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Perspective

Handling Uncertainty in Models of Seismic and Postseismic
Hazards: Toward Robust Methods and Resilient Societies

Brian H. MacGillivray∗

Earthquakes, tsunamis, and landslides take a devastating toll on human lives, critical infras-
tructure, and ecosystems. Harnessing the predictive capacities of hazard models is key to tran-
sitioning from reactive approaches to disaster management toward building resilient societies,
yet the knowledge that these models produce involves multiple uncertainties. The failure to
properly account for these uncertainties has at times had important implications, from the
flawed safety measures at the Fukushima power plant, to the reliance on short-term earth-
quake prediction models (reportedly at the expense of mitigation efforts) in modern China.
This article provides an overview of methods for handling uncertainty in probabilistic seismic
hazard assessment, tsunami hazard analysis, and debris flow modeling, considering best prac-
tices and areas for improvement. It covers sensitivity analysis, structured approaches to expert
elicitation, methods for characterizing structural uncertainty (e.g., ensembles and logic trees),
and the value of formal decision-analytic frameworks even in situations of deep uncertainty.
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1. HANDLING UNCERTAINTY IN MODELS
OF EARTHQUAKE-INDUCED HAZARDS:
CHALLENGES AND DEFINITIONS

Earthquakes, tsunamis, and landslides place a
devastating toll on human lives, critical infrastruc-
ture, and ecosystems, particularly in “developing” na-
tions where major population centers are often clus-
tered in areas of high seismicity and exposed coastal
regions (Hill, Sparks, & Rougier, 2013). Processes
of global change are combining to exacerbate the
risks posed by these geophysical events: hillside de-
forestation together with climate change is expected
to increase landslide activity (Crozier, 2010); land-
use changes and modification of the nearshore envi-
ronment have broadened areas at risk from tsunami
inundation (Alongi, 2008; Titov et al., 2011); rapid,
unplanned urbanization has led to many cities being
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ill-equipped to withstand major earthquakes (Smith,
2013); while the widespread displacement of tra-
ditional institutions and ecological knowledge has
eroded adaptive capacities in many regions (Lauer
et al., 2013). Harnessing the predictive capabilities of
hazard models is key to transitioning from reactive
approaches to disaster management toward build-
ing resilient societies, alleviating poverty, and driv-
ing sustainable growth. Yet, while formal models play
an increasing role in characterizing hazards and ex-
ploring mitigation options, the knowledge that they
produce involves multiple sources of uncertainty.
Widespread nonlinearities make results highly sensi-
tive to initial and boundary conditions that are them-
selves often poorly understood; parameter values are
only partially constrained by theory or empirics; and
model structures contain significant omissions and
idealizations whose implications are challenging to
evaluate (Iverson, 2003; Oreskes, Shrader-Frechette,
& Belitz, 1994). Of course, as Box (1979) observed,
all models are wrong, but some are useful, meaning
that the above challenges are by no means grounds
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to reject the value of such models. The point instead
is that hazard models of earthquakes, landslides, and
tsunamis involve multiple, nontrivial sources of un-
certainty, meaning that statistical techniques that fo-
cus on random error are insufficient on their own
(e.g., local sensitivity analysis, confidence intervals,
p-values) (c.f. Aven, 2013a; Cox, 2012; Greenland,
2017; Stein & Stein, 2013). The failure to properly
take account of the full range of uncertainty can
pose significant problems for risk management, from
the flawed safety measures at the Fukushima power
plant, to the reliance on short-term earthquake pre-
diction models (reportedly at the expense of mitiga-
tion efforts) in modern China. This will not be news
to many within the hazard modeling community––
indeed, there has been significant progress in meth-
ods for characterizing uncertainty in recent years,
making now a good time to take stock of develop-
ments and explore areas for potential improvement.

My scope is restricted to hazard models designed
to inform decision making, rather than theoretical
models. This distinction matters for two main rea-
sons. The first is that the goals of both modeling
communities differ, and by extension, the appropri-
ate forms of uncertainty analysis will vary. Theo-
retical models aim to explain the workings of the
natural world––to capture the fundamental physical
processes at play––whereas models designed to in-
form decision making are primarily concerned with
making informative, good predictions.1 As a result,
it may be unusual to see formalized approaches to
expert elicitation used in basic research, as science
advances by argument and evidence, rather than by
votes, whereas such procedures may prove to be a
useful way to inform decisionmakers of the range of
expert (dis)agreement on a given matter. Similarly,
a formal characterization of the full range of model
and parameter uncertainty may help decisionmakers
understand how robust their choices are to the range
of known unknowns, but be quite superfluous for the-
oretical modeling. A second reason the distinction
matters is that political pressures––perceived or real–
–may play a more significant role in the generation of
science for policy applications, particularly when this
takes place within government institutions. I define a

1By informative predictions, I mean predictions that are relevant
to some real-world decision problem. By good predictions, I mean
reliable statements about a (as yet unobserved) feature of the
world. Some prefer to distinguish predictions from forecasts and
counterfactual analyses, although I view the latter two as a subset
of predictions, with predictions simply being statements about the
world that are in principle testable.

model as a simplified representation of a target ac-
tivity or system, and conceive of uncertainty in the
broad sense of incomplete or imperfect knowledge
(SRA, 2018). I distinguish three key types of uncer-
tainty (Hill et al., 2013; Linkov & Burmistrov, 2003;
Parker, 2013):

1) Parameter uncertainty: uncertainty surround-
ing the correct value of model parameters;

2) Input uncertainty: stemming from incomplete
knowledge of the initial state of the system (ini-
tial conditions; boundary conditions);

3) Structural uncertainty: the inability of the
model to represent the target system, even if
the correct inputs and parameters are known
(e.g., relating to the form of modeling equations
and how they should be solved computation-
ally).

