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Abstract Early identification of resource needs is in-

strumental in promoting efficient hospital resource

management. Hospital information systems, and elec-

tronic health records (EHR) in particular, collect valu-

able demographic and clinical patient data from the

moment patients are admitted, which can help pre-

dict expected resource needs in early stages of pa-

tient episodes. To this end, this article proposes a

data mining methodology to systematically obtain pre-

dictions for relevant managerial variables by leverag-

ing structured EHR data. Specifically, these manage-

rial variables are: i) Diagnosis categories, ii) procedure

codes, iii) diagnosis-related groups (DRGs), iv) outlier

episodes and v) length of stay (LOS). The proposed

methodology approaches the problem in four stages:

Feature set construction, feature selection, prediction
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model development, and model performance evaluation.

We tested this approach with an EHR dataset of 5,089

inpatient episodes and compared different classification

and regression models (for categorical and continuous

variables, respectively), performed temporal analysis of

model performance, analyzed the impact of training set

homogeneity on performance and assessed the contribu-

tion of different EHR data elements for model predic-

tive power. Overall, our results indicate that inpatient

EHR data can effectively be leveraged to inform re-

source management on multiple perspectives. Logistic

regression (combined with minimal redundancy maxi-

mum relevance feature selection) and bagged decision

trees yielded best results for predicting categorical and

numerical managerial variables, respectively. Further-

more, our temporal analysis indicated that, while DRG

classes are more difficult to predict, several diagnosis

categories, procedure codes and LOS amongst shorter-

stay patients can be predicted with higher confidence

in early stages of patient stay. Lastly, value of infor-

mation analysis indicated that diagnoses, medication

and structured assessment forms were the most valu-

able EHR data elements in predicting managerial vari-

ables of interest through a data mining approach.

Keywords electronic health record · structured data ·
resource demand · temporal analysis · data mining ·
feature selection
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Highlights

– This article proposes a data mining framework to

inform hospital resource management by predicting

managerial variables from electronic health record

(EHR) data during the course of inpatient episodes.

– This framework entails a series of systematic proce-

dures for dataset preparation and model building to

predict 5 managerial variables: diagnosis categories,

procedures, diagnosis-related groups (i.e. episode

classification), outlier episodes and patient length

of stay.

– Our results reveal that several managerial variables

of interest can be predicted from structured EHR

data within early stages of inpatient episodes. This

can directly inform hospital managers in tactical

and operational decision making for resource man-

agement.

– The multiple experiments presented in this article

provide insights for EHR system developers, data

scientists/modelers and system users on how to op-

timize the value of this methodology, by focusing on

certain patient subpopulations and promoting data

quality for EHR content areas that, according to

results, most impact predictions of managerial vari-

ables.
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1 Introduction

Cost containment measures such as the US Affordable

Care Act [1] and budget constraints put healthcare

managers under pressure to efficiently allocate scarce

resources. Key challenges of efficient resource manage-

ment include lack of timely and accurate information [2]

and the fact that healthcare resource capacity is per-

ishable [3]. Resource demand prediction can be highly

valuable for healthcare managers in making resource

allocation decisions and minimizing capacity idle times

– this includes aspects such as capacity planning, dy-

namic bed management, shift scheduling and patient

assignment [4]. However, predicting demand and under-

standing inpatient service needs is challenging as this

information is often not available – clinicians might not

fully document resource needs as they become known.

There are also gaps in resource demand aggregation

tools, lack of effective mechanisms to detect changes

in patient resource needs and insufficient communica-

tion channels to surface relevant information to hospital

managers [5].

Electronic health record (EHR) systems have been

a cornerstone of health system modernization and po-

tentially contribute to care quality, cost savings and

health gains [6, 7]. Routine use of these systems, par-

ticularly in hospital settings, produces vast amounts of

data even in early stages of inpatient episodes. Also,

these data are increasingly recorded in structured for-

mats [8] as opposed to free-text. Valuable insights can

be obtained through the secondary use of EHR data

[9]. Data mining and predictive modeling are exten-

sive research fields with numerous tools and applica-

tions in healthcare [10, 11], which include assisting di-

agnosis, treatment recommendation and patient read-

mission prediction [12]. Literature shows the value of

these methodologies in informing clinical practice, pre-

dicting patient health status and outcomes, particularly

in hospital settings [13], these can potentially help iden-

tify, integrate and communicate expected demand for

hospital inpatient services.

While multiple studies have addressed the use of

EHR data for clinical decision support [14], fewer stud-

ies have explored how EHR data can be leveraged to

inform resource management during the course of inpa-

tient episodes. Also, EHR data provides the basis for

diagnosis and procedure coding [15] as well as patient

classification systems such as diagnosis-related groups

(DRGs) – which establish a linkage between patient

clinical characteristics and patterns of resource demand

[16]. However, numerous hospitals do not possess mech-

anisms to provide preemptive predictions of expected

resource needs and DRG classification. Instead, episode

coding and classification are only triggered after dis-

charge, and resource use efficiency can only be analyzed

retrospectively. Although mechanisms for early DRG

classification exist, there is still lack of up-to-date in-

formation at each stage of patient care. This requires

novel approaches for early prediction [17] and efficient

resource allocation decisions such as patient scheduling

[18, 19].

With the continuous adoption of EHR systems,

there is scope to leverage EHR data during the course

of inpatient episodes to provide relevant and timely in-

sights to inform resource allocation decisions. Data min-

ing and predictive modeling methods can be particu-

larly valuable in obtaining managerial insights, which

can be updated as more information becomes available.

In this context, this article proposes a methodol-

ogy to enable systematic use of structured EHR data

throughout the course of inpatient episodes and provide

key insights to inform managers in making tactical and

operational resource allocation decisions. Specifically,

this study develops models to predict patient diagnosis

categories, procedure codes, DRGs, outlier episodes and

LOS. To further refine this methodology, we investigate

the influence of population homogeneity on model per-

formance and assess whether tailoring the data mining

approach to patient subgroups of (frequently heteroge-

neous) hospital populations is valuable. We also inves-

tigate which EHR data elements have higher influence

on model performance.

The remainder of this article is structured as follows:

Section 2 reviews relevant literature on the use of data

mining and EHR systems, with a focus on managerial

insights. Section 3 describes the proposed methodology

to obtain predictions of relevant managerial variables

during the course of inpatient episodes, to evaluate per-

formance on subpopulations and to assess relevance of

EHR data elements to overall model performance. Sec-

tion 4 presents results from experiments using a dataset

of inpatient episodes from a public hospital in Portu-

gal, and section 5 discusses key results, implications and

limitations of this study. Section 6 summarizes contri-

butions and outlines future work.

2 Literature review

There has been extensive data mining research in clin-

ical medicine [20]. In this section, we provide a brief

literature review focused on prediction of managerial

variables related to this study: clinical profiles, proce-

dures, episodes (DRG) classification, LOS outliers and

duration.

Prediction of patient clinical profiles has typically

focused on using data mining tools to support the di-
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agnosis of specific conditions such as liver disease [21],

diabetes [22], cancer [23, 24] and cardiac diseases [25].

In these studies, feature sets built based on clinical fea-

tures are often disease specific and tailored for each

case, which makes generalization challenging. A study

from Kocbek et al. (2016) [26] uses text mining to pre-

dict diagnoses for inpatient episodes from free-text and

evaluates the value of different data sources. From a dif-

ferent perspective, prediction of diagnosis classification

systems (i.e. clinical coding) has been addressed in nu-

merous studies [15], applying a wide variety of machine

learning algorithms to EHR data. The vast majority

of these studies use free-text data, which also brings

challenges of extracting relevant information from nar-

ratives [27]). However, a few studies have approached

the use of structured data for coding support and show

promising results in overcoming barriers of using free-

text EHR data [28](BLINDED)(BLINDED).

Unlike diagnosis coding, procedure coding has been

less common in research literature. Chiaravalloti et

al. (2014) [29] proposed a system to predict diagnosis

and procedure codes using natural language processing

and knowledge bases, while Subotin and Davis (2014)

[30] developed a system to estimate confidence scores

through levels of abstraction. These two studies under-

line the importance and illustrate the feasibility of pre-

dicting procedure codes to mitigate manual workload

and provide insights for operational resource manage-

ment, however none of the studies approached this topic

from a temporal perspective during inpatient episodes.

In terms of predicting episode classification, litera-

ture is also relatively scarce in spite of general acknowl-

edgement that of the its importance for upstream oper-

ations scheduling and planning [18, 31]. DRG classifica-

tion using routinely collected data has been addressed

by Gartner et al. (2015) [17] who evaluated different

feature selection and classification algorithms on a va-

riety of performance metrics and levels of detail. The

temporal classification problem’s performance revealed

that before admission, at admission and during different

stages of care, managers can be provided with more ac-

curate DRG information as compared to a baseline ap-

proach, i.e. using a so-called DRG grouper. In addition,

related work by Okamoto et al. (2012) [32] addresses

prediction of diagnosis-procedure codes (the Japanese

equivalent of DRGs) using machine learning models,

though not considering the temporal dimension.

Since LOS is a significant proxy of resource con-

sumption, there has been extensive research on LOS

prediction through aggregate LOS estimations [33],

testing distribution fitting [34] and, more frequently,

providing patient-level numerical LOS predictions.

