 3.32 can be extended
with the quantum resistance R−1

N = e2

π~ , where N is the open channels. Thus, Eq. 3.32
becomes

IS(ϕ) = N
e∆

~
sin(ϕ/2) tanh

[
∆ cos(ϕ/2)

2T

]
, (3.33)
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Experimentally, the quantizes supercurrent at different junction width has been observed
[22] in ballistic S/2DEG/S structures.

(a) (b) (c)

Figure 3.6: Current-phase relations for (a) a symmetric diffusive point contact according the
Kulik-Omelyanchuk (KO-1) model at various normalized temperatures T/Tc, (b) a clean point
contact at T = 0 and various values of transmission probability D, (c) a clean point contact for
D = 1 and various temperatures. Adapted from [23].

3.2.3.4 The general case of the point contact: arbitrary transparency

More general case for KO results with arbitrary transparency have been obtained in Ref
[24] by solving Gor’kov equations [25]. This leads to following current phase relationship

IS(ϕ) =
π∆

2eRN

sinϕ√
1−D sin2(ϕ/2)

tanh

(
∆

2T

√
1−D sin2(ϕ/2)

)
, (3.34)

where D is the averaged transmission probability, and contact resistance R−1
N =

e2k2FS

4π2~ D.
Results for Eq. 3.34 are given in Fig. 3.6 (b) and (c) for the current phase relationship
at different values of D and T .

3.2.3.5 Quasiparticle theory: arbitrary geometries

Structures with arbitrary geometries were achieved by Gor’kov, Eilenberger, and Usadel
[18, 25, 26] using Green’s function. Here, a general description for the results obtained
using Usadel’s equation are briefly presented. For this purpose, calculations based on
Usdal’s equations were adapted from Ref [27, 28], where weak links with Dayem bridges
of different thickness, length and width have been considered to obtain the current phase
relationships. The Usadel equations for superconductors in terms of the Green’s function
and the diffusion constant, are given by

ωFω(r) +
D

2

(
Fω∇2Gω −Gω∇2Fω

)
= ∆∗Gω(r), (3.35)

where ∆ is complex quantity which is analogous to the superconducting order parame-
ter that reduced to the ordinary gap ∆0 a spatially homogeneous superconductor. The
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ordinary gap ∆0 is given in terms of the Matsubara frequencies ωn as

ωn = (2n+ 1)π
T

∆0

. (3.36)

If the phase drops from the left electrode to the right in the weak link, the gradient terms
of Eq. 3.35 becomes the dominating one. An analytical solution for such case leads to
the results obtained by Kulik-Omelyanchuk (KO-1).

Figure 3.7: (Left: top and bottom) 2D and 3D nanobridge geometries used for simulations
presented in Ref [27, 28], with L = 75 nm, W = 45 nm, and lateral dimensions of 600 × 300
nm. Here, the lateral dimensions are both for the 2D and 3D banks. The results of the phase
evolution across the 2D and 3D junctions are presented in the middle (top and bottom). Right
(top and bottom): the calculated current phase relations for Al nanobridge with width W = 45
nm at different lengths L = 15, 45, and 240 nm, and T = 0.15 K. The structures were assumed
to be made of Al with ξ0 ≈ 30 nm, and Tc = 1.2 K.

To numerically solve the Usadel equations for 2D and 3D structures, the Gorkov-Nambu
formalism [25, 23] was used in Ref [28], where the superconducting gap and phase have
modulated following the parametrization of the Usadel equations given in Ref [23]. In
this parametrization F and G in Eq. 3.35 have been introduced by a new function Φ,
which reads for a bulk superconductor Φ = ∆, and satisfies the condition: F 2

ω +G2
ω = 1,

where Fω and Gω are given in terms of Φ as:

Fω =
Φ√

ω2
n + |Φ|2

, and Gω =
ωn√

ω2
n + |Φ|2

, (3.37)

which leads to the following equation

g(ωn)
[
Φ(ωn)−∆

]
=
D0

2
∇
[
g(ωn)2∇Φ(ωn

]
, (3.38)

47



3 Superconducting Junctions & SQUIDs

with g(ωn) = Gω/ωn. The self-consistency equation is given by

∆ =

∑
n g(ωn)Φ(ωn)∑
n(ω2

n + 1)−1/2
, (3.39)

and the current density was calculated using

J(r) =
σ

e
πT
∑
ω

g(ωn)2=
[
Φ∗(ωn)∂xΦ(ω)

]
, (3.40)

where = stands for the imaginary part. To obtain the current density given in Eq. 3.40,
the functions g(ωn), Φ(ωn), and ∆ are calculated by solving Eqs. 3.37-3.39, where the
left and right boundaries were defined as ∆R = ∆L exp(−iδ). With this condition the
problem can be solved as a boundary value problem at different values of δ between 0 and
2π.

Fig. 3.7 shows the 2D and 3D junction geometries used for simulations presented in Ref
[27, 28]. The structures are assumed to be made of Aluminium with coherence length
ξ ≈ 30 nm, and Tc = 1.2 K. The calculations have been performed with: T = 0.15 K,
the dimensions of banks are 600 × 300 nm, the width of the Al nanobridge is W = 45
nm, and different length values between L = 15 and 240 nm. The results show that the
behaviour of current phase relationship of the 3D structures is almost sinusoidal as L < ξ.
However, it becomes linear when L > ξ. In contrast, the current phase relationship of the
2D structures shows a nearly linear behaviour for all selected bridge lengths.
Fig. 3.7 shows also simulations for phase evolution, where a total phase difference of 2
radians is imposed symmetrically across the bridge. In the 3D structure, most of the
phase declines across the constriction, while significant phase change occurs in the banks
of the the 2D structure.

3.3 The RCSJ model of a Josephson junction and qubits

3.3.1 The RCSJ model of a Josephson junction

Junction dynamics can be described by a model called “resistivity and capacitively shunted
junction” (RCSJ) [29]. In this model an ideal Josephson junction with a sinusoidal cur-
rent phase relationship, is shunted with a resistor and capacitor as shown in Fig. 3.8(a)
in which the resistor R reflects the normal state resistance of the junction, and the ca-
pacitance between the two superconducting electrodes is C. The dynamics of the system
can be described by considering a current Ib flowing through a circuit such that shown in
Fig. 3.8(a). This is given by

Ib = Ic sin(δ) +
V

R
+ C

dV

dt
, (3.41)
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where V is the voltage drop across the circuit that is given in terms of δ by

dδ

dt
=

~
2e
V (t). (3.42)

By combining that last two equations, the phase difference can be written as

d2δ

dt2
+

1

ωpRC

dδ

dt
+ sin(δ) =

Ib
Ic

(3.43)

where ωp =

(
Φ0

2π
I0
C

)1/2

is the plasma frequency of the junction. The behaviour given in

the last differential equation is similar to the equation of motion of a particle with a mass

C
( ~

2e

)2
moving a washboard potential given by

U(δ) =
Φ0

2π

[
I0[1− cos(δ)]− iδ

]
= EJ

[
1− cos(δ)− iδ

]
, (3.44)

where EJ is the junction coupling energy, and i = Ib/I0. Fig. 3.8(b) shows washboard
potential for a junction biased with Ib = 0.5I0, and 0.9I0. When the currents is less than
the critical current, the potential is tilted in such a way that the particle is trapped in a
potential well within the washboard potential, in which the particle oscillates inside it at
the plasma frequency. The well potential is determined by

∆U = −Φ0

2π
I0

[√
1− I2

B

I0

− IB
I0

cos

(
IB
I0

)]
. (3.45)

𝐼𝑏
(a) (b)

𝛿(radians)

Figure 3.8: (a) A schematic illustration for the RCSJ model. (b) The washboard potential for
Josephson junction with Ib = 0.5I0, and 0.9I0.
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3.3.2 I(V) Characteristics of Josephson junction based on RCSJ
model

I(V ) characteristics can be calculated for Josephson junction by solving the coupled dif-
ferential equations given by Eqs. 3.42, and 3.43. These equations can be numerically
solved to obtain the time dependent voltage variation for given bias values, critical cur-
rent, resistance and capacitance. Numerically, this can be performed using 4th order
Runge-Kutta method (RK4). A full I(V ) characteristics can be obtained by repeating
the calculations for the average of the time dependent voltage at different values of the
bias current. It should be noted here that Runge-Kutta method requires transforming all
second differential equations to first order. Details of such technical analyses are given in
Sec. 3.4.
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Figure 3.9: (a) I(V ) characteristics was calculated using the following parameters: RN = 30Ω,
I0 = 70 A, and C = 1pF, and (b) Fraunhofer diffraction pattern that describes the critical
current dependence on magnetic field.

In Fig 3.9(a) the I(V ) characteristics was calculated using the following parameters:
RN = 30Ω, I0 = 70 A, and C = 1pF. Here, the calculated I(V ) characteristic are
obtained in the absence of the magnetic field. However, in the presence of magnetic field
the critical current is modified Ic as

Ic =

∣∣∣∣sin
(
πΦ
Φ0

)
πΦ
Φ0

∣∣∣∣, (3.46)

The result of the critical current given in the last equation exhibits a diffraction pattern
known Fraunhofer diffraction pattern shown by Fig 3.9(b).

3.3.3 Ambegaokar and Baratoff formula for SIS tunnel junctions

Let’s consider two superconductors separated by a thin insulating barrier such supercon-
ductor/insulator/superconductor (SIS) junctions are shown in Fig 3.10, where the two
superconductors are with states filled to a certain level, offset by the energy eV , where
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V is the externally applied bias voltage is depicted in Fig 3.10(a). For SIS junctions, the
tunnel current is given by the expression:

I(V ) =
1

eRn

∫ ∞
−∞

|E|
(E2 −∆2

1)1/2

|E + eV |
[(E + eV )2 −∆2

2]1/2
[f(E)− f(E + eV )]dE, (3.47)

the integral is assumed to exclude values of E, where |E| < ∆1 and |E + eV | < ∆2.
By fowling the I − V characteristics along the voltage axis, a current rise to V/Rn when
we reach a bias potential V = (∆1 + ∆2)/e, where Rn is the normal tunnel resistance.
At finite temperature, an increase in current will also be observed at a bias voltage of
V = |∆1 + ∆2|/e. Josephson effects can also be observed in weak-link systems where a
nanoscale-size superconducting element connects macroscopic-scale superconductors, as
with a so-called point contact. In general, The critical current is given in by Ambegaokar
and Baratoff formula [30] as

IcRn =
π[∆1(T ) + ∆2(T )]

4e
tanh

∆1(T ) + ∆2(T )

4kBT
, (3.48)

Figure 3.10: (a) Density of states for a superconductor/insulator/superconductor (SIS) tunnel
junction. (b) Current–voltage characteristics for an SIS tunnel junction. Adapted from [31].

3.3.4 Hamiltonian of a Josephson junction and qubits

One of the future goals of the project of this thesis, is to produce a quantum processor
containing a qubit coupled to a nanomechanical resonator. Such systems should enable a
fully quantum measurement of a single phonon mode and allow quantum manipulation of
qubits. Many types of qubits such as superconducting devices with Josephson junctions
or weak links, can be used to construct three main classes of qubits: charge, phase and
flux qubits. This subsection is a brief overview for the theoretical aspects of the Josephson
junction qubit.

In Sec. 3.3.1, the equation of motion for the phase difference of a Josephson junction
was given in Eq. 3.43, which is identical to the equation of motion of a damped driven
pendulum with the angular displacement δ. In the pendulum analogue, the current Ib cor-
responds to a torque, the capacitance term φ0

2π
C is the moment of inertia of the pendulum,
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and the resistance term φ0
2π

1
R

corresponds to the damping [32, 33, 34]. The Lagrangian for
a Josephson junction satisfies the following equation

d

dt

∂L
∂δ̇
− ∂L
∂δ

= 0, (3.49)

and the Hamiltonian follows

H(pδ, pδ̇) = pδ δ̇ − L(pδ, pδ̇), (3.50)

where

pδ̇ =
∂L
∂δ̇

(
Φ0

2π

)2

Cδ̇, (3.51)

by ignoring the dissipation, and comparing the last three equations, the Hamiltonian
reads:

H =
1

2C

(
Φ0

2π

)2

p2
δ −

(
I0Φ0

2π

)
(I0 cos δ + δIb), (3.52)

The Hamiltonian given by Eq. 3.52 is used to solve the associated Schrodinger equation
Hψ = Eψ. The Schrodinger equation is solved and the solutions are plotted in Fig. 3.11
. Microwave spectroscopy experiments [35] performed on Josephson junctions indicated
that the washboard potential given by Eq. 3.44 actually contains multiple quantised
energy levels with a ground state defined by E = ~ωp separated by approximately integer
factors of the plasma frequency. Such quantisation means that the device can be used as
a qubit, with the ground state |0〉, and the first excited state representing the first qubit
state |1〉. As the bias current can be used to tune the washboard potential, the Hilbert
space can be modified for quantum states of two level system.

Figure 3.11: The quantum states obtained from solving the Schroedinger equation with the
Hamiltonian given in Eq. 3.52 . Close to the top of the barrier, the energy levels form a
continuous energy band.
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3.4 Superconducting quantum interference devices
(SQUID)

A superconducting quantum interference device (SQUID) consists of two Josephson junc-
tions in a superconducting loop shown in Fig. 3.12(b). In the absence of external magnetic
field, the bias current Ib splits the two equals parts. When a small external magnetic field
is applied to the loop, a circulating current J emerges in the loop, and creates an ad-
ditional Josephson phase which is proportional to this external magnetic flux. As the
induced current is in the same direction as of Ib in one arm of the superconducting loop,
and opposite to the Ib on the another arm of the loop, the currents I1, and I2 shown in
Fig. 3.12(a) are: Ib/2 + J , and Ib/2− J respectively.

(a) (b)Ib Ib

𝐁ext 𝛷ext

Figure 3.12: Schematic diagram of a dc SQUID loop which consists of two Josephson junctions.
The bias current Ib splits into two parts I1 = Ib/2 + J and I2 = Ib/2 − J , Bext is the applied
magnetic field. (b) Schematic of a dc SQUID in which J1 and J2 are the junctions, C1 and C2

are the junction capacitances, and L1 and L2 are the junction conductances, Φext is the applied
flux. Adapted from [36].

RCSJ model for dc SQUID shown in Fig. 3.12(b) is used to analysis the dynamic of the dc
SQUID loop, where a dc SQUID is described by phase differences of the junctions involved
in two coupled second order differential equations. A symmetric dc SQUID system yields:

Φ0

2π
Cδ̈1 +

Φ0

2π

1

R
δ̇1 + I0 sin(δ1) =

1

2
Ib + J, (3.53)

Φ0

2π
Cδ̈2 +

Φ0

2π

1

R
δ̇2 + I0 sin(δ2) =

1

2
Ib − J, (3.54)

and

δ1 − δ2 = 2π
Φtot

Φ0

, (3.55)

where δ1,2 are the phase differences of the junctions, Φ0 = h/2e is the flux quantum, Ib is
the bias current, I0 is the critical current, and Φtot is the total magnetic flux which consists
of two components: (i) the external flux Φext, and (ii) the flux due to the circulating
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current, J , flowing through the inductance of the loop, L. Therefore, Φtot = Φext + LJ ,
and Eqs. 3.53 -3.55 are coupled via the circulating current as

J =
1

L

(
δ1 − δ2

2π
Φ0 − Φext

)
. (3.56)

Eqs. 3.53 - 3.55 can be rewritten in dimensionless form by introducing a new time interval:

τ =
2eI0R

~
t. (3.57)

Thus, the time derivatives δ̇1, δ̈1, δ̇2, and δ̈2 can be defined in terms of new variables using
the chain rule:

δ̇1 =
dδ1

dt
=
dδ1

dτ

dτ

dt
=

2eI0R

~
dδ1

dτ
, (3.58)

δ̇2 =
dδ2

dt
=
dδ2

dτ

dτ

dt
=

2eI0R

~
dδ2

dτ
, (3.59)

and

δ̈2 =
2eI0R

~
d2δ1

dτ 2
, (3.60)

δ̈2 =
2eI0R

~
d2δ2

dτ 2
. (3.61)

With these variables, the scaled SQUID equations follow

βcδ̈1 + δ̇2 + sin δ1 =
1

2
ib + j, (3.62)

βcδ̈2 + δ̇2 + sin δ2 =
1

2
ib − j, (3.63)

δ1 − δ1 = 2π

(
φext +

1

2
βLj

)
. (3.64)

Where βc and βL are the capacitance and the inductive screening parameters: βc = 2πI0R2C
Φ0

and βL = 2I0L
Φ0

. The bias current and circulating current are normalized using the critical

current ib = Ib
I0

, and the circulating current is normalised using j = J
I0

. Also, the flux is

normalized using the flux quantum as φext = Φext

Φ0
. The scaled time τ can be written in

terms of the characteristic frequency, ωc, as τ = ωct, with ωc = 2πI0R
Φ0

. With this scaling,
the normalized voltage is given as:

v =
V

I0R
=
δ̇1 + δ̇2

2
, (3.65)
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Using the analogy between the equation of motion of a particle in the tilt washboard
potential and the motion of the phase difference of a Josephson junction, the βc parameter
implies: (i) when the junction capacitance and/or the resistance are large (βc � 1),
Josephson junctions are underdamped, and (ii) when the junction capacitance and/or
the resistance are small (βc � 1), Josephson junctions are overdamped.
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Figure 3.13: The time trace of the normalized voltage as calculated at different values of the
bias current Ib and φext = 0.5.

