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Abstract. Nuclear protein-1 (NUPR1) is also known as Com-1 
or p8. It is a protein primarily found in the nucleus of various 
cells, including cancer cells, and it has been found to play an 
important role in cell stress and stress-related apoptosis. Over 
the past two decades, NUPR1 has been firmly indicated to 
play a role in the development and progression of numerous 
types of cancer, as well as in a number of other pathological 
conditions, including pancreatitis, diabetes, neurological and 
inflammatory conditions. The past decade has witnessed a 
rapid understanding of the biological and cellular mechanisms 
through which NUPR1 operates on cells and the identification 
of new variant of the protein. Most importantly, there have 
been comprehensive studies on the clinical and pathological 
aspects of NUPR1 and its variant in multiple malignancies and 
identification of therapeutic methods by targeting the protein. 
The present review aimed to summarise the current knowledge 
relating to NUPR1 in human malignancies and to discuss the 
associated controversies and potential future prospects of this 
molecule. 
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1. Introduction

Nuclear protein-1 (NUPR1; also known as Com-1 or p8) was 
initially discovered in 1997 and expressed as a small protein in 
the rat and as a novel gene that is activated in the acute phase 
of induced pancreatitis and during pancreatic development (1). 
The molecule, then named p8 was shown to be related to cell 
death and gene transcription. During the following 2 years, the 
same study group discovered the human version of p8, which 
shares a 74% similarity with rat p8 (1,2). Independently, in the 
same year, a second group discovered a new molecule in their 
search for candidate gene(s) associated with brain metastasis 
of breast cancer (3). In metastatic brain tumours, the expres-
sion of one gene was found to be elevated, compared with the 
parent breast cancer, and was named candidate of metastasis-1 
or Com-1. It was soon found that these molecules were iden-
tical. In 2003, Quirk et al isolated a gene clone from pituitary 
derived cells and found it to encode p8 (4). These findings have 
since triggered active research into the role of this protein in 
cancer and other pathological conditions, such as pancreatitis. 
NUPR‑2 or NUPR1‑like protein was then identified (5), which 
appears antagonistic to some degree, to the function of NUPR1. 
Together, NUPRs indicate a fascinating area of research. The 
present review aimed to summarise the progress in studies on 
NUPR1, primarily in cancer and to a limited degree, in other 
pathological conditions.

2. Cellular function of NUPR1

There are some excellent reviews available in the literature 
which provide detailed knowledge of the molecular and cellular 
function of NUPR1 at the beginning of this decade (6,7). The 
present review describes the advancements made in the under-
standing of NUPR1 in various cancer types, and some benign 
disorders, which have taken place since, and summarizes the 
key functions of NUPR1in cells, as well as associated genetic 
interactions, which are illustrated in Fig. 1.

Transcriptional regulations of NUPR1. NUPR1 is a transcrip-
tion regulator protein with its gene located on chromosome 16. 
It is typically expressed in response to stress signals induced 
by genotoxic signals and agents. Transforming growth factor β 
(TGFβ) is an important regulator of NUPR1 transcription. 
TGFβ, upon binding to its receptor, initiates a canonical 
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cascade, in which phosphorylated small mothers against deca-
pentaplegic (SMAD)-2/3 proteins form a heteromeric complex 
with cofactor SMAD-4 and translocates into the nucleus. 
By binding on to the promotor at the 5'-untranslated region 
(5'-UTR), it elevates the transcription of NUPR1 through 
binding, a regulation appearing at a rapid pace (8). 

DNA damage and repair. NUPR1 influences cancer cell 
resistance to metabolic stress-induced glucose starvation and 
hypoxia through the downstream regulation of Aurora kinase A 
(AURKA) expression. The inhibition of AURKA triggers a 
cytotoxin that can lead to DNA damage (9). NUPR1 is also 
important in γ-irradiation-induced damage and repair (10). 
It negatively controls DNA repair following γ-irradiation in 
the presence of MSL complex subunit 1 (MSL1) by regulating 
histone acetyltransferase (HAT) activity and is involved in 
intercommunication with p53 binding protein (P53BP1) (10). 
It has also been shown that the inhibition of NUPR1 by the 
organic synthetic molecule, ZZW-115, sensitizes cells to 
DNA damage, resulting in the reduction of SUMOylation of 
several proteins involved in DNA damage response by inhib-
iting the nuclear translocation of NUPR1. This decreases the 
SUMOylation-dependent functions of proteins involved in the 
DNA damage response (6). 

Cell stress and cell death. NUPR1 regulates cellular damage 
and death in different forms, depending on the cell context 
and the types of stress induced. NUPR1 is involved in 
D9-tetrahydrocannabinol (THC)-induced cancer cell death 
through the downstream targeting of death inducible telomere 
repeat-binding factor 3 (TRB3) protein, transcription factor 
activating transcription factor 4 (ATF-4) and the protein 
C/EBP homologous protein (CHOP) following endoplasmic 
reticulum stress (ERS) elevated from the synthesis of ceramide 
and collectively provokes apoptosis (11). NUPR1 downregula-
tion in hepatocellular carcinoma (HCC) cells can enhance cell 
sensitivity to sorafenib treatment, which further controls cell 
growth through the RELB/IER3 pathway (12). The previous 
study by Santofimia‑Castaño et al (2018) demonstrated that 
cell death observed following the knockdown of NUPR1 
expression could be reversed by incubation with necrostatin-1, 
but not by the inhibition of caspase activity (13). The authors 
of that study thus described a model in which inactivation of 
NUPR1 in pancreatic cancer cells resulted in ERS that induced 
a mitochondrial malfunction, a deficient ATP production 
and, as consequence, cell death mediated by a programmed 
necrosis (13).

