

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/138350/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Kandil, Sahar B., Kariuki, Benson M., McGuigan, Christopher and Westwell, Andrew D. 2021. Synthesis, biological evaluation and X-ray analysis of bicalutamide sulfoxide analogues for the potential treatment of prostate cancer. Bioorganic and Medicinal Chemistry Letters 36, 127817. 10.1016/j.bmcl.2021.127817

Publishers page: http://dx.doi.org/10.1016/j.bmcl.2021.127817

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Synthesis, biological evaluation and X-ray analysis of bicalutamide sulfoxide analogues for the potential treatment of prostate cancer Sahar B. Kandil^{a*}, Benson M. Kariuki^b, Christopher McGuigan^a and Andrew D. Westwell^a

^aSchool of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, Wales, United Kingdom. ^bSchool of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.

Keywords: Androgen receptor (AR), prostate cancer (PC), sulfoxide, oxidation, diastereotopic, diastereoisomers, diarylpropionamide, bicalutamide.

Graphical abstract

Highlights

- Efficient and facile synthesis of novel sulfoxide bicalutamide derivatives.
- Identification of compound 27 and 28 with enhanced anticancer activity across four PC cell lines (22Rv1, DU-145, LNCaP and VCap) compared to bicalutamide and enzalutamide.
- Separation of three pairs of sulfoxide diastereoisomers and NMR data comparison.
- X-ray diffraction crystal structure analysis confirms configuration assignment at the chiral sulfur and carbon centers.
- Molecular modelling study of the four diastereoisomers of compound 28.

^{*} Email: kandils1@cf.ac.uk

Abstract

The androgen receptor (AR) is a pivotal target for the treatment of prostate cancer (PC) even when the disease progresses toward androgen-independent or castrationresistant forms. In this study, a series of sulfoxide derivatives were prepared and their antiproliferative activity evaluated in vitro against four different human prostate cancer cell lines (22Rv1, DU-145, LNCaP and VCap). Bicalutamide and enzalutamide were used as positive controls. Compound 28 displayed significant enhancement in anticancer activity across the four PC cell lines with IC₅₀ = 9.09 - 31.11 μ M compared to the positive controls: bicalutamide (IC₅₀ = 45.20 - 51.61 μ M) and enzalutamide (IC₅₀ = 11.47 - 53.04 μ M). Sulfoxide derivatives of bicalutamide were prepared efficiently from the corresponding sulfides using only one equivalent of mCPBA, limiting the reaction time to 15-30 minutes and maintaining the temperature at 0°C. Interestingly, three pairs of sulfoxide diastereomers were separated and NMR comparison of their diastereotopic methylene (CH₂) group is presented. X-ray diffraction crystal structure analysis provided relative configuration assignment at the chiral sulfur and carbon centres. Molecular modelling study of the four diastereoisomers of compound 28 is described.

The androgen receptor (AR) plays substantial anabolic and reproductive roles in men and women. Additionally, AR signaling plays a crucial function in tumourigenesis and metastasis of different cancer types, including prostate, bladder, kidney, lung, breast and liver ¹⁻³. AR is a member of the nuclear receptor family and consists of three main functional domains: a variable N-terminal domain, a highly conserved DNA-binding domain (DBD) and a conserved ligand binding domain (LBD).⁴ Binding of testosterone and dihydrotestosterone (DHT) to the LBD induces AR conformational changes followed by translocation into the nucleus to interact with DNA and modulate prostate specific antigen (PSA) levels.⁵ AR antagonists (anti-androgens) inhibit these processes and are used for the treatment of advanced prostate cancer (PC).^{6,7} A variety of nonsteroidal anti-androgens (NSAA) are approved for the treatment of PC. The first generation NSAAs include flutamide, hydroxyflutamide and bicalutamide, Figure 1. However, these antiandrogens eventually fail to inhibit the AR upon long term treatment switching from being AR antagonists to AR agonists with the development of castration resistant prostate cancer (CRPC), an aggressive form of the disease with poor prognosis. Similarly, resistance to the more recent second-generation antiandrogens (enzalutamide, apalutamide) is developing in PC patients via the upregulation of AR expression.⁸ More recently, darolutamide (ODM-201) has been recently approved and clinically used in patients with non-metastatic CRPC.⁹ New AR antagonists are continuously needed to improve the efficacy of the clinically used compounds.