The Runge–Kutta method (RK4) is used to numerically integrate the SQUID equations
at different values of the bias current ib, and for the flux φext. To use such method, the
coupled second order differential equations, Eq. 3.62, and 3.63 are transformed to the first
order. This is performed by assuming δ̇1 = p, and δ̇2 = q. This results in the following
coupled first order differential equations:

δ̇1 = p (3.66)

ṗ =
1

βc

(
1

2
ib + j − p− sin δ1

)
, (3.67)

δ̇2 = q, (3.68)

ṗ =
1

βc

(
1

2
ib − j − q − sin δ2

)
. (3.69)

The circulating current can be obtained from Eq. 3.64:

j =
2

βL

(
δ1 − δ2 − 2πφext

)
. (3.70)
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By combining Eqs. 3.66 to 3.70, the SQUID equations read:

δ̇1 = p (3.71)

ṗ =
1

βc

(
1

2
ib +

2

βL

(
δ1 − δ2 − 2πφext

)
− p− sin δ1

)
, (3.72)

δ̇2 = q (3.73)

q̇ =
1

βc

(
1

2
ib −

2

βL

(
δ1 − δ2 − 2πφext

)
− q − sin δ2

)
, (3.74)

Here, the normalized voltage is given by

v =
V

I0R
=
δ̇1 + δ̇1

2
=
p+ q

2
. (3.75)
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Figure 3.14: (a) Current voltage characteristics of dc SQUIDs at I0 = 0.7A and R = 29.5Ω
which corresponds to βc = 1.6, βL = 0.115. (b) V (Φ) characteristics for a dc SQUID with
βc = 1.6, βL = 0.115 and different values of Ib.

The time dependent voltage variation for values of the bias current is calculated and
plotted in Fig. 3.13. To obtain I(V ) characteristics, the time average is performed
to determine the steady state voltage across the junctions. The average of the voltage
variation have been obtained at I0 = 0.7A, and R = 29.5Ω which corresponds to βc = 1.61,
and βL = 0.115, while the normalised external fluxes φext were selected between zero and
0.75, the resulting I(V ) characteristic is plotted then in Fig. 3.14(a). The variation of
the critical current that can be observed in Fig. 3.14(a) yields the Fraunhofer diffraction
pattern described in Eq. 3.46. With the βL and βc values presented earlier, V (Φ) curves
of an overdamped dc SQUID were calculated for bias current 1.0 ≤ ib ≤ 2.0, where the
results are plotted in Fig. 3.14(b). As a SQUID is one of the most sensitive magnetometer
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to measure extremely small magnetic fields, the sensitivity of a SQUID magnetometer
depends on the position of the operating point in V (Φ) curves. This means that dc
SQUID is most sensitive to changes in the magnetic flux by tuning it to a working point
with a steep slope such that point appears at Ib/I0 = 2.0, and Φext = 0.25Φ0. This will
have a significant importance in Ch. 7, where a dc SQUID is used as a highly sensitive
detector for the motion of a micromechanical cantilever embedded in a dc SQUID loop.

3.5 Granular superconductors and array of Josephson
junctions

Disordered superconducting films which can be considered as a chain of identical meso-
scopic superconducting grains can be modelled as arrays of Josephson junctions [37, 38,
39], which behave as a granular nanowire consisting of superconducting islands of various
sizes and different coupling energies [40, 41, 42]. A network of Josephson junctions or
2D Josephson junction array which represents a granular superconductor can be studied
in terms of RCSJ model [43]. This section is a brief overview for the such system as it
can provide a deeper understanding for granular superconducting devices made of boron
doped diamond.

Figure 3.15: (a) A network of 2D Josephson junction array representing a granular super-
conductor, where the circles represent superconducting grains, and crosses represent weak-links
between grains. (b) Equivalent circuit of the weak-link between the grains i and j based on the
RSCJ model. Adapted from [43].

An illustration for 2D array of Josephson junctions is shown in Fig. 3.15(a), and the
corresponding RCSJ model is shown in Fig. 3.15(b). A bias current Ib is applied to the
left electrode illustrated in Fig. 3.15(a) in which circles represent superconducting grains
connected by weak-links which are represented by crosses. Based on RCSJ model, the
current Iij flowing through each junction reads

Iij = Cij
dVij
dt

+
Vij
R

+ I0,ijδij, (3.76)

where Cij and Rij are the shunt capacitance and resistance between grains i and j, δij is
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the current phase relationship, and the voltage drop across the junction is given by

Vij = Vi − Vj =
~
2e

dδij
dt

. (3.77)

By solving the coupled differential equations given in the terms of the indexes i and j, the
I(V ) characteristics along the array can be obtained. Although these calculations may
provide an obvious picture for the superconducting devices made of granular boron doped
diamond films, details about computational method to solve this system is not discussed
in this thesis, and can be found elsewhere [44].
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4 Microwave Powder Filters

4.1 Motivation

Experiments on superconducting devices are being influenced by a considerable amount of
noise such as radio frequency (RF) noise which is a result of electrical connections acting
as antennas. To demonstrate the impact of such noise on the experimental results, mea-
surements for I(V ) characteristics of a superconducting device made of nanocrystalline
boron doped diamond were performed [1]. As shown in Fig. 4.1, I(V ) curves were mea-
sured with and without RF filter. A comparison between the unfiltered measurement and
the one measured with the RF filter, shows a significant impact of the RF filter in im-
proving the quality of the measurements. The impact of the filter can be clearly observed
as the filtered measurement shows a typical I(V ) characteristics.
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Figure 4.1: I(V ) characteristic of a nanostructured diamond superconducting device measured
with and without RF filter. The inset shows the normalized histogram of the critical current,
Ic. Adapted from [1].

In term of attenuation and the purposes for which the filters are fabricated, the filters can
be classified to three different categories: (i) a low- pass filter (LPF) passes signals with a
frequency lower than a selected cut off frequency fc and attenuates signals with frequen-
cies higher than the cut off frequency, (ii) a high- pass filter (HPF) passes signals with
a frequency higher than the cut off frequency fc and attenuates signals with frequencies
lower than the cut off frequency, and (iii) a band pass filter passes frequencies within a
certain range and attenuates frequencies outside that range. As RF noise results in a high
dissipation, and that prevents to experimentally observe the effects of the targeted quan-
tum region, the filter developed within the course of the of this thesis is to attenuate noise
in all RF regions. This chapter shows the functioning principles, components and design
of a prototype metal powder filter that can be implemented in a dilution environment for
the removal of noise.
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4.2 Metal powder filters

4.2.1 Functioning principles

Metal powder filters have shown highly effective performance for filtering out microwave
frequencies. Such filters typically consist [3, 4, 5, 6] of a central LC circuit that is sur-
rounded by a fine metal powder, e.g., copper or steel or metal powder/epoxy mixture.
The radio frequency signals passing along the wire, are highly attenuated by the skin
effect [2], where an alternating magnetic field emerges due to the AC current passing in a
conductor. According to Faraday’s law, further eddy currents are induced by the emerged
magnetic field. As these currents oppose the initial change in the AC signal passing in the
conductor, the signal is attenuated. The eddy currents are distributed where the current
density is much higher near the outer surface of the conductor. A depth at which the
current density falls to 1/e (about 0.37) of the surface current, is called the skin depth
where a much higher electrical resistance influences signals with the higher frequencies
which results in a higher attenuation.

Figure 4.2: A representative circuit for the filter.

As powder filters typically consist of a central LC circuit (see Fig. 4.2) buried in a fine
powder, e.g., copper or steel or metal powder/epoxy mixture, skin effect presents in such
filters, where eddy currents are induced in the powder grains leads to a greater attenuation
for the AC signals which finally improves the efficiency of filtering out the RF noise.

4.2.2 Earlier filters

Several types of filters have been previously developed such as thin film filters [7, 8, 9],
distributed thin-film microwave filters [10], thermocoax filters [11]. As the space of a cryo-
genic system supposed to be occupied by the filters is an critical issue, particularly when
several measurements are employed to be performed with different lines of a measurement
system simultaneously, recent developments have focused on powder filters with higher
performance [3, 4, 5, 6, 12] to remove the microwave noise in cryogenic environments.

A comparison between the attenuation of different filters that have been recently devel-
oped is shown in Fig. 4.3(a). The figure shows the attenuation measurements of the
powder filter developed by Lukashenko et al [3]. Although the attenuation of this filter
reaches to about -80 dB in frequency region above 1 GHz, it has a poor performance in
the low frequency region below 100 MHz. An improvement for Lukashenko performance
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filter has been accomplished by developing [1] RF filters for constrained cryogenic system.
In these filters, the attenuation measurements indicated by the solid black line of Fig.
4.3(a), decreases gradually from about -10 dB at 10 MHz, to -45 dB at 100 MHz, and
significantly drops up to -85 dB in the GHz region. The figure shows a further com-
parison between the performance of the two mentioned filters with thermocoax [11], and
microcoax filters [14]. More recent metal powder filters have been reported in [15], where
stainless steel powder and iron powder filters have been developed. Fig. 4.3(b) shows the
attenuation measurements of theses filter, where the attenuation goes down to (i) -100
dB in the frequency regions above 20 GHz, (ii) -80 dB in the frequency region between
5 and 20 GHz, and (iii) between -30 and -80 dB in the frequency region between 1 and
5 GHz. Though such results exhibit high performance, the measurements show relatively
weak attenuation in the low frequency region below 1 GHz.
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Figure 4.3: (a) A comparison between attenuation measurements of the presented in [1] and
the filter designed by Lukashenko et al [3]. The figure shows also the attenuation curves of
thermocoax [11] and microcoax filters [14]. (b) Attenuation for stainless steel and iron powder
filters as reported in [15].

4.3 The prototype, basic materials and components

In the previous section, I have briefly showed how powder filters can effectively attenuate
AC currents of microwave frequencies. As a part of the project of this thesis, a filter
prototype developed to improve the attenuation performance in low and high frequency
regions. The capability of using the filter for simultaneous measurements that take place
in a cryogenic system has enabled it to be implemented in the experiments performed
for acquiring the measurements given in Ch.6 of this thesis. For the long term goal of
the project of this thesis, the filter will be finally used in future to attenuate the noise
associated in SQUIDs and qubits.

Basic materials and components

The prototype of the powder filter which has been fabricated within the project of this
thesis was designed following a technique proposed in [3]. Here, the following materials
were used:
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• Stainless steel powder with 45 µm grain size (GoodFellow Ltd).

• Copper powder with 14-25 µm grain size (ALDRICH Ltd).

• Stycast 1266 epoxy for cryogenic use (LOCTITE Ltd).

• Copper wire with a diameter of 114 µm and purity of 99.9% (ADVENT Research
Materials Ltd).

And the following components have been used:

• A filter box.

• Inductors made of Stycast, powder, and copper wire.

• Capacitors (4400-093LF - Power Line Filter, Chassis, 0.012 µF, 50 V, 10 A).

• 25-PIN micro d-connectors.

4.4 Implementation and construction

Each inductor bar of these shown in Fig. 4.4 is a thin cylindrical rod of diameter 4 mm
and length 1.7 cm, and made by a mixture of copper powder and Stycast 1266 epoxy.
The mixing ratio for the mixture follows:

• 43.86% Stycast 1266 part A

• 43.86% copper powder

• 12.28% Stycast 1266 part B

(a) Hole(b) (c)

Figure 4.4: (a) The mould used to make the inductor bars, (b) the fabricated inductor bars,
and (c) a drilled bar with a hole of about 0.8 mm.

The mixture is then filled in a mould such as that shown in Fig. 4.4(a), and remains
inside the mould for about 48 hours to be dried. At this stage, the bars are stiff and can
be ejected from the mould to finally become as these bars shown in Fig. 4.4(b). At this
point, each bar is drilled longitudinally through the center of both circular ends with a
hole of diameter of about 0.8 mm.

By using a CNC coil winding machine such as that shown in Fig. 4.5(a), the bar are
wound with two layers of copper wire with a diameter of 114 µm and purity of 99.9%. At
this point, the bars shown in Fig. 4.5(b) are ready to be used as inductors. A simple LCR
meter was used to measure the inductors inductance, from which the measured inductance
values are about 49.0 µH at room temperature, and 48.2 µH in liquid nitrogen.
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(a) (b)

Figure 4.5: (a) CNC coil winding machine used for the bars winding, and (b) inductor bars
after winding.

Figure 4.6: The designed filter box in which the filter’s components are implemented.

Fig. 4.6 shows the designed filter box used to load 24 filters in an array of 8 columns and
3 rows, and micro d-connectors. With this design, the total elements implemented in this
box are 24 inductors, two d-connectors, and 48 capacitors of capacitance of about 12 nF
at room temperature, and 6 nF in liquid nitrogen.
When the inductors and capacitors are implemented inside the box according to the circuit
given in Fig. 4.2, and in three layers with 8 inductors and 16 capacitors in each layer, the
filter box and it’s components will appear in such a way that shown in Fig. 4.7.

Figure 4.7: The appearance of filter box during and after implementing it’s elements inside it.
The filter’s components follow the circuit diagram given in Fig. 4.2.

At this stage, the box is filled with Stycast epoxy mixed with stainless steel powder with
45 µ grain size. The mixing ratio for the mixture follows:

• 43.86% Stycast 1266 part A.

• 43.86% Stainless steel powder.
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• 12.28% Stycast 1266 part B.

The box is covered then with a copper plate to isolate it from the environment. The
construction at this stage is shown in Fig. 4.8. This is the final shape of the filter, at
which the total weight of the box (including capacitors, inductors, epoxy, d-connectors)
is 753 g.

Unfilled gaps

Epoxy

(a) (b)

Figure 4.8: (a) A view for the filter after filling the box with epoxy mixed with stainless steel
powder. (b) The final shape of the filter box after covering it with a copper plate to isolate it
from the environment.

4.5 Measurements

Initially, the filter response was first tested at room temperature using a vector network
analyzer (VNA) over the range between 100 kHz and 4.5 GHz. All 24 filters have been
measured within this regime, and measurements for 10 of the 24 filters are shown in Fig.
4.9. The results show high reproducibility with an average attenuation of about -80 dB.
High resolution measurements have been also performed in low frequency regions between
100 kHz and 500 MHz. Here, four selected measurements are shown in Fig. 4.10, in which
the average attenuation is about -90 dB, with a relatively weaker attenuation of about
-60 dB around 5 MHz.

Figure 4.9: Attenuation curves of different 10 filters as measured at room temperature, and in
a frequency region between 100 kHz and 4.5 GHz.
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Figure 4.10: Selected high resolution measurements of attenuation response as performed at
room temperature, and in low frequency regions between 100 kHz and 500 MHz.
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Figure 4.11: Filter performance comparison between 300 K and 77 K as measured between (a)
100 KHz and 4.5 GHz, and (b) 0.5 GHz and 20 GHz.

The filter was also measured with a range between 100 kHz and 20.0 GHz, whilst the filter
was submerged in liquid nitrogen at 77 K. These measurements have been performed to
investigate the filter performance at low temperatures. The performed measurements for
high frequency regimes are shown in Fig. 4.11. The average of the measured attenuation
for the high frequency regimes above 1 GHz, exceeds -110 dB. However, at 77 K, the
attenuation power decreases slightly from about -110 dB at 15.7 GHz to -90 dB at 17.5
GHz before returning to the initial average line of -110 dB at 17.5 GHz. In contrast to
previous measurements, the measurements presented in Fig. 4.11, have been performed
when the gap shown in Fig. 4.8 were filled with stainless steel powder.
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4.6 Coulomb blockade thermometer (CBT)
measurements

A key consideration when designing filters for a dilution refrigerator 1 is the amount of
space available to mount the filter box inside the fridge. As the filter box was designed
for multiple lines, it’s a bit bulky, in this case the space considerations may become an
essential issue as the cooling power may be influenced, i.e., the temperature of the dilution
room may not reach to the targeted point. To investigate the influence the filter on the
cooling power of the dilution refrigerator, Coulomb blockade thermometer (CBT) is used
to measure the temperature when the filter is placed on the mixing chamber plate, or on
the 4K plate of the dilution refrigerator.
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Figure 4.12: The measured conductance curve of the CBT sensor when the filter box is placed
(a) on 4K plate, (b) on the the mixing chamber plate of the dilution fridge.