Early research started with techniques such as subjec-

tive expert estimation [35] and evolved into risk scores

(such as SEWS, APACHE, and SAPS) to explain ob-

served LOS in areas such as stroke [36], cardiac surgery

[37, 38] and inpatient or intensive care (ICU) depart-

ments [39]. Markov models have also been used to esti-

mate ICU LOS [40]. Data mining models have increas-

ingly played an important role in LOS prediction, ei-

ther using classification algorithms to predict discrete

LOS intervals [41] or regression models to predict nu-

merical LOS values. Although higher performance is re-

ported for classification approaches, these have limita-

tions in that selected LOS thresholds may be arbitrary

[42] and not relevant for hospital management. DRG

trim pointsare an example of meaningful LOS thresh-

olds [16]. As such, predicting LOS values through re-

gression is, in principle, more relevant for hospital man-

agers. Multiple regression-based approaches are found

in the literature: multilinear regression [43], Poisson

regression and negative binomial models [44], general-

ized linear models and Cox proportional hazards [45].

Data mining regression methods used include neural

networks, regression trees, random forests [46, 47] and

bagged decision trees [48, 49]. The temporal dimension

has been addressed either by assuming which informa-

tion is available at each stage [50, 51] or by systemati-

cally building models using data available at each stage

[52, 53].

In summary, there is a lack of holistic approaches to

predict multiple managerial variables in a timely man-

ner. This article aims to fill this gap by developing mod-

els that can adapt dynamically throughout the course of

inpatient episodes and make use of routinely-collected

EHR data available in structured formats.

3 Systematic data mining framework

The proposed data-driven methodology uses historical

inpatient datasets to model relationships between EHR

data and relevant managerial variables (MVs) using su-

pervised learning paradigm to build prediction models.

Inpatient episodes are represented as feature sets linked

to known outcomes [54]. After training, these models

provide predictions on new unseen instances and per-

formance is evaluated using cross-validation. This sec-

tion describes our methodology to leverage routinely

collected EHR data to predict MVs – we explain how

MVs are structured from the EHR dataset, describe

the predictive modeling methodology and provide an

overview of the experimental design of this article.
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3.1 Managerial variables and EHR dataset

Each MV represents a relevant resource management

element, covering patient clinical profiles, expected re-

source demand and payment for care services. These

MVs are identified as MV1 through MV5 and are

structured by combining the healthcare management

perspective with data available in the EHR as repre-

sented in Figure 1. MVs represent outcome variables

used for predictions and are available in administra-

tive (admission-discharge-transfer system) systems as

well as in the national database of hospital episodes,

which contains diagnosis, procedure and DRG codes.

This study was developed using a commercial EHR

system (Soarian [55]), a patient-centered system which

uses structured data, controlled fields and terminolo-

gies, for all essential patient information. For diagnoses

specifically, the EHR system had multiple catalogs con-

figured (ICD-9-CM, ICD-10 and working diagnoses) to

provide flexibility to clinicians in selecting diagnoses.

Table 1 provides details on the contents of each EHR

data element.

MV1: Diagnoses Diagnoses include principal and sec-

ondary conditions representing clinically meaningful in-

formation on patient health status and can provide in-

sights into potential complications and comorbidities.

Diagnoses are linked to demand for certain health ser-

vices (e.g. demand for specific clinical specialists, pro-

cedures, materials and overall ward/resource capac-

ity) and are modeled through the International Clas-

sification of Diseases (ICD-9-CM version, the coding

standard in the Portuguese National Health Service

– NHS – at the time of data extraction). Diagnosis

codes are available for all historical episodes as coding

occurs after discharge and were grouped at the cate-

gory (3-characters) level to model this outcome vari-

able, to compensate for imbalance (see [56] for an ex-

ample of typical ICD dataset imbalance) while still

providing meaningful insights on clinical profiles. Since

multiple diagnosis codes are assigned to each episode,

we developed binary classifiers for each ICD category

(i.e. each 3-character code) and averaged model perfor-

mance across all categories considered [57].

MV2: Procedures Procedures entail a wide range of di-

agnostic exams, procedures and treatment interventions

with variable resource intensity and can directly help

plan capacity for medical equipment/facilities, skilled

human resource needs (clinicians, nurses and techni-

cians), as well as materials (specifically drugs, medical

tools and consumables) to support these procedures.

Predicting procedures can therefore help plan resource

capacity. Procedures are also modeled using ICD-9-CM

codes (described in Volume 3 of this coding scheme), in

this case using the full 4-digit procedure codes to cap-

ture the differences in complexity and resource needs

amongst specific procedures. Similar to MV1, multiple

procedure codes are assigned to each episode. We de-

veloped binary classifiers for each procedure code and

averaged model performance across all codes.

MV3: DRGs Prediction of DRG classification is highly

relevant for resource management and planning given

its contribution for upstream planning of treatment

processes in inpatient episodes [17, 18]. Specifically,

DRGs provide insight on the overall clinical profile of

the episode, the expected package of medical services

and expected payment for hospital episodes. The lat-

ter is important for financial forecasting and ensuring

hospital resource consumption is managed within ex-

pected limits to avoid losses. While DRGs also convey

information on clinical profiles, similar to MV1 (albeit

at a much more general level), DRGs also convey pat-

terns of resource consumption and expected payment

for episodes, which make them a valuable complement

to MV1. We used the DRG grouper All-Patients DRG

(version 27, the standard in the Portuguese NHS at the

time of data extraction). We also modeled DRG predic-

tion as a multi-label classification problem by develop-

ing a binary classifier for each DRG code and averaging

performance across all DRG codes considered.

MV4 & MV5: Episode outliers and LOS LOS is one

of the most widely used proxies of resource consump-

tion and is instrumental for tactical and operational
capacity management [18, 58]. Specifically, LOS di-

rectly influences capacity for admitting new patients

and scheduling elective procedures/surgeries that re-

quire bed capacity. Shorter LOS can reduce risks of in-

fections and complications, improve quality of care and

promote profit through efficient resource use. However,

excessively short LOS might increase risk of readmis-

sion and impact quality of care. As such, early LOS

prediction is very important for hospital management.

We firstly address LOS in terms of outlier episodes

(MV4), defined as episodes with LOS outside the cor-

responding DRG trim points. Prediction of these out-

liers is relevant for resource management as an indicator

of unexpected clinical complications, be related with

inefficient resource use or entail higher risk of read-

mission. This is modeled as 2 binary classifiers (LOS

lower or LOS higher than trim points) with value 1 if

episodes have LOS outside of DRG trim points. These

trim points were obtained from official NHS documen-

tation [59]. We analyzed low and high LOS outliers sep-
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Fig. 1 Conceptual representation of managerial variables, developed from combination of EHR data elements with information
needs from managerial perspectives.

arately to potentially surface different factors influenc-

ing these two scenarios. LOS (MV5) is in turn modeled

as the time (in days) between patient admission and

discharge. LOS data was retrieved from the national

episode database, in order to ensure alignment with

the information reported by the hospital. Since LOS

is a numerical value, predictions were obtained with

supervised regression methods.
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Data e-

lement

Description Feature construction procedure Classification
scheme

Data
type

#
Fea-
tures

Demo-
graphics

Age and sex information Define features for age and sex
Transform age into equal-width bins (10 years)

– Numerical
(age),
binary
(sex)

2

Diagno-
ses∗

Working diagnoses (prin-
cipal and secondary)
assigned by clinicians,
selected from system-
embedded catalogs(pick-
lists)

Map all diagnoses into a single catalog (ICD-
9-CM) and truncate at category level; Define
binary feature for each unique diagnosis cate-
gory; assign value 1 or 0 based on presence or
absence (respectively) in each episode

ICD-9-CM,
ICD-10 and
local “working
diagnoses”
catalog

Categorical 613

Perso-
nal
history

Relevant personal history
selected from a small
set of health conditions
through checkboxes; per-
sonal history is preserved
across episodes of the
same patient

Define binary feature for each unique personal
history item; assign value 1 or 0 based on pres-
ence or absence (respectively) in each episode

Local catalog Categorical 36

Aller-
gies

Allergy conditions se-
lected from a system
catalog or entered as
free-text (normalized
during data processing)

Harmonize/map allergies to general allergen
designations (e.g. cat, dog, dust, pollen) and
active ingredients (not commercial brands) in
case of medication allergies; free-text entries
may occur and are converted to corresponding
allergen/active ingredient designations; review
by medical experts is important in case of high
variability and high frequency of free-text en-
tries; Define binary feature for each unique al-
lergy item; assign value 1 or 0 based on pres-
ence or absence (respectively) in each episode

Local catalog
+ Free-text
designations

Categorical
+ Free-
text

154

Prescrip-
tions

Medical/nursing proce-
dures, diagnostic and
imaging exams, labora-
tory tests

Harmonize procedure designations and remove
non-relevant detail; Define binary feature for
each unique prescription item; assign value 1
or 0 based on presence or absence (respec-
tively) in each episode

Local catalog Categorical 1,253

Medica-
tion

Prescribed medication,
including dosage and
administration pathway

Map medication entries to drug active prin-
ciples leveraging standard (e.g. RxNorm) or
EHR-embedded drug catalog, remove detail on
dosage and administration pathway; Define bi-
nary feature for each unique drug item; assign
value 1 or 0 based on presence or absence (re-
spectively) in each episode

Local catalog Categorical 506

Assess-
ments

Clinical forms configured
for data collection in
different events such as
respiratory assessment,
feeding, fluid balance
and elimination, scor-
ing scales, medical and
nursing consultation
notes, admission and dis-
charge forms; composed
mainly of structured
(checkboxes, dropdowns,
buttons and pick-lists);
free-text allowed for
narrative comments

Identify and merge redundant fields and lists
of values across all assessments configured in
the EHR system through manual inspection
of all assessment fields, supported by sys-
tem/clinical expert review; Define a feature for
each clinically meaningful field, defining fea-
ture type (numerical/categorical) in line with
underlying clinical concept; Implement algo-
rithm to automatically process EHR database
entries and populate data matrix with feature
values

– Numerical,
ordinal
and cate-
gorical;

1,309

Lab re-
sults

Laboratory test results,
covering mainly analyti-
cal essays of biochemistry,
hematology, immunology
and microbiology.