In this paper, we present the design and synthesis of a series of new sulfoxide bicalutamide analogues, building on our previous work ¹⁰⁻¹⁴ to offer new therapeutic possibilities for combating resistance commonly observed in the clinical use of AR antagonists.

Figure 1. Chemical structures of the non-steroidal anti-androgens (NSAA); flutamide, hydroxyflutamide, nilutamide, bicalutamide, enzalutamide, apalutamide and darolutamide.

Small chemical changes in the structure of nonsteroidal AR ligands can play a major role in determining the pharmacological outcome.¹⁵⁻¹⁶ We previously published extensive SAR studies on bicalutamide chemical structure modification. ¹⁰⁻¹⁴ Here we are covering additional modifications for further evaluation of the impact on the anti-proliferative activity in prostate cancer models. **Figure 2** shows the general three main areas of modification; ring **A**, ring **B** and linker area **C**. Herein, a series of sulfoxide bicalutamide derivatives (region C) were prepared and their anti-proliferative activity was evaluated *in vitro* against four different human prostate cancer cell lines (22Rv1, DU-145, LNCaP and VCap).

Figure 2. Chemical structure of bicalutamide (X=SO₂) and the areas of structural modifications, ring **A**, ring **B** and the linker area **C**.

Phenylacrylamides (**4** and **5**) were prepared by reacting the corresponding aniline (**1** or **2**) with methacryloyl chloride (**3**) in dimethylacetamide (DMA).¹⁷

Phenylacrylamides (**4** and **5**) were epoxidised using hydrogen peroxide and trifluoroacetic anhydride (TFAA) in dichloromethane to give **6** and **7**. ^{18,19} Subsequently the epoxides were reacted with thiols (**8-14**) to afford the corresponding sulfide derivatives (**15-24**).

Previous studies of the non-steroidal propionamides showed that the heteroatom (X) linked to the B-ring (**Figure 2**) is the main point of metabolic lability and that there was no significant *in vivo* activity of some sulfide analogues because of rapid hepatic metabolism into the sulfoxide and sulfone analogues.²⁰⁻²²

Bicalutamide and its analogues are clinically used in a single enantiomeric form at the asymmetric carbon atom (S-configuration if X = O, NH and R-configuration if X = S, SO₂) and this chirality has an important effect on anti-androgenic activity.²³⁻²⁵ Upon oxidation of the sulfide bicalutamide analogues to the corresponding sulfoxide (SO), another chiral centre at the sulfur atom is created.²¹ Miller and co-workers demonstrated that the nature of the linker plays a pivotal role in controlling the ultimate antagonistic/agonistic effect of these kinds of molecules.²⁶⁻²⁸

Previous literature states that the sulfoxide derivatives are usually obtained by the oxidation of sulfide precursors using sodium metaperiodate (NaIO₄) in aqueous methanol for 48 h. ^{17, 21, 29} It is also reported that the oxidation reaction of the sulfide bicalutamide derivatives with *m*-chloroperbenzoic acid (*m*CPBA) would give sulfones as the sole product. ^{17, 21, 29} However, we efficiently managed to prepare the bicalutamide sulfoxide analogues (**25-34**) from the corresponding sulfide precursors (**15-24**) using only one equivalent of *m*CPBA (rather than 2 equivalents in case of the sulfone), limiting the reaction time to 15-30 minutes and maintaining the temperature at 0°C while monitoring the progress of reaction using TLC, as outlined in **Scheme 1**. Introduction of fluorinated groups into the chemical structure provides a combination of electronegativity, size and lipophilicity impacts and can affect physicochemical properties which in turn influences the biological activity. ³⁰⁻³³

		25 - 34
R ¹	R ²	
CN	3-CF ₃	_
NO ₂	2-CF ₃	_

	R ³	R ⁴	R⁵	x
8	н	н	н	N
9	н	CF ₃	н	С
10	Н	Н	OCF ₃	С
11	Н	F	F	С
12	н	OCF ₃	I	С
13	Н	CF ₃	н	Ν
14	F	F	H	С