The principle of the CBT sensor is based on electrons tunnelling in small metallic tunnel
junctions or arrays of junctions [16]. The differential conductance G(V ) dependence on
temperature allows making the sensor an accurate tool for measuring ultra low tempera-
tures down to few mK. From fitting of the conductance curve G(V ), the temperature can
be obtained. For the CBT sensor used for the measurement presented in this section, an
estimate of full width at half maximum of the G(V ) curve is given by

V1/2 = 5.439NkBT/e, (4.1)

where N = 33 is the number of junctions in series, kB is Boltzmann constant, and e is
electron charge. The I(V ) characteristic of the CBT is described in [16], and further stud-
ies of the theory of the CBT sensor can be found somewhere else [17, 18, 19]. Here, the
lock-in technique has been used to measure the CBT differential conductance. The equip-
ments used in this technique are: (i) CBT sensor, Aivon CBT10, (ii) voltage preamplifier
PA10, and (iii) lock-in amplifier SR830. The description of the experimental setup used
for the CBT measurements presented here can be found in the manual of the commercial
CBT10 sensor [20].

1Details about the dilution refrigerator setup are given Ch.6.
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The filter box was first placed on the 4K plate of the dilution fridge, and the measured
conductance curve of the CBT sensor was modelled using numerical calculations of con-
ductance made using an algorithm derived from the free open-source library pyCBT21
[21]. According to these fittings, the tunnelling resistance RT , the total capacitance CΣ,
and the temperature of the CBT sensor placed on the mixing chamber plate, were ob-
tained as the following: RT = 32.1813 Ω, CΣ = 230 fF, and 8.41172 mK. In contrast,
when the filter box and the CBT sensor were both placed on the mixing chamber plate of
the dilution refrigerator, the tunnelling resistance RT = 31.4242 Ω, the total capacitance
CΣ = 230 fF, and the temperature of the CBT sensor is 19.8295 mK. The recorded tem-
perature of the mixing chamber plate when measurements are performed without placing
the filter box on it was about 7 mK. Thus, there is a weak influence for the filter box
on the cooling power as the temperature decreases only by about 1.5 mK when the filter
box is placed on the 4K plate, and about 13 mK when the filter is placed on the mixing
chamber plate. The conductance measurements of the CBT sensor are shown in Fig. 4.12.

It should be noted here, when the filter box is placed on the mixing chamber plate, a
noise emerges in the measured G(V ) curve of the CBT sensor [Fig. 4.12(b)]. Such noise
can be due to (i) the size of the filter box that may slightly prevent the temperature of
the mixing chamber plate to be remarkably stable, and/or (ii) the interaction between
the CBT sensor and the filter box as they become close to each others.

In conclusion, the results demonstrated in this chapter show that the prototype of the fil-
ter developed as a part of the work of the project of this thesis, can successfully attenuate
signals to the noise floor level of -110 dB in high frequency regions, and between -60 dB
and -110 dB in low frequency regions below 500 MHz. Such high performance makes it
an efficient tool to attenuate the noise associated in SQUIDs and qubits, and very com-
petitive to the filters developed earlier such those shown in Fig. 4.3. CBT measurements
have shown that the filter developed here is appropriate to be used for simultaneous mea-
surements that take place in a cryogenic system where the temperatures down to few
mK.
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5 Review of Superconducting Diamond:
Properties, Fabrications, and Earlier
Studies

5.1 The background and discovery

Naturally, diamond is composed of carbon atoms arranged in a crystal structure called di-
amond cubic. Exceptional physical properties of diamond makes it a candidate for plenty
of applications in heavy industries and technology. For instance, as diamond is known as
one of the hardest materials on the earth, it can be used in cutting, grinding, and polishing
tools. Despite the fact that pure diamond is an insulator, it has unique physical prop-
erties by doping which converts it into a semiconductor or a superconductor. Naturally
diamond forms at high temperatures and pressures that occur in the deep earth’s shell
about 140-190 km below earth’s surface, and over a period of billions years [1]. Though
extreme conditions, scientists have fabricated diamond in laboratories, where diamond
is artificially grown by applying high pressure and high temperature. Another artificial
process called chemical vapor deposition (CVD) has also been used to grow diamond [2].
The possibility of growing diamond films on large substrates, paves the way toward a
variety of technological applications. Using the CVD process allows also controlling film
properties such as the grain sizes which can vary from a few nanometres to micrometers
[1]. The main interest of this thesis is the aspect of the CVD process associated with
altering the boron concentration of boron doped diamond (BDD), which allows bringing
the diamond to a superconducting phase.
In 2004, Ekimov et al [3] reported superconducting diamond where the superconductivity
was performed by heavily doping near 3% hole concentration, hosting a type II supercon-
ducting state with a Tc = 4 K. However, with a homoepitaxial chemical vapor deposition
(CVD) process, diamond films can be grown with the critical temperature of about 11 K
[20].
Several theoretical studies have been reported to understand the origin of superconduc-
tivity in diamond such as: (i) correlated impurity band theory [5], (ii) localization of
spin-flip driven hole pairs close to the Fermi level [6], and (iii) studies based on electron-
phonon coupling [7, 8, 9, 10]. Although more experimental studies are still required for
conclusive interpretation for the origin of the superconductivity in diamond, the theoreti-
cal studies based on electron-phonon coupling are specifically nominated for this purpose,
as the superconductivity observed [11] in silicon boron doping, with a Tc = 350 mK where
the low Tc is assigned [12] to the weaker lattice vibration and reduced electron-phonon
coupling.

Despite the fact that the origin of the superconductivity in diamond is an attractive
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research field, the main interest of this thesis is to develop a superconducting devices
that can be used in future as micro and nano electromechanical systems that oscillate
in the GHz regions. Thus diamond has been selected as it has a very high Young’s
modulus. Based on this goal, the fabrication process of diamond, and earlier studies on
superconducting junctions and superconducting quantum interference devices (SQUIDs)
that are made of diamond, are presented in the following sections.

5.2 Nanofabrication of boron-doped diamond devices

The films used in the experimental work performed for this thesis have been grown by
CVD process on a silicon substrate of 500 µm thickness coated with layer of 500 nm thick
silicon dioxide.

Figure 5.1: Schematic of the processes used in the fabrication of a superconducting circuit
made of boron-doped diamond.

The nanofabrication of boron-doped diamond devices requires several processes, namely:

• growth process, in which boron-doped diamond was grown to a range of different
thickness between 160-564 nm. The details of this process can be found in [13, 14,
15].

• Cleaning and rinsing, where the film is cleaned with acid solution, and then it is
rinsed with water. Further organic pollutants was removed by acetone, and isopropyl
alcohol was used to clean the surface.

• Spin coated process in which a 250 nm thick layer is formed with 4% polymethyl-
methacrylate (PMMA). The formed layer must be heated at 180 C for 5 min.

• Electron beam exposure and development: here, PMMA layer is exposed to an
electron beam with a dose of 300 µCcm−2 with an acceleration voltage of 20 kV.
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The PMMA layer is then developed for 35 s in a solution of 1:3 methyl isobutyl
ketone (MIBK) and isopropyl alcohol.

• The layer is then covered with 65 nm of nickel using a standard electron-gun evap-
orator. The purpose of the nickel layer is to form a mask for the plasma etching
process.

• Pattering and lifting off using acetone.

• Etching, this is performed by using an inductively coupled plasma-based reactive
ion etching process.

• Removing the nickel mask using FeCl3 solution, and then cleaning them by dilute
acid solution, acetone, and isopropyl alcohol.

• Evaporating ohmic contacts on the contact pads. This process is achieved by pho-
tolithography and a standard electron-gun evaporation technique. With this pro-
cess, a nano or micro superconducting circuit made of boron-doped diamond is
completed.

Figure 5.2: A superconducting circuit made from boron-doped diamond.

All processes given above are schematically in Fig. 5.1, and the final result for a super-
conducting circuit made of boron-doped diamond is shown in Fig. 5.2.

5.3 Earlier studies

5.3.1 Properties of BDD superconductors

As mentioned earlier, superconductivity was experientially proved [3] in boron-doped
diamond by Ekimov et al in 2004. Afterword, the superconductivity in diamond has been
revealed in CVD grown polycrystalline [16, 17], and single crystal films [18, 19].

Boron is an element with a total of five electrons, thus the number of valence electrons in
boron is one less electron than those in carbon. The small atomic radius of boron atoms,
enables inserting them between carbon atoms. When diamond is doped with boron, the
electron configuration of boron makes it an acceptor while the resulting diamond becomes
effectively hole (p-type) doped. In the CVD process, the diamond is doped with boron
using gases such as diboran (B2H6), or trimethylboron (TMB) [20]. The concentration of
BDD film can be controlled by changing the mixture ratio of methane and TMB.

Studies [3, 16, 19, 21] have shown that when the boron concentration is greater than
3× 1020 cm−3 in a BDD film, the film enters the superconducting phase. It has been also
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shown [24, 22, 23] that the susceptibility, TC , conductivity, and the field Hc2 of the BDD
films depend strongly on the boron concentration. In Ref [19] magnetic and transport
experiments on a set of single-crystalline epilayers doped in the range between 1020 and
1021 cm−3 have been reported. This study shows a rapid increase in Tc when the boron
concentration is above some critical value (nc ∼ 5 − 7 × 1020) cm−3. Results for the
influence of nc on Tc is given in Fig. 5.3(a), in which no transition was observed down
to 50 mK for the film with nB = 3.6 × 1020 cm−3. When nB is higher, the Tc increases
rapidly reaching 2.1 K for nB = 19× 1020 cm−3.

(a) (b) (c)

Figure 5.3: (a) Dependence of the superconducting transition temperature Tc on the boron
concentration nB, the open circle from [3]. (b) Temperature dependence of the electrical re-
sistance at indicated magnetic fields for the film with nB = 19 × 1020 cm−3. (c) H(T ) phase
diagram for the films with nB = 19× 1020, and nB = 19× 1020 cm−3. Adapted from [19].

The influence of an external field on the superconducting transition of BDD films have
been also studied [19]. Results for such studies are shown in Fig. 5.3(b) in which a BDD
film with nB = 19× 1020 cm−3 shows a transition shift towards lower temperatures as the
magnetic field is increased. The transition width remains relatively small up to ∼ 1 T
and rapidly increases for larger fields. The corresponding Hc2(T ) curves are shown in Fig.
5.3(c), from which Hc2(0) can be extracted with 1.4 T. Thus, the corresponding coherence
length, ξGL =

√
Φ0/2πHc2(0) = 15 nm for a BDD film with nB = 19× 1020 cm−3. For a

BDD film with nB = 9×1020, the Hc2(0) is about 0.7 T, and the corresponding coherence
length, ξGL ∼ = 22 nm.

The estimated [25] mean free path ` as determined through a combination of Hall effect
and conductivity measurements at 4.2 K was of the order of 0.5 nm. In the later reference
the London penetration length have been also obtained with λL = 150 nm. Since ` �
ξ � λL, boron doped diamond is considered a dirty superconductor.

Tunnelling spectroscopy have been performed [26] at different locations of the surface
of superconducting hole doped diamond films made of boron-doped single crystalline
diamond epilayer (epitaxial wafer). The differential conductance measurements have been
performed using a lock-in amplifier linked to the tip of scanning tunnelling microscope
(STM) cooled down to a base temperature of 50 mK in a dilution refrigerator. Fig. 5.4
shows the temperature dependence of the superconducting gap ∆(T ) as extracted from
differential conductance measurements. The results given in the figure agree with the
BCS theory with a Tc =1.85 K, where ∆

kBTc
' 1.74.

STM images of the vortex lattice of BDD films in a dilution refrigerator at 50 mK have
also obtained at fields H of 1200 Oe and 1900 Oe. The STM images are shown in Fig.
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Figure 5.4: Temperature dependence of the superconducting gap of boron-doped single crys-
talline diamond (open squares) compared with a BCS theory with Tc = 1.85 K (solid line).
Adapted from [26].

5.5, in which the spatial distribution of the measured vortices is strongly disordered even
though a local hexagonal arrangement persists. Although the lattice is on the contrary
of the perfect Abrikosov vortex lattice, and appears strongly disordered, autocorrelation
pictures have been obtained using the autocorrelation function defined by G(δx, δy) =∫
I(x + δx, y + δy)I(x, y)dxdy, where I(x, y) is the local degree of brightness, G gives

the probability of finding a similar brightness in the image for a spatial shift equals to
δ(δx, δy) from any point. The obtained autocorrelation pictures shown in Fig. 5.5, exhibit
a sixfold symmetry of first rings of neighbours which indicates a persistental order for any
site of the lattice.

Figure 5.5: Vortex images (1.5 × 1.5 µm 2) at two different magnetic fields: (a) 1200 Oe,
(b) 1900 Oe. (c) and (d) The corresponding images as obtained from autocorrelation function.
Adapted from [26].
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Investigations of boron-doped granular diamond provide the understanding of the influ-
ence of disorder at different length scales. A study [27] conducted in 2008 has shown
that superconductivity caused by the heavy boron doping in diamond is highly unlikely,
mainly because of the microstructure of polycrystalline boron-doped diamond. in contrast
to that argument given in [27], results [28] of dark-field scanning transmission electron
microscopy (ADF-STEM), electron energy-loss spectroscopy (EELS), STM/STS, electri-
cal transport, and magnetization measurements, superconductivity has been observed in
polycrystalline, and coincides with the substitutional heavy boron doping in diamond
grains.

The coherence length of a clean monocrystalline diamond as reported in [19] is ξ0 = 15 nm.
In contrast, two distinct coherence lengths must be considered [29] for granular systems:
(i) the coherence length associated with a Cooper pair which straddles a grain boundary
through tunneling ξt, and (ii) that for a Cooper pair contained within a single grain ξg.
Both ξt, and ξg are given in terms of diffusion constant as: ξt = (π~Deff/8kBTc), and
ξg = (π~D/8kBTc). Here, D stands for the single-crystal diffusion constant, while Deff is
the bulk effective diffusion constant. For granular boron-doped nanocrystalline diamond
(BNCD), the location of cross-overs in the R(T ) trace was used to estimate [32] these
values as: D ≈ 12 cm2/s, and Deff ≈ 0.6 cm2/s. Thus, ξt ≈ 7 nm, and ξg ≈ 30 nm. The
upper critical field can be also estimated using the formula Hc2 = Φ0/2πξ

2, from which
Hc2 is about 6.7 T. This value for Hc2, agrees with the reported value for BNCD in [17].

(a) (b)

Figure 5.6: (a) R(T ) curves measurements as performed for BNCD film at applied magnetic
fields between zero and 4 T. (b) Magnetic field dependence on transition temperature as obtained
for a 564 nm thick BNCD film. Inset, H(T ) is a fit function where the date was analysed in
terms of H2/3 power law behaviour. Adapted from [31].

Other investigations for BNCD have been performed in [31], where measurements for the
resistance dependence on temperature at different applied magnetic fields in the range
between zero and 4 T, have been reported. These measurements are shown in Fig. 5.6(a),
from which Tc can be precisely determined, and the magnetic field dependence on the tem-
perature has been interpreted following the quasi de Almeida-Thouless H2/3 behaviour,
with Hirr ∝ (1−T/Tc)2/3. Such behaviour that can be observed in the fitting given in Fig.
5.6(b), was linked [31] with magnetic relaxation measurements from which a logarithmic
decay of the remanent magnetization have been obtained following [33], which is coupled
with observed irreversibility behaviour of Hirr(T ). As results, this coupling was attributed
[31] to a superconducting glass state resulting from the morphological granularity of the
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BNCD films.

5.3.2 Junctions made from diamond

As earlier demonstrated in the previous subsection, diamond exhibits superconductivity
by doping it with boron. In terms of technology, a direct application of such discovery
appears in possibility of forming a Josephson junction composed of diamond films. SNS
weak-link Josephson junctions fabricated from a single-crystal BDD film, and by following
the procedure outlined in [34] have been experientially investigated [35].

(a) (b)

(c) (d)

Figure 5.7: (a) Schematic of vertical SNS structure, in which a normal-state diamond film (NC
layer) is sandwiched between two superconducting diamond films (lower SC layer and upper SC
layer). (b) Depth profiles of the junction. (c) I(V ) characteristics of the junction at 2 K, and (d)
the temperature dependence of the critical superconducting current Ic, and the one calculated
from Likharev’s theory of SNS junctions in the dirty limit. Adapted from [34].