Harmonize laboratory test labels through
manual inspection and supported by expert
review; For numerical lab results, define bi-
nary features for high and low abnormal flags
(if applicable); low/high thresholds should be
defined according to limits configured in the
EHR system, or if these are not available, they
should be defined with clinical experts for cat-
egorical results, define categorical feature

Local catalog Numerical
and cate-
gorical

1,290

Table 1 Key EHR data elements - description, feature construction procedures, classification schemes and variable types.
∗Diagnoses represent ”working diagnoses” assigned by clinicians during the course of inpatient episodes. These diagnoses are
usually temporary and less specific than diagnoses assigned after patient discharge. Therefore, these diagnoses are different
from MV1.
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3.2 Predictive modeling methodology

Addressing prediction of multiple managerial variables

along the course of patient episodes required a system-

atic data mining approach, by using all structured EHR

data available up to a given instant in the episode’s

timeline and build prediction models using a standard

predictive modeling pipeline (PMP) of data mining

tasks. Specifically, this pipeline included EHR dataset

construction, feature set construction, feature selection,

prediction model development and model evaluation.

The key definitions in this context are:

Episode: Represents an instance in our EHR datasets,

defined by the period between patient admission

and discharge; for each episode ei contained in the

episode set E, there is a collection of database

records comprising all data recorded during patient

stay.

Feature: A component xj of the feature space F, used

as an independent variable to be used as input for

prediction models. Features represent relevant char-

acteristics of inpatient episodes derived from EHR

data.

EHR data element: Each block of EHR information bl
from the set of all data elements B ; demographic

data, personal history, diagnoses and prescriptions

are examples of data elements.

Full EHR dataset: Corresponds to the global collec-

tion D of EHR data and includes all database

records (tuples) rm (in raw format) recorded for

each episode.

Instant: A given point in the episode timeline from

the global set of instants T . Each instant tk uses

a relative time reference expressed in terms of time

elapsed after patient admission.

Filtered EHR dataset: A subset Dk of database records

rmk (in raw format) of the full EHR dataset D,

obtained by retrieving only EHR entries produced

between admission and a given instant tk. Filtered

datasets are cumulative in that each filtered dataset

is an extension of the filtered dataset constructed for

the previous instant.

Data matrix: Tabular format of EHR data used as in-

put to develop prediction models; matrix cells dij
represent the value of feature fj for episode ei.

The proposed systematic methodology is imple-

mented by executing standardized PMPs for each in-

stant and each managerial variable of interest, as rep-

resented in Figure 2. Each PMP uses a filtered EHR

dataset with tuples containing the field labels, corre-

sponding values and date-time stamps (see section 3.1

for details on EHR dataset).

Key activities comprised in PMPs are as follows:

1. EHR dataset construction: Creation of filtered EHR

datasets from the full EHR dataset for each instant

of interest, using date-time stamps of EHR database

records. This process was automated using MySQL

stored procedures (Figure 3), firstly defining all in-

stants tk composing the instant set Tı, then re-

trieving episode admission times (tai) to produce

a matrix of temporal boundaries S whose cells sik
= tai + tk represent the (absolute) date and time

to filter data through comparison with date-time

stamps in the EHR dataset. Time instants were de-

fined through consultation with hospital stakehold-

ers. The density of time instants is higher in the first

24h after admission, during which most patients

were admitted in the emergency department and

where key decisions of inpatient bed and resource

management are made [61]. No limits were placed

on maximum or minimum number of datasets – we

constructed 14 filtered EHR datasets aligned with

the 14 time points defined.

2. Feature set construction: Data preprocessing activi-

ties to define the feature space to represent inpatient

episodes, based on EHR data contents. Table 1 out-

lines the procedures to construct features from each

EHR data element, which included resolving redun-

dancies and data harmonization. Certain features

may have missing values, in which case these can be

handled with missing value imputation if appropri-

ate, or features might be excluded from analysis if

missing rates are excessively high, generally if higher

than 50%.

3. Feature selection: Consists in the use of methods

to define informative subsets of features [62] and

mitigate negative effects (e.g. overfitting and poor

model interpretability [63]) of high dimensionality,

particularly due to a high number of binary fea-

tures resulting from structured EHR data. Feature

selection is key for successful data mining appli-

cations [64]. Filter methods were used for classifi-

cation problems (MV1 – MV4) due to scalability

and faster execution times [63]. Specifically, we used

fast-correlation-based filter (FCBF) [65], minimal-

redundancy maximal-relevance (mRMR) [66] and

chi-square [67]. For regression (MV5 – LOS), we

used embedded methods which are part of regres-

sion models, specifically forward-backward stepwise

selection for multilinear regression (starting from

empty feature sets, maximum inclusion and mini-

mum removal p-value thresholds set to 0.05 and 0.1,

respectively, with infinite number of iterations) [68]

and out-of-bag feature importance for bagged deci-

sion trees (with ensemble size to 10 trees based on
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Fig. 2 Activities comprised in a predictive modeling pipeline (PMP) to build prediction models from raw EHR data (adapted
from [60]).

preliminary analysis, minimum 5 instances per leaf,

sampling fraction of 100% and evaluated all features

as candidate splitting criterion). Feature selection

is applied for each MV separately, generating MV-

specific feature subsets that are then used for model

building. All EHR data elements were considered as

candidate features for all MVs when applying fea-

ture selection methods.

4. Prediction model development : Consists in training

supervised learning models to predict each manage-

rial variable at each instant of interest. For classifi-

cation (MV1 – MV4) we used decision trees (CART

algorithm in MATLAB (classregtree), Gini index as

splitting criterion [69], minimum of 2 instances per

leaf and post-pruning optimized based on F1-score)

and logistic regression models [70] (with maximum

likelihood estimation [71], generalized linear mod-

els with a sigmoid link function and classification

cutoff threshold optimized for each model, by test-

ing all cutoff values between 0 and 1 in steps of

0.005 and selecting the cutoff point with highest F1-

score).. For regression (MV5) we applied multilinear

regression with forward-backward stepwise selection

[68] and bagged decision trees (valuable for unstable

models and showing promising results in [49]) using

the MATLAB algorithm TreeBagger [72, 73].

5. Model evaluation: Assessment of model predictive

power through cross-validation [74], comparing pre-

dictions with ground-truth outcomes in the test set.

Performance metrics were obtained across N test in-

stances, based on confusion matrix counts for classi-

fication (TP – true positive, TN – true negatives, FP

– false positives, FN – false negatives) and predicted

(ŷi) and known (yi) numerical responses for regres-

sion. For MV1, MV2 and MV3 where one classifi-

cation model is developed for each label considered,

model performance metrics were averaged across all

labels. These performance metrics were selected in

line with metrics typically reported in related liter-

ature and are calculated as follows:

Accuracy – A

A =
TP + TN

TP + FP + TN + FN
(1)

Precision – P

P =
TP

TP + FP
(2)

Recall – R

R =
TP

TP + FN
(3)

F1-score

F1 =
2PR

P + R
(4)

Root mean-squared error – RMSE

RMSE =

√√√√ 1

N

N∑
i=1

(
∧
yi − yi)2 (5)

Mean absolute error – MAE

MAE =
1

N

N∑
i=1

abs(
∧
yi − yi) (6)

Mean absolute percentage error – MAPE

MAPE =
1

N

N∑
i=1

abs(
∧
yi − yi)

yi
(7)

Coefficient of determination – R2

R2 = 1 −
∑N

i=1(
∧
yi − yi)

2∑N
i=1(yi − y)2

(8)

AUC/ROC metrics were not deemed adequate for

highly-imbalanced datasets (i.e. high proportion of neg-

ative examples in diagnoses, procedure and DRG pre-

diction) as these typically provide an overly-optimistic

view of model performance and may not be meaningful

in terms of clinical/operational utility. We instead fo-

cused on metrics that focus on TP, FP and FN counts,
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Fig. 3 Mechanism to create filtered EHR datasets for all instants of interest by extracting data from the full EHR dataset
using SQL stored procedures and a temporal boundaries matrix.

and prioritized F1-scores as the most important metric

to assess performance of classification models.

All feature selection methods and prediction mod-

els were executed in MATLAB (Statistics and FEAST

Toolboxes). For FCBF and mRMR filter methods [75]

we used a 10−6 threshold for symmetrical uncertainty to

ensure retrieval of all relevant and non-redundant fea-

tures for each label. Classification models were built in

a stepwise forward approach, adding features by order

of relevance (as ranked by each filter method). Regres-

sion models were developed using log-transformed LOS

values (without offset) to compensate for high positive

skewness of LOS distribution. All evaluation metrics

were calculated using 5-fold cross validation, compar-

ing predicted with actual values.