Cell growth, autophagy and death. NUPR1 promotes 
the proliferation of cancer cells by influencing cell cycle 
progression. NUPR1 can aid cells to enter the S phase by 
bypassing the G0/G1 checkpoint. Escape from the G0/G1 
phase is achieved by an association between NUPR1 and 
cyclin inhibitory proteins resulting in downregulation of p21 
and p57 (14). The knockdown of NUPR1 is able to regulate 
autophagy by interfering with FoxO3, promoting Bnip3 
transcription in the control of autophagy, a stress-dependent 
self-defence mechanism that helps cells eliminate the toxic 
microenvironment (15). It has been reported that NUPR1 
silencing suppresses autophagic activities and induces 

autophagy-mediated apoptosis in multiple myeloma (MM) 
cells through the PI3K/AKT/mammalian target of rapamycin 
(mTOR) pathway, which exhibits potential as a treatment 
strategy for MM (16), and that NUPR1 is a potent regulator 
of autolysosomal dynamics and is required for the progres-
sion of certain epithelial cancers as it regulates the late stages 
of autolysosome processing through the induction of the 
synaptosomal-associated protein (SNAP)-receptor (SNARE) 
protein synaptosomal-associated protein, 25 kDa (SNAP25), 
which forms a complex with the lysosomal SNARE-associated 
protein, VAMP8. NUPR1 depletion deregulates autophagic 
flux and impairs autolysosomal clearance, inducing massive 
cytoplasmic vacuolization and premature senescence in vitro 
and tumour suppression in vivo (17).

Cell senescence. It has been found that in disordered pancreatic 
mouse cells, the inhibition of NUPR1 facilitates Kras-induced 
cellular senescence through the genomic downregulation of 
Dnmt1 expression, an enzyme transferring methyl groups onto 
DNA, which in turn decreases DNA methylation, crucial for 
transformation that helps the induction of Kras-dependent 
pancreatic cancer (18). NUPR1 can directly regulate the 
expression of DNA (cytosine-5)-methyltransferase 1 (Dnmt1) 
by interfering with its transcription process by binding on 
to the promoter (19). The silencing of NUPR1 promotes 
stress‑induced senescence upon the enlarging flattened pheno-
type of cells provoking spatial pressure (14). As discussed 
above, NUPR1 is aberrantly expressed in a subset of cancer 
cells and predicts low overall survival rates for patients with 
lung cancer. NUPR1 depletion deregulates autophagic flux 
and impairs autolysosomal clearance, inducing massive cyto-
plasmic vacuolization and premature senescence (17).

Endothelial cells. As previously discussed by Cai et al (2016) 
in the context of methamphetamine (METH)-induced endo-
thelial apoptosis, NURP1 functions as a fundamental regulator 
throughout the whole process (20). METH-associated disrup-
tive effects give rise to the formation of ERS for compensating 
cell damage in endothelial cells. NUPR1 elevates transcrip-
tion factor CHOP production in response to ERS, which 
then couples to the PUMA promoter through the mediation 
of p53, a downstream protein after the nupr1/chop axis. The 
succeeding cascades are achieved based on the presentation 
of NUPR1. The action of CHOP dissociates anti-apoptotic 
BCL-2 and upregulates pro-apoptotic BAX, as well as altering 
the membrane potential of the mitochondria. The resulting 
increased BAX/Bcl-2 ratio drives the apoptogenic factor cyto-
chrome c importing from mitochondria into the cell cytosol, 
which then successfully triggers endothelial caspase-mediated 
cell death. A previous study by Tang et al (2015) also revealed 
the importance of a reciprocal association between NUPR1 
and ER stress by investing in Shigella enterotoxin (Shiga) 
toxin-induced enterocyte apoptosis (21).

Influence on metabolism. In 2018, Santofimia‑Castaño et al 
examined NUPR1 depletion cooperating with ERS, inducing 
pancreatic cancer cell apoptosis and programmed necrosis 
by mediating cellular metabolism. Following NUPR1 knock-
down, there was a decrease in ATP production, resulting in 
deficient oxygen availability (13). Mitochondrial membrane 
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potential disruption following Ca2+ uptake from the cyto-
plasm is also initiated by a shortage of NUPR1 together with 
ERS. The updated mitochondria content triggers the altera-
tion in membrane permeability resulting in the discharge 
of cytochrome c, which leads to cell death (20). Other 
research has elucidated a confirmed association between the 
deficiency of NUPR1 and bone metabolism, by mediating 
the receptor activator of nuclear factor kappa‑Β ligand or 
(RANK ligand or RANKL) and sclerostin, which in turn 
enhances the proliferation of osteoblasts and the downregu-
lation of osteoclasts (22). NUPR1 interacts with and activates 
SNAP25 to initiate an autolysosomal process that results in 
premature senescence and autophagy process (17). NUPR1 
is an essential regulator in protein metabolism and glucose 
homeostasis (23). It interacts with p300 and Pax2 through 
which it regulates the transactivation activity of Pax2A and 
Pax2B and influences the promoter activities of the glucagon 
gene (24). It is also a mediator of glucose induced growth of 
beta cells in the pancreas (25). It is also downstream of Zyxin, 
an adhesion junctional regulator protein with a controversial 
role in cancer (26).

