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Purpose: To evaluate the performance of the Pegasus-OCT (Visulytix Ltd) multiclass
automated fluid segmentation algorithms on independent spectral domain optical
coherence tomography data sets.

Methods: The Pegasus automated fluid segmentation algorithmswere applied to three
data setswith edematouspathology, comprising750, 600, and110b-scans, respectively.
Intraretinal fluid (IRF), sub-retinal fluid (SRF), and pigment epithelial detachment (PED)
were automatically segmented by Pegasus-OCT for each b-scan where ground truth
from data set owners was available. Detection performance was assessed by calculat-
ing sensitivities and specificities, while Dice coefficients were used to assess agreement
between the segmentation methods.

Results: For two data sets, IRF detection yielded promising sensitivities (0.98 and 0.94,
respectively) and specificities (1.00 and 0.98) but less consistent agreement with the
ground truth (dice coefficients 0.81 and0.59); likewise, SRFdetection showedhigh sensi-
tivity (0.86 and 0.98) and specificity (0.83 and 0.89) but less consistent agreement (0.59
and 0.78). PED detection on the first data set showed moderate agreement (0.66) with
high sensitivity (0.97) and specificity (0.98). IRF detection in a third data set yielded less
favorable agreement (0.46–0.57) and sensitivity (0.59–0.68), attributed to image quality
and ground truth grader discordance.

Conclusions: The Pegasus automated fluid segmentation algorithms were able to
detect IRF, SRF, and PED in SD-OCT b-scans acquired across multiple independent data
sets. Dice coefficients and sensitivity and specificity values indicate the potential for
application to automated detection and monitoring of retinal diseases such as age-
related macular degeneration and diabetic macular edema.

Translational Relevance: The potential of Pegasus-OCT for automated fluid quantifi-
cation and differentiation of IRF, SRF, and PED in OCT images has application to both
clinical practice and research.

Introduction

Optical coherence tomography (OCT) has become
an essential diagnostic and management tool in
ophthalmic eye care, providing high-resolution three-
dimensional imaging of the neural retina, retinal

pigment epithelium, and adjacent anatomic struc-
tures. The visualization of fluid within these tissues
is a pivotal property of the technology and clinically
highly important. The detection and quantification of
fluid (edema), including the presence, size, location,
and subsequent changes, is a key consideration in
treatment management1–3 and clinical protocols4–6 for
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numerous ocular conditions, including age-related
macular degeneration (AMD), diabetic macular edema
(DME), and central serous retinopathy (CSR).

Given the importance of fluid evaluation for
disease detection, as well as monitoring and assessing
responses to interventions, ophthalmologists are keenly
interested in accurate automated segmentation and
differentiation between fluid types. It is unsurprising
that extensive efforts have been made to develop and
improve automated systems for the detection, quantifi-
cation, and differentiation of fluid types from OCT
imagery.7–11

Pegasus-OCT v1.0 (Visulytix Ltd, London, UK) is
a clinical decision support system for detecting disease
from macular OCT scans intended for use with images
from different OCT devices. Pegasus primarily uses
deep learning technologies to identify images with
anomalous features that may be indicative of disease
to enable classification into disease groups.12

Additionally, Pegasus-OCT incorporates
automated multiclass fluid segmentation algorithms
designed to detect and segment three clinical subtypes
of fluid: intraretinal fluid (IRF), subretinal fluid
(SRF), and pigment epithelial detachment (PED).
IRF is characterized as a hyporeflective space (cystoid
fluid) located within the neural retinal tissue, SRF
as a hyporeflective space located between the hyper-
reflective retinal pigment epithelium (RPE) and the
overlying neural retina, and PED as a hyporeflective
space located between the RPE and underlying Bruch’s
membrane, visible on the OCT as the anterior of the
choroidal vascular layer. Despite extensive investiga-
tion of fluid segmentation of OCT images, literature
reporting systems capable of categorizing fluid by type
on independent, unseen data sets is limited to date
and often does not differentiate PED as a distinct
subtype.7,8

This article provides an evaluation of the automated
fluid detection capabilities of Pegasus-OCT. Three
independent publicly available OCT data sets are used
to assess the accuracy of the Pegasus fluid segmen-
tation algorithms against manual expert-evaluated
segmentation, as well as the sensitivity and specificity
of the software in patients for the detection of IRF,
SRF, and PED.