With these clarifications out of the way, I ask
what, then, are the key sources of uncertainties in
models of earthquake-induced hazards? How are
they currently handled (or neglected), and with what
practical implications? How might we do better? In
exploring such questions, this article aims to:

1) Provide a thematic overview of key sources of
uncertainty in hazard models of earthquakes,
tsunamis, and landslides;

2) Critically evaluate current methods for charac-
terizing those uncertainties;

3) Identify, where relevant, strategies for more
rigorous, transparent handling of uncertainty.

The article’s approach is necessarily schematic,
emphasizing key themes, rather than providing a de-
tailed survey of the literature. The analysis is orga-
nized by hazard type, followed by an overarching dis-
cussion.

2. PROBABILISTIC SEISMIC HAZARD
ASSESSMENT

Earthquake forecasting methods date back to
antiquity. Aristotle developed one of the earliest
theories of earthquakes––based on the notion that
they were driven by wind trapped beneath the earth’s
surface––and from this account identified a series
of early warning signals, for example, anomalous
subterranean gas emissions; changes in animal be-
havior; clouding and change in taste of well water
(Missiakoulis, 2008; See, 1907). Although his theory
is long defunct, the idea that there are identifiable
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precursors of an impending earthquake lives on. In-
deed, the late 1960s–1970s saw increasing optimism
within the scientific community that earthquakes
could be predicted days or even hours in advance,
although this later transformed into skepticism as
purported precursors could not be reliably validated
(Geller, 2011; Geller, Jackson, Kagan, & Mulargia,
1997). While the majority of the seismology commu-
nity soon came to view the short-term prediction of
large earthquakes as either currently unrealistic or
outright pseudoscience, it remained a respectable,
government sanctioned line of research that fed into
decision support systems in China and Japan (Chen
& Wang, 2010; Geller, 2011).2 What might account
for this?

The long shelf-life of China’s prediction pro-
gram has been attributed to political and ideolog-
ical drivers. Following the apparent prediction of
the (1976) Haicheng earthquake––the only successful
prediction in recorded history––the program became
a source of national pride at a time when Chinese
scientists were isolated internationally (Fan, 2007),
and its putative success was portrayed as demon-
strating the superiority of the socialist system and
the “victory of the proletarian cultural revolution”
(Cha, 1976). Moreover, precursor hunting was coher-
ent with core tenets of Maoist thought, such as the
ambition of mastering nature via prediction and con-
trol, as well as representing a critique of “elite” sci-
ence combined with the veneration of amateur in-
volvement (precursors such as variations in animal
behavior, groundwater levels, etc. being accessible
to untrained observers) (Cha, 1976; Fan, 2007). The
Division Head of China’s National Earthquake Bu-
reau attributed skepticism about earthquake predic-
tion to antirevolutionary prejudices, and claimed that
the previous regime’s concern with earthquakes was
restricted to the opportunity they presented to “loan
money with usurious interest to the hard pressed
people” (Cha, 1976). Finally, the prediction pro-
gram reflected a traditional epistemology––famously
embodied in Chinese medicine––that mechanistic
knowledge is unnecessary for reliable prediction
(Fan, 2007). Indeed, it was only the failure to foresee
the catastrophic (2008) Wenchuan earthquake that
marked a decisive shift within China from short-term
forecasting efforts toward an emphasis on risk miti-
gation (Chen & Wang, 2010). In Japan, similarly, the
Meteorological Agency has been legally bound since
1978 to identify and evaluate precursors indicating

2Pure research on this topic continues elsewhere in the world.

that the “Tokai earthquake” will occur imminently
(Geller, 2011). Such a law––which reportedly became
moribund in late 2017––is without modern parallel
(ibid.). Geller (2011) attributed its entrenchment to
the innate conservatism of Japanese scholarly and
media sectors, the co-opting of potential critics via
appointments to prestigious advisory boards, and the
fact that once practices are sanctioned by law, they
acquire a certain path dependency.

There is one general lesson and one question
that I wish to draw from the above examples. The
general lesson is that while we are used to thinking
of how policymakers act in the face of uncertain
scientific information, state institutions may actively
construct ignorance through endorsing modeling
approaches that encode assumptions that are sci-
entifically questionable, yet that are politically or
ideologically attractive. The question is whether an
unrealistic faith in prediction models can undermine
resilience by creating a misleading sense of security
that sidelines risk mitigation efforts (Chen & Wang,
2010). The evidence supporting this is based on
historical accounts. Chen (member of the Chinese
Earthquake Administration) and Wang (2010) use
archival data to trace out the historical evolution
of China’s earthquake prediction program. They
recount that organized efforts of earthquake predic-
tion began in 1966 before climaxing in the seeming
prediction of the Haicheng earthquake (1976).
During this period, the Chinese leadership viewed
prediction as a “faster and cheaper solution than
improving the quality of buildings” (Chen & Wang,
2010). They conclude that the resources directed
toward the prediction program “certainly” diluted
the focus on mitigation at least until the passing of
the Earthquake Act in 1998, and speculate that the
associated false sense of security associated with
the promotion of prediction “success stories” may
be partially responsible for the lax enforcement of
mitigation measures required by the aforementioned
legislation. In contrast, Japan’s history of substantial
investments in mitigating earthquake hazards implies
that the Tokai prediction program has been relatively
benign in this respect, although some have specu-
lated that the program distracted attention from
other risk-prone regions of the country (Nöggerath,
Geller, & Gusiakov, 2011). The hypothesis that a
focus on prediction efforts diverts attention from
mitigation efforts appears to be relatively commonly
held among seismologists (Joffe, Rossetto, Bradley,
& O’Connor, 2018). The underlying assumption
appears to be that governments tend to allocate a
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relatively fixed, aggregate budget for earthquake
prediction and preparedness, and so resources di-
rected toward the former by necessity come from
the latter. Whether this is a plausible assumption
depends on institutional funding mechanisms. For
example, in the modern United States, seismic risk
mitigation efforts are essentially paid for by devel-
opers who must adhere to federal safety regulations,
while research supporting the development and im-
plementation of these regulations is largely funded
by the Engineering Directorate of the NSF. Would an
increase in funding for short-term prediction efforts
(presumably from the Geosciences Directorate) nec-
essarily imply a reduction in research in infrastruc-
ture resilience (typically funded by the Engineering
directorate)?3 Stated so bluntly it may seem implau-
sible, although the historical record provides some
pause for thought. Prior to the 1977 passing of the
Earthquake Hazard Reduction Act in the U.S. Sen-
ate, a panel of scientists and engineers were tasked
with considering the extent to which the proposed
$50 million a year program “should focus on predic-
tion, as opposed to efforts to mitigate earthquake
risk” (Hough, 2016). Although this supports the
hypothesis that an unrealistic faith in prediction
models can undermine resilience, in practice lit-
tle of the funds were allocated toward prediction
(Hough, 2016) as optimism surrounding its feasibility
declined.