3. NUPR1 in malignant disease

Overall involvement in cancer. Investigations into the role 
of NUPR1 have increased since the discovery that it was 
linked to brain metastasis in breast cancer (3). By injecting 
the human breast cancer cell line, MA-11, into athymic rats, 
brain metastases were established. In comparisons between 
the primary cancer cells and metastatic breast cancers of the 
brain using differential RNA display and protein analysis, 
NUPR1 was found to be present in metastatic cells and not in 
primary cancer cells and was found to be in aggressive MDA 
MB-231, but not in MCF-7 cells which are less aggressive (3). 
The authors of that study also demonstrated that there was 
a rapid rise in establishing a clinical link between NUPR1 
and the development, progression and clinical outcome in 
various types of cancer. The tumorigenic effect of NUPR1 

was subsequently demonstrated in that embryonic fibroblasts 
from NUPR1+/+ mice, when transformed with ras V12 muta-
tion became tumorigenic and spread into the peritoneal cavity 
of mice compared with the same transformation of NUPR1-/- 
fibroblasts, which were non-tumorigenic (27,28). It was 
surprising to note that NUPR1+/+ cells with ras V12 mutation 
transformation grew at a slower rate than the NUPR1-/- cells 
with ras V12 mutation transformation, in clear contrast to the 
in vivo results in the same study (28). Another observation 
made by the same authors was that the NUPR1‑deficient cells 
grew more rapidly than the NUPR1+/+ cells (27). The clear 
discrepancy and disconnection between in vitro cell growth 
and in vivo tumour growth remain unexplained.

However, these early observations have driven a marked 
interest in examining the role of the molecule in individual 
human cancers. A summary of some of the key findings from 
previous studies is presented in Table I. 

Breast cancer. In breast cancer cells, NUPR1 has been shown 
to form a complex with p300 and p53 together with the p21 
promoter, to upregulate the expression of p21, allowing breast 
cancer cell to progress through the cell cycle (29). In MCF-7 
breast cancer cells, a HSP9 chaperone protein p23 was shown 
to result in 7.6 fold downregulation, although the response to 
oestradiol was less prominent (30). It has been reported that 
breast cancer cells have less nuclear staining than normal 
cells, but more cytoplasmic staining in mammary tumour 
tissues (31). A study on gene transcripts also demonstrated 
that NUPR1 was reduced in aggressive tumours and that high 
levels of NUPR1 transcript were associated with a longer 
survival (31). The finding that NUPR1 levels in oestrogen 
receptor (ER) and ERβ-negative tumours has an important 
bearing in survival led us to a further discovery that NUPR1 
plays an interactive role with ERβ and that 17-β-oestradiol is 
able to impact the cellular location of NUPR1 in breast cancer 
cells (32). Using genetic analysis to detect copy numbers of 
NUPR1 and ERBB2 (her2), Jung et al (2012) found that a 
gain of copy numbers of both genes in early breast cancer 

Figure 1. Schematic summarizing the key functions and interactions of NUPR1 in cells. NUPR1, nuclear protein-1. NUPR2 has been shown to block the 
activity of NUPR1 where indicated in the diagram.
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Table I. NUPR1 in clinical cancers.

Cancer type Methods applied Clinical relevance (Refs.)

Breast cancer Northern blot analysis (n=81) High levels in tumours. No correlations with  (100)
  clinical and pathological parameters nor with 
  uPA (urokinase-type plasminogen activator) and 
  uPAR (urokinase-type plasminogen activator 
  receptor) 
 IHC and transcript analysis (n=120) Reduced nucleus and increased cytoplasmic  (32)
  staining in cancer cells. High level is linked to 
  good prognosis 
 Genetic analysis of early stage breast Simultaneous gain of NUPR1 and ERBB2 (33)
 cancer (n=145) (receptor tyrosine-protein kinase erbB2
  precursor) gene copy number indicate poorer 
  clinical outcome 
 Gene transcript by PCR (n=96) Stepwise increase of NUPR1 mRNA from (36)
  normal, stage 1, 2, 3 and 4.
Pancreatic cancer IHC and PCR (38 pancreatic cancer,  Tumour tissues stained positive for p8 and  (43)
 5 liver metastasis and 7 metastatic  normal tissue mostly negative. 
 lymph nodes) 
 IHC (n=44)  Highly positive in nodal positive tumours and is (42)
  inversely correlated with the presence of 
  apoptotic cells. No correlation with survival.
 IHC on pancreatic ductal Level of the NUPR1 expression, together with (9,44) 
 adenocarcinoma (n=34, TMA) hypoxia inducible factor 1 subunit α (HIF1α)
  are inversely correlated with survival time
 IHC (n=36) NUPR1 is linked with cannibalism of pancreatic (101)
  cancer which in turn linked to prognosis
Colorectal cancer IHC and quantitative gene transcript Tumour tissues had higher levels of NUPR1 (38)
 analysis (n=80) transcript than normal tissues. High stage 
  tumours had less NUPR1. NUPR1 protein was 
  more visible in nucleus in normal epithelial and 
  in tumour cells stronger staining in the cytoplasm
 NUPR1 transcript analysis by NUPR1 mRNA was highly raised in tumour (39)
 PCR (n=50) tissues than normal tissues
Cholangio-carcinoma IHC (n=10) NUPR1 mostly nuclear staining in ductal (60)
  epithelial cells, increased nuclear staining in 
  cholangiocarcinoma cells
Prostate cancer IHC Reduced nucleus and cytoplasmic staining in (49)
  prostate cancer cells, compared with normal 
  prostate epithelial cells
Bladder cancer IHC (n=37) Mainly cytoplasmic staining, with invasive (50)
  cancer cells stained less intensively
Lung cancer Quantitative gene transcript analysis  High levels of NUPR1 mRNA in (52)
  adenocarcinoma, squamous cell carcinoma and 
  adenosquamous carcinoma compared with the 
  adjacent normal tissues
 IHC (n=118), NSCLC (non small cell High level staining of NUPR1 in cancer tissues (17)
 lung cancer) and high staining associated with shorter survival. 
Endometrial cancer IHC (n=198) and gene transcript High levels of NUPR1 protein and mRNA in (57)
 analysis (n=32) deep tumours compared with superficial tumours 
Multiple myeloma Geodata analysis (n=152)  (58)
(MM) Bone marrow from MM (N=4) and  High levels of NUPR1 mRNA in MM than  (59)
 normal in normal
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was a valuable predictor for patients with early-stage breast 
cancer (33). In animal models, NUPR1 together with BMP4, 
Cyr6, plod2 and angiopietin2, were shown to be markedly 
downregulated in transcription factor E2F knockdown 
mice and that collectively, these reductions were thought to 
contribute to the retardation of metastasis and presence of 
circulating cancer cells (34).

