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Abstract

The use of Acoustic Emission (AE) to detect impacts is of interest within industries where vital
components are prone to impact damage, in particular where Carbon Fibre Reinforced Polymers
(CFRP) are used, as damage can often go un-noticed within them. For AE monitoring of impacts
piezoelectric sensors are used to detect the ultrasonic wave produced by an impact. Classification is
also possible of these waves enabling a distinction between damaging and non-damaging impacts.
These sensors do however have resonance, so do not give an accurate picture of how the waves
propagate, better knowledge would enable better selection of sensors. Laser Doppler Vibrometry is a
non-contact and non-resonant method of analysing the surface displacement on a structure. In this
study, a vibrometer was used to monitor CFRP plates during impact to assess its applicability for
distinguishing between damaging and non-damaging impacts, compared with a surface mounted AE
sensor. The vibrometer was able to detect both low frequency flexural modes due to the impact process
and the higher frequency extensional modes, initiated by damage. When compared to the AE sensor
the vibrometer was comparable in its results, and unlike the sensor, not susceptible to resonance or
decoupling. For the tested material the vibrometer identified frequencies greater than 20 kHz to be
associated with damaging impacts.

1. Introduction

The use of Carbon Fibre Reinforced Polymer (CFRP) composites is increasing significantly in the aerospace,
automotive, and marine industries due to their high strength-to-weight and stiffness-to-weight ratios compared
with metallic structures. They also benefit from excellent fatigue and corrosion resistance properties [1].
However their inherent reaction to external dynamic excitations, such as structural impacts, is still a significant
concern in real life application where threatening internal damage, such as delamination and interfacial
debonding, can exist and not be visually detectable [2, 3].

Traditional Non-Destructive Testing (NDT) techniques, such as ultrasonic imaging, thermography and
holograph, are effective for detecting damage in composites; however, typically do require the structure to be out
of service, causing inconvenience and cost [4—6]. It is therefore essential to develop NDT techniques to help
monitor structures during real life operations [7]. Structural Health Monitoring (SHM) is promising due to its
ability to possess self-sensing capability to continually monitor structures during service [8, 9].

One SHM approach that has been investigated for detecting impact damage in composites is the in situ
monitoring of Acoustic Emission (AE). AE is the spontaneous release of energy due to the growth of damage that
propagates as a high frequency (kHz—MHz) elastic wave through a structure, the monitoring of which enables
the detection of damage [10]. Researchers have also shown it is possible to locate the location of an impact
through triangulation techniques [11, 12]. How this wave propagates and at what frequency is dependent on a
number of factors, including the material type and shape of the structure. For this study, thin plates are being
used; hence, waves will propagate as Lamb waves, which exist through the plate’s thickness [13]. There are two
main types of mode in which a Lamb wave forms; these are referred to as flexural or extension modes, the
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difference being the wave forming symmetrically or antisymmetrically through the structure [14]. These waves
are dispersive, meaning their velocity is dependent on frequency, with extensional modes typically travelling
faster and at a higher frequency.

Authors have identified a strong relationship between impact energy and the AE produced. A low energy,
non-damaging, impact on a composite primarily produces alow frequency, slower, flexural wave mode. When
damage is initiated a higher frequency extensional mode is generated, which has been shown to increase relative
to the stress wave with increased damage size [15, 16]. Better understanding of the waves and frequencies
associated with damage allows better characterisation as to whether a signal is a result of a damaging or non-
damaging impact.

In previous studies AE has been collected using a range of piezo-electric sensors, including wideband
[15—-17] and resonant [18]. Use of a physical sensor is required in order to monitor AE for any in service
application. However, there are disadvantages in doing this, primarily that the resonance of the sensor itself
alters the frequencies of the recorded wave, with even wideband sensors having some resonance. This makes any
spectral analysis conducted and therefore conclusions drawn from them, flawed. The act of attaching any sensor
also has the potential to add damping to the structure, altering the wave propagation.