Methods

Pegasus Automated Fluid Segmentation
Algorithms

Pegasus-OCT has automated fluid segmentation
algorithms, aimed at delineating fluid within and

beneath the retinal structures. This uses three convo-
lutional neural network (CNN) models: one to predict
SRF, one IRF, and one PED. The models were trained
using the DeeplabV3+ architecture,13 allowing the
system to identify different instances of the same class
in the same image. To minimize the effect of high-
frequency image noise (speckle), areas of detected fluid
were designated to be a minimum of 5 pixels in size.
Trainingwas conducted using large heterogeneous real-
world data sets from multiple clinical organizations
across the world and incorporated both normal and
abnormal scans. The abnormal OCT scans included
retinal pathologies such as AMD, DME, macular
hole, and epiretinalmembrane. Trainingwas conducted
using images that were graded by between one and five
UK board-certified ophthalmologists providing the
ground truth. These images originated from standard
spectral domain OCT devices, including the Heidel-
berg Spectralis (Heidelberg, Germany), Zeiss Cirrus
(Dublin, California, USA), Nidek (Gamagori, Japan),
and Topcon Maestro (Tokyo, Japan).

Image Data Sets

Three publicly available data sets7,14–16 of Spectralis
OCT images were used to evaluate the fluid segmen-
tation algorithms of the Pegasus system. Each of the
data sets selected included manual labeling of fluid
features within individual OCT b-scans by the data
set owners and was not used in the development of
the Pegasus fluid segmentation algorithms, providing
a ground truth for testing the performance of the
algorithms. The data sets were used “as is” to avoid
introducing any selection bias that may occur if images
were removed based on “image quality” or other crite-
ria. The characteristics of the data sets included are
described below and summarized in Table 1; the most
significant differences between data sets are fluid types
provided in the ground truth and number of b-scans
per participant.

Data set A7,16 was obtained from 530 participants
with AMD, DME, or healthy controls. Between 1 and
13 individual b-scans (see Lu et al.7) were extracted
from each volume to produce a data set containing
750 individual b-scans (250 AMD, 250 DME, and 250
normal). For each b-scan, regions of IRF, SRF, or PED
were manually segmented, if present, by three trained
raters and subsequently reviewed by two ophthalmol-
ogy clinical scientists providing a ground truth for each
OCT b-scan.

Data set B was obtained from 24 participants
with exudative AMD, comprising 25 OCT b-scans
per participant.15 Two ophthalmologists identified and
segmented regions of IRF and SRF manually, which
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Table 1. Characteristics of the Independent Evaluation Data Sets Used in This Study

Data Set Source OCT
Country of
Acquisition

Number of
B-Scans
(Subjects) Disease State Ground Truth Labeling

Fluid Subtype
Evaluated

A Images from
Kermany et al.
(2018)16 Labeled
by Lu et al.
(2019)7

Heidelberg
Spectralis

USA, China 750 (530) DME Drusen
Normal

3 tiers of trained raters,
subset validated by 2
senior retinal
specialists

IRF SRF PED

B Rashno et al.
(2017)15

Heidelberg
Spectralis

USA 600 (24) Exudative
AMD

2 ophthalmologists IRF SRF

C Chiu et al. (2015)14 Heidelberg
Spectralis

USA 110 (10) DME 2 ophthalmologists;
DOCTRAP v50.9

IRF

served as the ground truth. No segmentation data for
PED were available for this data set.

Data set C was obtained from 11 participants with
severe DME, comprising 10 OCT b-scans per partici-
pant.14 Two ophthalmologists independently identified
and segmented regions of IRF manually, which served
as the ground truth. No segmentation data for SRF or
PED were available for this data set. Due to the avail-
ability of manual segmentations from each grader, it
was possible to also evaluate intergrader discrepancies
in fluid segmentation for this data set.

Analysis

The analysis was performed on masks generated for
every OCT b-scan within each data set representing
the location of fluid identified by the Pegasus system.
These were then compared to a further set of masks
containing the “ground truth” fluid locations within
every b-scan as determined by the data set owners.
All analyses were performed using custom scripts in
MATLAB R2019a (The MathWorks, Inc., Natick,
MA, USA).

Dice coefficients17 were used to assess agreement
between the manual segmentation provided by the data
set owners and the Pegasus system. These were calcu-
lated as follows:

Dice coefficient = 2 (A ∩ B) / (A + B) ,

where A represents the manual segmentation, B repre-
sents the automated segmentation, and A∩B is the
number of common pixels between the two sets.