Few seismologists now believe that precursors
can be reliably used to predict the occurrence of
large earthquakes. Longer-term forecasting efforts–
–in the form of probabilistic seismic hazard assess-
ment (PSHA)––now represent the “first line of de-
fense with respect to mitigating earthquake risk”
(Field & Milner, 2018). Within PSHA, the distribu-
tion of seismic hazard is estimated based on: (1) the
location of the site with respect to known or as-
sumed earthquake sources, (2) the assumed recur-
rence behavior of these earthquake sources, and (3)
the computed ground motion for the earthquakes at
the given site (e.g., peak ground acceleration) (Cor-
nell, 1968; Stirling, 2014). PSHA outputs include esti-
mates of the maximum expected ground shaking with
a given probability over a specified period of time
(Budnitz et al., 1998). PSHA is challenging to con-
duct and evaluate, given the long recurrence periods,
chaotic behavior, and difficulties of observing under-
lying processes. While the basic theory of plate tec-
tonics is long-established, uncertainty surrounds how

3I owe this point to a reviewer.

plate motion is actually released during earthquakes
(Stein, Geller, & Liu, 2012). Moreover, controversy
surrounds the distribution of earthquake recurrence
intervals, with the traditional choice being between
a probability density function that views the recur-
rence of large earthquake as time-independent (a
Poisson process), and a time-dependent recurrence
model that presumes a quasi-periodic return period
(the “seismic gap”model) (Field et al., 2017). Ap-
plications of PSHA also face significant parameter
uncertainty, for example, relating to the locations
of faults, their activity, how rapidly they accumulate
strain, and how that strain will be released (Stein
et al., 2012).

Until the past decade or so, the development
of PSHA models proceeded largely in the absence
of systematic attempts at validation (Stirling, 2014).
However, initiatives, such as regional earthquake
likelihood models (RELM) and collaboratory for
the study of earthquake predictability (CSEP), have
emerged to correct this discrepancy (Field, 2007; Jor-
dan, 2006). These initiatives have found forecasting
models to be increasingly skillful and reliable (Schor-
lemmer et al., 2010; Zechar et al., 2013). Given the
exponential distribution of earthquake magnitudes,
relatively small magnitude earthquakes constitute
the majority of the test data (Marzocchi & Zechar,
2011). As such, it is difficult to directly evaluate
the predictive accuracy of PSHA models in relation
to large earthquakes. However, several recent large
earthquakes occurred in regions previously charac-
terized by PSHA analyses as low hazard (Stein et al.,
2012). How should these seemingly conflicting lines
of evidence be reconciled or balanced? If one views
system-size earthquakes as fundamentally the same
as their smaller counterparts, then the positive find-
ings of the RELM and CSEP initiatives should be de-
cisive. However, on this former issue, the seismology
community is split (Marzocchi & Zechar, 2011).

Nevertheless, even if one views large earth-
quakes as fundamentally different from their smaller
counterparts, then it is by no means clear that the
recent occurrence of large earthquakes in low hazard
areas is an indictment of the PSHA approach. Such
claims have been forwarded in the literature (e.g.,
Stein & Stein, 2013). My own view is that these
claims amount to “naive falsificationism,” wherein
a discrepancy between a model or hypotheses and
observation(s) is interpreted as grounds for rejecting
said model, and in extreme instances, as discred-
iting the underlying methodology. In practice, the
aforementioned discrepancy may be down to a
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host of other factors, such as errors in input data,
coding, or even just random chance or the use of
inappropriate evaluation statistics.4 Even if the dis-
crepancy stems from structural error, then once more
this is insufficient ground for rejecting the model(s)
or abandoning PSHA, at least if we are to take Box’s
(1979) maxim at all seriously. Indeed, on close in-
spection, many of the more hostile critiques of PSHA
come from a strict frequentist perspective, wherein
PSHA outputs are variously described as “statistical
nonsense,” untestable (Mulargia, Visconti, & Geller,
2018), and the outcome of “opinions and ad hoc
choices” (Stark, 2017). These claims are unlikely
to hold much water with PSHA practitioners, nor
indeed with the broader risk assessment community,
given that risk and decision analysis has its roots in
Bayesian reasoning (Kaplan & Garrick, 1981). Be-
low, I focus on how uncertainty has been handled in
the landmark Uniform California Earthquake Rup-
ture Forecast (UCERF) assessments, which provide
official earthquake rupture forecasts for California.