Laser Doppler Vibrometry (LDV) is a method of measuring the velocity of surface displacement on a
structure. It does this by analysing the change in frequency and phase within the backscattered laser reflected
from a surface; this change is the result of structural vibration causing Doppler shift within the laser [19].
Researchers have used LDV for a range of NDT applications, including modal analysis [20, 21] and acousto-
ultrasonic inspection [22—24], however to the best knowledge of the authors, not for assessing high frequency AE
from impact damage in composites.

This paper presents the results from low velocity impact testing on CFRP monitored with both a physical AE
sensor and LDV. Further frequency analysis has been performed on the data, extracting and quantifying the
flexural and extension modes present within the signals. This data has been analysed and trends identified, which
correspond with those from literature. The ability of the LDV to distinguishing between damaging and non-
damaging impacts could assist to define the frequency characteristics of an ideal transducer for monitoring
impacts.

2. Experimental methods

2.1. Materials

Unidirectional prepreg with 300 g m > HT carbon fibre/38% RP507 resin was used in this study. The materials
were cured as recommended by the material supplier, using an autoclave for two hours at 120 °C and five bar
pressure. Three panels with dimensions of 280 mm by 280 mm, consisting of 16 plies (3.53 mm total thickness)
with alayup of [0/90]g, were prepared to apply differing impact damage energies. The dimensions were selected
to ensure separation of initial wave-front and edge reflections, when recorded by the vibrometer and AE sensor.
The stacking sequence was implemented to simplify the damage mechanism by excluding additional fibre
directions.

2.2. Acoustic emission

A resonant Pancom Pico-Z sensor was used to collect AE, which has been shown to be effective for detecting and
locating impacts in composites [25]. As can be seen in figure 1, the frequency response of this sensor is poor
below 100 kHz, and relatively flat from 200-500 kHz. Data was recorded on a reference channel within the
vibrometer at a sample rate of 2.56 MHz. The sensor was bonded 70 mm from the impact location on the
underside of the specimen, at 0° from the impact. This distance was chosen as it made the sensor equidistant
from the impact location and the edge of the panel, as shown in figure 2.

2.3.Laser vibrometer

In this study a single laser head from a Polytec PSV-500-3D was used to perform an out of plane single point
measurement. The light was directed to a point 70 mm from the impact point on the underside of the specimen
at 180° from the impact location, the opposite side to the AE sensor, as shown in figure 2. The laser was directed
to the panel using a front surface mirror at an angle of 45° which, unlike a conventional mirror, does not refract
the light. This setup is shown in figure 3. A 10 mm square of retroreflective tape was bonded at the measurement
point to ensure the adequate backscatter of light. Like the reference channel the vibrometer was sampling at
2.56 MHz.
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Figure 1. Frequency response of Pico-Z sensor. Figure modified for clarity from the manufactures supplied calibration certificate,
where the trace was acquired using face-to-face excitation with a Panametrics-NDT sensor type V103 pulsed with 20 volts pp & 50 nS
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Figure 2. Layout of composite specimen in impact rig. Dashed lines indicate restrained area.
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Figure 3. Impact test configuration.
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Figure 4. Observed ultrasonic phased array C-Scans; (A) 30 J, (B) 40 J,and (C) 50 J.

Table 1. The maximum load and damage size observed after 30 J, 40 J

and 50 ] impact.

Impactenergy (J) Maximum load (N) Damage size (mm?)
30 1254 410

40 1546 600

50 1673 800

2.4. Ultrasonic testing

The ability of ultrasonic waves to propagate in composite materials enables detection of damage location and
size [26]. Phased Array scanning is a handheld ultrasonic NDT technique, that can detect the presence of damage
in composite structures, such as delamination and debonding [27, 28]. This is achieved through the pulsing of
ultrasonic waves from transducers in a linear array. The response of the back surface is then taken. The presence
of damage within the structure will result in a drop in amplitude of the returned signal. The stacking of these
readings over a period of time, or by position using an encoder, allows a top down view of the plate to be
produced, which is known as a C-Scan.