I(V ) characteristics of the fabricated Josephson junction which schematically shown in
Fig. 5.7(a) with depth profiles illustrated in Fig. 5.7(b), have been measured at 2 K as
shown in Fig. 5.7(c), from which the critical superconducting current was extracted with
Ic = 8 µA. The temperature dependence of the critical superconducting current have been
obtained and fitted to Likharev’s theory developed in [36, 37] for SNS weak-link junctions.
This is given as

Ic(T, L) =
2

πeRn

|∆∞|2

kBT

L/ξn
sinh(L/ξn)

0.3Tc < T < Tc

≈ 2

πeRn

|∆∞|2

kBT

L

ξn
exp(−L/ξn),

(5.1)
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where ∆∞ is the superconducting gap in the bulk of the superconductor described by
BCS theory, L is the thickness of the NC layer [see Fig.5.7], and ξn is the coherent length
in the normal conductor. ∆∞ was calculated self-consistently by the following Eq. 4
given in [34]. For the dirty limit where the hole mean free path `n is much lower than
the coherence length ξn, the later equation can be written [38] by expanding de Gennes’
proximity theory [39, 40] to a three-dimensional free-electron gas model as:

ξn(T ) = (3π2n)1/3

√
~3µ

6πkBTem∗
, (5.2)

where m∗ is the effective mass of the carriers, µ is the carrier mobility, and n is the carrier
density of the semiconductor. The expression given in Eq. 5.2 has been successfully
applied to estimate ξn for a SNS Josephson junction with a Pb/highly B-doped Si/Pb
structure [41] in which the N (normal metal) region is highly boron-doped Si. In the
presented model the SNS structure is analogous to that of highly boron-doped diamond,
in which m∗ = 0.4me, µ = 2 cm2/Vs, n = 1.7× 1020 cm−3. Thus ξn = 3 nm.

In Fig. 5.7(d) the temperature dependence of the critical superconducting current has
been fitted [34] to Likharev’s theory of SNS weak-link junctions described by Eqs. 5.1
and 5.2. The fit shows the signature of the proximity effect in SNS junctions [42] which
agrees with experimental results when the non-superconducting layer thickness L is 15.7
times the coherence length ξn(T ), where the normalized critical current density exhibits
exponential-like behaviour, exp(−Leff/ξn), as

Ic(T, L) ≈ 4

πeRn

|∆∞(T )|2

kBTc

L

ξn
exp(−L/ξn(T )), (5.3)

in which the superconducting gap ∆∞(T ) in the bulk of the superconductor, dominates
Ic(T, L) when L � ξn(T ). However, if L � ξn(T ), the signature of the proximity effect
in SNS junctions with an exponential-like behaviour exp(−Leff/ξn) becomes obvious in
the temperature dependence of the Ic(T ) functions.

Figure 5.8: (a) The step edge structure Josephson junction of boron-doped diamond. (b) The
I(V ) characteristic of the junction at various temperatures between 1.3 and 3 K, and (c) the
critical currents in terms of IcRn, and the corresponding density current, Jc, as extracted from
I(V ) characteristic. Adapted from [43].

In reference [43] fabrication process and characteristics of superconducting (111) boron-
doped diamond junctions with regrowth-induced (001) step edge structure, has been re-
ported. The transition temperature of the fabricated junction shown in Fig. 5.8(a) was
measured with Tc = 4 K, and I(V ) characteristics of the junction have been also measured
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at various temperatures between 1.3 and 3.0 K. The measured I(V ) curves as presented
in Fig. 5.8(b) have shown overdamped signature with no hysteresis.

In Fig. 5.8(c), the temperature dependence of critical current in terms of IcRn, and
the corresponding density current, Jc, have been extracted from the I(V ) curves. The
behaviour of Ic(T ) has been attributed [43] to a weak link type Josephson junction effect.
In 2019, three years later, a SQUID was developed [44] based on the function of the
junction presented in Fig. 5.8. Such SQUID is briefly demonstrated in Sec. 5.3.3.2.

5.3.3 SQUIDs made from diamond

Although the wide range of applications of the superconducting quantum interference
devices (SQUIDs), e.g, an ultra-sensitive motion detector of nano or micro mechanical
resonators [45], there have been very less work [44, 46] on SQUIDs made of boron doped
diamond. In this subsection the main experimental investigations on diamond SQUIDs
are reviewed.

5.3.3.1 SQUIDs made of using nanocrystalline boron-doped diamond

Micro-SQUIDs patterned from a superconducting nanocrystalline diamond film of 300 nm
thick, have been fabricated and investigated as reported in [46]. These diamond SQUIDs
are shown in Fig. 5.9, where the mean loop area of all SQUIDs is 2.5× 2.5 µm2, 300 nm
thickness, and various weak link designs of width of 250, 170, and 100 nm.

Figure 5.9: (a) The image of the complete diamond chip with total size of 2 × 2 mm2. (b) A
view for the middle of the chip with a scale of 50× 50 µm2 in which six different SQUIDs with
different designs are shown. (c) A view of a single SQUID. Adapted from [46]

The transition temperature with Tc = 4 K has been obtained from the R(T ) curve mea-
surements shown in Fig. 5.10(a). The I(V ) curves have been measured in absence and
presence of magnetic field, from which the critical current have been obtained. In Fig.
5.10(c) and Fig. 5.10(d), Ic(B) characteristics have been extracted with low field for two
SQUIDs with width of 170, and 100 nm. The later Ic(B) characteristics have shown
oscillations with a period of about 0.31 mT, which has been attributed by the effective
SQUID surface area of the measured SQUIDs. By repeating measurements at a fixed
magnetic field, the histogram of Ic shown in Fig. 5.10(e) can be obtained, from which
the full width at half-maximum was considered to find the devices sensitivity with about
4 × 10−5Φ0Hz−1/2. The magnetic field dependence of the critical current for the same
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SQUID has been finally obtained by obtaining several histograms at different magnetic
fields, and the extracted Ic(B) function is given in Fig. 5.10(f).

Although the SQUID measurements presented in [46], and summarised here, can be an
important step toward the detection of quantum motion of a cantilever implemented in
a diamond-based SQUID, a prominent question mark arises regarding to the principle of
such SQUID loop consisting of weak links with large width where, L� ξ0. As mentioned
earlier in Ch. 3, a typical Josephson junction requires a weak link of width in order
of the coherence length ξ0. Thus, the effect reported in [46] may be due to proximity
effect discussed in Sec.5.3.2, or quantum phase slip dissussed in Sec. 2.4. However, more
experimental and theoretical work are still required to find out the reasons behind this
issue.

Figure 5.10: Characteristic features of the diamond SQUID as reported in [46]. (a) R(T )
curves showing a transition temperature at about 3 K which is close to the Tc of the diamond
thin film. (b) I(V ) characteristics of the SQUID with a weak link of 100 nm wide, shows a
hysterical behaviour with Ic = 1 µA. (c and d) Low field oscillations of the critical current as
a function of magnetic field as measured for SQUIDs with weak link widths of 170 and 100 nm
respectively. (e) Histogram of the switching current of a SQUID with a wide weak link of 100
nm wide, and (f) field dependence of the critical current for the same SQUID.

5.3.3.2 SQUID made of single-crystalline boron-doped diamond

In the previous subsection, I have briefly reviewed the only diamond SQUIDs reported
until 2019, which has been fabricated from nanocrystalline boron-doped diamond with
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a bridge-structured weak-link junction. However, based on the function of the single-
crystalline boron-doped diamond Josephson junction with a regrowth step-edge structure
demonstrated in Sec.5.3.2, a SQUID with new structure have been reported in [44]. The
fabricated junction reported in [44] is shown in Fig. 5.11(a), in which the step angle (α) is
the angle between the surface of the substrate and the step which is the parameter forming
the junction. This angle was controlled during the fabrication process by adjusting the
ratio of the thickness of the regrowth undoped layer dUN , and etched step height h. I(V )
curves shown in Fig. 5.11(b) as measured at different temperatures between 1.6 and 3.4 K
exhibit an overdamped type behaviour with Ic of about 52 µA at T = 1.6 K. By increasing
the temperature, the critical current decreases as clearly shown in Fig. 5.11(c). The non-
hysteretic behaviour, and the high critical current of such junction were considered as an
advantage for fabricating high-performance junctions and SQUIDs.

(b) (c)

Figure 5.11: (a) Schematic diagram of cross-section of regrowth-induced step edge structure.
(b) I(V ) curve at different temperatures between 1.6 and 3.4 K. (c) Temperature dependence
of the critical current density and the critical currents in terms of IcRn. Adapted from [44].

Figure 5.12: (a) Schematic diagram of single-crystalline diamond SQUID. (b) SEM image of
the device. (c) Temperature dependence of the resistance, the inset shows the measurements
from 300 K to 2 K. (d) I(V ) curves at temperature between 2.0 K and 4.0 K. (e) Temperature
dependence of the critical current density. (f) V (Φ) characteristics of the fabricated SQUID at
2.6 K. Adapted from [44].
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The transport properties of the fabricated single-crystalline diamond SQUID have been
also reported [44]. The SQUID structure is shown in Fig. 5.12(a), and an overview of
SEM image of a single device is shown in Fig. 5.12(b), in which the structural parameters
have been adjusted to be the same as those for the single junction devise with h = 200
nm, dUN = 230 nm, and dBD = 180 nm, and α = 50, with SQUID loop dimensions of
32 × 32 µm2. Fig. 5.12(c) shows the R(T ) measurements of the SQUID in which Tc is
similar to that obtained for the junction device from which the SQUID consists of. The
reported I(V ) curves are presented in Fig. 5.12(d), and the temperature dependences

of Jc are shown in Fig. 5.12(e). The Jc(T ) was fitted with Jc(T ) ∝ exp(
−dj

ξ′
√

(Tc)

√
T )

with
dj

ξ′
√

(Tc)
= 9.1. The reported V (Φ) curve at 2.6 K presented in Fig.5.12(f) shows

oscillations with an interval of about 0.43 µT, which corresponds to an effective area of
68× 68 µm2, and the peak-to-peak voltage Vp−p ≈ 0.8 µV.

5.3.4 Superconducting micro and nanomechanical diamond
resonators

In General, micro and nano mechanical resonators have attracted enormous attention as
they can be used in several potential applications e.g, they can be used for ultra-sensitive
mass [47, 48, 49], force [50, 51], charge [52, 53] and displacement detection [45, 54]. On the
other hand, such systems allows studying macroscopic quantum phenomena. Regarding
to this perspective, significant progress has been made in the last years by cooling a
nano-mechanical resonator into its ground state [55, 56, 57, 58]. Etaki, et al [45] have
demonstrated that a SQUID made of Niobium (Nb), could be utilised to detect motion of
a 2MHz mechanical resonator. However, with such low frequency, the measured position
resolution was about 133 fm (36 times the quantum limit), which is still far from the
quantum regime.

(a) (b)

Figure 5.13: (a) Scanning electron micro-graph of a diamond resonator with dimensions of
480× 300 nm2. (b) Mechanical resonance at B = 2 T showing a quality factor of 4.0× 104. The
red line is a Lorentzian fit. Adapted from [60].

The fundamental frequency of a mechanical resonator is determined by [59]

f0 = 1.028

√
E

ρ

d

L2
, (5.4)

where E is the Young’s modulus, ρ is the density, and L and d are the length and thickness
of the cantilever respectively. From this point, diamond was chosen as it has the highest
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Youngs modulus. This enables using it for detecting high frequencies approaching 1GHz,
and allowing the system to enter a macroscopic quantum ground state at about 20 mK,
where a single phonon mode is occupied. Thus, superconducting diamond is potentially
a perfect candidate for the realization of nanomechanical resonators with high quality
factors Q0. A study on doubly clamped resonators made from boron-doped diamond
has been reported in [60], where mechanical resonators such that shown in Fig. 5.13
exhibits superconducting properties up to magnetic fields of 3 T, and quality factors as
high as 4.0 × 104 at a resonance frequency of around 10 MHz. Such resonator allows
an implementation into fully superconducting diamond circuits such as diamond SQUIDs
demonstrated in the previous sections.

(d)

Figure 5.14: Measurement setup and SEM pictures of diamond antenna structure. (a) A close
up view of the structure. (b) A top view of entire structure with two central beams containing
two rows with 20 perpendicular cantilevers. (c) The measurement electronics setup used for
actuation and detection of the amplitude and the phase. (d) The amplitude response of the
1.441 GHz mode, including Lorentzian fit indicated by the solid red line, from which the quality
factor of 4380 is extracted. Adapted from [61].

Actuation and detection of GHz range resonance frequencies of nanocrystalline diamond
mechanical resonators have been reported in [61], where transverse vibration modes have
been measured in coupled-beam resonators with frequencies up to 1.441 GHz. The process
used for the fabrication of such resonator is described in [61, 62, 63]. In Fig. 5.14(a)
and (b) fabricated resonators are displayed where the structure contains a central beam
of 21 × 0.4 µm2, with 20 cantilevers of a width of 300 nm ,and a length of 500 nm,
perpendicular to the central beam. The actuation and detection of the amplitude and the
phase of the resonators have been investigated at 40 mK using the setup schematically
shown in Fig. 5.14(c). As shown in Fig. 5.14(d), the highest frequency mode for these
resonators has been reported in [61] with 1.44 GHz, and a quality factor of about 4380.
Although, the cantilevers presented in this context are with high frequency, which makes
them promising in respect of superconducting quantum circuits, they still require further
improvement in terms of their quality factor.
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6 Experimental Investigations:
Junctions, Nanobridges, and
Superconducting Strips

6.1 Fabricated junctions and nanobridges devices

By following the chemical vapor deposition (CVD) process demonstrated in Sec. 5.2,
research partners in the school of physics and astronomy at Cardiff university have grown
and prepared devices made from superconducting nanocrystalline diamond, that I mea-
sured and present in this chapter. These devices are patterned from a 250 nm thick
superconducting nanocrystalline diamond film. The boron doped diamond films were
grown by CVD on seeded silicon wafers with a silica buffer layer of 500 nm. Electron
beam lithography is used then to pattern the films using a deposited thin mask for sub-
sequent highly anisotropic oxygen plasma etching. Finally, titanium-platinum gold was
deposited for the contact pads and the sample was annealed at 750◦ C to enhance ohmic
properties. More details of the fabrication method is presented in the Sec. 5.2.

𝑊 = 105 nm
𝐿 = 128	nm

1A 2A 4A

6A5A 8A

𝑊 = 108 nm
𝐿 = 78	nm

𝑊 = 118 nm
𝐿 = 109	nm

Vacuum gap
6 nm

Vacuum gap
15 nm

Vacuum gap
76 nm

Figure 6.1: An image for the fabricated nanobridges and SIS junctions. All devices have been
patterned from one diamond film. The red circle drawn on the image of device 2A, indicates
superconducting diamond remainings.

As shown in Fig. 6.1, the fabricated junctions are different structures: (i) devices 1A, 2A,
and 5A are with nanobridge structures of widths and lengths, and (ii) devices 4A, 6A,
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and 8A are superconductor-insulator-superconductor (SIS) junctions, where the insulator
in this case is a vacuum gap with widths of 6, 15, and 76 nm respectively. It should be
noted here the following. The small islands appear in the regions around all devices such
that the one indicated by the red circle drawn on the image of device 2A, are diamond
remainings. However, these remainings are all isolated from the regions where the devices
occupy, therefore, should not influence the measurements. All fabricated devices were
integrated in the signal chip shown in Fig. 6.2(a), and (b), which can be then placed
in a suitable sample box such that shown in Fig. 6.2(c), which is specifically designed
to be installed inside the dilution refrigerator used to perform ultra low temperature
measurements.

(a) (b) (c)

Figure 6.2: (a) The chip in which the fabricated devices have been integrated. (b) A close view
of the chip, and (c) the adapter used to install the chip inside the dilution fridge.

6.2 Experimental methods

The devices presented in this thesis have been measured using two cryostats: (i) a physical
property measurement system (PPMS) where the measurements were performed at T =
1.8 K or higher, and (ii) a dilution refrigerator where the measurements were performed at
ultra low temperature down to 10 mK. Two different measurement types were performed:
(i) I(V ) characteristics, and (ii) the differential resistance measurement. To improve
the measurements accuracy, a four-terminal measurement method is used four sensing
electrodes in which, the voltage drop across wires is prevented from being added to the
actual voltage value of the sample. More details about four-terminal measurement method
can be widely found in the literature [1].

6.2.1 Physical property measurement system (PPMS)

A large variety of physical properties can be measured using Physical Property Measure-
ment System (PPMS) which consists of a dewar for thermal isolation, a superconducting
magnet, liquid helium, and power source. The system is incorporated with several auto-
mated controllers for monitoring the temperature, gas flow, magnetic-field, and helium
level. Quantum Design is a popular commercial form for such systems, the conditions of
the experiment can be easily controlled by a software called MultiVu. The quantum de-
sign system used to perform some measurements presented in this thesis can be operated
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in the temperature range between 1.8 and 400 K, and in applied magnetic fields up to 9
T. To perform transport measurements, the targeted sample is mounted inside a chamber
which incorporates a universal 12-pin platform. More details about the working principle
of PPMS can be found in [2].

6.2.2 Dilution refrigerator for ultra-low temperature measurement
system

A 3He/4He dilution refrigerator is a cryogenic device that can provide cooling down to
ultra-low temperature < 10 mK. To reach such temperature, several successive cooling
stages take place. In the first stage, Pulse Tube (PT) technology is used for pre-cooling
which enables the temperature to decrease to < 4.2 K.

Figure 6.3: The interior of BlueFors dilution refrigerator used for the ultra low temperature
measurements.