1, 4, 6

2, 5, 7

	R ¹	R ²	R ³	R ⁴	R⁵	х
15, 25	CN	3-CF ₃	н	н	н	N
16, 26	NO ₂	2-CF ₃	н	н	н	N
17, 27	NO ₂	2-CF ₃	н	CF ₃	н	С
18, 28	NO ₂	2-CF ₃	Н	н	OCF_3	С
19, 29	NO ₂	2-CF ₃	н	F	F	С
20, 30	CN	3-CF ₃	н	OCF ₃	н	С
21, 31	NO ₂	2-CF ₃	н	OCF ₃	н	С
22, 32	CN	3-CF ₃	н	CF ₃	н	N
23, 33	NO ₂	2-CF ₃	н	CF ₃	н	N
24, 34	NO ₂	2-CF ₃	F	F	н	С

Scheme 1. Reagents and conditions, i) DMA, rt, 3h, ii) H₂O₂, TFAA, DCM, rt, 24h; iii) NaH, THF, RT, 24h, iv) *m*CPBA (1 equiv), DCM, 0° C, 15-30 min.

Interestingly, during the synthesis and purification of sulfoxide analogues (32-34)³⁴ using column chromatography, we obtained two sets of diastereomers, a fast-moving (32a, 33a, 34a) and a slow-moving (32b, 33b, 34b) product. The comparison of the NMR data of the separated sets of diastereoisomers of compounds (32-34) revealed consistent trends in the ¹H and ¹³C NMR chemical. The clearest trend is the chemical shift separation of the two protons of the diastereotopic methylene (CH₂) group next to the chiral sulfoxide (Figure 3 and Table 1). The coupling constant (J-value) between the two protons and the carbon chemical shift also show a consistent trend (Table 1).

ID	Difference in H - chemical shift	coupling constant (J-value) between the two protons	¹³ C - chemical shift
32 a	0.11	14	57.35
32 b	0.73	13	60.14
33 a	0.12	14	57.50
33 b	0.73	13	59.39
34 a	0.20	14	59.62
34 b	0.51	13	62.30

Table 1. NMR data of the diastereotopic methylene (CH₂) group of the separated diastereoisomers of the sulfoxide bicalutamide derivatives (32-34).

Figure 3. ¹H-NMR spectra of the three pairs of sulfoxide compounds showing the chemical shift difference between the diastereotopic methylene (CH₂) protons. The top panel represents the fast-moving products (**32a-33a-34a**) while the bottom panel shows the slow-moving products (**32b-33b-34b**).

Closer examination of compound **34** using X-ray diffraction crystal structure analysis 35,36 of the two separated sets of diastereoisomers, namely **34a** and **34b** in approximately (1 fast moving: 2 slow moving ratio), established the configuration of **34a** (fast moving, minor product) to be a mixture of C(*R*), S(*R*) and its C(*S*), S(*S*) antipode. Meanwhile **34b** (slow moving, major product) was shown to be a mixture of C(*R*), S(*S*) and its C(*S*), S(*R*) antipode, **Figure 4**, (CCDC 2040881-2040882).

Figure 4. X-ray crystal structure and absolute configuration of the two sets of diastereoisomers of compound **34**, (A) C(*R*), S(R) and C(*S*), S(*S*) antipode, (B) C(*R*), S(*S*) and C(*S*), S(*R*) antipode, of **34a** and **34b** respectively. (CCDC 2040881-2040882).

Miller and co-workers established the absolute configuration of the chiral sulfoxide group of two bicalutamide sulfoxide analogues (carbon atom with R configuration) using X-ray analysis, NMR measurements and quantum chemical calculations. ^{21, 28, 37} Evaluation of the antiproliferative activity ³⁸ of the sulfoxide compounds (**25** - **34**) in 22Rv1, DU-145, LNCaP and VCap human prostate cancer cell lines, showed that compound **28** has the most potent activity (IC₅₀ = 9.09 – 31.11 μ M) followed by compounds **27**, **29** and **30**. Loss of activity was observed with compounds **25**, **26**, **31**-**34**, **Table 4**.