3.3 Experimental design

In this article, we designed experiments to evaluate

the proposed methodology in several perspectives and

generate relevant insights for hospital managers. The

methodology starts with problem scoping to define rel-

evant managerial variables MV1 to MV5. The experi-

ments conducted in this article are displayed in Figure 4

and leverage PMPs described above to address different

research questions:

– Determine best-performing combination of feature

selection methods and prediction models for each

managerial variable, by testing these combinations

on the full EHR dataset, averaging model perfor-

mance for multi-label variables MV1-MV3 and se-

lecting the combination with the highest average

performance for MV (results presented in section

4.2).

– Conduct a temporal analysis of model performance

starting after admission and at specific instances of

patient stay; this analysis establishes the base case

which serves as comparator for subsequent analyses

performed on subpopulations and to assess value of

information (results presented in section 4.3).
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– Replicate temporal analysis for subpopulations,

specifically the two most frequent major diagnos-

tic categories (MDC) in the dataset – respiratory

and cardiovascular diseases; as well as extend LOS

analysis on age, sex and LOS duration (lower/higher

than median LOS) subpopulations; this experiment

also includes predicting subpopulation membership,

i.e. predict which subpopulation the episode will fall

into, to assess whether episodes can be assigned to

subpopulations in order to develop more tailored

prediction models (results presented in section 4.4).

– Evaluate the contribution of each EHR data element

to overall model performance, replicating the base

case analysis with removal of one EHR element at

a time (demographics, diagnoses, personal history

and allergies, prescriptions, medication, assessments

and laboratory values and evaluating differences in

model performance relative to the base case; results

presented in section 4.5).

4 Results

This section presents the results from analyses con-

ducted with a real-world dataset from a large public

hospital (approx. 700 beds) in Portugal, including de-

scriptive statistics and model predictive power obtained

across the different experiments. Each of the following

subsections presents results of specific experiments out-

lined in the experimental design.

4.1 Dataset overview

The case-study dataset consists of EHR source files of

5,089 non-surgical inpatient episodes collected over a

6-month time span and covering multiple medical spe-

cialties (mainly internal medicine, pneumology, infecti-

ology, gastroenterology and nephrology). From the to-

tal feature set constructed from the EHR system, 201

features had missing values, all with missing rates over

50%. We excluded these 201 features due to their high

missing rates. Table 2 presents the number of features

in the dataset after preprocessing.

Data on managerial variables (ICD-9-CM diagno-

sis and procedure codes, DRG class and corresponding

MDC, admission and discharge dates/times and LOS

values) were extracted from the Portuguese national

DRG database (WebGDH) in which public hospitals re-

port inpatient episodes. Additional information on LOS

trim points (to label outlier episodes) was extracted

from official NHS documents. Table 3 presents sum-

mary statistics of the five managerial variables, which

Data element Summary Statistics

Demographics Age: mean = 67.7; median = 72;
SD = 18.0; IQR = 26
Sex: 49.5% M; 50.5% F

Data element Average number of entries per
episode

Diagnoses 4.0
Personal history 32.1
Allergies 0.2
Prescriptions 34.6
Medication 12.9
Assessments 59.6
Laboratory results 16.6

Table 2 Feature set overview for the full EHR dataset. SD
= standard deviation; IQR = interquartile range.

shows the general imbalance of categorical variables

(MV1 – MV4) and a skewed LOS distribution. The

box plot depicted in Figure 5 shows the distribution

of LOS for the global population as well as for sub-

populations segmented by MDC, age, and sex. MDC 4

(respiratory) is shifted towards higher LOS values and

MDC5 has a smaller interquartile range with respect to

the global population. Additionally, patients with age

lower or equal to the median (72 years) exhibited lower

median LOS and interquartile range than patients older

than 72 years. All subpopulations exhibited a consider-

able number of outliers with LOS higher than the 99th

percentile.

4.2 Full EHR dataset analysis

Results obtained with the full EHR dataset are pre-

sented in Table 4 (averaged across labels for classifica-

tion) and show that the combination of mRMR feature

selection and logistic regression models consistently ex-

hibited the highest F1-score, while bagged regression

trees outperformed multilinear regression in almost ev-

ery metric (except for MAPE). For classification mod-

els, we prioritized results based on F1-score since this

measure combines precision and recall and is typically

the most important measure in binary classification

problems. For regression models, we prioritized MAE

as most meaningful metric as it provides the most di-

rect and clear linkage to LOS values, expressed in days.

Based on these results, we selected logistic regression

combined with mRMR feature selection and bagged re-

gression trees for subsequent experiments.
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Fig. 4 Schematic representation of the methodological workflow and experimental design. (B) indicates binary managerial
variables and (N) indicates a numerical managerial variable.

Managerial
variable

Scope Selected statistics

MV1
Diagnoses

Top 75 ICD-9-
CM categories

401 – Essential hypertension (N = 2044)
276 – Disorders of fluid, electrolyte & acid-base balance (N = 1706)
250 – Diabetes mellitus (N = 1395)
V58 – Encounter for other/unspec. procedures & aftercare (N = 1313)
272 – Disorders of lipid metabolism (N = 1258)

MV2
Procedures

Top 75 ICD-9-
CM procedures

90.59 – Microscopic examination of blood NEC (N = 4710)
87.44 – Routine chest X-ray (N = 3398)
89.52 – Electrocardiogram (N = 3150)
99.18 – Injection/infusion of electrolytes (N = 2764)
89.65 – Arterial blood gas measure (N = 2375)

MV3
DRGs

Top 25 AP-DRG
codes

541 – Simple pneumonia & other respiratory disorders excl. bronchitis, asthma (N = 379)
89 – Simple pneumonia and pleurisy, age >17, with CC (N = 335)
127 – Heart failure and shock (N = 230)
544 – Congestive heart failure and cardiac arrhythmia, major CC (N = 180)
410 – Chemotherapy (N = 144)

MV4
LOS outliers

Low/High LOS
outliers

Low outliers – N = 428
High outliers – N = 168

MV5
LOS

LOS in days (in-
teger)

Mean = 9.03; Median = 7; SD = 9.86; IQR = 10

Table 3 Scope and summary statistics of managerial variables MV1 to MV5. The top 5 most frequent categories are presented
for MV1, MV2 and MV3. NEC = not elsewhere classified; CC = complications or comorbidities. SD = standard deviation;
IQR = interquartile range.
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(a)

Precision Recall
DT Logit DT Logit

MV FCBF mRMR Chi FCBF mRMR Chi FCBF mRMR Chi FCBF mRMR Chi
Diag. 0.727 0.741 0.739 0.656 0.649 0.645 0.468 0.489 0.481 0.590 0.599 0.586
Proc. 0.671 0.659 0.644 0.559 0.583 0.537 0.474 0.507 0.490 0.670 0.685 0.681
DRG 0.329 0.448 0.401 0.369 0.474 0.378 0.186 0.279 0.241 0.567 0.553 0.549
LOS
out.

0.563 0.508 0.510 0.364 0.398 0.359 0.245 0.319 0.220 0.594 0.579 0.530

F1-
score

Accuracy

DT Logit DT Logit
MV FCBF mRMR Chi FCBF mRMR Chi FCBF mRMR Chi FCBF mRMR Chi

Diag. 0.550 0.569 0.562 0.608 0.611 0.598 0.952 0.953 0.952 0.946 0.946 0.944
Proc. 0.487 0.529 0.508 0.590 0.615 0.580 0.946 0.948 0.946 0.935 0.942 0.935
DRG 0.217 0.328 0.289 0.423 0.481 0.416 0.979 0.980 0.978 0.966 0.974 0.967
LOS
out.

0.338 0.385 0.296 0.437 0.467 0.403 0.944 0.945 0.943 0.903 0.926 0.902

(b)

RMSE MAE MAPE R2

MV MLR BT MLR BT MLR BT MLR BT
LOS 9.816 5.912 3.787 3.168 0.404 0.474 -0.015 0.646

Table 4 Average model performance obtained through 5-fold cross validation for (a) classification (decisions trees – DT –
and logistic regression - Logit) and (b) regression (multilinear regression – MLR – and bagged regression trees – BT) models
using the full EHR dataset, combined with feature selection methods fast correlation-based filter (FCBF), minimal-redundancy
maximal-relevance (mRMR) and chi-squared (Chi). The best results obtained for each managerial variable (MV) in each metric
(RMSE – root mean squared error, MAE – mean absolute error, MAPE – mean absolute percentage error and R2 – coefficient
of determination) are presented in boldface.

Fig. 5 Box plot distributions of LOS on the global inpa-
tient population and on subpopulations segmented by MDC,
age, and sex. Outliers (crosses) represent episodes with LOS
higher than the 99th percentile.

4.3 Temporal analysis

Next, we analyzed the evolution of predictive power

along the course of episodes. 14 instants of interest

were defined between 1 hour and 5 days after admission

(roughly up to half the average LOS), as represented in

Figure 6, for which 14 filtered EHR datasets were con-

structed. These filtered datasets were processed using a

stored procedure (see Figure 3) and a MATLAB algo-

rithm to read source files, perform data preprocessing

and populate data matrices (BLINDED).

Fig. 6 Relevant time points for the temporal analysis.