A more recent study has revealed that NUPR1 was 
essential for tumour repopulating cells in breast cancer 
cells (MCF-7) to grow, forming colonies and tumours 
in vivo (35). That study demonstrated that NUPR1 overex-
pression suppressed nestin and human telomerase reverse 
transcriptase (hTERT), both clonogenic markers, via the p53 
pathway, leading to the inhibition of repopulation by this 
small population of cancer cells and a reduction in tumour 
growth in vivo, together revealing a tumour suppressor role 
for NUPR1 in breast cancer and indeed ovarian cancer (35). 
NUPR1 has been found to be present at high levels in breast 
cancer cells metastasised to bone, although not those to the 
brain, when compared with the parent cells (36). This is an 

interesting finding and that, together with a recent study 
demonstrating that NUPR1 may be linked to the osteo-
clastic activities of bone (22), may suggest that NUPR1 
plays a pivotal role in bone metastasis from breast cancer. 
This possibility is strengthened by findings that NUPR1 
is also an important factor in the growth of bone marrow 
mesenchymal cells (37). 

Colorectal cancer. Colorectal tumour tissues exhibit high 
levels of the NUPR1 transcript (38,39) and more cytoplasmic 
NUPR1 staining, compared with normal tissues (38). High 
stage tumours exhibited a less obvious presence of NUPR1. 
The same team demonstrated that the knockdown of NUPR1 
from colorectal cancer cells (RKO and CaCo2) resulted in 
less growth, less colony formation and increased apoptosis, 
with minimal roles played in cellular migration, presenting 
a somewhat contrasting role to the clinical findings (39,40); 
Wang et al demonstrated that the knockdown of NUPR1 
reduced invasiveness and that the overexpression of NUPR1 
exerted opposite effects (39). It appears the NUPR1-like 

Table I. Continued.

Cancer type Methods applied Clinical relevance (Refs.)

Hepatocellular Gene transcript analysis (N=23) A portion of the tumours (4 out of 23) has high (62)
carcinoma (HCC)  level
 IHC and gene array (n=35 including Increase in NUPR1 staining in liver cancer (63)
 normal liver, non-tumour and tumour  (strong in nucleus and also with cytoplasmic
 tissues) staining). Transcription ratio (tumour to normal) 
  1.667 (P<0.005)
 HCC (n=21), cirrhotic liver (n=3)  HCC with high levels of nuclear staining of (12)
 and normal liver (n=3) by IHC and  NUPR1 and NUPR1 mRNA than normal liver
 qPCR. tissues
 NUPR1 transcript analysis (n=158) Significantly higher in HCC than normal liver (66)
  tissues and in tumours with high vascular 
  invasion. Combined expression of NUPR1 and 
  thyroxin receptors significantly correlated with 
  the survival of the patients
Thyroid cancer IHC (n=150) Most normal and tumour tissues positive for (47)
  staining and tumour tissues tended to be 
  over-expressed. Anaplastic type less intense in 
  staining than papillary and follicular types. Large
  tumours and those with lymph node 
  involvement more intense.
 IHC (n=30) medullary carcinoma 43.4% regarded as highly expressed and high (48)
  degree of staining linked to lymph node 
  metastasis and recurrence 
Glioma IHC and QPCR (n=122) High levels of NUPR1 mRNA seen in glioma  (68)
  tissues than normal tissues. High levels staining 
  is associated with shorter survival of the patients.
Osteosarcoma QPCR (n=58) Osteosarcomas have significantly high levels of (67)
  NUPR1 transcript than non-tumour tissues.

IHC, immunohistochemistry; qPCR, quantitative polymerase chain reaction; mRNA, messenger ribonucleic acid; PCR, polymerase chain 
reaction.



MARTIN et al:  NUPR1 IN CANCER6

protein (NUPR2 and NUPR1l) plays a contrasting role to 
NUPR1 in colorectal cancer cells since the suppression of 
NUPR1l by miR2277 results in an increase in cell migration 
and cell growth (41).