UCERF, in common with state-of-the-art PSHA
applications, characterizes model uncertainty via an
ensemble of alternative models that are consistent
with current knowledge. Historic data––particularly
for high-intensity, low-frequency earthquakes––are
too sparse to weight each model with reference to
conventional measures of fit (e.g., Bayesian informa-
tion criteria) (Marzocchi & Jordan, 2014). And so in
practice, model uncertainty in PSHA is represented
via logic trees (sometimes involving several thousand
alternative paths), where each branch represents a
viable alternative model choice or assumption (e.g.,
Field et al., 2017). Probabilities are assigned to each
branch, and these are typically intended to reflect
the perceived probability that the model represents
“the true state of nature” (Field et al., 2009), or in
more recent interpretations, that it is the best avail-
able choice (Field et al., 2017). Past UCERF exer-
cises faced criticism for the basis on which probabil-
ities were assigned. For example, Page and Carlson
(2006) criticized the use of data-availability as a crite-
rion for assigning weights to alternative earthquake-
recurrence models in the first UCERF exercise. They
argued that the volume of data available is orthog-
onal to the question of which model is (more likely
to be) true, and that as a result, such a weighting
scheme can introduce bias (Page & Carlson, 2006).
However, in recent years, analysts have come to fa-
vor the interpretation that the probabilities are mea-

4I owe the latter point to a reviewer.

sures of confidence that the model is the best avail-
able choice, as opposed to the probability that it is
true. Under such an interpretation, the use of data-
availability as a criterion for assigning weights seems
to be a pragmatic choice. The most recent UCERF
exercise provides more evidence on the criteria un-
derpinning the probability assignments (e.g., Parsons
et al., 2013). The criteria appear to fit within the
broad class of epistemic values––those values that
promote the acquisition of true beliefs (Goldman,
1999)––including notions such as fit to data sets and
consistency with background theory (Parsons et al.,
2013). Some philosophers argue, however, that risk
assessors should also consider nonepistemic values
when, inter alia, assigning probabilities to alternative
models (e.g., Douglas, 2000). These nonepistemic val-
ues refer to social and ethical considerations, such as
whether to be precautionary when making method-
ological choices, and how conflicting goals (e.g., hu-
man life vs. economic cost) should be weighed in de-
termining how precautionary to be. My own view
is that these normative questions should not influ-
ence risk or hazard assessment as this would under-
mine their objectivity. Instead, they should be ad-
dressed within decision analysis frameworks, as these
provide formal, explicit processes for expressing
values and characterizing tradeoffs (MacGillivray,
2019; but see Hicks, Magnus, & Wright, 2020, for a
response).

A separate critique of the logic tree approach––
as undertaken in UCERF and PSHA more broadly–
–has focused on what is argued to be the implicit
assumption that the models represented at each
tree branch are mutually exclusive and completely
exhaustive (MECE) (Page & Carlson, 2006). This
MECE criterion appears to be violated in PSHA
practice. For example, in UCERF2, important drivers
of seismic hazard––such as those relating to fault-
to-fault ruptures and earthquake-clustering effects–
–were not well enough understood to allow for for-
mal representation (Field et al., 2009). More gen-
erally, logic tree branches within PSHA are not
thought of as exhausting all possibilities (Marzoc-
chi, Taroni, & Selva, 2015). What are the con-
ceptual and practical implications of seemingly vi-
olating MECE? Marzocchi and Jordan (2014) ar-
gue that there is no such violation as long as the
probabilities are interpreted in terms of the “best
among a set of available models,” as opposed to
the “true model.” Parker (2013) has similarly argued
that the latter interpretation is naïve in relation to
climate model ensembles. Put simply, Box’s (1979)
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maxim makes it difficult to entertain the idea of an
ensemble that spans “the full range of current
uncertainty about model structure.” What are the im-
plications of this? My own view is that PSHA out-
puts should be interpreted as conditional probabil-
ity estimates (see also Hansson & Aven, 2014), in
other words, they are conditional on a knowledge
base that may be more or less strong (Aven, 2013a,b;
Kaplan & Garrick, 1981). As a corollary, the strength
of this knowledge base should be communicated to
decisionmakers. Measures of confidence in PSHA
outputs can be conveyed, for example, through as-
sertions of the degree to which assessors expect to
update their probabilities in the face of new data
(Lehner, Laskey, & Dubois, 1996). This is now a stan-
dard practice in the IPCC’s climate change assess-
ments (Mastrandrea et al., 2011). Adopting such a
practice would respond to concerns raised by some
analysts that decisionmakers tend to view PSHA out-
puts as a “unique and precise representation of the
reality,” a tendency which “caused considerable con-
fusion among decision makers when large swings of
the mean hazard may occur in the wake of model
changes and updates” (Lee, Graf, & Hu, 2018).

I turn now to the process for eliciting logic
branch probabilities. In UCERF2, alternative
branches were assigned equal probabilities in the
absence of “clear evidence to favor a given one
over the other,” and where such evidence exists,
the probability values were assigned through a
“consensus-building process” (Field et al., 2009). In
the most recent UCERF3 exercise, branch prob-
abilities were in one application assigned on the
basis of an “informal poll taken among those in
[workshop] attendance”(Field et al., 2015), while in
other instances, ad hoc special committees were es-
tablished for this purpose. These descriptions suggest
that elements of both behavioral and mathematical
approaches to eliciting and aggregating expert judg-
ments were relied upon. This may seem like a curious
combination; however, the purposes of expert elic-
itation for PSHA are somewhat nonstandard. That
is to say that they are not designed to capture and
aggregate the probability judgments residing in the
experts’ heads, but rather to determine the “center,
body, and range of technical interpretations” of the
informed technical community (Budnitz et al., 1997).
A large literature emphasizes that such process
design features can play a significant influence in
shaping the outcomes of expert elicitation, including
within PSHA (e.g., Runge, Scherbaum, Curtis, &
Riggelsen, 2013; Scherbaum & Kuehn, 2011). Some

scholars argue that consensus estimates produced
by behavioral methods (e.g., Delphi) reflect strong
group pressures for conformity rather than gen-
uine agreement (Morgan, 2014; Woudenberg, 1991).
Another stock concern is that even experts tend
to be poor at producing probability judgments in
the absence of a formal, structured approach to
elicitation and aggregation (Scherbaum & Kuehn,
2011). Whether these concerns have any bearing
on recent UCERF exercises is unclear, given that
the full details of the elicitation and aggregation
procedures do not appear to be in the public domain.
However, what is interesting is that, if one interprets
(1) the selection of process design features as a mod-
eling choice with testable implications, and (2) that
recent initiatives, such as RELM and CSEP, provide
a framework for evaluating these implications, then
(3) there is, in principle, the possibility to empirically
determine which process-designs will generate more
reliable, skillful PSHA estimates.

