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HIGHLIGHTS  
 
• MR1 is an evolutionarily conserved antigen presentation platform 

• MR1 presents endogenous and bacterial metabolite ligands to T-cells 

• Recent data shows MR1-restricted T-cells may play important roles in cancer 

• The conserved nature of MR1 may allow pan-population therapies for many diseases 

 
 
ABSTRACT (105 words) 
MR1 is a ubiquitously-expressed, monomorphic antigen presenting molecule that has been 
largely preserved throughout mammalian evolution. The primary role of MR1 is to present 
conserved microbial metabolites to highly abundant mucosal-associated invariant T (MAIT) 
cells. The role of MAIT cells and other MR1-restricted T cells (MR1T) has been recently 
extended to immunomodulation during cancer. MR1Ts have also been implicated in 
autoimmune disease. The highly conserved nature of MR1 across the human population is in 
stark contrast to the MHC molecules recognised by conventional ab T-cells, therefore MR1Ts 
may form fertile ground for the development of pan-population T-cell immunotherapeutics 
for a wide range of important morbidities. 
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INTRODUCTION 1 

Conventional ab T-cells orchestrate immunity by recognising short foreign peptides bound to 2 

molecular presentation platforms called major histocompatibility complex (MHC) molecules. 3 

This ingenious system enables T-cells to interrogate the proteome to identify and eliminate 4 

causes of proteomic perturbation such as infection and cancerous transformation. More 5 

recent discoveries have identified that T-cell antigens extend beyond the convention of MHC-6 

bound peptides to include ‘unconventional’ lipid and metabolite antigens presented by CD1 7 

and MHC-related molecule 1 (MR1) respectively. MHC class I (MHC-I), the CD1 family of 8 

molecules (CD1a-d in human) and MR1 are similarly comprised of a small b2-microglobulin 9 

chain assembled with a larger a chain with the a1 and a2 domains forming a membrane-10 

distal antigen-binding cleft (Figure 1). These analogous structures allow T-cells to utilise their 11 

hypervariable T-cell receptor (TCR) to inspect the internal proteome, lipidome and 12 

metabolome from the cell surface and eradicate cells containing potentially dangerous 13 

anomalies. Here we focus on the expanding functions of human T-cells that recognise their 14 

target antigens in the context of MR1 (so-called “MR1-restricted” T-cells or MR1T). 15 

 16 

MR1 17 

The peptide antigens recognised by conventional MHC-I-restricted T-cells vary widely 18 

between different pathogens, even within species [1]. This antigen diversity is reflected by 19 

the many thousands of human genes encoding different MHC alleles. In contrast, MR1 is 20 

monomorphic and exhibits strong conservation throughout mammalian evolution [2]. MR1 is 21 

ubiquitously expressed by almost all nucleated human cells [3] but unlike conventional MHC-22 

I molecules, it is mostly retained the endoplasmic reticulum until binding of an antigen results 23 

in transient expression at the cell surface [4,5]. Consequently, basal expression of MR1 at the 24 

cell surface is generally below the limits of detection on most cells but increases upon cellular 25 

infection [6]. 26 

 27 

MR1 ligands 28 

A landmark study in 2014 showed that MR1 could bind to antigens derived from the Vitamin 29 

B2 (riboflavin) metabolic pathway [7]••. This essential vitamin is synthesised by many 30 

bacteria, yeast and plants but not by animals which must acquire it from their diet. Thus, the 31 

presence of riboflavin biosynthesis within a mammalian cell serves as a universal signature of 32 
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the presence of microbes, either through infection or from commensal origins. MR1 captures 33 

pyridine intermediates in riboflavin biosynthesis after their reaction with small molecules 34 

derived from glycolysis [8]. T-cell reactivity is dependent on production of the riboflavin 35 

intermediate 5-amino-6-d-ribitylaminouracil (5-A-RU) and is unaffected by mutations in 36 

downstream enzymes [9]. MR1 cannot be refolded with 5-A-RU but instead forms potent T-37 

cell antigens through nonenzymatic reactions with glyoxal and methylglyoxal [7]••. The 38 

structure of two such short-lived antigens 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil 39 

(5-OE-RU) and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) complexed with 40 