For internal damage assessment in this study, an OmniScan MX2 ultrasonic Phased Array system supplied
by OLYMPUS was used. A 5L64-NW 1 probe was used, which consists of 64 5 MW transducers, this was
combined with a SNW1-0L-AQ25 wedge and wheel encoder, allowing to scale sizing of damage in 2D. The
software Image]2 [29] was then used on the produced C-scans to find an approximation of the damage size.

2.5.Impact damage

To investigate the AE produced by low velocity impacts, three of the CFRP panels made were impacted with
energies of 30 J, 40 J, and 50 J. The specimens were clamped in a customized rig to hold the CFRP specimen;
15 mm of the four side edges were clamped leaving 250 mm by 250 mm of the specimen exposed to impact, as
shown in figure 2. The laser vibrometer and a front surface mirror angled at 45° to reflect the laser vibrometer
beam to CFRP specimen were also mounted on the fixture as shown in figure 3. The distance between the front
of the laser head and the mirror was 850 mm, and the distance between the reflected beam and the CFRP
specimen was 500 mm. The impact was applied using an Instron 9250-HV drop tower, with a 16 mm (£0.1)
diameter hemispherical impactor and a mass of 5.5 kg. A built-in load cell enabled recording of the load
response through the impactor. A trial specimen identical to the others was prepared and impacted with 3 J
energy to verify the test set-up.

3. Results and discussions

Barely visible impact damage on the external surface was observed in all specimens impacted with higher energy.
The internal damage is however clearly seen in all specimens where the extent of internal damage increases with
the increase in impact energy as presented in figure 4. Table 1 shows the approximate damage area for each test,
predicted using ImageJ2, and the maximum load observed by the load cell within the impact test rig.

Figure 5 shows the normalised voltages of the Pico-Z sensor and the vibrometer in relation to the observed
load under 30 J, 40 J and 50 ] impact for all specimens. The data has been normalised to allow for better
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Figure 5. Normalised voltage for vibrometer (green) and Pico-Z sensor (red) plotted alongside load data (black) for 30 J (a), 40 J
(b)and 50 J (c) impact energy.

presentation. This is because the voltage outputs for each device are very different, making non-normalised
values difficult to visualise, and any frequency analysis incomparable. The vibrometer can be seen to have
detected substantially more low frequency flexural mode compared with the Pico-Z sensor. This is to be
expected due to the sensor’s poor response at low frequencies, as shown in figure 1.

High frequency waves in figure 5 can be seen to correspond with drops in load, which is known to be a result
of damage. The Pico-Z sensor received significantly higher levels of high frequency waves. This is shown clearly
in figure 6, where a 1 ms period of the two normalised waves are shown side by side, with vibrometer only
detecting minimal higher frequency. This is attributed to the resonance of the Pico-z sensor. The FFT in figure 7
confirms minimal high frequency content within the vibrometer data. The high frequency component recorded
by the Pico-Z sensor is outside its highest response region of 200 kHz—500 kHz, as shown in figure 1; however,
does match well with a sub peak in response around 100 kHz.

Presented in figure 8(a) is a comparison of a vibrometer recording from an impact that caused substantial
damage (30 J) with a trial specimen which was impacted with only 3 ] where no damage was seen from phased
array data. The 30 J impact had a peak amplitude four times higher than that of the 3 J impact. However, after
normalisation, the initial 1 ms of wave, where only flexural mode is present, was very similar, indicating that
prior to the initiation of damage the waves produced are similar when scaled. This is supported by the FFT
results in figure 8(b) which show that below 10 kHz the signals are very similar. However, above this, there is a
clear difference in the frequency content of the two waveforms, with the 3 J impact having little signal above
20 kHz. This supports the findings of Mahdian et al [ 16] where waves of this frequency were associated with the
impact process, but not damage.

As the vibrometer detected significantly greater low frequency flexural mode than the AE sensor, it was
difficult to compare the extensional modes. In order to do this the waveforms were passed through an Infinite
Impulse Response (IIR) high pass digital filter with a pass frequency of 20 kHz and a Butterworth window.
Figure 9 shows the normalised output of the filters on the vibrometer and Pico-Z sensor waveforms for each of
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the 30 J, 40 J and 50 J impacts. Although significantly different in amplitudes, when normalised, as they have
been in figure 9, the two observed signals showed very similar trends; however, are not identical signals. This
difference is likely to be a result of the resonance of the sensor, its damping on the panel and any inconsistencies

in the panels caused by the two different locations.