3. TSUNAMI HAZARD ANALYSIS

Tsunamis––long waves of limited steepness gen-
erated by geophysical events, including earthquakes,
submarine landslides, volcanic eruptions, and aster-
oid impacts––are among the most devastating and
difficult to predict hazards (Synolakis & Bernard,
2006). Tsunami hazard analysis is broadly concerned
with simulating wave initiation, propagation, runup,
and inundation, although models may focus on dis-
tinct timescales or components of the hazard-chain.
A useful distinction is that between short-term
forecasts in support of early warning systems, and
long-term forecasts, such as inundation estimates in
support of site-specific hazard evaluations or hazard
mapping (Titov et al., 2011). Early warning systems
depend upon models that simulate wave propaga-
tion and runup conditional upon knowledge about
the triggering event (e.g., macroscopic earthquake
parameters) and wave evolution (e.g., from deep-sea
tsunameters). Site-specific hazard evaluations––for
example of nuclear power plants––on the other
hand condition their assessments on knowledge of
the seismic hazard profile of the region, and may
involve simulations of the impact of waves upon the
structure itself (i.e., the consequences of the hazard).
Tsunami risk maps similarly condition upon the
seismic hazard profile to estimate the probability of
inundation, perhaps combined with an approximate
measure of consequences (e.g., tsunami loss curve),
to inform land use planning and mitigation measures.
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Tsunami hazard modeling was pioneered by the
Japanese, with the first early warning system devel-
oped in 1941, based on an empirical assessment of
the relations between earthquake amplitude and dis-
tance from source (Bernard & Titov, 2015). How-
ever, the size of tsunami generated by an earthquake
is a function of several factors in addition to earth-
quake magnitude, including source mechanism, fault
rupture velocity, hypocentral depth, and water depth
within the source region (Gusiakov, 2009). A partic-
ular problem is posed by tsunami-earthquakes, de-
fined as seafloor motions that generate wave ampli-
tudes far greater than would be expected based on
earthquake magnitudes alone. As such, seismic in-
tensity is an imperfect proxy for tsunami hazard–
–indeed, tsunami amplitudes can differ by a factor
of up to 60 for earthquakes of the same magni-
tude (Gusiakov, 2009)––and relying on it within ei-
ther formal or informal warning systems can be dis-
astrous.5 Modern early warning systems synthesize
the knowledge of macroscopic earthquake parame-
ters with data from tsunameters to provide more re-
liable predictions, although uncertainty remains. For
example, the 2011 Tohoku tsunami was severely un-
derestimated (3–6 meters vs. 10+ meters) due to
incorrect initial estimates about the magnitude of
the earthquake (7.9 vs. true value of 9.0) (Goda &
Abilova, 2016). Forecasting is even more challenging
where coseismic hazards are involved (e.g., underwa-
ter landslides) and for tsunamis generated by non-
seismic events (e.g., volcanic eruptions) for which no
precursors may be available. (Gusiakov, 2015). These
challenges apply to early warning systems, and to
long-term site-specific evaluations and hazard map-
ping efforts, which I focus on below.

While the mathematics governing tsunami
motions––the Navier Stokes equations––have been
known for over 150 years, they are notoriously diffi-
cult to solve, necessitating a host of approximations
and idealizations (e.g., the elimination of viscous
stresses), and numerical rather than analytical solu-
tions (Synolakis & Bernard, 2006). Recent decades

5Perhaps the classic illustration is the Meiji Great Sanriku tsunami
earthquake (1896), which struck northeastern Japan with run-
up heights (up to 38 m) far in excess of what would have been
expected based on the weak ground shaking (Shuto & Fijima,
2009). The lack of precursors meant no evacuation, and a loss
of life of upward of 22,000. More recently, residents of Papua
New Guinea neglected to evacuate in response to an offshore 7.1
magnitude earthquake on the grounds that it was not particularly
large (Monastersky, 2012). The earthquake triggered an under-
water landslide, and the subsequent tsunami cost 2,000 lives.

have seen significant improvements in modeling
capabilities, driven by the widespread deployment
of tsunameters, more detailed bathymetric maps,
systematic field surveys in the aftermath of ma-
jor tsunamis (e.g., the 1983 Japan Sea and 1993
Hokkaido Nansei-Oki tsunamis), improved compu-
tational capacities, and an international multimodel
benchmarking exercise, which served as the basis
for the evaluation and improvement of simulation
techniques (Kânoğlu, Titov, Bernard, & Synolakis,
2015; Shuto & Fujima, 2009). A development worth
highlighting is that the influence of near-shore
bathymetry and onshore topography––including
human modifications and land-use––appears to play
a more significant role in shaping inundation and
runup than previously thought (Kânoğlu et al., 2015;
Synolakis & Bernard, 2006).6 I highlight this because
it remains a widespread practice to interrupt the
calculation of tsunami simulations at some arbitrary
offshore location, from which inundation is inferred
(Synolakis & Bernard, 2006; Synolakis & Kânoğlu,
2015). Indeed, one of the questionable aspects of
the pre-event hazard analysis conducted for the
Fukushima power plant was that they adopted this
threshold methodology, with the consequence that
they seemingly did not consider the possibility of
overland inundation (Synolakis & Kânoğlu, 2015).
However, the dominant source of uncertainty in
long-term tsunami hazard evaluations surrounds the
initial conditions (i.e., the triggering event) (England,
Howell, Jackson, & Synolakis, 2015).