ID	22Rv1	DU-145	LNCaP	VCap
	IC ₅₀ (μινι)	IC ₅₀ (μΙΝΙ)	iC ₅₀ (μινι)	IC ₅₀ (μινι)
25	>100	>100	>100	>100
26	>100	>100	>100	100
27	21.13	36.51	25.55	24.24
28	15.19	31.11	9.09	20.68
29	51.143	>100	24.402	>100
30	41.16	52.08	36.24	53.49
31	>100	>100	>100	>100
32a	65.45	100	95.43	>100
32b	77.04	>100	>100	>100
33a	>100	>100	>100	>100
33b	>100	>100	>100	>100
34a	>100	>100	>100	>100
34b	>100	>100	>100	>100
Bicalutamide	46.25	45.41	45.20	51.61
Enzalutamide	31.76	32.27	11.47	53.04

Table 2. in vitro antiproliferative activity of the sulfoxide analogues of bicalutamide (25 - 34)across four human prostate cancer cell lines (DU-145, 22Rv, LNCaP and VCap). All data are meanvalues from experiments carried out on three separate occasions.

A docking study using MOE ³⁹ was performed to compare the predicted binding modes of the four diastereoisomers of sulfoxide compound **28** (IC_{50} = 9.09 - 31.11 µM). All the diastereoisomers share key interactions including a H-bond between the nitro group (NO_2) and the guanidine group of Arg 752 of helix 5 (**Figure 5**). Another H-bond was observed between the nitro group (NO_2) and the side chain amide (NH_2) group of Gln 711 in three out of four diastereoisomers (**Figure 5B-D**). Diastereoisomer C(*R*)S(*S*) shows π - π stacking between the terminal phenyl ring and the indole side chain of Trp 741 (**Figure 5A**). In addition, hydrophobic interactions were observed with the surrounding hydrophobic pocket formed of residues; Trp 741, Met 745, Leu 712 and Met 787.

Figure 5. The predicted binding mode of compound 28A [C(R), S(S)], 28B [C(S), S(R)],
28C [C(S), S(S)] and 28D [C(R), S(R)] within the hAR-LBD showing H-bond interactions (blue dashed line) with Arg752, Gln711, Asn 705 and Thr 877.

In summary, sulfoxide bicalutamide derivatives were prepared efficiently and their antiproliferative activity was evaluated *in vitro* against four different human prostate cancer cell lines (22Rv1, DU-145, LNCaP and VCap). These modifications offer an insight on the SAR of various propionanilide analogues. Bicalutamide and enzalutamide were used as positive controls. The results summarised in **Tables 2** indicated that two compounds; **27** and **28** have displayed more potent antiproliferative activity than the positive controls; bicalutamide (IC₅₀ = 45.20- 51.61 μ M) and enzalutamide (IC₅₀ = 11.47- 53.04 μ M). Sulfoxide analogues were prepared via controlling the oxidation reaction time, temperature and the number of equivalents of the oxidising agent *m*-CPBA. Three pairs of diastereomers were separated and a comparison of their diastereotopic methylene (CH₂) group NMR data is presented in **Table 1** and **Figure 3**. Interestingly, X-ray diffraction crystal structure analysis provided relative configuration assignment at the chiral sulfur and carbon

centres, **Figure 4**. An *in silico* molecular modelling study performed on the four diastereoisomers of compound **28** is described **Figure 5**, indicating similar key interactions within the AR-LBD.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is dedicated to the memory of Professor Christopher McGuigan (1958-2016). The authors would like to thank the Welsh Government Academic Expertise for Business (A4B) scheme for the financial support. The authors would like to thank Oncotest (Freiburg, Germany; now part of the Charles River Laboratories) for provision of human prostate cancer cell line testing as an out- sourced service.

Supplementary data

Supplementary data associated with this article can be found in the online version. These data include NMR, MS and HPLC data.