In the second stage, the temperature of the mixing charmer, which contains a mixture of
3He/4He, decreases to about 2.17 K, and 4He undergoes a phase transition from a normal
fluid into a superfluid. As the superfluid transition temperature decreases by diluting
3He and 4He, the temperature drops below certain critical temperature which is about
870 mK where the third stage starts, at which the mixture undergoes a phase change
with two new phases: (i) a 3He-rich phase (the concentrated phase), and (ii) a 3He-poor
phase with about 6.4 % 3He (the dilute phase). Since the 3He isotope is less massive, the
concentrated phase floats on top of the dilute phase, which makes it easily to evaporate.
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To steady the 3He concentration of the dilute phase, a heat is supplied to the still which
drives 3He atoms to cross the phase boundary. Finally, as the enthalpy of 3He in the
dilute phase is larger than in the concentrated phase, an amount of energy is required to
move 3He atoms from the concentrated to the dilute phase. This energy is taken from a
well isolated environment (the mixing chamber), which results in cooling. The major part
of the measurements presented in this chapter were performed using a Bluefors LD250
dilution refrigeration system shown in Fig. 6.3. With this refrigerator a cooling up to 10
mK can be carried out. Technical details about this system can be found in [3].

6.2.3 Data acquisition setups

Several experimental setups were made using various types of electronic equipment for
acquiring the data presented in this chapter. The setups were supported by codes written
using the graphical language LabVIEW for specifically controlling the equipment, reading
the data they measure, and recording them in sufficient files. The first setup was used
alongside the PPMS, while the others were used for the measurements performed with
the BlueFors dilution refrigerator.

6.2.3.1 I(V ) characteristics setups

The I(V ) curves have been measured by using the PPMS, and the dilution refrigerator
cryostats. For the measurements associated with the PPMS, where the temperature
and the magnetic field dependence of the I(V ) characteristics at 1.85 < T < 4 K were
performed, the experimental setup uses the equipment shown in Fig. 6.4.

Signal generator:
Agilent 33220A

Voltmeter:
Agilent 34460A

1.75M𝛀
𝐕#𝐕$𝐈$𝐈#

Quantum 
Design PPMS

PC

Amplifier

Figure 6.4: A schematic diagram of the experimental setup with which I(V ) characteristics were
measured at different temperatures and magnetic fields. The setup uses the labeled electronic
equipment and Quantum Design PPMS.
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In this setup a signal generator (Agilent 33220A) was used in a triangle ramping mode to
generate a dc current by connecting it to a load resistor of about 1.75 MΩ, the resulting
dc current is then sent to the terminal I+ of the device to be measured. The response
of the device from the terminals V+ and V− are amplified using an amplifier with a 500
gain. After amplifying the voltage, a voltmeter (Agilent 34460A) was used to record it.

𝐈" 𝐈# 𝐕# 𝐕"

Thermometer

Current source (II)
Keithley 220

PC

Dilution fridge
Bluefors LD250 

RF filter

Voltmeter: (Agilent 34460A)

Heater

AVS-47B Resistance Bridge

Current source (I) 
Keithley 220

G10 Plate

Figure 6.5: A schematic diagram of the experimental setup with which the temperature depen-
dence of I(V ) characteristics were measured using the Bluefors dilution fridge. The setup was
developed to measure and control the temperature using a high accurate thermometry system (
AVS-47B Resistance Bridge, and low temperature thermometer) accompanied with temperature
control system consisting of a thermal insulator (G10 plate), an additional current source that
controls the power of a heater via PID control algorithms provided with LabVIEW software.

For the measurements associated with the Bluefors dilution fridge, where the temperature
dependence of the I(V ) characteristics were measured using the experimental setup shown
in Fig. 6.5. In this setup, a current source (Keithley 220) is used as bias, and a voltmeter
(Agilent 34460A) was used to record it. To enable measuring the temperature dependence
of I(V ) characteristics, an AVS-47B Resistance Bridge was used as thermometry at low
and ultra low temperatures. The AVS Bridge is connected with a thermometer attached
to the mixing chamber plate of the fridge. The temperature was controlled using a heater
made of a simple copper coil, and connected to the second current source (Keithley 220)
shown in the figure. A thermal insulator (G10 plate) was placed between the heater and
the mixing charmer plate on which the sample box and the fabricated RF filter (see Ch.
4) are placed. A thermal insulator (G10 plate) was placed between the heater and the
mixing charmer plate on which the sample box and the fabricated RF filter (see Ch. 4) are
placed. As the passing current through the heater increases, the temperature increases,
which in other words means that temperature can be stabilized at a specific value of the
heater current fed by Keithley 220. However, during the measurements, a technical issue
in keeping temperature constant arises due to the bias current passes through the device to
be measured. As the bias current Ib is the one which appears in the I(V ) characteristics,
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it must be swept during the measurements. Increasing Ib results in a thermal energy
which finally changes the temperature depending on the length, width, and thickness of
the device. Such a problem1 was solved using a proportional integral derivative controller
(PID controller) where the feedback of the thermometer acquired by the AVS bridge is
used to adjust the output of the second current source that feeds the heater. The PID
control algorithms used for this setup is the one developed by National Instruments (NI)
which provides them as a part of LabVIEW software.

6.2.3.2 Differential resistance measurement setup

For differential resistance measurements, a lock-in amplifier is used as it can detect very
small ac signals down to a few nanovolts. Lock-in amplifiers use a technique known as
phase sensitive detection to single out the component of the signal at a specific reference
frequency. Specifically, when an ac signal with frequency f1 is multiplied by another one
with frequency f2, and integrated over a time much longer than the period of the two
signals, the result is: either (i) zero if f1 6= f1, or (ii) half of the product of the amplitudes
of the two signals if f1 = f1 and the two signals are in phase.

𝐈" 𝐈# 𝐕# 𝐕"

Thermometer

SG (Agilent 33220A)

Current source (II)
Keithley 220

PC

Dilution fridge
Bluefors LD250 

RF filter

Voltmeter: (Agilent 34460A)

Heater

Lock-in amplifier (SR860) 

AVS-47B Resistance Bridge

1M𝛀

Current source (I) 
Keithley 220

G10 Plate

Figure 6.6: A schematic diagram of the experimental setup with which the temperature de-
pendence of (dV/dI) were performed. The temperature is measured and controlled using an
AVS- bridge, thermometer, G10 plate, heater, and PID control in the similar way followed in
the setup shown in Fig. 6.5.

As a lock-in amplifier performs a multiplication of its input with a reference signal, and
then applies an adjustable low-pass filter to the result, noise signals in the input terminal
of the lock-in with frequencies other than the reference frequency are rejected and do not

1This problem emerges for devices with high critical currents, particularly for the device 8A. The problem
was solved using the PID control as shown in Fig. 6.
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affect the measurement. More details about principles and the state of the art of lock-in
detection can be found in [4]. In the experimental setup shown in Fig. 6.6, the signal
generator (Agilent 33220A) was employed2 as an external reference for the used lock-in
amplifier (SR860). A dc current source (Keithley 220) is used to output a dc current Idc,
and a small ac modulation current Iac is combined by connecting a 1 MΩ resistor with
the SG. This experimental setup can be used as a hybrid technique system, as it reduces
to dc-measurements setup by turning off the SG. To enable measuring the temperature
dependence of (dV/dI). The same equipment that measure and control the temperature
in the setup shown in Fig. 6.5, were used here for performing the temperature dependence
of (dV/dI) measurements.

6.3 Nanobridges measurements

The measurements presented in this section are those performed on the nanobridges de-
vices: 1A, 2A, and 5A, where I(V ) characteristics and the differential resistance measure-
ments (dV/dI) are reported.

Device 5A

First, I(V ) curves for device 5A (shown in Fig. 6.1) with bridge dimensions of L = 118 nm
and W = 109 nm, were measured at various temperatures and magnetic fields using the
experimental setup integrated with the PPMS which is schematically shown in Fig. 6.4,
by which the I(V ) curves were measured in the absence of magnetic field at temperatures
between 1.85 K and 4.0 K. Selected results for the I(V ) curves are shown in Fig. 6.7(a),
and the critical currents Ic were extracted from all I(V ) curves measured between 1.85
K and 4.0 K. The critical current can be extracted from the dV/dI curve that can be
measured by the look-in technique, or obtained by numerical differentiation of the I(V )
curve. Where, the Ic value occurs at the maxima of the dV/dI curve, at which dV/dI = 0.
The critical current dependence on temperature Ic(T ) is plotted in Fig. 6.7(b), from which
the critical temperature (Tc) can be obviously obtained with Tc ≈ 3.4 K, at which the
critical current drops to zero.

In Sec. 5.3.2, a study on the temperature dependence of the critical current for SNS
weak-link junctions made of diamond was discussed in light of Likharev’s theory [5, 6],
where the Ic(T ) of a weak link with bridge of L � ξ was fitted to a function with an
exponential-like behavior, exp(−Leff/ξn) that reduced from Eqs. 5.1 and 5.2. As the
temperature dependence of the critical current has been fitted [7] to Likharev’s theory of
SNS weak-link junctions described by these equations. The fit shows the signature of the
proximity effect in SNS junctions [8], which agrees with experimental results for a device
with a non-superconducting layer thickness with L ≈ 15.7ξn(T ), at which the normalized
critical current density exhibits an exponential-like behaviour.
Following the superconducting diamond properties discussed in Sec. 5.3.1, where ξGL = 15

2In principle, the reference signal can generated by the lock-in amplifier (SR860) used in the experimental
setup. However, due to technical issues, a separate signal generator was employed as an external
reference.
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nm, and taking into consideration that the ratio L/ξGL is about 8 for the device 5A, the
critical current dependence on temperature can be examined for this device in terms of an
exp(−L/ξn) function as the term, L� ξ for this device. Since ξn(T ) ∝ 1/

√
T as given in

Eq. 5.2, the critical current dependence on temperature becomes: Ic(T ) ∝ exp(−L
√
T ).

Accordingly, Ic(T ) was fitted to later function, and the result is shown in Fig. 6.7(c) in
which Ic(T ) fits to exp(−L

√
T ) function when 1.85 < T < 2.5 K.
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Figure 6.7: (a) Representative I(V ) characteristics of device 5A with bridge dimensions of
L = 118 nm and W = 109 nm as measured at different temperature. (b) The critical currents
of the device as extracted from the I(V ) characteristic measured at temperature between 1.85
and 3.6 K. (c) The critical superconducting current Ic dependence on

√
T is plotted and fitted

in terms of Likharev’s theory of SNS junctions.

The I(V ) curves have been also measured at T = 1.85 K and various values of magnetic
fields between zero and 1 T. Selected results of the measured I(V ) curves dependence on
the field are shown in Fig. 6.8(a), and the result of critical currents Ic(B) as extracted
from all measured curves is shown in Fig. 6.8(b).
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Figure 6.8: (a) Representative I(V ) characteristic of device 5A as measured at different mag-
netic fields. (b) The critical currents of the device as extracted from the I(V ) characteristics
measured at T = 1.85 K, and different values of magnetic field between zero and 0.2 T. The RF
filters were not used to attenuate the noise associated with these measurements.

As consequence of the later figure, Ic(B) behaviour is quite noisy, and it unlikely emerges
from the Fraunhofer pattern described by Eq. 3.46 which is plotted in Fig. 3.9(b). The
discrepancy between the experimental data and the Fraunhofer pattern may be due to:
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6 Experimental Investigations: Junctions, Nanobridges, and Superconducting Strips

(i) the device 5A is not a typical Josephson junction as the coherence length ξ is much
shorter than the length of the bridge L, or/and (ii) the influence of the RF or/and thermal
noise on the measurements.

Other measurements for I(V ) characterises were performed at ultra-low temperature using
the BlueFors dilution refrigerator. The results of these measurements are shown in Fig.
6.9(a). The temperature of the sample were roughly controlled up to 700 mK using the
temperature control system incorporated with the BlueFors refrigerator. For comparison,
the measurements are plotted together with those measured using the PPMS at 1.85 <
T < 4.0 K. This is shown in Fig. 6.9(b). It’s quite obvious from the I(V ) that the ultra
low temperature measurements are with much less noise. This probably due to the RF
noise associated with PPMS measurements, which is not filtered out by the powder filter
used in all measurements performed with the dilution refrigerator.
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Figure 6.9: (a) Representative I(V ) characteristics measured at ultra-low temperature. (b) A
comparison between the measurements performed at ultra low temperature and those performed
using the PPMS at T > 1.85 K.

Differential resistance (dV/dI) measurements were performed at T ≈ 20 mK using the
setup shown in Fig. 6.6, in which an ac drive current is generated by the signal generator
in the root mean square voltage (Vrms) mode to allow the lock-in to acquire the response
of a dc coupling signal (i.e., a signal of ac and dc offset). The reference frequency of the
lock-in amplifier and the frequency of the signal generator are both set at 17 Hz. The
amplitude of the output signal generator was selected between 10 and 150 mV as given in
the legend shown in Fig. 6.10. This allows to obtain the ac current passing through the
terminals I+ and I− using Iac = Vrms

RLoad
, where RLoad is the load resistor shown in Fig. 6.6

which is about 1 MΩ. Thus, Iac varies between 10 nA when Vrms = 10 mV, and 150 nA
when Vrms = 150 mV3. The normalised differential resistance (dV/dI) can be obtained
from the Vrms measured by the lock-in amplifier, and the Iac current given earlier. Thus,
the normalised differential resistance is given by dV

dI
= Vrms

Iac
. This expression is applied on

the non-normalised differential resistance measurements given in Fig. 6.10(a) to obtain

3Since the lock-in was set to acquire the response Vrms, and the output signal generator was also set in
the Vrms mode, one should distinguish here between the Vrms measured by the lock-in, and the one
generated by signal generator.
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the normalised ones given in Fig. 6.10(b). Both Vrms and dV/dI shown in the figure
have been potted versus the dc voltage measured by the voltmeter (Agilent 34460A). The
reading of the voltmeter at the peak of the dV/dI curve reflects the superconducting gap,
(∆(T ≈ 20 mK). For device 5A, the dV/dI curve shown in Fig. 6.10 gives ∆(T ≈ 20
mK)= 2 meV. However, this gap slightly decreases as the drive current Iac increases,
which can be considered as a background noise that can significantly or slightly influences
the measurements depending on Iac amplitude.
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Figure 6.10: (a) Non-normalised , and (b) normalised differential resistance measurements of
device 5A at T ≈ 20 mK. The dV/dI measurements have been performed at various the signal
generator amplitudes between 10 and 150 meV. The normalised dV/dI measurements show that
the superconducting gap, ∆(T ≈ 20 mK), of the device is about 2 meV.

Device 2A

The I(V ) curves of device 2A where the bridge dimensions are: W = 108 nm, and
L = 78 nm, were measured at different temperatures between 20 and 700 mK. Selected
measurements shown in Fig. 6.11(a) which elucidates that increasing temperature up to
700 mK can slightly impact the I(V ) characteristic by a slight decrease in the critical
current Ic. As the length of the weak link of device 2A is about eleven times of the
reported coherence length, the sinusoidal current phase relationship given by Eq. 3.11 is
far from matching the structure of the device. A structure with an arbitrary geometry
has been described by Gor’kov, Eilenberger via what called quasiparticle theory discussed
in Sec. 3.2.3.5. Thus, the Usadel equations may be numerically solved to provide an
accurate current phase relationship for devices with L� ξ0 such that given in Fig. 3.7.

A feature that can observed in the I(V ) curves of this device is highlighted in Fig. 6.11(b),
where notable resistive steps in the transition region around Ic occur. As discussed in Sec.
2.5.1, such steps may be interpreted by propagating vortices and antivortices which are
created on the edges of the sample, and overlap then at the center of the bridge where they
annihilate, which finally results in phase slip lines (PSLs) with order parameter |ψ|2 ≈ 0.
Such PSLs are discussed in some details in Sec. 2.5, using simulations on the basis of
the time dependent Ginzburg Landau theory, shown in panels 4 and 7 of Fig. 2.7(c), and
panel 4 of Fig. 2.8. Earlier experimental investigations that show such effect are discussed

99



6 Experimental Investigations: Junctions, Nanobridges, and Superconducting Strips

in Sec. 2.5.2, where the steps shown in Fig. 2.9, have been attributed to PSLs described
by Ginzburg Landau theory.
As all devices are made of the boron-doped nanocrystalline diamond (BNCD), the gran-
ularity associated with devices can have a significant impact on the I(V ) characteristics
as it can lead to further phase slip events due to the instantaneous phase ϕij of the wave
functions ψij tunnel through grain boundaries indicated by i and j. Such effect requires a
further analysis in terms of the disordered superconductor films consisting of mesoscopic
superconducting grains that can be considered as arrays of Josephson junctions which are
briefly overviewed in Sec. 3.5.
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Figure 6.11: (a) Representative I(V ) characteristic of device 2A as measured at ultra-low
temperature. (b) A close window for the resistive steps occur in the I(V ) curve in the transition
region around Ic.