One (precautionary) way of handling this un-
certainty is to base hazard analyses on the “maxi-
mum probable tsunami.” How are these identified?
Japanese regulatory guidance sets out the follow-
ing standard procedure: identify the largest historic
tsunami for which reliable data exist; identify the
tsunami that would stem from the largest earthquake
that could occur conditional on current scientific
knowledge; then select the tsunami with the higher
water level on the coast (Shuto & Fujima, 2009).
It is important to emphasize that rule-based ap-
proaches to hazard assessment, whether in the form
of explicit guidelines or semiautomated modeling

6For example, field observations following the 1994 East Java and
1996 Peruvian tsunamis further support the idea that extreme
nearshore features play a significant role in shaping the distri-
bution of run-up levels even across relatively open and straight
coastlines. Moreover, estimates of run-up values generated from
threshold approaches differ from those that explicitly account for
near-shore bathymetry and topography by a factor of two or more
(Kânoğlu, Titov, Bernard, & Synolakis, 2015).
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procedures, do not obviate the need for expert judg-
ment. As a cautionary example, the calculation of
the maximum probable tsunami pre-Fukushima con-
tained basic methodological flaws “which almost no-
body experienced in tsunami engineering would have
made” (Goda, Mai, Yasuda, & Mori, 2014), result-
ing in plant safety design features that were far from
adequate (Synolakis & Kânoğlu, 2015). An alterna-
tive to “precautionary” analyses is to use PSHA out-
puts as inputs to tsunami hazard analyses. Goda et al.
(2014) use an ensemble of earthquake source models
as a means of reflecting some of the underlying uncer-
tainties. Particular challenges are posed by tsunami-
earthquakes7 and nonseismic tsunami triggers (e.g.,
submarine landslides and volcanic eruptions). The
limited physical theory and empirical evidence relat-
ing to these triggers means that there is no reliable
basis for assigning probabilities to them (Synolakis
& Kânoğlu, 2015; Tappin, 2018), making them chal-
lenging to take account of in hazard analysis.

Parametric uncertainty, on the other hand,
is widely handled through sensitivity analysis in
tsunami hazard assessment. Conventionally, this is
done through varying one parameter or input value
at a time over an arbitrarily limited space (Goda
et al., 2014), but this is strictly speaking inadvisable
for correlated sources of error. Methods of global
sensitivity analysis (GSA) have recently been applied
in tsunami forecasting, although are computationally
demanding (Goda, Yasuda, Mori, & Mai, 2015). I re-
turn to this topic in relation to debris flow modeling.

4. DEBRIS FLOW MODELS

Earthquakes play a significant role in destabiliz-
ing slopes, creating coseismic landslide hazards, and
enhancing the probability and volume of subsequent
rainfall-induced debris flows. Debris flows, which
I focus upon, carry the potential for large-scale
destruction of infrastructure as well as posing a sub-
stantial threat to human lives (Nolde & Joe, 2013).
Debris flow hazard assessments ask two distinct ques-
tions: where and when will debris flows initiate, and
how large will they be (initiation); and what speed
will they travel, and which downstream areas will be
affected (propagation) (Iverson, 2014). Physical and
empirical models have been deployed for both tasks.
Physical models carry the benefits of being rooted in

7Recall that these are not simply earthquakes induced by tsunamis,
but seafloor motions that generate wave amplitudes far greater
than would be expected based on earthquake magnitudes alone.

basic principles of the conservation of mass and mo-
mentum (and so are transportable across space and
time); can explicitly represent interactions between
debris flows and the surrounding environment (e.g.,
redirection/overtopping in the face of an obstacle
such as check dam); and allow for (counterfactual)
reasoning about potential risk mitigation interven-
tions (e.g., slope stability measures) on the hazard
profile (Iverson, 2014; Iverson, George, & Logan,
2016). However, in practice, their implementation for
the purposes of decision support faces myriad chal-
lenges (Almeida, Holcombe, Pianosi, & Wagener,
2017; Iverson, 2014). There are multiple plausible
representations of debris flow initiation and prop-
agation processes––each with their own omissions,
idealizations, and assumptions––and neither field nor
experimental data provide decisive tests between
them (Bennett, Molnar, McArdell, & Burlando,
2014; Iverson, 2014). Parameter uncertainty in phys-
ical models is often handled by sensitivity analysis,
wherein a range of values for initial conditions and
material properties (e.g., slope stability) are selected
and used to compute an associated range of poten-
tial outcomes. However, the sensitivity analysis is
typically local, meaning that only a limited range of
parameter variation is explored around a base value
or reference case (Rohmer, 2014). This method is
efficient and so is particularly useful for complex
models; however, extrapolation of the results be-
yond these small perturbations to cover the entire
feasible space of parameter variation is only valid
where nonlinearity in the input–output relations can
be ignored (Rohmer, 2014). Moreover, parameters
are typically varied one-at-a-time, meaning that un-
certainties stemming from any interactions (i.e., cor-
related parameters) are not accounted for (Rohmer,
2014).

Given the above challenges, empirical models
play a dominant role in debris flow hazard assess-
ment, particularly in early warning systems, but also
to inform longer-term decisions, such as land-use
zoning. I focus here on the use of debris flow initi-
ation models (rather than propagation), which cor-
relate the intensity and duration of rainfall events8

with the (probability) of debris flow initiation to de-
rive rainfall intensity-duration thresholds (e.g., Liu
et al., 2016). Standard curve-fitting techniques mean
that they often have reasonable measures of fit to
data sets. However, these measures should be inter-
preted cautiously: while the models contain a limited

8The primary trigger for debris flows.
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number of free parameters (reducing the risk of over-
fitting), discretionary choices of functional form, of
which rainfall index to use, and of which time period
to use for calibration mean that significant degrees
of freedom remain (Osanai, Shimizu, Kuramoto, Ko-
jima, & Noro, 2010). Model performance out of sam-
ple, particularly when extrapolated across time or lo-
cation, can fall significantly (Huang, van Asch, Wang,
& Li, 2019; Papa, Medina, Ciervo, & Bateman, 2013).
This is due to varying soil, land-cover and lithological
conditions, as well as a typically scarce record of re-
liably reported events (Fan et al., 2019). As such, the
application of empirical models in emergency warn-
ing systems is often restricted to catchments where
the model was calibrated, although more ambitious
efforts attempt to derive rainfall intensity-duration
thresholds for broader regions characterized by spe-
cific combinations of hydrology, topography, and ge-
ology (Alfieri, Salamon, Pappenberger, Wetterhall,
& Thielen, 2012; Iverson, 2014).