Pancreatic cancer. Early reports of the clinical significance 
of NUPR1 in pancreatic cancer came from Su et al (42,43), 
which demonstrated that pancreatic cancers, particularly 
metastatic and node-positive tumours exhibited high levels 
of NUPR1 protein, although no association with survival was 
established. A very compelling investigation revealed that the 
staining of NUPR1 protein in pancreatic ductal adenocarci-
noma was inversely associated with the clinical outcome of 
patients over a 24-month follow-up period (44). That study 
also revealed that NUPR1, together with RelB and IER3, 
formed a group of markers not only for predicting patient 
outcome, but also in the development of intraductal neoplasia 
of the pancreas (44). Furthermore, NUPR1, together with 
hypoxia-inducible factor α (HIFα) and AURKA participated 
in the regulation of pancreatic cancer cell autophagy response 
to hypoxia and glucose deprivation (9). The loss/deletion of 
NUPR1 would result in the malfunction of the mitochondria 
due to ERS, leading to cell death (13). The pancreatic cancer 
cell line, colo357, is amongst the most sensitive cell types 
to a marked increase in NUPR1 expression in the response 
to TGFβ1 (8). In pancreatic cancer, NUPR1 is intimately 
involved in homotypic cannibalism, or cell-in-cell, in that 
there is virtually no NUPR1. The cell-in-cell phenomenon 
can be enhanced by TGFβ in PANC1 cells (45). Using an 
elegant Pdx1-cre; LSL-KrasG12D; Ink4a/Arffl/fl (KIC) mouse 
model, Cano et al (2014) demonstrated that a proficient 
NUPR1 expression resulted in the development of murine 
pancreatic ductal adenocarcinoma. However, the deletion of 
the NUPR1 gene in these mice, although causing substantial 
perinatal death due to NUPR1 and Ink4a/Arf inactivation, 
the surviving mice exhibited a prolonged survival and less 
pancreatic cancer-related deaths (46). Pancreatic cancer 
cells derived from NUPR1‑proficient KIC mice displayed a 
high degree of stemness and anchorage-independent growth 
compared with NUPR1‑deficient cells (46).

Thyroid cancer. Normal thyroid tissue tends to have a low 
degree of NUPR1 staining while thyroid tumours have high 
levels (47). Papillary and follicular tumours stain stronger than 
anaplastic tumours and normal tissues. Node positive tumours 
also stain stronger than node-negative tumours (47). One of 
the most interesting observations from the study is the cellular 
protein location. In normal follicles, NUPR1 is exclusively 
displayed as nuclear staining. The same nuclear staining is 
observed in follicular tumours. However, papillary tumours 
largely stain the cytoplasmic region, particularly in those 
large tumour and tumours with lymph node metastasis (47). 
The majority of medullary tumours stain strongly for NUPR1 
and high levels are linked to lymph node metastasis and recur-
rence (48). 

Urological cancers. In a limited study on prostate cancer, 
nuclear and cytoplasmic staining were found in normal pros-
tate epithelial cells and both staining patterns were reduced 
in prostate cancer cells (49). The knockdown of NUPR1 in 

PC3, DU145 and CAHPV10 prostate cancer cells resulted in 
an increase in the invasiveness of the cells in their response 
to an invasion inducer, hepatocyte growth factor (HGF) (49). 
Bladder transitional cells largely have cytoplasmic staining, 
with invasive cancer staining at a lower intensity (50). The 
knockdown of NUPR1 from bladder cancer cell lines (RT112 
and EJ138) results in an increase in both cell growth and inva-
siveness. In multiple bladder cancer cell lines, CUPR1 is one 
of the few epigenetically upregulated non-CpG island genes, 
together with TIMP1, TNFRSF14, ITGB4 and downregulated 
genes including MMP11 and FGF18 (51).

Lung cancer. Non-small cell lung cancer (NSCLC) tissues 
exhibit markedly high levels of NUPR1 protein staining 
compared with adjacent normal tissues and those with 
high levels in tumours have a significantly shorter overall 
survival (28 months), a marked difference from those with 
low levels (80 months) (17). There is otherwise no signifi-
cant association with tumour staging, smoking or age. 
Tumour tissues (adenocarcinoma, squamous cell carcinoma 
and mixed type) have significantly higher levels of NUPR1 
transcript than their normal counterpart tissues (52). The 
same group have also shown that multiple human lung 
cancer cell lines, namely A549, SKME1, 95-D, NCI-H460, 
H1299, all highly express NUPR1 (52). In these lung cancer 
cells, knock-down of NUPR1 by siRNA results in the 
cells forming less colonies, becoming more apoptotic and 
forming less tumours in in vivo models (17,52). It is also 
a key bystander response gene in the lung cancer cell line, 
H1299, when irradiated (53) and a responsive gene that is 
downregulated following the knockdown of a mitochon-
drial protein c3orf1 (translocase of inner mitochondrial 
membrane domain-containing protein 1) from the lung 
cancer cell line, 95D (54). In this case, the reduction in 
NUPR1 expression was also linked to a change in the cell 
cycle and the reduction in cellular migration. 

Skin cancers. In K14ΔNLef1/K14L61Rac1 double-transgenic 
mice, an exclusive skin tumour type, sebaceous carcinoma-like 
tumours are prevalent and are characterised by aggressive 
growth and progression (55). A previous study identified 
NUPR1 as one of the few responsive genes contributing to 
tumour progression as the result of RAC1 knockdown. In 
melanoma, the BRAF inhibitor, encorafenib, increased the 
expression of ATF4, CHOP and NUPR1 and induced the 
expression of PUMA (56).

Gynaecological cancers. In endometrial cancer cells, 
NUPR1, together with Nidogen 1 was found to be a target 
gene of the ETV5 transcription factor which is key to myoen-
dometrial invasion by cancer cells (57). Eliminating NUPR1 
in endometrial cells minimises cellular migration induced by 
ETV5 overexpression. NUPR1 was also shown to be highly 
expressed in the deep (invasive) endometrial cancers of the 
patients (57). 

Myeloma. Using available GEO databases, Di Martino et al 
(2015) identified that the action of NUPR1 was one of the 
key mechanisms in myeloma progression and was connected 
with the downregulation of 6 genes, including BNIP3, GINS1, 
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GRAMD3, KIF11, SHCBP1 and SPIN4 and the upregulation 
of the 2 genes, ELMOD1 and SLC16A6 (58). Bone marrow 
from multiple myeloma patients tends to have higher levels 
of NUPR1 transcript than healthy volunteers, although in 
that study the sample number was small (59). The silencing 
NUPR1 in myeloma cells also resulted in a reduction of 
cell proliferation and induction of apoptosis and cell cycle 
blockage (59). 