MR1 has been solved [7]••. More recent liquid chromatography-mass spectrometry studies 41 

have revealed that MR1 can bind a wide array of structurally-distinct, bacterially-derived 42 

ligands [10]•. Thus, the conserved MR1 molecule appears to act as a sensor for microbial 43 

metabolites that is capable of presenting a wide array of different ligands in much the same 44 

way that individual MHC-I molecules can present large numbers of different peptides from 45 

proteomic anomalies [1] and the CD1 family presents different types of lipids [11,12].  The 46 

nature of most MR1 ligands remains undiscovered but the known metabolite ligands occupy 47 

a small fraction of the MR1 binding groove compared to peptides in MHC and lipids in CD1 48 

(Figure 1), so it remains possible that MR1 might present larger molecular structures that 49 

could possibly extend beyond metabolites. Indeed, recent in silico predictions identified that 50 

aspirin analogues such as 3- and 5-formylsalicylic acids, 2, 4-diamino-6-formylpteridine (2,4-51 

DA-6-FP) derived from methotrexate, and the anti-inflammatory drug diclofenac can bind to 52 

MR1 and modulate MAIT cell activity [13] . Studies to date have highlighted the particular 53 

importance of the positively charged lysine residue situated on the floor of the MR1 antigen-54 

binding cleft at position 43. 55 

 56 

The role of lysine 43 57 

Lysine 43 plays a prominent role in retaining MR1 in the ER prior to ligand capture and cell 58 

surface trafficking [5]. Furthermore, the known T-cell ligands, 5-OP-RU and 5-OE-RU, are 59 

short-lived pyrimidine adducts that are stabilized through the formation of a Schiff base with 60 

lysine 43 (Figure 2) which in turn neutralizes the charge on this residue and allows 61 

presentation of the MR1-bound cargo at the cell surface (Figure 3) [5].  62 

 63 

 64 
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Discovery of MR1T cells 65 

A small fraction (~1%) of peripheral T-cells do not express the CD4 or CD8 coreceptors that 66 

govern recognition of MHC class II and class I respectively [14]. These ‘double negative’ T-cells 67 

are thought to be enriched for cells that recognise non-MHC ligands [15]. Analysis of this 68 

MHC-agnostic T-cell population from five human donors in 1993 revealed that they express a 69 

very diminished and skewed TCR repertoire [15]; the most striking feature of which was a 70 

‘public’ TRAV1.2 invariant TCR chain estimated to comprise between 3-10% of total TRAV 71 

mRNA in peripheral blood lymphocytes across donors. Cells with semi-invariant TRAV1.2-72 

TRAJ33/20/12 TCRs were subsequently found to be highly enriched in the intestinal lamina 73 

propria resulting in them being called mucosal-associated invariant T (MAIT) cells [16]. Thanks 74 

to the development of soluble fluorochrome-conjugated MR1 multimers, we now know that 75 

MAIT cells can also express CD8 (mostly as a CD8aa homodimer) and CD4 resulting in them 76 

being far more numerous than originally appreciated [17]. Indeed, MAITs represent between 77 

0.1-10% of the peripheral T-cell pool, and up to 40% of T-cells in mucosal tissues and the liver 78 

[18] ensuring that they are the best-studied MR1Ts. 79 

 80 

MAIT cells 81 

MAIT cells are generally defined by their expression of a TCRα chain comprised of either 82 

TRAV1.2-TRAJ33, TRAV1.2-TRAJ12 or TRAV1.2-TRAJ20. This semi-invariant TCRα chain pairs 83 

with a limited array of TCRβ chains including TRBV20 and TRBV6 [19,20]. MAIT cells and MR1 84 

also coevolved, like most invariant cells and their corresponding antigen presenting molecule 85 

[21]. MAIT cells are further defined by their high expression of the PLZF transcription factor, 86 

which is also expressed in MAIT-like T-cells (or non-classical MAIT cells) – those with similar 87 

reactivity to MAIT cells but without the canonical TCR [22]. MAIT cells possess a wide range 88 

of effector functions and can directly lyse cells expressing their target antigen through 89 

perforin and granzymes, in addition to secretion of a range of cytokines such as IFN-γ, TNF 90 

and IL-17A (Figure 4) [23]. The array of TCRs expressed by MAITs suggests that they might 91 

recognise a range of distinct metabolite antigens with different ligands favouring different 92 

TCRβ chains [24,25]. The precise nature of many of these antigens remains unknown but the 93 

discovery that MAIT cells could respond to most, but not all, bacteria and yeast [26] initiated 94 

the hunt for microbial ligands in earnest and resulted in discovery of the ribityl tail-possessing 95 