Table 1 shows that an increase in impact energy caused both an increase in force through the impactor, and
an increased damage size. The absolute Root Mean Square (RMS) of the raw signals acquired from the Pico-Z
sensor and vibrometer, compared to impact energy, are shown in figure 10(a). The absolute energy of the signals
after the 20 kHz high pass filter is shown in figure 10(b). The 3 ] trial impact has also been included in these plots.
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Although as the number of data points is severely limited, so making any conclusions difficult to draw with
certainty, the data in figure 10 shows that the Pico-Z AE sensor data has a likely outlier, either the 40 J or 50 J
impact. It is believed that the 50 J is the outlier as in figure 9(c) the energy of the Pico-Z compared to the
vibrometer is much lower, whereas in (a) and (b), it matches much better. This is further supported by the lower
high frequency content in the signal, shown in figure 7(c). Calibration testing confirmed that the sensor was
bonded correctly and not damaged prior to the test, meaning the most likely problem was that the high impact
energy caused the sensor to partially decouple, and so have a lower response. For these reasons only, the
vibrometer data will be considered in the following discussion.

From the work of Mahdian et al [16], it is known that AE waveforms will have low frequency content due to
the impact process. Figure 10(a) demonstrates that this was the case at low energy and increased as the impact
energy was greater. The limited number of data points makes trends difficult to identify reliably; however, the
three higher impact energies can be seen to have a relatively linear relationship. More data points would be
required in order to adequately predict the trend of AE RMS versus impact energy. This trend would not be
expected to be linear throughout, due to delamination and fibre breakage taking place and absorbing energy, so
reducing the rate that wave RMS increases as impact energy is increased [30, 31].

For the filtered data in figure 10(b), like the unfiltered data if only considering the high impact data points, a
linear relationship exists. The 3 J impact does not fit the trend, and is near zero, due to its minimal high
frequency content, as shown in figure 8. Further testing at impact energies between 3 J and 30 ] would identify
the relationship, and at what impact energy high frequency waves began to be observed by the vibrometer.

The selection of the Pico-Z sensor for this testing was based on previous literature and not commercially
designed for the purpose of detecting damaging impact. This sensor did successfully distinguish between
damaging and non-damaging impacts; however, careful selection would enable more sensitivity to smaller
damage as well as increasing the range and probability of detection. Specifying a sensor’s ideal frequency
response is very dependent on the structure: the material and its thickness having a major influence on the
frequency of wave propagation. Within this testing of a non-damaging impact, the laser vibrometer identified no
significant waves with a frequency greater than 20 kHz. Although more substantial testing is required with
further testing conducted between 3 J and 30 J, this result indicates that one option for a damage detection
system would be to filter this low frequency. This could be done through tailored sensor response, front end
filters or digital filters, which could enable better identification on damaging impacts. It should also be
considered that any change to the structure may affect these results. Therefore, further testing of different
thicknesses should be investigated using a laser vibrometer to quantify it.

The application of the approached used in this testing applied to real composite structures, such as those in
aerospace and on wind turbines, would enable the better detection of impact damage by increasing the range of
sensors and reducing false positives.

4. Conclusions

This work presents the first reported use of a LDV to monitor the response of composite panels during low
velocity impacts, both damaging and non-damaging. The vibrometer was shown to not only be effective at doing
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this, but more reliable than an AE sensor, which was influenced by its resonance, and at risk of decoupling
during impact. This makes the laser vibrometer a promising tool. Further testing would better reinforce the
trends presented within this paper, which are as expected. The use of a laser vibrometer for monitoring of
impacts in test situations gives a better understanding of the high frequency waves produced as a result of
damage, enabling better selection of AE sensors for real application and identification of damaging impacts.
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