Figure 7 depicts the evolution of model predictive

power within 5 days after admission, exhibiting com-

parable patterns in charts (a) to (d) with performance

starting off at lower levels and increasing steeply in

the first 20 to 40 hours. Average F1-scores were low

for high LOS outliers (below 30%) and for DRGs

(below 50%) than for diagnoses and procedure (both

above 50%). For LOS regression models, a significant

decrease in error-based metrics, especially for MAPE

which starts at values over 200% and drops to values

under 60% after 5 days of stay. R2 also improves

steadily during the time frame. For label-level detail,

Table 5 presents the top 5 and bottom 5 performing

labels and shows high performance variability which
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is not captured in average measures. The five best

diagnosis and procedure labels achieve high F1-score

values; DRGs achieve slightly lower results. Some of

these top performing cases show good performance

at early episode stages. A list with descriptions of

diagnoses, procedures and DRG codes is presented in

the appendix.

Overall, these results show that performance im-

proves as more data become available for prediction

models during the course of episodes. The increasing

availability of data is enabled by the use of filtered EHR

datasets - the higher the corresponding time instant,

the more data these filtered EHR datasets contain (i.e.,

EHR data collected for that episode from admission

and up to a certain amount of hours after admission).

No episodes were excluded from the temporal analysis

when their LOS is lower than the instant being con-

sidered - in such cases, filtered EHR datasets include

all data collected for those episodes, and sample sizes

remain constant throughout the temporal analysis.

To obtain further insights on the extent to which

the average results in Table 4 have practical manage-

rial utility, we observed (Table 6) that diagnoses and

procedures have higher proportion of labels reaching

F1-scores above 50%, while for DRGs this only happens

for 9 out of 25 DRGs in scope. The 5 DRGs with higher

reimbursement rates (Table 7) show that this method-

ology produces acceptable predictive performance for

DRG 14 (stroke with infarction) with F1-scores higher

than 50% at 12 hours after admission (below expected

LOS for this DRG) and for DRG 557 (hepatobiliary and

pancreas disorder, with comorbidities/complications),

where models surpassed 50% F1-score at 72 hours after

admission. For LOS regression, the scatter plots in Fig-

ure 8 show performance improvement from charts (a) to

(d) (with points shifting towards the diagonal). Models

seem to underestimate LOS given the higher concen-

tration of points below the diagonal. The breakdown

analysis with performance measures computed for dif-

ferent LOS quartiles in Table 8 shows that RMSE and

MAE increase for subgroups with higher LOS, whereas

MAPE decreases considerably for episodes with higher

LOS.

4.4 Subpopulation analysis

Subpopulation analysis included model evaluation for

all managerial variables in clinical subgroups MDC4

and MDC5, as well as outlier episodes and LOS val-

ues for age (lower or equal to the median; and higher

than the median), sex and LOS (higher than 1; lower

or equal to the median; and higher than the median)

subgroups.

MDC subpopulation results in comparison with the

base case (section 4.3) indicate that increasing train-

ing set homogeneity does not influence results consis-

tently for diagnoses, procedures or DRG labels (see Ta-

ble 9), while it seems to improve performance of LOS

outliers. LOS prediction worsened for MDC4 but im-

proved slightly for MDC5. Observing F1-score differ-

ences higher than 10% in comparison with the base case

(Table 10), we find clinical correlation between these la-

bels and the corresponding MDC. This points towards

potential benefit in using homogeneous populations to

train prediction models. Several of these labels are rele-

vant in terms of patient health status (e.g. need for car-

diopulmonary resuscitation and mechanical ventilation)

and of hospital resources (e.g. CT scan, bronchoscopy

and thoracentesis).

Additional subpopulation analyses performed for

outlier episodes and LOS (presented in Table 11)

showed performance variations for both age and LOS

subpopulations, while male/female subpopulations did

not show significant change. High LOS outliers and LOS

regression models performed better for patients younger

than 72 years old, while models for low LOS outliers de-

creased performance for younger patients. For LOS sub-

populations, the main variations are observed in lower

performance for low LOS outliers and LOS in LOS >

1 and LOS > median subpopulations; and LOS regres-

sion models improve performance for patients with LOS

≤ median subpopulations (significant improvement in

MAE relative to the base case).

While model performance improves for subpopula-

tions, the development of subpopulation-specific models

impacts their generalizability, requires additional com-

putational effort to build models for multiple subpop-

ulations, and may introduce biased predictions if in-

correct subpopulations are used, which introduces im-

portant trade-offs. Having models that perform better

on subgroups is only relevant and useful if we could

know beforehand which MDC the episode belongs to,

so that model development can already be targeted for

that subpopulation. In order to assess feasibility of de-

termining MDC beforehand (since this information is

not directly available in the EHR), we also developed

models to predict subpopulation membership, i.e. pre-

dict which subpopulation the episode will fall into. A

standard PMP with mRMR and logistic regression was

applied on filtered EHR datasets to predict subpopula-

tion membership. These results (Table 12) indicate that

it is possible to predict subpopulation membership with

confidence from early stages of patient stay, especially

for LOS subpopulations.
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Fig. 7 Performance of prediction models developed within the first 120 hours of inpatient episodes for (a) diagnoses, (b)
procedures, (c) DRGs, (d) low LOS outliers, (e) high LOS outliers and (f) LOS (for the latter, MAPE and R2 are represented
on the right axis).

4.5 Value of information analysis

The outputs of this experiment are represented as sym-

bols in Table 13, showing intensity of influence of re-

moval of EHR data elements at 120h after admission.

Personal history and allergies were here considered as

one EHR element since both represent chronic condi-

tions. Results show that all data elements exert posi-

tive influence on model performance, i.e. the removal

of these elements resulted in lower model performance.

Overall, demographics, personal history and laboratory

results marginal influence in overall performance, while

prescriptions had a medium-strong influence on models

predicting procedures during the episode. Conversely,

diagnoses (assigned by clinicians during episodes), med-

ication and assessment data had a strong influence in

one or more managerial variables. Specifically, clinician-

assigned diagnoses highly impacted ICD-9-CM diagno-

sis and DRG prediction; medication and assessment

data impacted both outlier episodes and LOS predic-

tion.
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(a)

Diagnoses Procedures DRG

Category 1h 120h Code 1h 120h Code 1h 120h

714 0.575 0.914 90.59 0.962 0.963 410 0.672 0.777
434 0.164 0.878 87.44 0.815 0.848 450 0.399 0.732
E950 0.558 0.868 54.91 0.214 0.845 139 0.110 0.672
345 0.153 0.846 39.95 0.180 0.843 14 0.084 0.653
427 0.476 0.812 99.28 0.704 0.824 202 0.190 0.609

(b)

Diagnoses Procedures DRG
Category 1h 120h Code 1h 120h Code 1h 120h

459 0.107 0.243 99.03 0.014 0.198 87 0.136 0.205
426 0.149 0.266 33.24 0.015 0.279 316 0.092 0.301
V43 0.143 0.281 87.42 0.065 0.292 90 0.111 0.323
V10 0.143 0.287 90.52 0.102 0.301 88 0.099 0.331
V87 0.133 0.299 91.32 0.127 0.305 566 0.060 0.363

Table 5 F1-scores obtained for individual labels of diagnoses, procedures and DRGs. (a) Top 5 labels with best performance
at 120h; (b) Bottom 5 labels with worst performance at 120h.

Diagnoses

1h 12h 24h 48h 72h 96h 120h

F1 >50% 4 19 29 34 36 38 38
F1 >70% 0 6 7 10 11 11 12
F1 >80% 0 2 3 4 4 5 5

Procedures

1h 12h 24h 48h 72h 96h 120h
F1 >50% 8 9 16 19 27 29 35
F1 >70% 5 5 6 7 7 7 12
F1 >80% 2 3 3 3 3 3 4

DRGs

1h 12h 24h 48h 72h 96h 120h
F1 >50% 1 2 3 7 8 8 9
F1 >70% 0 1 1 2 2 2 2
F1 >80% 0 0 0 0 0 0 1

Table 6 Number of labels with F1-score higher than 50%,
70% and 80% for diagnoses, procedures and DRGs (MV1 to
MV3), at different instants.

5 Discussion

5.1 Analysis of results

The full EHR dataset experiment showed that logistic

regression models outperformed decision trees in F1-

score, accuracy and recall, yielding lower false nega-

tive rates. This is relevant for managerial variables such

as diagnoses and procedures for which false negatives

might represent gaps in clinical documentation and pro-

cedure reporting/billing. Similarly, low occurrence of

false negatives is relevant to timely identify DRG clas-

sifications and outlier episodes to draw attention to

potential deviations in health status and treatments

processes. In feature selection methods, we observed

that chi-square was always outperformed by FCBF and

mRMR methods, showing that multivariate feature se-

lection is more suitable.

Model performance values obtained in this study

are comparable to related literature, being lower than

[76, 77], higher than [56] and similar to [78, 79] as well

as other NLP-based studies. For DRG prediction, our

results are comparable to Gartner et al. (2015) [17]

(comparison of accuracy is difficult since authors used

a multi-class model). We focused on F1-score metrics

as these are more realistic in terms of practical appli-

cability, especially in highly imbalanced datasets where

accuracy tends to be over-optimistic. For LOS predic-

tion, bagged regression trees outperformed multilinear

regression in RMSE, MAE and R2 metrics, providing

results with better practical application overall. Our re-

sults are comparable with Verburg et al. (2014) [45] and

lower than Xie et al. (2015) [48]. While these compar-

isons must always consider inherent variability in prob-

lems and dataset complexity, our results are in line with

related literature.