[27] agonist rRL-6-CH2OH [28] and the most potent MAIT ligands 5-OP-RU and 5-OE-RU as 96 
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described above [7] . MAIT cells are notable in their potency for antigen and exhibit TCR 97 

affinities comparable with the very best antiviral conventional T-cells (KD ~ 1-10 µM) [29]. 98 

Contrastingly, MAIT cells are inhibited by the photodegradation product of folic acid 6-99 

formylpterin (6-FP), and can display fine antigen specificity even amongst antigens containing 100 

ribityl tails [27]•. A new class of MAIT-inhibiting molecules has also been identified, that 101 

function to sequester MR1 inside the endoplasmic reticulum, preventing antigen 102 

presentation to MAIT cells [30]. MAIT cells are also notable for their high expression of the 103 

NK cell marker CD161 in addition to high levels of the receptors for IL-7, IL-12, IL-15 and IL-18 104 

which enable activation by cytokines without direct TCR stimulation [26], as in the case of 105 

MAIT responses to viruses [31].  106 

 107 

MR1Ts in infection 108 

The ability of MAIT cells to secrete such diverse cytokines and directly kill infected cells makes 109 

them an important subset of T-cells. In mice, where the antigen binding domain of MR1 is 110 

>90% identical to human [32], MR1 is critical for immunity to the riboflavin-producing 111 

Francisella tularensis [33] and Klebsiella Pneumoniae [34]. MAIT cell deficient mice are also 112 

defective in immunity to Mycobacterium bovis bacillus Calmette–Guérin BCG [35,36]. Further 113 

studies in mice have also shown MAIT cells regulate the microflora, with direct MAIT cell 114 

recognition of microbial antigens promoting tissue repair and therefore reducing the risk of 115 

infection [37]••. Furthermore, MAIT cell abundancies are heavily influenced by the 116 

microflora, suggestive of a symbiotic relationship between MAIT cells and the microbiota [38]. 117 

The most direct evidence of the importance of MR1 during human bacterial infection came 118 

with discovery that an intronic single polynucleotide polymorphism in MR1 is associated with 119 

reduced mRNA expression and susceptibility to tuberculosis [39].  120 

 121 

Noncanonical MAITs 122 

The MR1 ligandome is diverse and present in bacteria such as Streptococcus pyogenes that 123 

lack the riboflavin biosynthetic pathway and extends to non-riboflavin-derived ligands from 124 

Escherichia coli and Mycobacterium smegmatis [10,40]. This greater range of ligands is 125 

mirrored by the TCRs that respond to them which can be TRAV1.2-negative [40] and 126 

encompass a range of distinct TCRb chains that contribute to ligand discrimination [41]. 127 

Consequently, the range of MR1T/MAIT cell types and the MR1-bound microbial ligands they 128 
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respond to is almost certainly greater than currently known. Indeed, such MR1-restricted but 129 

phenotypically (PLZF-, TRAV1.2-) and functionally distinct from MAIT cells have been classified 130 

as ‘atypical MR1-restricted T-cells’ [22]. As such cells do not possess evolutionarily conserved 131 

features, their biological significance remains unclear and warrants further investigation. 132 

Despite this, very rare cells could be important for the discovery of TCRs with therapeutic 133 

potential and for illuminating the path towards important differences in cellular metabolism 134 

between healthy cells and cancer cells [42]••.  135 

 136 

Self-reactive MR1Ts 137 

Lepore and colleagues extended the family of human MR1Ts by priming T-cells with A375 138 

cells over expressing an MR1-b2m fusion gene construct in the absence of exogenously 139 

applied antigens [43]•. All seven reactive clones tested were inhibited by addition of 6-FP to 140 

A375 cells overexpressing wildtype MR1, but still recognised targets overexpressing K43A 141 

MR1 in the presence of high levels of 6-FP demonstrating that these T-cells, which expressed 142 

a wide variety of different TCRs, likely recognise endogenous antigen(s) that is being displaced 143 

by 6-FP. The authors concluded that these new T-cells were stimulated by ligands that do not 144 

require the formation of a Schiff base with MR1 via lysine 43. Importantly, this study found 145 

that two of the clones could recognise antigen presenting cells pulsed with different 146 

hydrophilic fractions purified from THP1 cells or the mouse breast cancer line EMT6, 147 

demonstrating that the unknown antigens were: (i) varied (as the different clones responded 148 

to different fractions); (ii) stable within cell lysates; and, (iii) conserved between mammalian 149 

species. These new T-cells were found to exhibit MR1-dependent T helper-like capacities and 150 

frequently recognised monocyte-derived dendritic cells (moDC). The authors conclude that 151 

this novel population of MR1Ts “might drive inflammatory responses, support B cell function, 152 

mediate DC licencing promote tissue remodelling and contribute to mucosal homeostasis” 153 