Following the same procedure used to measure normalised differential resistance (dV/dI)
of device 5A, the differential resistance of device 2A was measured with reference frequency
of 17 Hz, the amplitude of the output signal generator set between 10 and 500 mV, i.e.,
Iac varies between 10 nA when Vrms = 10 mV and 500 nA.
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Figure 6.12: (a) The normalised differential resistance measurements of device 2A as plotted
against the dc voltage of the device. (b) The corresponding differential resistance against the dc
bias current, and (c) the corresponding I(V ) curves which are influenced by the ac current drive.
The dV/dI measurements have been performed at various amplitude of the signal generator (in
Vrms mode) between 10 and 500 meV, and show that the superconducting gap, ∆(T ≈ 20 mK)
of the device, is about 1.8 meV.
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Normalised dV/dI curves as measured against the dc voltage of the device are in shown
in Fig. 6.12(a), and the corresponding curves obtained against the dc bias current are
shown in Fig. 6.12(b). The corresponding I(V ) curves have been also extracted from the
later two figures and plotted in Fig. 6.12(c), in which the influence of the ac current drive
on the I(V ) curves is observed. As the peak of the dV/dI curve reflects the superconding
gap ∆, the dV/dI curve shown in Fig. 6.12(a) gives ∆(T ≈ 20 mK)= 1.8 meV.

Device 1A

The I(V ) characteristics of device 1A, where the bridge dimensions are: W = 105 nm,
and L = 128 nm, were measured at temperature between 20 and 700 mK. The selected
measurements given in Fig. 6.13(a), show how the critical current Ic slightly decreases
with increasing the temperature. Normalised dV/dI curves as measured against the dc
voltage of the device are in shown in Fig. 6.13(c), and the corresponding curves obtained
against the dc bias current, are shown in Fig. 6.13(d). The corresponding I(V ) curves
have been also extracted from the later two figures and plotted in Fig. 6.13(e), where the
influence of the ac current drive on the I(V ) curves can be observed. The peak of the
dV/dI curve shown in Fig. 6.13(c) gives the superconding gap ∆(T ≈ 20 mK) is about
1.9 meV.
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Figure 6.13: (a) Representative I(V ) characteristics of device 1A as measured at ultra-low
temperature. (b) A close window for the I(V ) curve in the transition region around Ic. (c)
The normalised differential resistance measurements of the device as plotted against the device
voltage. (d) The corresponding differential resistance against the dc bias current, and (e) the
corresponding I(V ) curves which influenced by ac current drive. The dV/dI measurements have
been performed at various amplitude of the signal generator (in Vrms mode) between 10 and 500
meV, and show that the superconducting gap of the device is about 1.9 meV.
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Comparison

In Fig. 6.14(a), the I(V ) curves measured for the three nanobridge devices at T = 20
mK are plotted together, and the critical current value of each device is plotted against
it’s geometry A/L in Fig. 6.14(b) in which A is the cross-sectional area of the device
bridge, and L is it’s length. The results given in Fig. 6.14(b), disagrees with Eq. 3.12
that describes the critical current of a typical Josephson junction where Ic = e∗~

2m∗
|Ψ0|2AL .

This disagreement is probably due the reasons demonstrated earlier, which are: (i) Eq.
3.12 is a spacial case that analytically obtained from Ginzburg Landau equation where L
is comparable to ξ0, such condition does not satisfy the geometry of all measured devices
with L� ξ0, (ii) the granularity of the device results in disorder effect, which may cause
a further discrepancy with the typical Josephson junction behaviour, and (iii) vortices
kinematics may influence the I(V ) curves as indicated in the resistive transition region
around Ic in the I(V ) curve measured for device 2A.
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Figure 6.14: (a) Representative I(V ) characteristics of the three devices, 1A, 2A, and 5A, mea-
sured at ultra-low temperature. (b) The critical current Ic of each device against it’s geometry
A/L.

6.4 SIS Junctions measurements

The measurements presented in this section are those performed on the SIS Junctions,
devices: 4A, 6A, and 8A shown in Fig. 6.1, where I(V ) characteristics and the differential
resistance measurements (dV/dI) are reported.
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Device 4A

As shown in Fig. 6.1, device 4A is with an insulator weak link with a vacuum gap of a 6
nm width. With such small value for the vacuum gap (W < ξ0), the device is expected to
behave as a typical SIS Josephson junction. Although such structure is extremely difficult
to be fabricated, it has been accidentally performed.

A load of measurements have been performed for the device at about 20 mK, mean-
while, the device slowly died. In Fig. 6.15(a), only one of the I(V ) curves measured
at temperature of about 20 mK is presented. As the vacuum gap of the device is short
enough relative to the coherence length of diamond, where the sinusoidal current phase
relationship given by Eq. 3.11, is perfect for such case, a fit to the RCSJ model is quite
appropriate. In Fig. 6.15(b), the I(V ) curve is analysed in terms of the RCSJ model
with the following parameters: R = 5100 Ω, Ic = 1.72 µA, current noise IN = 0.05I0, and
C = 10 pF. As the junction capacitance and/or the resistance are large, the screening

parameter, βc = 2πI0R2C
Φ0

� 1, which implies that the junction is underdamped. Thus,
I(V ) curve shown in Fig. 6.15(a), exhibits a hysteresis loop.
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Figure 6.15: (a) An I(V ) curve of the device 4A with an insulator weak link of a 6 nm vacuum
gap width. The measurement was performed at ultra-low temperature at about 20 mK. (b)
The I(V ) curve as analysed in terms of the RCSJ model with fitting parameters: R = 5100 Ω,
Ic = 172 µA, current noise IN = 0.051I0, and C = 10 pF.

Device 6A

As shown in Fig. 6.16, device 6A with a vacuum gap of about 15 nm was investigated
by measuring I(V ) characterises, and differential resistance at different amplitudes of ac
current drive. In contrast to the previous behaviour exhibited for device 4A, device 6A
shows a linear I(V ) characterises when the signal generator is turned off (dc measure-
ments). However, when an ac current drive (with frequency of about 17 Hz) is applied, the
I(V ) characterises becomes entirely nonlinear. Furthermore, the critical current depends
strongly on the amplitude of the applied ac current. Such behaviour is not understood,
and requires further investigations.
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Figure 6.16: (a) I(V ) characteristics of device 6A of a 15 nm vacuum gap as measured at
different ac-current amplitudes. When the signal generator is turned off (dc measurement), the
measurements show a linear I(V ) curve, while the I(V ) characteristics become nonlinear when an
ac current drive is applied. (b) and (c) The corresponding differential resistance measurements.

Device 8A

Interesting results were observed for device 8A with a 76 nm vacuum gap. Fig. 6.17
shows the temperature dependence of I(V ) characteristics, and differential resistance
measurements performed using the experimental setups schematically illustrated in Figs.
6.5, and 6.6 respectively. As shown in the figure, the bias current for device 8A reaches
120 µA. As a thermal energy is generated when the bias current passes through the device,
a high bias current causes a technical issue in keeping the temperature constant during
the measurement. As demonstrated earlier in Sec. 6.2.3.1, this problem was solved using
a PID controller where the feedback of the thermometer acquired by the AVS bridge is
used to adjust the output of the second current source that feeds the heater. A result
which examines the function of the PID controller codes, is shown in Fig. 6.17 (b),
where the the PID controller was successfully used to keep the temperature constant at
T = 2 K during the time period in which the bias current was increased from zero to 120
µA. Measurements for temperature dependence of I(V ) characterises were performed at
0.25 < T < 4.0 K, and shown in Fig. 6.17(a). The corresponding unnormalised differential
resistance measurements in terms of the dc voltage and dc current, were also performed
using the experimental setup schematically illustrated in Fig. 6.6. The later measurements
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are shown in Fig. 6.17 (c) and Fig. 6.17(d) respectively. The critical currents Ic were
extracted from the I(V ) curves, or from corresponding differential resistance measured at
different temperatures. The result of Ic(T ) is shown in Fig. 6.17(e) in which the critical
temperature Tc ≈ 3.8 K.
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Figure 6.17: (a) I(V ) characteristics of device 6A of 76 nm vacuum gap as measured at
different temperatures. (b) A selected measurement for T − I curve (red line) which shows
how temperature was successfully kept constant using the PID controller during the I(V ) curve
measurement (blue line). (c) and (d) The corresponding differential resistance measurements
in terms of the dc voltage and dc current respectively. (e) The temperature dependence of the
critical current for the device (dots) as fitted in terms of Ambegaokar and Baratoff formula given
by Eq. 3.48.

In Sec. 3.3.3, a study on the temperature dependence of the critical current for SIS
junctions, was discussed in light of Ambegaokar and Baratoff formula [9, 10], where the
I(V ) characteristics of SIS junctions, was described by the expression given in Eq. 3.47,
and the critical current Ic(T ) is given by Ambegaokar and Baratoff formula [9] given by
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Eq. 3.48. The experimental results of Ic(T ) were fitted according to this equation in which
∆2(T ) ≈ ∆1(T ) = ∆(T ), the gap ∆(T ) is given by Eq. 2.67 where ∆(T ) = A11.764kBTc
when T < 1.2, and by Eq. 2.69 where ∆(T ) = A23.064kBTc

√
1− T/Tc when T > 1.2,

where A1 and A2 are selected fitting parameters. The fit is plotted together with extracted
critical currents in Fig. 6.17(e) in which the fitting parameters A1 and A2 are 2.086 and
1.47 respectively, and Gn = 1/Rn, with Rn = 27 Ω.
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Figure 6.18: (a) A close view with a small window for the region around I = 20 A of the
I(V ) curves of device 8A given in Fig. 6.17(a) in which another transtion (Ic1) occurs. (b)
Temperature dependence of Ic1 as obtained from the I(V ) curves.

Another interesting transition in the I(V ) curve was observed for this device at about
I = 20 A and T = 250 K. This transition which indicated by Ic1 was not observed
in the I(V ) curves shown in Fig. 6.17(a) due to the large scale of the full I(V ) curve
relative to the small window around Ic1 in which such transition can be observed. The
small window of the region around I = 20 A of the I(V ) curves given in Fig. 6.17(a)
is shown in Fig. 6.18(a) in which Ic1 transition is quite obvious. The figure shows a
decrease in the transition current Ic1 as the temperature increases up to T = 1.6 K
at which such transition disappears. Temperature dependence of Ic1 is obtained from
the I(V ) curves, and plotted in Fig. 6.18(b). The Ic1 transition may be described by
Ambegaokar and Baratoff formula, from which the I(V ) curve can be obtained as that
shown in Fig. 3.10(b), where two transitions in the I(V ) curve appear. The transition
Ic1(T ) was fitted according to this equation Eq. 3.48. In which, where the gab ∆(T )
for this transition is: ∆(T ) = B11.764kBTc when T < 1.0, and by Eq. 2.69 where
∆(T ) = B23.064kBTc

√
1− T/Tc when T > 1.0, where fitting parameters B1 and B2 are

1.50, and 1.52 respectively. The fit is plotted together with extracted critical currents in
Fig. 6.18(b), in which Gn = 1/Rn, with Rn = 27 Ω, and Tc1 = 1.55 K.

6.5 Future work

So far, measurements for three nanobridge devices, and other three SIS junctions with
vacuum gaps, have been performed. For a clearer picture about the properties of these
devices discussed in terms of the theoretical background reviewed in the earlier chapters
of this thesis, other temperature and magnetic field dependence measurements will be
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performed on the devices shown in Fig. 6.19. The variety of these devices structures
should allows testing the reproducibility of the earlier measurements which pave the way
toward diamond SQUIDs, and finally allow implementing a micro or nano mechanical
resonator in such SQUID loops. The future measurements will also examine the validity
of theoretical interpretations of the devices behaviour discussed in Sec.5.3.2 and Sec. 5.3.3,
as well as, will investigate features, such that shows resistive steps which occur around
the transition region in the I(V ) curve of device 2A. Such feature can be interesting in
terms of quantum phase slip junctions.
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Figure 6.19: (top left) The chip in which devices with new structures have been integrated,
and (top right) a closer view of the chip. (bottom) The new devices which are intended to be
measured in the future.

6.6 Superconducting strips measurements

Other interesting superconducting devices made of boron doped nanocrystalline diamond
(BNCD) can be developed on the basis of transport properties of superconducting strips.
In general, such properties can be attributed to: (i) the formation of phase slip lines caused
by kinematic vortices discussed in Sec. 2.5, (ii) LAMH theory & SBT model discussed
in Sec. 2.4.1, and 2.4.2 respectively, and (iii) granular effect that can be modelled as
an array of Josephson junctions such that briefly discussed in Sec. 3.5. This section is
specified for experimental investigations of the superconducting strips with the structures
given in table. 6.1. I(V ) characteristics, and R(T ) curves were measured for all these
strips and discussed in terms of kinematic vortices, LAMH theory, and SBT model.
The strips were grown on a 100 silicon substrate with a 500 nm thick SiO2 buffer layer.
Nanodiamond particles of 5 nm diameter have been used as seeds in the MPCVD growth
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process. Finally, the devices were prepared by standard top down optical photolithography
processing and oxygen plasma etching through a metal mask.
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Figure 6.20: (a) I(V ) characteristic of superconducting strips with lengths, widths, and thick-
ens given in the table. 6.1. (b), (d), (f), (h) and (j) are close views for (a), (c), (e), (g), and (i)
around transition regions respectively.

The I(V ) curves shown in Fig. 6.20, were measured in the dilution fridge at ultra low
temperatures between 20 and 500 mK. The transport properties show obvious hystereses
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with finite discrete voltage steps in the transition regions around critical currents. An
interpretation for these steps can be presented by phase slip lines entering the strips from
the edges and overlapping in the middle of these strips. Such interpretation was sup-
ported by numerical simulations of the time-dependent Ginzburg Landau (TDGL) theory
discussed in Sec. 2.5 and shown in Figs. 2.7 and 2.8. According to those calculations,
an increase in the applied current results in a larger nucleation rate of vortex-antivortex
pairs, and causes a finite transition in the I(V ) curves. A further increase causes a new
transition in the I(V ) curve, which finally leads to the multiple discrete voltage steps in
the resistive arm of the I(V ) curves such that previously measured for the strips given in
table. 6.1. Previous experimental work, by which the I(V ) curves have been measured
are shown in Fig. 2.9.

Sample name Thickness(nm) Width(µm) Length(mm)

1160404BK 329 10 1
1160404BM 329 5 1
1160404BN 329 2 1
160331M 141 5 1
160331N 141 2 1

Table 6.1: The structures of the measured superconducting strips.

Fig. 6.21(a) presents the I(V ) properties of each stripe, with 10 and 5 or 2 µm width,
329 or 141 nm thickness, and 1 mm length. The change in the number successive resistive
domains when the width and thickness changes, can be linked to the thermal effects
which depends on the cross-sectional area of the stripe. Furthermore, this change can be
quantitatively interpreted using the TDGL equations which describe the oscillations of the
order parameter propagating in form of waves across the stripe which has been denoted
by kinematic vortices. Thus, further calculations are still needed to fully map out the
influence of the stripe geometry on the transport properties of the strips. Computationally,
for a long stripe (1 mm length) such calculations can be challenging as the stripe must
be divided into grids with size of the coherence length of the superconducting diamond
which is about 10 nm. More details about numerical solution of TDGL equations have
been demonstrated in Sec. 2.2.4.
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Figure 6.21: The dependence of I(V ) characteristics of strips of 1 mm length on their widths,
and thickens.

Temperature dependence of the strips resistance, R(T ) curves, were measured, and the
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results are shown in Fig. 6.22. For all strips, the R(T ) curves show spikes in the super-
conducting regions, where the temperature is below the critical temperature. The well
observed spikes appear in the R(T ) curves measurements do not constantly occur at same
point in the R(T ) curves [apart from the result obtained for the stripe (160404N) shown
in Fig 6.22(f)].
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Figure 6.22: (a) R(T ) curves of superconducting strips with lengths, widths, and thickens given
in the table. 6.1. (b), (d), (f), (h) and (j), are close views for (a), (c), (e), (g), and (i) for the
regions in which T < Tc respectively.
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The instability of these spikes can be attributed to the rapid motion of vortices and
antivortices which nucleate at the opposite outer boundaries and move toward the middle
of the sample where they annihilate. Such rapid motion causes instantaneous hot spots
in the strips where the order parameter (|ψ|2 ≈ 0) which finally appears as spikes occur
in the R(T ) curves. In other words, the time evolution of the hot spots existence may
explain the instability of the spikes as they shift their positions in the R(T ) curve by
remeasuring it. Regarding to the peak occurs around 2.5 K of the R(T ) curve measured
for the stripe (160404N), and shown in Fig. 6.22(f), that is stable by changing the bias
voltage, may be explained by assuming that the speed of vortices and antivortices move
across the stripe is relatively low compare to other strips. With such assumption the
nucleation of vortices and antivortices in an equilibrium situation for longer period of
time which leads in average to a stable spike in the R(T ) curve. However, calculations on
the biases of the TDGL theory are required to confirm this assumption.
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Figure 6.23: (a) The R(T ) curves in the vicinity of the transition regions, with T < Tc, and the
performed fittings as obtained on the basis of thermally activated phase slips (TPS) extended
from LAMH theory.