The base-case temporal analysis showed similar per-

formance patterns across managerial variables, with

steeper increase in the first 1-2 days. Average perfor-

mance reaches acceptable values (above 50%) for di-

agnoses and procedures, but stays slightly below this

threshold for DRGs. For DRGs, this might be related

with very low class representation but also lack of align-

ment between EHR information for care provision and

DRG classification purposes. In effect, primary and sec-
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DRG Value 1h 12h 24h 48h 72h 96h 120h

533 7.219,98 ¿ 0.076 0.356 0.361 0.401 0.429 0.446 0.476
14 4.804,34 ¿ 0.084 0.579 0.631 0.632 0.663 0.657 0.653
557 4.683,06 ¿ 0.107 0.423 0.469 0.483 0.503 0.533 0.504
552 4.227,63 ¿ 0.084 0.309 0.358 0.447 0.379 0.433 0.401
15 3.924,43 ¿ 0.050 0.302 0.378 0.422 0.422 0.428 0.432

Table 7 Temporal results of F1-scores for the 5 DRGs with highest reimbursement rates (according to NHS reimbursement
rates) [59].

Fig. 8 Scatter plots with predicted vs. ground truth LOS values, obtained with bagged regression models at 1h, 24h, 48h and
120h after admission.

LOS subgroup RMSE MAE MAPE
LOS = 1 1.938 1.074 1.074
2 ≤LOS<7 3.773 2.398 0.653
7≤LOS<12 4.757 3.593 0.430
LOS≥12 12.126 7.993 0.328

Table 8 Breakdown analysis of bagged regression tree per-
formance at 120h after admission, by LOS groups.

ondary diagnoses very often differ from clinical and

billing perspectives. Low class representation may also

have impacted performance for high LOS outliers, al-

though these can be associated with numerous factors

(potentially only discovered at later stages of episodes).

Generally, logistic regression provided high confidence

predictions for multiple labels (especially within diag-
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Diagnoses

1h 12h 24h 48h 72h 96h 120h

Base case 0.229 0.408 0.454 0.485 0.504 0.517 0.531
MDC4 0.214 0.409 0.453 0.486 0.493 0.511 0.523
MDC5 0.229 0.410 0.446 0.471 0.490 0.502 0.531

Procedures

1h 12h 24h 48h 72h 96h 120h

Base case 0.212 0.423 0.481 0.518 0.545 0.562 0.570
MDC4 0.188 0.355 0.404 0.435 0.448 0.487 0.500
MDC5 0.171 0.317 0.392 0.404 0.444 0.448 0.481

DRGs

1h 12h 24h 48h 72h 96h 120h

Base case
MDC4*

0.132 0.434 0.479 0.503 0.496 0.504 0.497

MDC4 0.258 0.405 0.442 0.476 0.485 0.487 0.495
Base case
MDC5*

0.339 0.589 0.610 0.624 0.621 0.627 0.637

MDC5 0.331 0.559 0.609 0.625 0.626 0.639 0.650

LOS outliers

1h 12h 24h 48h 72h 96h 120h

Base case low
outliers

0.219 0.391 0.486 0.579 0.563 0.547 0.543

MDC4 0.271 0.501 0.634 0.738 0.704 0.685 0.669
MDC5 0.167 0.396 0.519 0.679 0.676 0.670 0.695
Base case high
outliers

0.104 0.173 0.174 0.211 0.199 0.183 0.356

MDC4 0.119 0.258 0.330 0.333 0.389 0.316 0.447
MDC5 0.133 0.292 0.315 0.401 0.379 0.375 0.665

LOS

1h 12h 24h 48h 72h 96h 120h

Base case 6.353 6.297 6.142 5.186 4.863 4.481 3.964
MDC4 6.903 6.865 6.206 5.894 5.719 4.989 4.533
MDC5 5.576 6.090 5.599 4.954 4.964 4.438 3.766

Table 9 Comparison of model performance obtained in Major Diagnostic Categories 4 and 5 (MDC4 – Respiratory system
and MDC5 – circulatory system) subpopulations with the original results obtained for the base case (overall population).
Results are expressed in terms of F1-scores for diagnoses, procedures, DRGs and LOS outliers, and as MAE for LOS. The
asterisk (∗) denotes that DRG prediction models were built from the MDC4 and MDC5 subpopulations only for DRGs existing
in the corresponding MDC. For comparison with MDC subpopulation results, the DRG base-case was calculated using only
the performance for DRGs of each MDC. *Not applicable, since very few (or zero) episodes exist in these categories.

noses and procedures), which indicate that these models

can anticipate clinical profiles and resource needs even

at earlier episode stages, as well as identify episodes

with high resource intensity and reimbursement rates.

This information might be most valuable if preemp-

tively provided to managers for tactical and operational

resource planning.

LOS prediction models reveals steadily decreasing

error rates, with acceptable MAE and MAPE values

when approaching 5 days after admission (error values

are comparable to Huang et al. (2013) [52]). Generally,

bagged decision trees tend to underestimate longer-stay

episodes (also evidenced in Table 8). This behavior

might be explained by the highly skewed distribution

– high prevalence of low LOS episodes decreases pre-

dictions in leaf nodes and leads to systemartic under-

estimation. The breakdown analysis shows that these

models are able to provide valuable predictions for up

to 75% of inpatient episodes with LOS ≤ 12 days.

In subpopulation analysis, while performance did

not improve significantly overall, improved results in

specific cases/categories (diagnoses, procedures, LOS)

can contribute to the value of this methodology in real-

world settings, notably in LOS prediction for younger

patients and shorter stay (LOS ≤ 8 days) with under

1 day error. This also corroborates findings from the
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MDC4 Diagnoses Procedures

511 Pleurisy 33.24 Closed bronchial
biopsy

438 Late effects of cerebrovascu-
lar disease

99.60 Cardiopulmary
resuscitation NOS

493 Asthma 99.03 Whole blood
transfusion NEC

593 Other disorders of kidney
and ureter

33.22 Fiber-optic bron-
choscopy

491 Chronic bronchitis 88.38 Other CT scan
87.44 Routine chest x-ray
93.90 Non-invasive mech ventila-
tion
33.24 Closed bronchial biopsy

MDC5 Diagnoses Procedures

426 Conduction disorders 88.38 Other CT scan
459 Other disorders of circula-
tory system

89.50 Ambulatory car-
diac monitoring

428 Heart failure 88.77 Diagnostic
ultrasound-vascular

424 Other diseases of endo-
cardium

89.52 Electrocardio-
gram

412 Old myocardial infarction 96.71 Continuous inva-
sive mech ventilation
<96h

402 Hypertensive heart disease 34.91 Thoracentesis

Table 10 Diagnosis and procedure labels (ICD-9-CM) ex-
hibiting an improvement in F1-score higher than 10% (with
respect to the base case) in MDC4 (respiratory) and MDC5
(circulatory) subpopulations. NOS = not otherwise specified.
NEC = not elsewhere classified.

Low LOS out-
liers

High LOS out-
liers

LOS

Base case 0.543 0.356 3.964

Age ≤ me-
dian

0.513 0.393 3.513

Age > me-
dian

0.600 0.433 4.456

Male 0.561 0.348 4.015
Female 0.554 0.351 4.040

LOS > 1 0.383 0.389 4.671
LOS ≤ me-
dian

0.542 NA* 0.938

LOS > me-
dian

NA* 0.370 7.280

Table 11 Comparison of model performance at 5 days
(120h) after admission for age, sex and LOS subpopulations,
obtained with logistic regression (F1-score performance) and
bagged regression trees (MAE performance) models for LOS
outliers and LOS, respectively.

1h 12 24h 48h 72h 96h 120h

MDC
4

0.444 0.663 0.726 0.738 0.739 0.740 0.728

MDC
5

0.363 0.650 0.683 0.678 0.675 0.680 0.675

LOS
>
1

0.905 0.923 0.948 0.953 0.936 0.943 0.947

LOS
≤
Med

0.718 0.727 0.729 0.750 0.778 0.820 0.837

LOS
>
Med

0.638 0.659 0.683 0.740 0.778 0.814 0.826

Table 12 F1-scores of logistic regression models developed
to predict subpopulation membership of along the course of
inpatient episodes.

LOS breakdown analysis on the value of training mod-

els on different LOS subpopulations. From a practical

standpoint, training models in subpopulations can be

beneficial and can be implemented in practice by pre-

dicting subpopulation membership with confidence (see

Table 12).

Lastly, value of information has indicated that di-

agnoses (entered by clinicians as working diagnoses),

prescriptions, medication and assessments are relevant

to improve model performance. These results call out

for special attention in implementing and using EHR

systems, to improve downstream use of data.