[43]•.  154 

 155 

Cancer-specific MR1Ts 156 

We recently added to the MR1T family by describing a T-cell exhibiting MR1-dependent 157 

recognition of many human tumour types and primary tumours while remaining inert to 158 

healthy cells (including MoDC) [42]••. These cells exhibited potent cytotoxic activity and 159 

cytokine secretion at effector to target ratios below that we have ever seen for conventional 160 
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MHC-restricted anticancer T-cells. Activation was inhibited by 6-FP or K43A mutation of MR1 161 

suggesting that the TCR ligand formed a covalent link to MR1 analogous to the known 162 

bacterial ligands [44]. Our unpublished observations show that these cells cannot be 163 

stimulated with lysates of the best cancer targets, indicating that the antigen might be labile. 164 

We also found other TCRs from different donors that behave like MC.7.G5 T-cell despite 165 

expressing different TCRs. While we were able to isolate the relatively common (>1:5000 166 

blood T-cells) self-reactive MR1Ts described by Lepore and colleagues [42]•, we found 167 

MC.7.G5-like cells to be over 100 times rarer.  MR1 expression on cancers is not a new concept 168 

[45], with MAIT cells appearing to have an ambiguous role in a wide range of cancers from 169 

inducing tumour cell growth arrest in colorectal cancer in vitro experiments [46], promoting 170 

tumour metastases in lung mouse models [47], and being able to kill myeloma cells that were 171 

pulsed with the activatory MAIT cell ligand 5-OP-RU [48]. This latter point is particularly 172 

interesting due to recent evidence demonstrating that different tumour types have distinct 173 

microbiome compositions [49]••.  174 

  175 

MR1Ts in autoimmune disease 176 

MR1Ts are now thought to play other important immune roles. The discovery that some 177 

MR1Ts can recognise endogenous ligands [42]• or MR1 independent of ligand [50] opens the 178 

possibility that they are relevant to autoimmune disease. MAIT cells have already been 179 

implicated in inflammatory bowel disease (IBD) due to decreased MAIT cell numbers in IBD 180 

flares, suggestive of inflammation site recruitment [51]. Similarly, extravasation of MAIT cells 181 

to myelin sites occurs during periods of myelin degeneration in patients with Multiple 182 

Sclerosis, however their role remains unclear [52,53]. Cytokine-mediated activation of MAITs 183 

has been found to promote inflammation and exacerbate disease in murine models of 184 

arthritis [54], despite appearing to help control anti-islet autoimmune responses in Type 1 185 

diabetes [55]. Further work will be required to determine whether the high frequency of MAIT 186 

cells and their ability to activate in response to cytokines means that MAIT cells add to an 187 

already bad situation or whether MR1-restricted TCR-mediated signalling is involved at 188 

disease sites.  189 

  190 

 191 

  192 
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CONCLUSIONS 193 

The strong conservation of MR1 and corresponding bacteria-reactive invariant T-cell subset 194 

throughout most of mammalian evolution suggests that MR1Ts play an important role. MR1 195 

can bind to a large number of distinct bacterial [56] and endogenous ligands but the precise 196 

molecular nature of these molecules remains unknown. It is also becoming apparent that 197 

some MR1Ts are capable of distinguishing cancer cells from healthy cells and may be involved 198 

in autoimmune disease. Dissection of how various MR1T subpopulations contribute to all 199 

these roles will be advanced with the identification of the relevant MR1-bound antigens - a 200 

likely major focus of future MR1T research. T-cell therapies, especially for cancer, have 201 

exploded over the last decade with chimeric antigen receptor (CAR)-T therapy having 202 

demonstrated remarkable success for treatment of some forms of leukaemia [57]. This 203 

success has seen renewed interest in TCR-T therapy for cancer and other diseases. The biggest 204 

drawback of the conventional TCR is its restriction to highly variable MHC presentation 205 

platform which means even targeting through the most frequent HLA in the population is only 206 

applicable in a minority of patients. The monomorphic nature of MR1 and its conservation 207 

within the most commonly used animal models of disease ensures that MR1Ts, their TCRs 208 

and MR1-bound ligands may represent the richest ore for future extraction of important pan-209 

population immunotherapeutics [58].  210 
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