R(T ) curves can be analysed in terms of LAMH theory dissussed in Sec. 2.4.1, where the
order parameter fluctuates to zero at certain points along long and thin superconducting
wire. This allows the phase to slip by 2π, which results in resistive steps around transition
regions of the I(V ) curves. Within this frame, the temperature dependence of the wire
resistance is described by Eq. 2.79, which also has been modified to estimate the contri-
bution of thermally activated phase slips (TPS) by Eqs. 2.80 and 2.81. These equations
have been used to fit the R(T ) curves given in Fig. 6.22. The fittings have been per-
formed in the vicinity of the transition regions, with T < Tc. The fitting lines are shown
in Fig. 6.23, in which, an obvious discrepancy between the R(T ) measurements and these
lines obtained in terms of LAMH theory can be observed. This can be an indication that
LAMH theory is not sufficient to interpret the transport properties of the strips described
in table. 6.1. In Fact, LAMH theory is more appropriate for a wire that is nearly a typical
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1D system. As such system does not precisely apply on the measured strips, a further
consideration is presented here using SBT model dissuaded in Sec. 2.4.2. SBT model was
extended for wider superconducting wires, or quasi 1D systems, in which, a small and
nonzero voltage is generated at the edges of the wire due to thermal fluctuations and/or
quasiparticle diffusion. Thus, the phase increases until instantaneously slips by 2π. As
consequence of phase-slip centres (PSCs) that considered as a source for dissipation and
fluctuations. The extrapolation for slopes of the linear part following the resistive steps
occur around the transition region in the I(V ) curve of the strips and described by Eq.
2.82, converge to a nonzero current Is at zero voltage. For the measured strips described
in table. 6.1, the extrapolation for slopes of the linear part following the resistive steps
occur of the I(V ) curves, are obtained and shown in Fig. 6.24.
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Figure 6.24: The extrapolation for slopes of the linear part extended from the resistive steps
occur in the I(V ) curves of the measured strips. The thickness (d), and the width (W ) of the
strips are labelled in the legend.

The I(V ) curves show single intercept, with I0 = 7.92, 10.19, 0.68, and 0.63 µA for the
strips respectively labelled by (b), (c), (d), and (e) given in Fig. 6.24, and two intercepts
I0= 3.64, and I1= 31.68 µA for the strip labelled by (a). As the strips (a), (b) and (c) are
all have same thickness, the variation in the interception points that is observed for the
strip (a), and the strips (b) and (c) on the other side, is probably because of the width of
the strip (a) which is two times larger than the width of strip (b), and five times larger
than the width of stripe (b). The impact of the width in this case can be due to the
superconducting grains. As a granular system can be quantitatively considered as array
of Josephson junctions, where phase slip events can be created as briefly discussed in Sec.
3.5. The phase slip events emerged due the superconducting grains may lead to resistive
steps such that appear in the I(V ) curves measured for the strips described in table. 6.1.
Overall, the resistive steps observed around transition regions of the I(V ) curves, could
be due to a collective effect described by kinematic vortices, thermal fluctuations and/or
quasiparticles diffusion (SBT model), and the granular effect of the superconducting di-
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amond films from which the strips have been made. Computationally, for wide and long
strips relative to the coherence lengths such these presented in this section, performing
such comprehensive model that involves all these effects, is challenging.
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7 Cantilevers Implemented in a dc.
SQUID

Based on the superconducting quantum interference device (SQUID) equations described
by the resistively- and capacitively-shunted junction model coupled to the equation of
motion of a damped harmonic oscillator, simulations to quantitatively describe the inter-
action between a dc SQUID and an integrated doubly clamped cantilever were performed.
To investigate an existing experimental configuration and the motion of the cantilever
and the reaction of the SQUID as a function of the voltage-flux V (Φ) characteristics were
explored. With these simulations the Lorentz force back-action interaction was clearly ob-
served, and how a sharp transition state drives the system into a nonlinear-like regime, and
modulates the cantilever displacement amplitude, simply by tuning the SQUID parame-
ters have been demonstrated. The Simulations presented in this chapter were published
in Journal of Applied Physics [1].

7.1 SQUID-suspended cantilever system: introduction
and an earlier experiment

Theoretical and experimental studies [2, 3, 4, 5, 6, 7, 8] of linear and nonlinear micro and
nanomechanical resonators are of great interest as they can be used for sensitive force and
displacement measurements. The physical parameters of the resonators can also be tuned
to observe the transition from the classical to quantum regimes with relative experimental
ease, enabling observations of macroscopic quantum systems[9]. Significant experimental
progress in the detection of resonators as they enter the quantum ground state has been
achieved by capacitive coupling to superconducting flux qubits[10], and quantum state
control of a mechanical drum resonator in a superconducting resonant circuit has been
achieved by phonon-photon coupling [11, 12]. The state detection is an integral part of
any coupled resonator system as the coupling mechanism is implicit in any experimental
endeavour.
Previous experiments have used a dc SQUID to detect the motion of a suspended doubly
clamped cantilever integrated directly into a SQUID loop [2, 13], and for a torsional
SQUID cantilever [14]. A suspended doubly clamped cantilever integrated directly into a
SQUID loop as experimentally demonstrated by Etaki et al [2], is shown in Fig. 7.1, where
the cantilever displacement is out-of-plane, and the applied magnetic field, B, is in-plane.
In this experiment, a stripline current shown in Fig. 7.1(a) is used to tune the flux through
the loop which enables to obtain V (Φ) curves such that shown in Fig. 3.14(b). When a
cantilever is embedded in a SQUID loop, the flux through the loop depends on the position
of the fundamental out-of-plane mode of the cantilever as: Φ = Φext + aB`u, where Φext
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is the applied flux when the cantilever is in its equilibrium position, a is a geometrical
factor that depends on the mode shape, B is the applied magnetic field, ` is the length
of the cantilever, and u is the cantilever displacement. To make the SQUID sensitive
enough to detect an extremely small change in the magnetic flux caused by the motion
of the cantilever, a working point with the steepest slope of V (Φ) is selected where the
responsivity of the cantilever-SQUID system (dV

du
) maximizes. The Etaki’s experiment has

been performed at Ib = 2.0Ib, and Φext = 0.25Φ0 as the difference between the minimum
and maximum (the peak-to-peak voltage) of the SQUID V (Φ) is maximized, and the
cantilever- SQUID system becomes more sensitive. The frequency of the fundamental
mode of the cantilever as experimentally investigated by the room-temperature dynamic
force microscopy [2] is f0 = 2 MHz. This frequency is located by driving the cantilever
with a piezo actuator and monitored by the detector. The resulting output voltage of
the dc-SQUID shown in Fig. 7.1(b), exhibits the resonance frequency that reflects the
fundamental mode confirmed by dynamic force microscopy.

(a) (b)

Figure 7.1: (a) The micromechanical cantilever embedded in the dc SQUID demonstrated by
Etaki et al [2], where (R) is a doubly clamped cantilever, (S) is a stripline current used to change
the flux bias through the loop, and (J) are a Nb–InAs weak links. (b) The cantilever response
at T = 20 mK, and B = 100 mT. The amplitude and phase data are shown in blue and black
respectively, and red lines are the Lorentzian fit of the amplitude and the phase response.

7.2 The back-action

Back-action is a feedback of the system variables from and to each others. In Fig. 7.2,
a chart is used to demonstrate how the variables of the system, influence each others,
and be influenced by the others. The interaction between these variables occurs in a se-
quential, loop and results in a shift in the cantilever frequency ∆f and it’s quality factor
∆Q. Considering a doubly clamped cantilever, it is obvious that as the cantilever oscil-
lates the displacement changes, and the transduction technique will cause a back-action
that influences the cantilever position [15]. The impact of back-action can be positive
in terms of cooling [4] and squeezing the resonator motion [16, 17, 18], and coupling
and synchronising multiple resonators [19, 20]. Depending on the specific transduction
technique, back-action can be due to radiation pressure[21], electron tunnelling [22], or
photothermal effects [23]. For the SQUID-based transduction scheme, the back-action has
a simple inductive component caused by the Lorentz force due to the circulating current
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[14, 13, 24]. Experimentally, the Lorentz back-action was shown to shift the mechanical
cantilever resonant frequency and quality factor by ∆f and ∆Q respectively.

To understand the effect of back-action on ∆f and ∆Q, two transfer functions were
obtained [13], which are coefficients for the average circulating current expanded in the
terms of the cantilever displacement, u, and velocity, u̇. In previous work, however, it
was not possible to obtain the velocity-dependent transfer function in the frame of the
SQUID equations coupled to the equation of motion of the doubly clamped cantilever. To
simplify this issue, Poot et al [13] modulated the flux change in the SQUID loop caused
by the cantilever oscillation. Subsequently, the total flux in the SQUID loop was assumed
to be a function of the externally applied flux, Φext, and the modulation of the flux due
to the changing area of the loop, Φ → Φext + Φmod cos(ωmodt). Such a modulation can
describe the influence of the back-action on ∆f and ∆Q of the cantilever when the SQUID
displacement detector is tuned within limited regions of the V (Φ) curve [13].

Displacement
𝑢 𝑡

Total flux

Phases, and 
phase 

derivatives
𝛿1,2 and �̇�1,2

Circulating
current 𝐽 𝑡

Lorentz force 
𝐹𝐿

Figure 7.2: A chart that demonstrates the back-action effect, by which the of the SQUID-
cantilever system variables influence each others, and be influence by the others..

However, a full description of the SQUID-cantilever interaction requires a comprehensive
model to provide information not only about the influence of back-action in all regions
of V (Φ), but also about the amplitude, width, line shape, and responsivity, dV

du
, which

must be calculated by linking the cantilever displacement to the SQUID voltage. Thus,
the need for quantitative treatments of the unscaled SQUID equations coupled explicitly
to the equation of motion for the integrated beam becomes important. Though such
treatments are complicated and challenging,[25] they can be performed numerically with
improving computational capabilities. In this chapter, simulations for the interaction
between a dc SQUID and an embedded micromechanical doubly clamped cantilever as
experimentally demonstrated by Etaki et al [2] and shown schematically in Fig. 7.3(a)
are presented. The SQUID-cantilever interaction is analysed in different regions of the
V (Φ) curve, as shown in Fig. 7.3(b). Within this framework, some regions of the V (Φ)
curve have been explored, where the SQUID-cantilever response is apparently strongly
nonlinear. Furthermore, the back-action and the subsequent response of the SQUID is
linked to the cantilever displacement. The effect of changing the SQUID operating point
is discussed in depth, and it is demonstrated that the SQUID itself can be used to control
the cantilever response by simple modification of the controllable SQUID parameters.
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Figure 7.3: (a) Scheme for the dc SQUID displacement detector in which the two Josephson
junctions are labelled by J1 and J2. The cantilever displacement is out-of-plane, and the applied
magnetic field, B, is in-plane. (b) The voltage flux V (Φ) characteristics for a dc SQUID with
βL = 0.115 and βC = 1.61. Four regimes are identified: (i) the simple oscillatory regime where
the bias current, Ib = 2.0I0. When Ib = 1.3I0, other regimes are identified, those are: (ii)
the rapidly changing regime (red), (iii) the zero voltage response regime (blue), and (iv) the
intermediate regime (green).

7.3 The model

The model presented in this thesis is based on the experimental parameters of Etaki et
al [2] to allow for experimental verification of the results. Thus, the equation of motion
of a damped harmonic oscillator given in [13] is used to describe the displacement, u(t),
of the mechanical cantilever:

mü+
mω0

Q0

u̇+mω2
0u = Fd(t) + FL(t), (7.1)

where m is the beam mass, ω0 = 2πf0 is the intrinsic frequency, Q0 is the quality factor,
Fd = F0 cos(ω0t) is the driving force, and FL(t) is the Lorentz force FL(t) = aB`(Ib/2+J).
Here, B is the in-plane magnetic field, ` is the length of the cantilever, J is the circulating
current, and a = 0.91 [2] is a geometrical factor that depends on the mode shape. Eq. (7.1)
is coupled to the dc SQUID equations given by the resistively- and capacitively-shunted
junction (RCSJ) model [26]:

Φ0

2π
Cδ̈1 +

Φ0

2π

1

R
δ̇1 + I0 sin(δ1) =

1

2
Ib + J, (7.2)

Φ0

2π
Cδ̈2 +

Φ0

2π

1

R
δ̇2 + I0 sin(δ2) =

1

2
Ib − J, (7.3)

δ1 − δ2 = 2π · Φtot/Φ0, (7.4)

where δ1,2 are the phase differences of the junctions, Φ0 is the flux quantum, Ib is the
bias current, I0 is the critical current. The total flux, Φtot, has three contributions: (i)
the external flux Φext, (ii) the flux due to the circulating current, J , flowing through
the inductance of the loop, L, and (iii) the change in flux through the loop due to the
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cantilever displacement, aB`u. Therefore, Φtot = Φext + LJ + aB`u(t), and Eqs. (7.1 -
7.3) are coupled via the circulating current as J = 1

L
( δ1−δ2

2π
Φ0 − Φext − aB`u).

These coupled differential equations are numerically solved without averaging the SQUID
voltage and circulating currents, or scaling the time. Therefore, the time span Tmax must
be large enough to be suitable for the cantilever, while the time step dt must be small
enough to resolve the impact of the fast changes dominated by the relatively high SQUID
characteristic frequency ωc = 2πRI0

Φ0
. Although this can be computationally expensive for

cantilevers with very low frequencies relative to ωc, the experimental results of Etaki et
al [2] allow their experiment to be modelled within a relatively small time window.

Here, a system for identical experimental conditions demonstrated by Etaki et al [2]

with f0 ' 2 MHz is solved. To calculate the time dependent voltage, V = Φ0
δ̇1+δ̇2

2π
, the

Runge-Kutta method (RK4) was used to numerically integrate the equations presented
above. The SQUID response was then obtained in the frequency domain by evaluating the
Fourier transform of the SQUID voltage and the cantilever displacement. The calculations
were performed for I0 = 0.7 µA, R = 29.5 Ω, B = 111 mT, C = 0.91 pF, and L = 170 pH.
These values give a McCumber-Stewart parameter βC = 2πI0R2C

Φ0
= 1.61 and a screening

parameter βL = 2I0L
Φ0

= 0.115. The cantilever has a length ` = 50 µm, a mass m =

6 × 10−13 kg, and was assumed to have a resonant frequency f0 = 2.0018 MHz and a
quality factor Q0 = 25000, giving a cantilever lifetime of τ0 = Q0

πf0
' 4 ms. The piezo

drive which controls Fd is used only to locate the eigenmodes and is turned off during
measurement [14]. Thus, at t = 0, the initial velocity v0 = du

dt

∣∣
u=u0

= 0, where u0 is the
initial displacement amplitude. Here, u0 = 20 pm.

The time span chosen for these calculations was Tmax = 25 ms, i.e. more than six times
the lifetime of the cantilever, and the optimised time step chosen was dt = 0.0125 ns. This
value of dt allows resolution of the forces which are dominated by the SQUID frequency
fc = RI0

Φ0
' 10 GHz. The calculations were repeated at different values of normalised

flux in the range 0.90Φ0 ≤ Φext ≤ 0.05Φ0, and bias currents in the range 2.0I0 ≤ Ib ≤
1.10I0. In the frequency domain, the selected frequency steps df = 12.5 Hz. The units
of the response which were calculated directly from a Fourier transform are V·s for the
unnormalised SQUID voltage and m · s for the unnormalised cantilever displacement. To
convert the units of the voltage-response from V·s to V, the response was multiplied by
1
τ
, where τ is the lifetime of the cantilever, which is related to the full width at half

maximum (FWHM) as 1
πτ

= fFWHM. A similar procedure was used to convert the units of
the displacement-response from m·s to m. With the βL and βC values presented earlier, the
V (Φ) characteristics of an overdamped dc SQUID are shown in Fig. 7.3(b) to demonstrate
the possible operating points of a SQUID displacement detector. The V (Φ) curves are
calculated using the time-scaled SQUID equations described by the RCSJ model. In
Fig. 7.3(b), four different regimes in the SQUID V (Φ) response are defined: (i) the simple
oscillatory regime where the bias current, Ib = 2.0I0. The other regimes are (ii) the
rapidly changing regime (red), (iii) the zero voltage response regime (blue), and (iv) the
intermediate regime (green). The analysis covers the interaction between a dc SQUID
and an integrated cantilever when the system is tuned to operating points within these
defined regimes, and the resulting effect on the cantilever-SQUID dynamics.
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7.4 Results

7.4.1 The simple oscillatory regime

As experimentally demonstrated [2], the voltage responses exhibit Lorentzian distribu-
tions and for Φext = 0.25Φ0, i.e. the highest SQUID sensitivity for Ib = 2.0I0 shown in
Fig. 7.3(b), there was no relative experimental shift in ∆f of the cantilever.
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Figure 7.4: Line shapes for (a) SQUID voltage (V) and (c) cantilever displacement (u) calcu-
lated as a function of Φext for Ib = 2.0I0. (b) and (d) density plots for SQUID voltages and
cantilever displacement respectively. (e) The linear displacement-voltage trace as extracted by
linking (b) and (d) via the frequency. (f) The responsivity (dV

du ) as calculated from the slopes
of the displacement-voltage lines.
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Changing the operating point of the SQUID by changing Φext within the simple oscilla-
tory region shown in Fig. 7.3(b) affects ∆f , and the operating point clearly affects the
sensitivity to the SQUID voltage as clearly shown in Fig. 7.4(a) and (b). Moreover the
subsequent cantilever displacement is also affected [Fig. 7.4(c) and (d)]. These results
clearly demonstrate the influence of the Lorentz back-action on the resonator from the
SQUID displacement detector, and the expected magnitude of change in the experimental
variables. The cantilever displacement and SQUID voltage are explicitly linked in the fre-
quency domain, i.e., the displacement u(f) is parametrically linked to the voltage V (f).
The subsequent analysis was performed at Ib = 2.0I0 and 0.05Φ0 ≤ Φext ≤ 0.95Φ0, and
the displacement-voltage trace is plotted in Fig. 7.4(e). The traces show a linear depen-
dence of voltage on displacement, which allows determination of the cantilever position
in a responsivity specified by the slope of the displacement-voltage lines. Consequently,
the responsivity (dV

du
) was calculated at Ib = 2.0I0 for different Φext values, with the re-

sult shown in Fig. 7.4(f). The figure shows a sinusoidal behaviour for dV
du

which varies
from 4.7 × 10−2 nV · fm−1 at Φext = 0.25Φ0 to 0.5 × 10−2 nV · fm−1 at Φext = 0.50Φ0.
Importantly, Fig. 7.4 shows an appropriate representation of the experimental results by
Etaki et al [2], thereby demonstrating a good computational model.