Sensitivity and specificity values were calculated
based on comparing the presence or absence of fluid
against the ground truth for each individual b-scan
within the overall data set or for individual eyes where
sufficient data were available. Sensitivity was deter-
mined based on the number of slices where any fluid
was identified by Pegasus that corresponded to a slice

where the ground truth also identified any fluid (true
positive; TP), divided by this number (TP), plus the
number of slices where Pegasus did not identify any
fluid contrary to the ground truth (false negative; FN),
that is, sensitivity = TP/(TP + FN).

Specificity was determined based on the number
of slices where neither Pegasus nor the ground
truth identified any fluid (true negative; TN),
divided by this number (TN), plus the number
of slices where Pegasus identified fluid contrary
to the ground truth (false positive; FP), that is,
specificity = TN/(TN + FP).

Dice coefficients, sensitivity, and specificity were
determined separately for each data set overall (A, B,
and C) and “per eye” for data sets B and C, where
volumes contained sufficient b-scans (n = 11 and n =
24, respectively) to perform this within-eye analysis.
Fluid type (e.g., SFR, IRF, and PED) was analyzed
separately for each data set where ground truth data
(manual segmentation) was available. For data set B,
the OCT volume for every eye contained b-scans with
at least one subtype of fluid in the ground truth, but not
all volumes contained both fluid subtypes (i.e., IRF and
SRF); hence, it was not possible to calculateDice coeffi-
cients, sensitivity, or specificity for these individual eyes
(see Supplementary Table S1). IRFwas evaluated on all
three data sets, SRF was evaluated on data sets A and
B, and PED was evaluated on data set A only.

Results

All three data sets underwent automated fluid
segmentation using the Pegasus system (total n = 1460
b-scans from three independent data sets). Examples of
successful segmentation of IRF, SFR, and PED can be
seen in Figure 1. The Dice coefficients, sensitivity, and
specificity separated by fluid type (IRF, SRF, and PED)
and data set (A, B, and C) are shown in Table 2. The
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Figure 1. Example comparison between the expert and automated fluid segmentation (examples taken from data set A). Intraretinal fluid
is shown in red; subretinal fluid in green; pigment epithelial detachment in orange.

Table 2. Summary of Dice Coefficients, Sensitivity, and Specificity for the Three Fluid Features, Across All Data Sets

Data Set Dice Coefficient, Mean Dice Coefficient, Median (IQR) Sensitivity Specificity

Intraretinal fluid
A 0.78 0.81 (0.12) 0.98 1.00
B 0.54 0.59 (0.29) 0.94 0.89
C;(Expert 1 vs Pegasus) 0.57 0.70 (0.84) 0.68 1.00
C;(Expert 2 vs Pegasus) 0.46 0.51 (0.79) 0.59 0.92
C;(Expert 1 vs 2) 0.59 0.68 (0.34) 0.94 0.59

Subretinal fluid
A 0.59 0.70 (0.31) 0.86 0.83
B 0.78 0.84 (0.11) 0.98 0.89

Pigment epithelial detachment
A 0.66 0.71 (0.23) 0.97 0.98

performance of the Pegasus system for the individual
eyes in data sets B and C can be found in Supplemen-
tary Tables S1 and S2, respectively.

Intraretinal Fluid

The Pegasus automated fluid segmentation
algorithms showed excellent sensitivity (0.98 and
0.94) and specificity (1.00 and 0.89) for data sets A
and B, respectively, but a relatively low sensitivity for
data set C (∼0.64). Within data set C, performance
was particularly poor on subject 9, in whom there was
very little overlap between the experts and automated
segmentation. However, on a per-eye level for this data
set (all 11 b-scans per eye considered together), all eyes

were correctly identified as having IRF on at least one
b-scan.

For data set B, only 7 of the 24 eyes contained IRF
in the expert grading, but the Pegasus system identified
15 of the eyes as positive for IRF, yielding a high false-
positive rate. Several of these were identified on a single
b-scan only per eye, and 3 were cases of serous PED
incorrectly labeled by the algorithms as IRF (Fig. 2).
There were no eyes in which the algorithms failed to
detect IRF where it had been identified by the two
experts (i.e., false negative rate = 0). On a per-eye level
for data sets B and C, IRF detection had perfect sensi-
tivity (1 for both), but the specificity for data set B was
poorer (0.53). It was not possible to assess specificity
for data set C on a per-eye level, since there were no
true negatives for IRF.
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Figure 2. In data set B, the automated segmentation incorrectly
labeled areas within a serous pigment epithelial detachment as
intraretinal fluid.