References and notes

- 1. Chang C, Lee S, Yeh S, Chang TM, Oncogene, 2014; 33: 3225-3234.
- 2. Lonergan PE, Tindall DJ, J. Carcinogenesis, 2011; 10: 20.
- 3. Pippione AC, Boschi D, Pors K, Oliaro-Bosso S, Lolli ML. *J Cancer Metastasis Treat*, 2017; 3: 328-361.
- 4. Jenster G van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO. *Mol. Endocrinol*. 1991; 5: 1396– 1404.
- 5. G. Jenster, Mol. Cell. Endocrinol. 1998; 143: 1-7.
- 6. Brinkmann AO, Trapman J, Nat Med. 2000; 6(6): 628-629.
- 7. Brinkmann AO, Methods Mol Biol. 2011; 776: 3-24.
- Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL, Nat. Med. 2004; 10: 33–39.
- 9. Moilanen AM, Riikonen R, Oksala R, Ravanti L, Aho E, Wohlfahrt G, Nykänen PS, Törmäkangas OP, Palvimo JJ, Kallio PJ, *Sci. Rep.* 2015; 5: 12007.

- 10. Kandil SB, Lee K Y, Davies L, Rizzo SA, Dart DA, Westwell AD, *Eur. J. Med. Chem.* 2019; 167: 49-60.
- 11. Dart DA, Kandil SB, Tommasini-Ghelfi S, de Almeida GS, Bevan CL, Jiang W, Westwell AD, *Mol Cancer Ther*. 2018; 17 (9): 1846-1858.
- 12. Bassetto M, Ferla S, Pertusati F, Kandil SB, Westwell AD, Brancale A, McGuigan C, *Eur. J. Med. Chem.* 2016; 118: 230-243.
- 13. Ferla S, Bassetto M, Pertusati F, Kandil SB, Westwell AD, Brancale A, McGuigan C, *Bioorg. Med. Chem. Lett.* 2016; 26: 3636-3640.
- 14. Kandil SB, McGuigan C, Westwell AD, Molecules. 2021; 26 (1): 56.
- 15. Bohl C E, Wu Z, Chen J, Mohler M L, Yang J, Hwang D J, Dalton J T. *Bioorg Med Chem Lett*. 2008; 18 (20): 5567–5570.
- 16. Yin D, He Y, Perera MA, Hong S S, Marhefka C, Stourman N, Dalton J T. *Molecular Pharmacology*. 2003; *63*(1): 211–223.
- 17. Tucker H, Crook J W, Chesterson GJ, J. Med. Chem. 1988; 31: 954-959.
- Chen BC, Zhao R, Gove S, Wang B, Sundeen JE, Salvati ME, Barrish JC. J. Org. Chem. 2003; 26: 10181- 10182.
- 19. Shi Q, Wada K, Ohkoshi E, Lin L, Huang R, Morris-Natschke SL, Goto M, Lee K-H, *Bioorg. Med. Chem.* 2012; 20: 4020-4031.
- 20. Yin D, Xu H, He Y, Kirkovsky L I, Miller D D, Dalton J T. *J. Pharmacol. Exp. Ther.* 2003; 304 (3): 1323–1333.
- 21. Li W, Hwang DJ, Cremer D, Joo H, Kraka E, Kim J, Ross CR, Nguyen V Q, *Dalton J T,* Miller DD. *Chirality*. 2009; 21: 578-583.
- 22. Mohler ML, Bohl CE, Jones A, Coss CC, Narayanan R, He Y, Hwang DJ, Dalton J T, Miller DD, J. Med. Chem. 2009; 52 (12): 3567-3617.
- 23. Hwang DJ, Yang J, Xu H, Rakov IM, Mohler ML, Dalton JT, Miller DD. *Bioorg Med Chem.* 2006; 14: 6525 - 6538.
- 24. Marhefka CA, Gao W, Chung K, Kim J, He Y, Yin D, Bohl C, Dalton JT, Miller DD. J Med Chem 2004; 47: 993 - 998.
- 25. Kirkovsky L, Mukherjee A, Yin D, Dalton JT, Miller DD. *J Med Chem.* 2000; 43: 581 590.
- 26. Duke C B, Jones A, Bohl C E, Dalton J T, Miller D D. *J. Med. Chem.* 2011; 54: 3973-3976.