5.2 Implications for hospital management and EHR

systems

The key contribution of this article is a methodology

for predicting different managerial variables of patients

from routinely collected structured EHR data with rel-

evance to inform hospital resource management. The

performance results obtained with our methodology in-

dicate that certain key variables relevant for hospital

management can be predicted from these data. The key

advantage of such systematic and holistic approach is in

providing a framework approach to EHR dataset devel-

opment and model-building steps that can be applied

to different types of MVs and whose procedures can be

partially automated, which reduces re-work of manu-

ally building models for each MV. This is particularly

advantageous for technical implementation of a deci-

sion support system. In addition, models are developed

from the same EHR dataset (i.e. feature definition does

not have to be replicated) while allowing the flexibility

to use the most appropriate feature subset (determined

through feature selection) for each MV. Examples of

practical utility of MV predictions in hospital manage-

ment are as follows:
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Data elements Diagnoses Procedures DRGs Low LOS
outlier

High
LOS
outlier

LOS

Demographics +
Diagnoses (EHR) NN NN
Personal history
Prescriptions N
Medication + NN N
Assessments + + + NN NN
Laboratory +

Table 13 Qualitative representation of the intensity of contribution of EHR data elements for model performance across
all managerial variables (represented in columns). Results are based on F1-scores and MAE for classification and regression
models, respectively. Legend: +: influence > 5%; N: influence > 10%; NN: influence > 15%

MV1 (Diagnoses) From an admissions manager’s point

of view, knowing patient diagnoses preemptively is

useful in assigning patients to the correct ward and

thereby allocate bed capacity and a care team which

is specialized on the patient’s specific condition.

MV2 (Procedures) Predicting procedures has direct

utility for efficient planning of specific procedure fa-

cilities and operating theatre time and, indirectly,

improving the predictive accuracy of surgery dura-

tion. [80].

MV3 (DRGs) Knowing the DRG at early stages of

care is particularly important in mitigating finan-

cial risks related to patient treatment. Also, DRGs

reflect the overall resource consumption during the

patient flow through the hospital, which can help

develop a clinical pathway [81] for each patient’s

DRG. However, there are limitations for the use of

DRGs beyond a contribution margin-oriented pa-

tient scheduling because DRGs only represent a sub-

jective function of diagnoses, procedures, and other

clinical and demographic variables [82]. As a re-

sult, the combination of MVs 1, 2 and 3 may turn

out very useful to improve hospital-wide patient

scheduling decisions.

MV4 (Outlier episodes) Identifying outlier episodes

has two implications for the bed management: if

a patient is classified as an LOS outlier below the

low LOS trim point, bed management may iden-

tify opportunities for freeing up bed capacity or

flag early discharge with risk of readmission. On

the other hand, if a patient is classified as an LOS

outlier above the high LOS trim point, from a pa-

tient scheduling perspective it makes sense to ac-

celerate, for example, the pre-surgical diagnostics

phase to mitigate risks of patient LOS exceeding

expected limits. However, these patient scheduling

decisions should be taken carefully, always looking

at the holistic picture of all hospital resources and

especially focusing in ensuring optimal patient out-

comes [19].

MV5 (Length of Stay – LOS) Once a patient’s LOS is

predicted, it can be linked to a patient-bed assign-

ment model, for example, using near-real time bed

modelling [83]. This is not only useful for bed capac-

ity managers but also for patients and caregivers to

plan discharge and transferred to their home or care

facilities.

The associated experiments also provide insights

into how to apply the methodology and seek perfor-

mance optimizations. The deployment of these methods

in production settings requires automatic data extrac-

tion, preprocessing and model development in order to

provide relevant predictions to hospital managers in a

timely manner. The inclusion of these predictions in

routine workflows can help bridge communication gaps

between clinical and managerial perspectives – which

are often dissociated (especially in public hospitals) –

and foster clinical staff awareness towards efficient op-

eration.

Our results also draw attention to the importance

of careful configuration, training and use policy to en-

sure EHR systems produce high-quality data that can

also be reused for decision making purposes. Clinician-

assigned diagnoses and assessments are particularly im-

portant in this context.

5.3 Limitations

In this study, several elements play a role in the ability

to generalize these methods and results. Methodologi-

cally, there are alternatives to discretization of lab essay

results, discarding features with missing values and fac-

toring in the chronological order of episodes, which can

be explored as future work. There are also other cod-

ing and DRG classification systems in use across many

health systems, which could produce varying results.
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The scope, quality and level of structure of source EHR

data will also vary significantly across systems and will

impact generalizability, however the use of EHR stan-

dards and terminologies (e.g. RxNorm [84]) can help

address these limitations.

The scope of managerial variables might entail po-

tential issues of using ICD-9-CM to describe clinical

conditions (due to ambiguous/unspecified categories)

and use of DRGs for direct resource management (es-

pecially being imported from countries different health

systems), and may leave out other relevant measures

such as prediction of materials, capacity, human re-

sources or risk of readmission. These topics can all be

subject of future work to extend the proposed method-

ology.

One additional potential limitation is focusing fea-

ture set construction and model development exclu-

sively on structured EHR data. In fact, unstructured

data such as medical narratives and discharge sum-

maries continue to be highly preferred by health pro-

fessionals and are pervasive in datasets. While our case

study is based on a system which highly focuses in col-

lecting health data in structured and standardized for-

mats, this might not be the case for all hospital settings

and lead to important data being left out of prediction

models. The scope of structured data formats in EHR

systems should be evaluated as an important factor

for the success of the proposed methodology. Notwith-

standing, the persisting challenges and limitations of

leveraging data in unstructured formats – particularly

for non-English languages – continues to motivate adop-

tion of structured formats, which helps mitigate this

potential limitation of the proposed methodology. Also,

extending the proposed methodology to incorporate un-

structured data in feature set construction can also be

an important direction for future research.

6 Conclusions

This article presents a systematic approach to obtain

predictions for the following five managerial variables:

1. Patient clinical profiles (ICD-9-CM categories),

2. Clinical procedures (ICD-9-CM codes),

3. DRG classification (AP-DRG),

4. Outlier episodes (outside of DRG LOS trim points),

and

5. Expected LOS in days.

This approach is based on information captured in

structured EHR formats during the course of inpatient

episodes. Prediction models are built through a stan-

dardized predictive modeling pipeline at each instant

of interest, using all EHR data available up to that in-

stant. Furthermore, we proposed a comprehensive ex-

perimental design that addressed several research ques-

tions on the application of the proposed methodology

using a dataset from a large public hospital in Portugal

This article makes three key contributions to the

literature. Firstly, to the best of our knowledge, the

proposed methodology is the first to employ a system-

atic data mining approach to predict multiple relevant

managerial variables from EHR data and along the

course of episodes. This includes streamlined dataset

preprocessing, feature set construction and prediction

model development. From a practical standpoint, this

is important to enable implementation in clinical set-

tings across multiple medical specialties, as opposed

to most methodologies which are heavily tailored and

prevent industrialization. Secondly, the systematic ap-

proach for temporal modeling – partitioning the full

EHR dataset into filtered datasets based on timestamps

instead of assuming which data are available at each

episode stage – provides a new framework for obtain-

ing predictions during the course of episodes. Thirdly,

the practical case-study using a hospital dataset shows

evidence that these methods can provide valuable in-

sights to inform tactical and operational resource man-

agement decisions, specifically for different subgroups of

patients/episodes which make up a significant propor-

tion of hospital inpatient volume. These results provide

tangible insights into how to leverage structured EHR

data to inform proactive managerial decisions, and also

provide evidence to strengthen the case for promoting

collection of high-quality EHR data, including at early

stages of patient stay.

Future work may include the prediction of urgency

of treatment [85], linking our predictive models with

prescriptive patient scheduling models [19], and predict-

ing multiple inpatient episodes.
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A Most frequent ICD 9 diagnosis codes
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Order ICD-
9-CM
category

Description Order ICD-
9-CM
category

Description

1 401 Essential hypertension 39 E888 Other and unspecified fall
2 276 Disorders of fluid, electrolyte, and

acid-base balance
40 V46 Other dependence on machines and de-

vices
3 250 Diabetes mellitus 41 V43 Organ or tissue replaced by other

means
4 V58 Other/unspec. procedures/aftercare 42 600 Hyperplasia of prostate
5 272 Disorders of lipoid metabolism 43 345 Epilepsy and recurrent seizures
6 427 Cardiac dysrhythmias 44 780 General symptoms
7 428 Heart failure 45 V60 Economic circumstances (e.g. housing)
8 486 Pneumonia, organism unspecified 46 790 Nonspecific findings on examination of

blood
9 V15 Other personal history presenting

hazards to health
47 595 Cystitis

10 V12 Personal history of certain other dis-
eases

48 799 Other ill-defined and unknown causes
of morbidity and mortality

11 V45 Other postprocedural states 49 593 Other disorders of kidney and ureter
12 285 Other and unspecified anemias 50 311 Depressive disorder, not elsewhere clas-

sified
13 518 Other diseases of lung 51 426 Conduction disorders
14 585 Chronic kidney disease (CKD) 52 V87 Other specified personal exposures and

history presenting hazards to health
15 305 Nondependent abuse of drugs 53 290 Dementias
16 403 Hypertensive chronic kidney disease 54 287 Purpura and other hemorrhagic condi-

tions
17 278 Overweight, obesity and other hyper-

alimentation
55 553 Other hernia of abdominal cavity with-

out mention of obstruction or gangrene
18 041 Bacterial infection in conditions clas-