Empirical debris flow models typically do not ex-
plicitly incorporate uncertainty, instead addressing it
through attaching safety factors to the thresholds at
which early warnings are triggered. To my knowl-
edge, the establishment of such thresholds has not
been informed by an explicit, systematic considera-
tion of the relative costs of false positives and false
negatives, for example, within a decision-theoretic
framework. Such approaches have been developed
in relation to weather forecasting (e.g., Economou,
Stephenson, Rougier, Neal, & Mylne, 2016; Roul-
ston & Smith, 2004). More on this later. A key
source of uncertainty is the implicit assumption that
the parameter values are relatively stable feature
of the world (i.e., ergodicity). When any of the rel-
evant background variables change––for example,
where a check dam is introduced to a gully, or where
land use changes have influenced drainage systems–
–parameter stability can no longer be assumed. One
way to handle this is to recalibrate the model follow-
ing significant changes, for example, the introduction
of a check dam, although of course this involves the
classic bias-variance tradeoff. Moreover, violations
of the ergodicity assumption are not always clear-
cut. For example, the ongoing redistribution of sed-
iment across catchments in Sichuan province––over
a decade after the Wenchuan (2008) earthquake mo-
bilized approximately 3 km3 of material across the
Longmenshan Fault (Li et al., 2014)––has continu-
ally altered patterns in the location and frequency of
debris flows (Hales et al., 2017). The implication is
that debris flow initiation probabilities are continu-

ally evolving in the real world. As a consequence, a
recent review concluded that physically based mod-
els and geotechnical investigations are preferable for
deriving landslide-triggering rainfall thresholds fol-
lowing major earthquakes (Fan et al., 2019).

A concern sometimes raised with the ap-
proach to debris flow risk management adopted
in hazard-prone mountainous regions of Western
China (particularly in Sichuan and Gansu Province)–
–characterized by a reliance on emergency warning
systems and check dams––is that it may not only be
ineffective, but may also be providing a (mislead-
ing) sense of security that encourages settlement in
highly hazardous areas (e.g., Xiong et al., 2016). For
example, the current engineering design standard for
check dams is premised upon the assumption that de-
bris flow discharges are a linear function of precipita-
tion, and as a result can underestimate the volume of
debris flows by up to an order of magnitude (Horton,
Hales, Ouyang, & Fan, 2019; Xu, Zhang, Li, & Van
Asch, 2012). Indeed, Chen, Cui, You, Chen, and Li
(2015) reported that not only did such control mea-
sures fail to contain peak flow discharges in Wen-
jia Gully, Sichuan, but that their destruction served
to amplify the scale of the debris flow. Xiong et al.
(2016) report similar findings from Sanyanyu, Gansu
Province, where the collapse of check dams amplified
a debris flow that subsequently killed 1,756 people.
These examples raise the question of whether Gansu
and Sichuan’s approach to debris flow risk manage-
ment is leading to something analogous to the “levee
effect.”

5. SYNTHESIS AND CONCLUSIONS

Modeling earthquake-induced hazards involves
multiple, nontrivial sources of uncertainty. Initial and
boundary conditions are often poorly constrained;
model structures contain omissions, approximations,
and idealizations whose implications are challenging
to evaluate; and parameter values often cannot be
reliably determined by theory or empirics. This,
combined with the nonlinear and chaotic nature of
many key geophysical processes, means that uncon-
ditional, short-term predictions of hazardous events
are infeasible at present and perhaps impossible
in principle. None of this is to suggest that hazard
models are not useful for decision making. Indeed,
short-term predictions conditional on knowledge of
triggering events have proven useful for emergency
management, for example, in tsunami early warning
systems, and operational earthquake forecasting
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efforts have shown promise in New Zealand, Italy,
and the United States for simulating aftershock
sequences (Harte, 2019; Milner, Field, Savran, Page,
& Jordan, 2020). Longer-term hazard forecasts have
been similarly valuable for planning purposes (e.g.,
seismic hazard assessments of nuclear power plants
and critical infrastructure), and in many regions
remain the first line of defense against earthquakes,
tsunamis, and debris flows.

An apparent trend across our hazard domains
is the progression from empirical to more physically
based hazard models. Physical models in principle
provide greater epistemic confidence. They are more
readily generalizable across time and space, allow
users to pose a range of “what-if” questions (e.g., the
effects of potential risk mitigation options), and can
explicitly represent key interactions between haz-
ards and boundary conditions (e.g., the influence of
nearshore topography on tsunami inundation flows).
However, empirical methods remain very useful in
many contexts. Indeed, as Field (2019) suggests, the
question of physical versus empirical models is some-
thing of a red herring, as “whether any model is reli-
able or trustworthy depends entirely on what ques-
tions we are asking of it,” and, I would add, on
whether the key sources of uncertainty have been ad-
equately characterized.

Uncertainty in model inputs and parameter val-
ues is routinely handled by some form of sensitivity
analysis. However, typically only a limited range of
variation is explored within debris flow and tsunami
modeling, and potential interactions are not com-
monly considered (Goda et al., 2014; Rohmer, 2014).
GSA is a promising method for covering the full
space of parameter uncertainty and considering cor-
related sources of errors, and moreover does not re-
quire the specification of (often arbitrarily chosen)
probability distributions (Saltelli et al., 2008). GSA
is computationally demanding for complex models;
in such cases, emulators may be a useful compro-
mise (Coutts & Yokomizo, 2014; Rohmer & Foer-
ster, 2011). My focus, however, has been on structural
uncertainty.