Biliary cancers. In cholangiocarcinoma, NUPR1 is predomi-
nantly stained in the nucleus and more so in cancer cells (60). 
A human HuCCT1 cholangiocarcinoma cell was found to have 
a reduced rate of cell growth, and migration and invasiveness 
in response to EGF and serum, following NUPR1 knockdown 
by siRNA (60). 

Hepatocellular carcinoma (HCC). TGFβ1 was able to 
markedly increase the expression of NUPR1 in the Hep1 
hepatocellular carcinoma cell line (8). In a pathway 
search study, NUPR1 was found amongst the top down-
regulated genes in non-viral HCCs, namely in alcohol 
consumption-related HCC (z ratio-3.0) and non-alcoholic 
fatty liver disease related HCC (z ratio-4.5) (61). HCC 
tissues tend to have high levels of NUPR1 protein, mostly 
in the nucleus, although no association was observed 
with TNM staging (12). Lee et al (2015) reported that 
NUPR1 was a key transcription regulator which leads to 
defective mitochondria-regulating genes in HCC (62). In 
this process, which is linked to metabolism of the cancer 
type, granulin is the key downstream effector protein 
of NUPR1. Knockdown of NUPR1 leads to a calcium 
signalling-dependent reduction of cellular invasion (62). 
Of note, the evaluation of NUPR1 mRNA expression in 
the limited clinical cohort only revealed a small portion 
of increase in NUPR1 transcript. NUPR1 can be acti-
vated by hepatitis X protein (HBx) via the HBx-Smad4 
pathway, which results in the reduction of cell death and 
the induction of vasculogenic mimicry in HCC (63). The 
same study demonstrated that NUPR1 transcript was found 
to be significantly upregulated in HCC compared with 
normal liver tissues by a ratio of 1.667. The knockdown of 
NUPR1 resulted in HCCs that were less mobile, had lower 
invasiveness and were less tumorigenic in vivo. It further 
identified the NUPR1/RELB/IER3/RUNX2 pathway as 
key in these events (12). In a comprehensive search for the 
transcriptomic and histone modification profiles during the 
transition from non-alcoholic steatohepatitis to HCC, it was 
found that NUPR1 plays an important role in this complex 
network (64). NUPR1 can inhibit lysine acetyltransferase 8, 
which in turn influences one of the key generic alterations 
of gene patterns for the deacetylation of histone H4 Lysin 
16 during the transition process. Serum from patients with 
chronic hepatitis B has been shown to be able to activate 
expression of NUPR1 in HCC cells (65). Thyroxin (T3) is 
a potent inducer of NUPR1 expression in HCC cell lines, 
by over 30-fold, an effect attributable to the transcriptional 
regulation of thyroxin receptor protein directly binding 
and activating the transcriptional response elements of the 
NUPR1 promoter (66). Clinically, NUPR1 is positively 
associated with thyroxin receptors and the high levels of 

expression of both are significantly linked to shorter overall 
and disease-free survival (60). 

Osteosarcoma. Osteosarcoma tissue has significantly higher 
levels of NUPR1 transcript compared with normal tissues (67). 
Together with miR4443, NUPR1 plays a regulatory role in a 
long non-coding RNA, FEZF1-AS1, induced cell growth, and 
the migration and invasiveness of osteosarcoma cells. lncRNA 
FAL1 and FEZF1-AS1 have been shown to require NUPR1 
in their cancer inducing activities, acting respectively with 
miR637 and miR4443 (39,67).

Neurological tumours. In gliomas, the NUPR1 transcript level 
is significantly higher than in normal tissues (68). High‑grade 
glioma stains more strongly than normal brain tissue and 
low-grade tumours: Again, high levels of staining are associ-
ated with a shorter survival and also indicates NUPR1 to be 
an independent prognostic indicator (68). The study further 
confirmed that the knockdown of NUPR1 in multiple glio-
blastoma cells resulted in a reduction of cell migration and 
proliferation, and cell cycle arrest at the G0/G1 phase (69), 
events appearing to be coordinated by intracellular signal-
ling events involving ERK1/2, p38 MAPK and cleavage of 
caspase-3 and p27 (68). 

Pituitary tumours. There are currently no studies avail-
able on human tumours as yet, at least to the best of our 
knowledge. NUPR1 expression is generally quiescent in the 
pituitary gland. However, an animal study conducted by 
Mohammad et al (2004) demonstrated that a parent cell of 
GH3 somatolactotrope genotype and a gonadotropic pituitary 
cell, LbT2 was tumorigenic in nude mice, whereas when 
NUPR1 expression was reduced in these cell lines, it lost 
its ability to form tumours in vivo (70). It was subsequently 
established that at least in LbT2 gonadotropic pituitary cells, 
NUPR1 allows the cell to avoid the G0/G1 phase of the cell 
cycle (14) and that NUPR1 is transcriptively regulated by 
activating transcription factor 4 (ATF4), as in other cell types, 
such as HeLa cells (71,72). The GCN/ATF4 pathway appears 
to involve the amino acid response element (AARE) with the 
NUPR1 promoter (73). 

4. NUPR1 in other conditions

Neurological disorders. NUPR1 is one of the responsive genes 
in the cerebral cortex, which is downregulated in response to 
oestradiol (E2) induction (74). NUPR1, together with a few 
other proteins appears to be a key responsive molecule in 
neural cells and tissues following a challenge with metham-
phetamine (75). Treatment with this substance results in an 
increase in NUPR1 expression, which is associated with an 
increase in apoptosis and autophagy in neural cells in vivo and 
in cell lines in vitro (68).