A comparison of the manual segmentations
performed by the two expert graders in data set C
showed limited agreement (mean Dice coefficient 0.59;
comparable to that of the Pegasus software, at 0.57
and 0.45 for experts 1 and 2, respectively). Sensitivity
for fluid detection was high between experts (0.94), but
specificity was low (0.59).

Subretinal Fluid

The Pegasus fluid segmentation algorithms achieved
better performance for data set B than A for SRF,
achieving a high sensitivity (0.98), specificity (0.89),
and mean Dice coefficient (0.78). For data set A, the
algorithms labeled the physiologically thickened layer
of outer segments beneath the foveal pit as SRF on
several of the eyes without pathology (Fig. 3), limiting
the specificity in this analysis (0.83). On a per-eye level
for data set B, 20 of the 24 eyes contained SRF in the
expert grading. The Pegasus system identified 22 of the
eyes as positive for SRF, but both false-positive cases
were in images containing PED. There were no eyes in
which the algorithms failed to detect SRF where it had
been identified by the expert grader (sensitivity = 1).
The specificity for this data set was low (0.5), although
there were only 4 eyes without SRF in the data set, 3 of
which were cases of PED.

Pigment Epithelial Detachment

Evaluation of PED was only possible on data set A,
since it was the only data set labeled for this feature by
the expert graders. The sensitivity and specificity were
excellent (0.97 and 0.98, respectively), with reason-
able agreement in segmentation between the expert and
automated segmentations (mean Dice coefficient 0.66).
Despite being the largest data set available, a per-eye

level analysis was not possible, as there were too few
b-scans available per eye (only a single b-scan in many
cases).

Discussion

In this article, we assessed the detection and segmen-
tation performance of the Pegasus automated fluid
segmentation algorithms on three existing indepen-
dent OCT data sets. These data sets contained up
to three distinct types of fluid: IRF, SRF, and PED.
Pegasus performance on each data set was bench-
marked against expert-derived ground truth, with the
algorithms providing good but not always consis-
tent performance across the three data sets and fluid
subtypes.

Overall, Pegasus’s ability for automated detection of
all three fluid types based on sensitivity and specificity
was favorable and compares well to figures reported in
contemporary literature. For data set A, performance
was very high for IRF and PED while slightly poorer
for SRF, the same pattern presented by Lu et al.7 Our
results outperform those of Rashno et al.15 for data set
B in terms of sensitivity (0.81 versus 0.96) with a similar
specificity found (0.91 versus 0.89). No sensitivity or
specificity values to allow comparison were presented
by Chiu et al.14 for data set C.

Pegasus provided promising fluid segmentation
performance, based on Dice coefficients, across the
three fluid types evaluated. Data set A uniquely allowed
evaluation on all three fluid subtypes, but the mean
Dice coefficients were lower in the present study
than those presented by Lu and colleagues7 (0.59–
0.78 versus 0.75–0.9). Both studies reported the best
performance for IRF compared to the other two fluid
subtypes, and likewise for data set B, although only a
single Dice coefficient of 0.82 was reported by Rashno
et al.,15 despite the investigation of both IRF and SRF.
For data set C, our Dice coefficients were comparable
to those reported in the literature,14 including a limited
interobserver performance during ground truth label-
ing. The authors attribute this to reduced image quality
and the severity of DME included.14

The RETOUCH project presents the perfor-
mance of eight different deep learning algorithms for
(a) automated fluid detection and (b) automated fluid
segmentation.18 A comprehensive review of algorithm
performance in these tasks for each of the three fluid
subtypes, plus a table of other relevant works, can
be found elsewhere. For the fluid detection task, the
results were comparable for PED and SRF (on data
set B), although Pegasus relatively outperformed on
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Figure 3. For data set A, the physiologically thickened photoreceptor outer segment layer beneath the foveal pit (left—original image)
was mislabeled by the automated algorithm subretinal fluid (right—labeled image), limiting the specificity.

IRF (on data sets A and B) and underperformed on
SRF (on data set A) and IRF (on data set C). For the
fluid segmentation task, the mean Dice coefficients
for Spectralis images were 0.69 for IRF, 0.57 for SRF,
and 0.68 for PED. Again, these are comparable to
Pegasus’s average performance across the three data
sets. For this task, Pegasus relatively outperformed on
SRF (particularly on data set B) and IRF (on data set
A) but underperformed on IRF (on data sets B and C).
Similarly to RETOUCH, the Pegasus system yielded
a high performance for detection of PED, likely due
to its distinct appearance and location in relation to
the RPE.