Box’s aphorism that all models are wrong (but
some useful) implies that characterizations of uncer-
tainty which are conditional on the truth of a model
are insufficient. Broad consensus on underlying phys-
ical theories (e.g., plate tectonics) can rest alongside
significant uncertainty on how to formally represent
hazard processes and implement them in numerical
models. Notwithstanding the significance of this un-
certainty, I have argued that some of the more hos-

tile criticisms of PSHA should be discounted as they
rest upon “naive falsificationism” and a strong dis-
taste for Bayesian subjectivity. Logic trees (e.g., in
PSHA) are one way of representing structural un-
certainty through assigning probability values to al-
ternative assumptions or model choices. These prob-
abilities are typically assigned via expert elicitation,
although there is some debate within the field as to
which process should be adopted for this purpose. I
have suggested that the design of the expect elicita-
tion procedure be viewed as a modeling choice with
testable implications, and that model evaluation ini-
tiatives, such as RELM and CSEP, may offer a frame-
work for determining which process-designs produce
more reliable, skillful PSHA estimates.

PSHA logic trees often involve several thousand
branches, which in practice must be sampled prior to
estimating the hazard measure of interest, given lim-
its on computing power. See Porter, Field, and Milner
(2017) and Marzocchi et al. (2015) for rigorous meth-
ods for doing so. Only under the strong assumption
of the MECE criterion will logic tree or multimodel
ensemble outputs reflect the full range of structural
uncertainty (Morgan & Henrion, 1990; Saltelli et al.,
2008). I have argued that this will typically be a naïve
assumption, and that as a consequence, such outputs
should be interpreted as lower-bound estimates of
structural uncertainty. As a corollary, measures of
confidence in these risk assessment outputs should
be conveyed to decisionmakers, for example, through
assertions of the degree to which assessors expect
to update their probabilities in the face of new data
(Lehner et al., 1996). A relatively simple, informal
approach for doing so has been adopted within the
IPCC’s climate change assessments (Mastrandrea
et al., 2011), and may prove useful in PSHA. For
more formal and potentially transferable approaches
to handling uncertainty in multimodel ensembles
within climate science, see Rougier, Goldstein, and
House (2013) and Rougier (2007).

An unfortunate way of handling uncertainty
is to neglect to characterize and communicate it,
typically motivated by the questionable belief that
decisionmakers desire precise, definitive analysis
outputs (Stirling, 2010). In extreme cases, model-
ing frameworks may become entrenched in institu-
tional decision-making processes––for example, be-
cause they align with prevalent political ideologies––
despite encoding assumptions that are scientifically
questionable (e.g., China’s short-term earthquake
prediction program). Alternatively, hazard models
may produce “uncomfortable knowledge,” in the
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sense that they are perceived to dictate politically
unpalatable choices, and as a result may be discred-
ited or neglected (MacGillivray & Richards, 2015;
Rayner, 2012). Although the natural response to this
may be to advocate the insulation of hazard analysis
from social or political pressures, a rough consensus
exists that risk management is better served by the in-
tegration rather than strict separation of hazard anal-
ysis and decision making (NRC, 1994).

Formal decision-analytic frameworks can be use-
ful for this purpose, both standard and nonstandard.
The decision theoretic approach––based on Savage’s
theory of subjective expected utility––is often viewed
as the “gold standard”; however, its normative status
cannot be assumed to hold beyond idealized con-
ditions, which may be far from the reality of most
geophysical applications (Freedman, 1997). In such
situations, inexact methods of problem-solving may
be more defensible (Cox, 2012; Heal & Millner,
2014; Jaynes, 2003; Lempert & Collins, 2007). In-
deed, as discussed, precautionary approaches have
been adopted within debris flow and tsunami early
warning systems (e.g., in setting emergency warning
thresholds), as well as within site-specific tsunami
hazard evaluations. However, the relative costs of
false positives and false negatives have not been
explicitly considered in such applications. Such infor-
mal approaches can lead to the adoption of a series
of precautionary assumptions that are individually
reasonable but collectively implausible (Hill et al.,
2013). For example, tsunami early warning systems
that err substantially on the side of “safety” have not
only led to widespread economic disruption but also
in some cases fostered a climate of public skepticism,
with the result that (genuine) evacuation warnings
were neglected, leading in some cases to substantial
casualties (Bernard & Titov, 2015; Plümper, Flores,
& Neumayer, 2017). As such, I suggested that the
development of early warning thresholds might be
informed by an explicit decision analysis (see, e.g.,
Economou et al., 2016). The public skepticism men-
tioned above, stemming from the experience of false
alarms, implies that such a decision analysis should
be informed by an assessment of the likelihood of
compliance, including a consideration of how compli-
ance evolves in light of experience with early warning
systems. For a framework for doing so, see Roulston
and Smith (2004). More broadly, this reminds us
that the relative costs and benefits of a given risk
mitigation measure (e.g., a check dam) are often
contingent on assumptions or forecasts about how
individuals and communities will behave in light of

said measure (e.g., by populating a debris flow prone
channel). Indeed, the cases of Wenjia Gully, Sichuan,
and Sanyanyu, Gansu Province, led me to speculate
whether the approach to debris flow risk manage-
ment adopted in hazard-prone mountainous regions
of Western China is leading to something analogous
to the “levee effect.” Nevertheless, in situations
where behavioral responses to mitigation measures
are thought to have a significant influence on out-
comes, and where those responses are challenging
to determine a priori, then robust decision-making
frameworks (Lempert & Collins, 2007) or sequential
strategies (Simpson et al., 2016) may prove to be a
more defensible approach to risk management.
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