Cardiac hypertrophy. Cardiac hypertrophy is the abnormal 
enlargement, or thickening, of the heart muscle, resulting from 
increases in cardiomyocyte size. It has been reported that 
NUPR1 is an important factor in cardiomyocyte hypertrophy, 
induced by endothelin and phenylephrine (76). NUPR1 is 
also key to transforming growth factor α (TNFα)-induced 
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metalloproteinases in heart fibroblasts. These are key contrib-
uting factors in heart failure. It has also been observed that 
NUPR1 also partners with some of the muscle specific genes 
such as p68 (Ddx5) and MyoD in myoblasts (77).

Liver toxicity. NUPR1 is part of a protection mechanism in 
CCL4 [Chemokine (C-C motif) ligands 4] induced liver injury, 
by coordinating with cytochrome P450 2E1 which converts 
the chemical to toxic products (78). 

Inflammation. The loss of NUPR1 in mice has been shown 
to result in increased death when challenged by lipopolysac-
charide (LPS), together with an increase in TNFα, and in the 
reactive oxygen species, myeloperoxidase and hydroperoxide, 
suggesting that the loss of protection of stress injuries by 
NUPR1 (27,79). Conversely, TNFα via NFkB mediates the 
expression of NUPR1 (80). It has also been indicated to be 
involved in the pathophysiological process of arthritis, in 
that osteoarthritic cartilage has higher levels of NUPR1 and 
that NUPR1 appears to be a key mediator in interleukin-1β 
induced MMP13 expression in chondrocytes (81).

Pancreatitis. It has been shown that LPS is able to rapidly 
induce the expression of NUPR1a mRNA, detected by northern 
blot analysis in pancreatic acinar cells, in the pancreas, liver 
and kidneys (82). On the other hand, NUPR1 has been shown 
to coordinate with pancreatic associated protein-1 (PAP1) 
in protecting the pancreas from inflammation inducers (24). 
During chronic pancreatitis, NUPR1 is induced to express and 
protect pancreatic acinar cells from becoming apoptotic (83). 

Diabetes. The loss of NUPR1 has also been observed with 
increases in the beta cell mass of the pancreas, suggesting that 
it is involved in glucose metabolism in the body (84). It has 
also been shown that NUPR1 plays a vital role in the protec-
tion of β-cells from apoptosis, related degradation of insulin 
storages and subsequent secretion during inflammatory and 
obesity-related tissue stress (82).

5. Therapeutic considerations 

Therapeutic regulation of NUPR1. Bratland et al reported that 
vitamin 1,25(OH)2D3 was able to upregulate NUPR1 expres-
sion in MCF-7 breast cancer cells and in doing so, reduce 
colony formation and provoke cell cycle arrest at the G1 phase, 
attributable to the regulation of p21Kip1 (85). 

Targeting. Trifluoperazine, a drug used for psychiatric condi-
tions has been found to interact with NUPR1 and block 
NUPR1-dependent tumour growth. Novel derivatives from 
trifluoperazine, namely ZZW-115, have been synthesised 
since with improved binding and potent effects on pancreatic 
cancer cells, providing positive prospects of novel agents in 
therapeutically targeting NUPR1 (7,86). Novel compounds 
that can target NUPR1 have been recently identified and 
shown to suppress pancreatic tumour development in the 
context of targeting NUPR1 (87). Although it is still too 
early to tell, it does indicate that NUPR1 would be a valu-
able therapeutic target in tumours closely linked to NUPR1 
expression, pancreatic cancer being an excellent example. A 

recent study by Deng et al (2017) found that a STAT3 inhib-
itor, fluorofenidone was able to reduce the level of NUPR1 in 
lung adenocarcinoma cell lines, reproducibly demonstrated 
in vivo and in vitro, in line with reductions in cell growth, 
colony formation and tumour growth (88). Specific peptides 
have been shown to block the interaction between NUPR1 
and one of its key partner proteins RING1B, indicating a 
value for targeting the action of NUPR1 (89). Cationic solid 
lipid nanoparticles have been tested as a means with which 
to deliver anti-NUPR1 plasmids to HCC cancer cells and 
have successfully resulted in reduction of NUPR1 in these 
cells (90). Moreover, Lan et al (2020) demonstrated that 
ZZW-115 sensitized cancer cells to genotoxic agents by the 
inhibition of NUPR1 nuclear translocation, which in turn 
reduced the SUMOylation-dependent functions of DNA 
damage response proteins (6).