It should be noted that all OCT images used in
this evaluation were acquired with a Spectralis SD-
OCT (Heidelberg Engineering). We are therefore
unable to comment on the performance of these fluid
segmentation algorithms on images acquired with
other OCT devices. However, the Pegasus-OCT system
is intended to be OCT device independent and has
been developed and trained based on multiplatform
OCT data. Of note, RETOUCH18 found that best
performances were achieved when neural networks
were trained on data from each OCT device separately,
highlighting the trade-off between device-specific
performance and algorithm generalizability. The
results of the present study are comparable to much
of the contemporary published literature, including
algorithms trained on data from single OCT platforms,
which demonstrates the promise of the Pegasus
system.

The interexpert comparison for data set C provides
a mean Dice coefficient (0.59) that was not appre-
ciably higher than either expert grading versus the
Pegasus segmentation (0.57 and 0.45 for experts 1 and
2, respectively). It should be noted that the data set
owners attributed their expert graders’ performance

to “lower image quality and severe DME pathology
present.”14 The interexpert agreement for this data set
is notably lower than other contemporary studies with
Dice coefficients reported in the region of ∼0.75,9,18
although not uniquely so,19 with the severity of retinal
pathology as an important factor. This suggests the
interexpert variation and its influence on the ground
truth is likely to be a pertinent factor in the Pegasus
system’s performance. The greater differences between
mean and median Dice coefficients (see Table 2), and
wider Inter Quartile Range (IQR) attributable to this
data set (C), compared to A and B, would be consis-
tent with increased outliers due to poor agreement
on individual scans. Furthermore, the higher sensitiv-
ity and limited specificity values for the interexpert
comparison in relation to the Pegasus system could
speculatively be explained if an internal “bias” within
the expert clinicians for overdetecting (rather than
underdetecting) retinal fluid was present. The clini-
cal experience of each expert and how they balance
the relative risk of a false-positive versus a false-
negative result on clinical outcomes may influence their
approach to the manual fluid segmentation of the
images.

Visual inspection of labeled images suggests expert
graders provide a more “granular” demarcation of the
regions of fluid compared to the algorithm that appears
smoother (Fig. 1); these discrepancies, while small,
would have contributed to reducing the Dice indices
(agreement). The absolute fluid area is also likely to
be affected; therefore, consistency of method (i.e., not
used interchangeably) would be advised in applications
such as progression monitoring, where small absolute
differences may have clinical significance.

We also caution that the data sets used for validation
in this study consisted of eyes with the most common
pathologies characterized by fluid (AMD and DME).
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Fluid segmentation performance in eyes with other
retinal pathologies or comorbidities (e.g., macular
hole, epiretinal membrane, central serous retinopathy)
was not evaluated due to restricted data availability
for these conditions, which were independent of the
algorithm’s training.

A “true” sensitivity and specificity was only possible
to evaluate on data setA, since this data set was the only
of the three to contain b-scans from eyes entirely absent
of retinal disease. Data sets B and C did not contain
any healthy eyes, confirmed as having no fluid visible on
any b-scan by expert graders. For these two data sets,
performance metrics were evaluated on a “per-b-scan”
basis only, rather than a “per-eye” basis as in data set
A, which would be the usual clinical scenario.

The number of b-scans per eye included in the
analysis also differed between data sets. This should
be considered when interpreting these results, since
data sets with a higher ratio of number of b-scans to
number of eyes (e.g., data set B) will likely have greater
homogeneity, which may influence algorithm perfor-
mance.Data set A had by far the largest number of eyes
and included both AMD and DME. It might therefore
be considered that this data set provided the greatest
challenge for the Pegasus-OCT system in variation of
disease appearance.

This study is not typical of a classical automated
feature detection task (i.e., presence or absence of a
distinct image feature); rather, it represents a more
complex feature detection and subtype classification
task, with the subtypes having a similar appearance
in many cases. This may be particularly problem-
atic in low-quality images, where dark or low-contrast
portions of the image resulting from signal loss (e.g.,
from media opacities) may be mistakenly identified as
fluid. This, in part, may explain the limited perfor-
mance of the algorithm for certain metrics and fluid
subtypes.

Overall, the Pegasus-OCT fluid segmentation
algorithms were shown to be capable of detecting
IRF, SRF, and PED within spectral domain OCT
images of independent data sets from multiple sites.
The competitive performance against other published
methods demonstrates the potential of this approach
as a clinical tool for the autonomous detection and
monitoring of retinal disease such as AMD and DME.
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