sified elsewhere and of unspecified
site

56 404 Hypertensive heart and chronic kidney
disease

19 414 Other forms of chronic ischemic heart
disease

57 787 Symptoms involving digestive system

20 599 Other disorders of urethra and uri-
nary tract

58 198 Secondary malignant neoplasm of
other specified sites

21 491 Chronic bronchitis 59 412 Old myocardial infarction
22 303 Alcohol dependence syndrome 60 493 Asthma
23 584 Acute renal failure 61 535 Gastritis and duodenitis
24 V14 Personal history of allergy to medic-

inal agents
62 789 Other symptoms involving abdomen

and pelvis
25 402 Hypertensive heart disease 63 332 Parkinsons disease
26 V49 Other conditions influencing health

status
64 300 Anxiety, dissociative and somatoform

disorders
27 244 Acquired hypothyroidism 65 995 Certain adverse effects not elsewhere

classified
28 434 Occlusion of cerebral arteries 66 E950 Suicide and self-inflicted poisoning by

solid or liquid substances
29 V10 Personal history of malignant neo-

plasm
67 424 Other diseases of endocardium

30 466 Acute bronchitis and bronchiolitis 68 070 Viral hepatitis
31 438 Late effects of cerebrovascular dis-

ease
69 578 Gastrointestinal hemorrhage

32 571 Chronic liver disease and cirrhosis 70 574 Cholelithiasis
33 707 Chronic ulcer of skin 71 459 Other disorders of circulatory system
34 280 Iron deficiency anemias 72 530 Diseases of esophagus
35 294 Persistent mental disorders due to

conditions classified elsewhere
73 714 Rheumatoid arthritis and other inflam-

matory polyarthropathies
36 275 Disorders of mineral metabolism 74 112 Candidiasis
37 511 Pleurisy 75 162 Malignant neoplasm of trachea,

bronchus, and lung
38 197 Secondary malignant neoplasm of

respiratory and digestive systems

Table 14 Top 75 most frequent ICD-9-CM diagnosis codes (category level), ordered by decreasing order of frequency.
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B Most frequent ICD 9 procedure codes
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Order ICD-9-CM code Description Order ICD-9-CM code Description

1 90.59 Micro exam-blood NEC 39 45.13 Sm bowel endoscopy NEC
2 87.44 Routine chest x-ray 40 88.91 Mri of brain & brainstem
3 89.52 Electrocardiogram 41 54.91 Percu abdominal drainage
4 99.18 Inject/infuse electrolyt 42 44.13 Gastroscopy NEC
5 89.65 Arterial bld gas measure 43 45.23 Colonoscopy
6 99.21 Inject antibiotic 44 89.14 Electroencephalogram
7 99.29 Inject/infuse NEC 45 03.31 Spinal tap
8 93.96 Oxygen enrichment NEC 46 44.14 Closed gastric biopsy
9 91.39 Micro exam-low urin NEC 47 89.50 Ambu cardiac monitoring
10 87.03 C.A.T. scan of head 48 96.6 Entral infus nutrit sub
11 91.33 C & s-lower urinary 49 34.91 Thoracentesis
12 90.53 C & s-blood 50 90.93 C & s-lower GI
13 88.72 Dx ultrasound-heart 51 87.49 Chest x-ray NEC
14 99.19 Inject anticoagulant 52 96.33 Gastric lavage
15 99.17 Inject insulin 53 91.19 Micro exam-periton NEC
16 88.76 Dx ultrasound-abdomen 54 38.93 Venous cath NEC
17 99.04 Packed cell transfusion 55 90.41 Bact smear-lower resp
18 93.94 Nebulizer therapy 56 91.13 C & s-peritoneum
19 87.41 C.A.T. scan of thorax 57 90.03 C & s-nervous system
20 88.01 C.A.T. scan of abdomen 58 34.04 Insert intercostal cath
21 99.23 Inject steroid 59 88.79 Dx ultrasound NEC
22 88.75 Dx ultrasound-urinary 60 33.22 Fiber-optic bronchoscopy
23 93.90 Non-invasive mech vent 61 93.99 Other resp procedures
24 90.43 C & s-lower resp 62 45.24 Flexible sigmoidoscopy
25 91.32 Culture-lower urinary 63 93.01 Functional pt evaluation
26 57.94 Insert indwelling cath 64 38.95 Ven cath renal dialysis
27 88.71 Dx ultrasound-head/neck 65 99.60 Cardiopulm resuscita NOS
28 99.28 Immunotherapy as antineo 66 51.10 Endosc retro cholangiopa
29 96.04 Insert endotracheal tube 67 90.52 Culture-blood
30 89.13 Neurologic examination 68 87.42 Thoracic tomography NEC
31 96.07 Insert gastric tube NEC 69 90.09 Micro exam-nervous NEC
32 88.77 Dx ultrasound-vascular 70 86.59 Skin closure NEC
33 39.95 Hemodialysis 71 90.49 Micro exam-lowr resp NEC
34 99.26 Inject tranquilizer 72 99.25 Inject ca chemother NEC
35 94.19 Psychia interv/eval NEC 73 99.03 Whole blood transfus NEC
36 88.19 Abdominal x-ray NEC 74 90.55 Toxicology-blood
37 96.71 Cont inv mec ven <96 hrs 75 33.24 Closed bronchial biopsy
38 88.38 Other C.A.T. scan

Table 15 Top 75 most frequent ICD-9-CM procedure codes, ordered by decreasing order of frequency.

C Most frequent DRG codes
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DRG code Order Description

541 1 Simple pneumonia and/or other respiratory disorders, except bronchitis or asthma, with major
CC

89 2 Pneumonia and/or pleurisy with CC
127 3 Heart failure & shock
544 4 Congestive heart failure & cardiac arrhythmia with major CC
410 5 Chemotherapy
14 6 Stroke with infarct
533 7 Other nervous system disorders except transient ischemic attack, seizures, headache, with major

CC
395 8 Red blood cell disorders, age >17
138 9 Cardiac arrhythmia & conduction disorder, with CC
139 10 Cardiac arrhythmia & conduction disorder, without CC
450 11 Poisoning and/or toxic effects of drugs, age >17, without CC
96 12 Bronchitis & asthma, age >17, with CC
557 13 Hepatobiliary & pancreas disorder, with major CC
320 14 Kidney and/or urinary tract infection, age >17, with CC
202 15 Cirrhosis & alcoholic hepatitis
90 16 Simple pneumonia & pleurisy, age >17, without CC
569 17 Kidney and/or urinary tract disorder, excl. renal failure, with major CC
566 18 Endocrinal, nutrition and/or metabolic disorders excl. eating disorders or cystic fibrosis, with

major CC
15 19 Nonspecific cerebrovascular attack & precerebral occlusion without infarction
296 20 Nutrition & misc metabolic disorders, age >17, with CC
552 21 Digestive disorders excl. esophagitis, gastrenteritis, uncomplicated ulcer, with major CC
87 22 Pulmonary edema & respiratory failure
294 23 Diabetes, age > 35
316 24 Renal failure
88 25 Chronic obstructive pulmonary disease

Table 16 Top 25 most frequent DRG codes ordered by decreasing order of frequency.
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of feature selection techniques in bioinformatics. bioin-
formatics, 23(19):2507–2517, 2007.

64. Huan Liu, Hiroshi Motoda, Rudy Setiono, and Zheng
Zhao. Feature selection: An ever evolving frontier in data
mining. In Feature Selection in Data Mining, pages 4–13,
2010.

65. Lei Yu and Huan Liu. Efficient feature selection via anal-
ysis of relevance and redundancy. Journal of machine
learning research, 5(Oct):1205–1224, 2004.

66. Hanchuan Peng, Fuhui Long, and Chris Ding. Feature
selection based on mutual information: criteria of max-
dependency, max-relevance, and min-redundancy. IEEE
Transactions on Pattern Analysis & Machine Intelli-
gence, (8):1226–1238, 2005.

67. Yiming Yang and Jan O Pedersen. A comparative study
on feature selection in text categorization. In Icml, vol-
ume 97, page 35, 1997.

68. Norman R Draper and Harry Smith. Applied regression
analysis, volume 326. John Wiley & Sons, 1998.

69. Leo Breiman. Classification and regression trees. Rout-
ledge, 2017.

70. Francisco Pereira, Tom Mitchell, and Matthew Botvinick.
Machine learning classifiers and fmri: a tutorial overview.
Neuroimage, 45(1):S199–S209, 2009.

71. David W.. Hosmer and Stanley Lemeshow. Applied lo-
gistic regression. Wiley New York, 2000.

72. Riyaz Sikora et al. A modified stacking ensemble machine
learning algorithm using genetic algorithms. In Handbook
of Research on Organizational Transformations through
Big Data Analytics, pages 43–53. IGi Global, 2015.

73. Khaled Fawagreh, Mohamed Medhat Gaber, and Eyad
Elyan. Random forests: from early developments to re-
cent advancements. Systems Science & Control Engi-
neering: An Open Access Journal, 2(1):602–609, 2014.

74. Sylvain Arlot, Alain Celisse, et al. A survey of cross-
validation procedures for model selection. Statistics sur-
veys, 4:40–79, 2010.

75. Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel
Luján. Conditional likelihood maximisation: a unify-
ing framework for information theoretic feature selec-
tion. Journal of machine learning research, 13(Jan):27–
66, 2012.

76. Serguei VS Pakhomov, James D Buntrock, and Christo-
pher G Chute. Automating the assignment of diagno-
sis codes to patient encounters using example-based and
machine learning techniques. Journal of the American
Medical Informatics Association, 13(5):516–525, 2006.
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