7.4.2 The intermediate regime

Further calculations were performed through the V (Φ) curve identified in Fig. 7.3(b)
to examine the SQUID-cantilever coupling and explore the system response as the back-
action is modified. Fig. 7.5(a)-(f) shows ∆f , the FWHM, and the SQUID voltage as the
bias current and Φext are tuned. The largest frequency shift corresponds to the smallest
gradient (dV

dΦ
) of the working point. This can clearly be understood by Eq. 7.1, where the

frequency of the cantilever is controlled by the displacement coefficient. As the cantilever
frequency is shifted by changing Φext and Ib, a modification in this coefficient emerges due
to the circulating current dependence on u. Such a dependence was previously analysed
by expanding the circulating current in terms of the displacement, u [13]. In this way, the
new displacement coefficient, which arises from the back-action of the SQUID current on
the cantilever, modifies the frequency and causes a slight or significant shift depending
on Φext and Ib.

The Lorentz back-action also affects the cantilever quality factor; FWHMs of simulated
line shapes are extracted and presented as a function of Φext for various values of Ib
in Fig. 7.5(c) and (d). The variation of the FWHM can be interpreted in an identical
way to that of ∆f , where the only difference being that FWHM = ω0

2πQ0
is given in

terms of velocity coefficient in Eq. 7.1. Thus, the FWHM is modified if J is assumed
to have a dependence on the velocity in addition to the displacement which modifies
the frequency [13]. The corresponding peak voltage, Vmax, dependence on Φext and Ib is
shown in Fig. 7.5(e) and (f). The behaviour of Vmax as a function of Φext is consistent
with dV/dΦext of the SQUID V (Φext) curve shown in Fig. 7.3(b).
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Figure 7.5: Calculations for the range 0.75Φ0 ≤ Φext ≤ 0.25Φ0 and 2.0I0 ≤ Ib ≤ 1.55I0 for
(a) the frequency shift, ∆f , (c) FWHM and (e) the maximum SQUID voltage, Vmax. The
corresponding density plots are shown in (b), (d), and (f) respectively.

7.4.3 The rapidly changing regime

Now a different regime from Fig. 7.3(b) is discussed, where the largest effect of back-
action on the cantilever is observed, and the SQUID response is apparently nonlinear.
To examine the effect of back-action on the cantilever motion, a point in such region
was selected as shown in the inset of Fig. 7.6(a). Subsequently, at Φext = 0.30Φ0 and
Ib = 1.20I0, the unnormalised cantilever displacement and corresponding unnormalised
SQUID voltage response for various displacement amplitudes u0, are obtained and plotted
in Fig. 7.6(a) and Fig. 7.6(b). When u0 = 20 pm, the cantilever appears to have a
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nonlinear behaviour as demonstrated by the modified line shape of the cantilever and
the SQUID response. Specifically, as the displacement is reduced from u0 = 20 pm to
u0 = 10 pm to u0 = 5pm, the change in the flux through the loop aB`u0 is 0.05, 0.025
and 0.0125Φ0 respectively. This drives the cantilever to experience regions of different
flux responsivity, the closest regions to the point (0.30Φ0, 1.20I0) are: (i) the intermediate
region, and (ii) the zero voltage response region [see Fig. 7.3(b)].
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Figure 7.6: (a) Unnormalised displacement, and (b) corresponding unnormalised SQUID volt-
age when the SQUID displacement detector is tuned (Φext = 0.30Φ0 and Ib = 1.20I0) to the
working point shown in the inset of (a). The initial cantilever amplitudes are u0 = 20 pm (blue),
u0 = 10 pm (red), and u0 = 5 pm (black), which correspond to a change of flux in the SQUID
loop of 0.05Φ0, 0.025Φ0, and 0.0125Φ0 respectively. The colour coding is identical for both
graphs.

Since the Lorentz force interacts with these two regions via the circulating current J , i.e.,
FL(t) = aB`(Ib/2 + J), two alternate and successive Lorentz forces of different driving
modes emerge due to the back-action interaction. As a consequence of these irregular
Lorentz forces, a temporary non-equilibrium state emerges, which causes a nonlinear like
behaviour such as that shown in Fig. 7.6. Higher u0, or more specifically higher aB`u0,
drives the cantilever to be influenced by a changing V (Φ) region where the responsivity
(dV

dΦ
) becomes more significant. Thus, the variation in the unnormalised SQUID response

becomes larger as can be clearly seen in Fig. 7.6(b). It should be noted, however, that as
the cantilever returns to its dynamical equilibrium position, the response becomes more
Lorentzian as expected.

The effect of the SQUID-cantilever interaction on the cantilever motion can be more
clearly observed by comparing the time evolution of the cantilever displacement for two
different bias and flux values. The time dependent displacement for Φext = 0.25Φ0 and
Ib = 2.0I0 is plotted in Fig. 7.7(a), and for Φext = 0.30Φ0 and Ib = 1.20I0 in Fig. 7.7(b).
Clearly if the SQUID operating point is in the rapidly changing regime [Fig. 7.7(b)],
there is a sharp transition state as the cantilever returns to its equilibrium position.
Naively, if the SQUID bias is switched when the cantilever motion is large, there is
an instantaneous damping which can be used to modify the motion of the cantilever.
Normal state positions, uN, for specific lines around Φext = 0.30Φ0 and Ib = 1.20I0 are
shown in Fig. 7.7(c). These positions are extracted when the cantilever enters the normal
state that accounts for the Lorentzian profile in the frequency domain, and when the
amplitude starts decaying exponentially at time t = tN, as shown in Fig. 7.7(b). A more
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comprehensive analysis is presented in the density plot shown in Fig. 7.7(d). The plot
given in Fig. 7.7(c) exhibits details for one of the yellow-blue islands in the density plot.
The islands correspond to the intermediate regimes in the V (Φ) curves. Its anticipated
that such effect could be employed to precisely and rapidly control the amplitude of the
cantilever displacement below its initial amplitude which can be set by a piezo drive used
to locate the eigenmodes of the cantilever. In other words, putting the system in such
regions enables modulating the cantilever amplitude after isolating the system from the
external actuator.
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Figure 7.7: (a) Snapshot for the time array of cantilever displacements at (a) Φext = 0.25Φ0

and Ib = 2.0I0 (a point in the simple oscillatory regime) versus (b) a point Φext = 0.30Φ0 and
Ib = 1.20I0 in the rapidly changing regime in which a sharp transition state emerges until the
cantilever enters the normal state at u = uN. (c) Calculations for the normal state positions
of specific lines around Φext = 0.30Φ0 and Ib = 1.20I0, and (d) the yellow-blue islands in the
density plot indicate a shift in the normal state positions that starts emerging at t = tN and
u = uN. The opaque regions in (a) and (b) show the fast oscillations, which are unresolved due
to time window plotted.

7.5 Future research

In conclusion, I have shown how the tuning of the SQUID device affects the back-action
between the SQUID and the doubly clamped cantilever. Specifically, I have quantified
the line shapes expected from the SQUID response and the corresponding cantilever
displacement. The effect can be quantitatively analysed via the shift in the cantilever
frequency, the line width, intensity, and shift in the position of the normal state. Direct
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solutions for the unscaled dc SQUID equations coupled to the equations of motion of an
integrated cantilever allow determination of voltage-displacement traces of a displacement
detector. For a SQUID displacement detector tuned to a working point in the rapidly
changing region, a sharp transition state emerges and a nonlinear-like response due to the
emergence of such state is observed. This state could be used to employ the system as a
self modulator for the displacement amplitude of the cantilever.

Finally it should be noted that the effect of thermal fluctuations were not investigated
in the current work, and the system studied here is for SQUID devices with a typical
Josephson junction behaviour, i.e, a sinusoidal current phase relationship (CPR). In gen-
eral, the thermal noise can be estimated using the Langevin equation [27, 28, 29], where
the noise η(t) is given by a correlation function as 〈η(t)η(t′)〉 = 2KBT

R
δ(t − t′). How-

ever, the simulations performed in this paper are suitable for devices: (i) with junctions
having dimensions (length L and/or width W ) shorter than the coherence length (ξ) of
the superconducting film, and (ii) measured in a dilution fridge below 50 mK, where the
influence of the thermal noise is generally small. Future work can be extended to modify
the differential equations given by RCSJ by adding a stochastic current term to estimate
the effect of the thermal noise for higher temperatures devices and to implement CPRs
such as that analytically described in [30], or those obtained [31, 29, 32] by numerically
solving Ginzburg Landau equations for nanobridges with dimensions greater than ξ of the
film.
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8 Conclusions

The work conducted for this thesis is part of a larger project which mainly involves several
goals: (i) fabricating and characterising junction devices made of diamond superconduct-
ing, (ii) fabricating and characterising diamond SQUIDs, (iii) implementing a micro or
nano-electro-mechanical cantilevers in the fabricated SQUID loops, which allows the in-
vestigation macroscopic quantum states, (iv) modelling the system and interpreting the
observed effects occur in it’s component in terms of the fundamental and recent theories
of superconductivity, and (v) solving the technical problems that influence the quality of
the measurements. In the course of this work, a number of issues associated with these
goals have been solved.
Technically, the prototype of the RF filters developed and fabricated which can success-
fully attenuate RF noise to a level of -110 dB in high frequency regions, and between
-60 dB and -110 dB in low frequency regions below 500 MHz. Consequently, the filters
will significantly allow the attenuation of the noise associated with SQUIDs and qubits.
A comparison between the filters fabricated within course of this thesis, and the filters
previously fabricated, suggests that the filters, developed here, are quite competitive. Fur-
thermore, CBT measurements have clearly shown that these filters are quite appropriate
to accompany simultaneous measurements that take place in an ultra low temperature
measurements system, where the temperatures down to few mK.
I(V ) characteristics and the differential resistance measurements have been performed for
SIS junctions and nanobridges devices made of BDD. The measurements show different
features, and have been discussed in terms of fundamental theories of superconductivity
presented in this thesis. I(V ) curves of a nanobridge device (5A) with bridge dimensions
of L = 118 nm, and W = 109 nm, have been measured at different temperatures, from
which critical currents Ic(T ) have been extracted. Fitting of the extracted Ic(T ) shows
agreement with an exponential like function where, Ic(T ) ∝ exp(−L

√
T ). Such behaviour

was attributed to the proximity effect described by Likharev’s theory of SNS weak-link
junctions. Magnetic field of I(V ) curve have been also measured for device 5 at T = 1.85
K. As results, Fraunhofer pattern was not observed in measured Ic(B) behaviour. Rea-
sons for such discrepancy has mainly assigned to RF noise, and to the coherence length
of the superconducting diamond films, which is too short relative to the length and the
width of the weak link of the device.
Measurements for I(V ) curves performed at temperatures between 10 and 700 mK for
another device (2A) with W = 108 nm, and L = 78 nm, show an interesting feature,
where notable resistive steps in the transition region of the I(V ) curves around Ic have
been observed. These steps have been attributed to: (i) vortex kinematics where vortices
and antivortices created on the edges of the device, which propagate and overlap at the
center of the bridge, where they annihilate, which finally results in phase slip lines (PSLs).
And (ii) the granular superconducting properties of the film from which the device was
made, where a further phase slip events, at which the order parameter |ψij|2 vanishes
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8 Conclusions

instantaneously due to the interaction between the phases ϕij of the wave functions ψij
that tunnel through grain boundaries indicated by i and j. Here, superconducting grains
can be considered as arrays of Josephson junctions, which results in steps of the I(V )
characteristics.

Measurements for I(V ) characteristics of another nanobridge device (1A) with W = 105
nm, and L = 128 nm, were performed, and compared with other two devices. This com-
parison, where the critical currents extracted at T = 7 mK for the three measured devices,
shows a significant disagreement with quantitative description given for critical current
of a typical Josephson junction where Ic = e∗~

2m∗
|Ψ0|2AL . Such discrepancy is due to several

factors: the length and width of the bridges, the granularity effect, and phase slip events
that may take place in such devices due to their structures.
I(V ) characteristics measured for a typical SIS junction with 6 nm width, was fitted using
the RSCJ model, and the fit shows good agreement with model. Other measurements
for I(V ) characteristics of an SIS junction with a 15 nm gap have been performed. The
I(V ) characteristics show a nonlinear behaviour when, an ac current drive is applied, and
show a linear behaviour for dc measurements. Such behaviour is still not understood.
Results observed for a SIS junction with a 76 nm vacuum gap, where measurements for
the temperature dependence of the I(V ) characteristics, and differential resistance have
been performed between 250 mK and 4 K. The extracted critical currents, Ic(T ), have
been discussed in terms of Ambegaokar and Baratoff formula and BCS theory, where a fit
for Ic(T ) was performed, and shows a good a agreement with this formula. In the I(V )
curves measured for this junction, another transition have been observed in the super-
conducting region, indicated by Ic1. In contrast to the Ic(T ), the transition Ic1(T ) shows
a discrepancy with the Ambegaokar and Baratoff formula. As the gap width of the this
junction is quite large relative to coherent length of the superconducting diamond films,
the origin of the measured I(V ) curves require further work for better understanding.
Measurements for I(V ) and R(T ) curves of superconducting strips of different strictures
have been performed. In these measurements, resistive steps have been observed around
transition regions of the I(V ) curves. In addition to that, corresponding spikes in the
R(T ) curves have been observed. The observed resistive steps in the I(V ) curves, and
corresponding spikes, have been attributed to a collective effect described by kinematic
vortices, thermal fluctuations and/or quasiparticles diffusion (SBT model), and the gran-
ularity of the superconducting diamond films from which the strips have been made.
Simulations to quantitatively describe the interaction between a dc SQUID and an in-
tegrated doubly clamped cantilever were performed, by which an existing experimental
configuration was selected to explore and the motion of the cantilever. The unscaled dc
SQUID equations coupled to the equations of motion of an integrated cantilever, have
been solved, and of voltage-displacement traces of a displacement detector were deter-
mined. Furthermore, the effect back-action between the SQUID and the doubly clamped
cantilever have been analysed via the shift in the cantilever frequency, the line width,
intensity, and shift in the position of the normal state. The simulations show how a sharp
transition state drives the system into a nonlinear-like regime, and modulates the can-
tilever displacement amplitude, by tuning the bias current Ib, and the external flux Φext,
which set the system in different regions of V (Φ) curve.
Finally, further experimental and theoretical work are still required to achieve the final
goal of the long term project. At first, numerical calculations of time dependent Ginzburg
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Landau equation (TDGL) equation need to be solved for a case that considers the gran-
ularity of the superconducting films from which the devices are fabricated. Here, the
boundary conditions to be applied between the grain boundaries, though such treatment
can be computationally challenging, an approximation may be made to simplify the prob-
lem. The granularity can be analysed also in terms of array of Josephson junctions that
can quantitatively describe the resistive steps observed in the measurements achieved for
one of the nanobridge devices, and all superconducting strips. Second, more SIS junctions,
nanobridge devices are required to be measured to provide a clearer picture about the
experimental results reported in this thesis. Such work will allow the development and
fabrication of sensitive superconducting diamond SQUIDs that enable to detect the mo-
tion of an integrated cantilever of high frequencies at which the SQUID-cantilever system
enters the quantum state.
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