Chemoresistance. NUPR1 has been found to be involved 
in the resistance of thyroid cancer cells to Lenvatinib 
therapy (91). Low levels of NUPR1 in fibroblasts have been 
shown to result in resistance to adriamycin (79). In breast 
cancer cells, NUPR1 also confers resistance to chemo-
therapeutic agents, including Taxol and doxorubicin, by 
involving the NUPR1-PI3K/Akt-phospho-p21 axis (29,92). 
NUPR1‑deficient pancreatic cancer cells are more sensitive 
to chemotherapeutic drugs, with the activation of NUPR1 
increasing drug resistance to gemcitabine (46,93) and also 
becoming more sensitive to HSP90 inhibitors (94) and 
mTOR inhibitors in squamous cell carcinoma of skin (95). 
Likewise, knockdown of NUPR1 in liver cancer cells 
sensitises their response to sorafenib, which itself induces 
the expression of NUPR1, resulting in acquired resis-
tance (12,66). However, the link may be more complex than 
just an NUPR1 connection. In a very interesting prelimi-
nary study, a small number of patients with cervical cancers 
were tested for changes in a panel of molecules involved 
in DNA repair and candidate drug resistance before and 
after two cycles of cisplatin treatment (96). NUPR1 was 
found to be one of the few proteins that was consistently 
reduced following treatment; however, this change was not 
connected to the clinical and pathological response. This 
important observation, the very first in a clinical setting, 
has raised a number of important questions; for example, 
the candidacy of NUPR1 as a drug resistance regulator 
in the body in vitro for cisplatin, leads to the question of 
whether NUPR1 should be considered together with other 
key partners. The question is whether an increase in the 
reduction of NUPR1 is in fact a signal for drug resistance 
in the context of whole body for instance. This interesting 
research topic, to be expanded further by the researchers, 
would shed important light on such questions. In a colon 
cancer cell line (HCT116) spheroid model, NUPR1 was 
found to be markedly reduced (activation z ratio-1.387) in 
a full nutrient environment but less reduced (z ratio-0.632) 
in a glucose deprived environment when cells were treated 
with irinotecan and chloroquine (97). Whilst this suggests 
that glucose is important in resistance to chemotherapy, 
it again raises questions as to the role of NUPR1 in the 
response to chemotherapy in different cancer types. In 
prostate cancer cell lines (DU145 and PC3) with acquired 
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resistance to docetaxel, single-cell RNA-sequencing 
determined differential clusters of sensitive vs. resistant 
cells (98). Protein ubiquitination was the most differentially 
regulated pathway and one of the top regulators was identi-
fied to be NUPR1. NUPR1 gene modifications revealed that 
NUPR1 conferred docetaxel resistance in both cell lines, 
indicating that it is a mediator of prostate cancer drug resis-
tance and hence a target for resistance-reversal (98).

6. Challenges and future perspectives

NUPR1 is a highly interesting molecule to explore in the 
context of cancer, as demonstrated in the evidence gathered 
over the past 2 decades. It is involved in multiple aspects of 
cancer, from DNA repair, transcription regulation, cell cycle 
and death to metabolic activity of cancer cells. It also appears 
to be involved in a wide variety of cancer types. Clinically, 
there are demonstrable links between NUPR1 and disease 
progression and clinical outcome of patients, at least in certain 
cancer types. There are also early signs that it has a therapeutic 
value by targeting NUPR1 in the treatment of cancer. However, 
whilst exciting, a cautious approach is necessary until some of 
the key issues are resolved. The central issue is the inconsis-
tencies in the role of NUPR1 in different cancer types and is 
a repeatedly occurring pattern. The following provides some 
perspectives for the likely reasons that this is observed.

Discrepancies in clinical and in vitro findings. Whilst 
NUPR1 itself has some contrasting roles in different types 
of cancer cells, a recently discovered family member, namely 
NUPR1-like or NUPR2, may provide some insight. NUPR1L 
closely resembles NUPR1 but has contrasting functions 
to NUPR1 (5,99). NUPR2 is regulated by p53 responsive 
elements and its expression is dependent on p53, a classic 
tumour suppressor (5). NUPR2 expression is also induced 
by p53 inducers, including serum starvation and oxaliplatin. 
Furthermore, NUPR1 and NUPR2 mutually suppress each 
other by way of the transcription of regulation. NUPR2 expres-
sion downregulates that of NUPR1 and vice versa. NUPR1 has 
been shown to be able to revert NUPR2 induced cell cycle 
arrest, making it a classic agonist-antagonist player in cells (5). 
NUPR2 is able to bind the same partners of NUPR1, including 
RING1B, at a similar affinity and most interestingly binds to 
NUPR1 (87). NUPR2 also appears to play an inhibitory role 
in colorectal cancer cells and can be targeted by miRF2277, 
which binds to the UTR of the human NUPR2 gene and down-
regulate NUPR2, and in doing so, increase the growth and 
migration of cancer cells (41). Thus, the clinical association 
between NUPR1 and cancer would require the consideration 
of NUPR2, in the same setting, namely in the same cancer 
types and the same cohort, in order to establish a solid link.

Nuclear vs. cytoplasmic. One of the most interesting obser-
vations from published studies is the cellular location of the 
protein. In normal follicles of the thyroid gland, NUPR1 
exclusively displays nuclear staining. The same nuclear 
staining is seen in follicular tumours. However, papillary 
tumours largely exhibit cytoplasmic staining, particularly in 
large tumours and tumours with lymph node metastasis (47). 
In breast cancer, both cytoplasmic and nuclear staining was 

observed (31). These preliminary observations indicate that 
cytoplasmic distribution of NUPR1 in cancer cells may aid the 
aggressiveness and poor differentiation phenomenon of cancer 
cells. Pancreatic tumours also exhibit nuclear and cytoplasmic 
staining (42,43). Again, heavy cytoplasmic staining was seen 
in NSCLC cancers (17). A study with a larger cohort enabling 
us to comprehensively evaluate the cellular location of NUPR1 
would answer these questions. In addition, further cell-based 
investigations to discern the functional discrepancies for 
cytoplasmic NUPR1 and nuclear NUPR1 was thought to be 
necessary. The nuclear vs. cytoplasmic localisation of NUPR1 
remained an enigma until a recent study by Lan et al (2020), 
whose elegant study on the effect of ZZW-115-dependent 
inhibition of NUPR1 nuclear translocation by changes in 
SUMOylation-dependent functions of DNA damage response 
proteins (6). 

A further point is that one should analyse NUPR1 together 
with its positive and negative regulators in the same study. For 
example, it would be invaluable to co-investigate NUPR1 and 
its potential partners such as ERBB2 in breast cancer (33). 
Finally, when considering targeting NUPR1 as a therapy, it 
is important to focus on the tumour type(s) that has/have a 
demonstrable connection, such as pancreatic cancer, whereas 
other cancer types would require additional work for the rela-
tionship to be firmly established. This is an exciting avenue of 
research that we anticipate could reveal new targets in cancer 
treatment in the future.
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