- 27. Bohl C E, Chang C, Mohler M L, Chen J, Miller D D, Swaan PW, Dalton J T. J. Med. Chem. 2004; 47: 3765- 3776.
- 28. Guerrini A, Tesei A, Ferroni C, Paganelli G, Zamagni A, Carloni S, Di Donato M, Castoria G, Leonetti C, Porru M, De Cesare M, Zaffaroni N, Luca Beretta G, Del Rio A, Varchi G, J. Med. Chem. 2014; 57: 7263- 7279.
- 29. Wojaczynska E, Wojaczynski J, Chem. Rev. 2010; 110: 4303–4356.
- 30. Shah P, Westwell AD. J Enzyme Inhib Med Chem. 2007;22:527–540.
- 31. Kandil SB, Westwell AD, McGuigan C. *Bioorg Med Chem Lett.* 2016;26(8):2000–2004.
- Kandil SB, Wymant JM, Kariuki BM, Jones AT, Westwell AD, McGuigan C. Eur J Med Chem. 2016;110:311–325.
- 33. Kandil SB, Pannecouque C, Chapman FM, Westwell AD. *Bioorg Med Chem Lett.* 2019; 29:126721.
- 34. General method for the preparation of sulfoxide compounds 25-34.

To a stirring solution of the different sulfide **15-24** (0.7 mmol) in 5 mL anhydrous dichloromethane (DCM) was added 3-chloroperbenzoic acid (*m*CPBA) (0.8 mmol) portion wise maintaining the temperature at 0° C for 20-30 min. After further dilution, a solution of 5% sodium carbonate is added and the mixture stirred for 1 hour, the phases are then separated. The combined organic layers were washed, dried over anhydrous sodium sulfate and concentrated in vacuo. The crude residue was purified by column chromatography, preparative TLC or crystallization from methanol.

- 35. Sheldrick G M. Acta Crystallogr., Sect. A, 2008; 64: 112-122.
- 36. Sheldrick G M. Acta Crystallogr., Sect. C, 2015; 71: 3-8.
- 37. Joo H, Kraka E, Cremer D, *Journal of Molecular Structure: THEOCHEM.* 2008; 862: 66–73.
- 38. Dengler W, Schulte J, Berger D, Mertelsmann R, Fiebig H, Anti-Cancer Drugs. 1995;6: 522-532.
- 39. https://www.chemcomp.com/

Supporting Information

Synthesis, biological evaluation and X-ray analysis of bicalutamide sulfoxide analogues for the potential treatment of prostate cancer Sahar B. Kandil^{a*}, Benson M. Kariuki^b, Christopher McGuigan^a and Andrew D. Westwell^a

^aSchool of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, Wales, United Kingdom. ^bSchool of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.

1. Chemistry

All chemicals were purchased from Sigma-Aldrich or Alfa Aesar and were used without further purification. Thin Layer Chromatography (TLC): pre-coated aluminium backed plates (60 F254, 0.2 mm thickness, Merck) were visualized under both short and long wave UV light (254 and 366 nm). Flash column chromatography was carried out using silica gel supplied by Fisher (60A, 35-70 mm) ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded on a Bruker Avance 500 MHz spectrometer at 25°C. Chemical shifts (δ) are expressed in parts per million (ppm) and coupling constants (J) are given in hertz (Hz). The following abbreviations are used in the assignment of NMR signals: s (singlet), bs (broad singlet); d (doublet), t (triplet), q (quartet), qn (quintet), m (multiplet), dd (doublet of doublet), dt (doublet of triplet), td (triple doublet); dq (double quartet), m (multiplet), dm (double multiplet).

The purity of the final compounds was verified to be >95% by reverse-phase HPLC analysis using either I) Thermo SCIENTIFIC, SPECTRA SYSTEM P4000, detector SPECTRA SYSTEM UV2000, Varian Pursuit XRs 5 C18, 150 x 4.6 mm (as an analytic column) or II) Varian Prostar (LC Workstation-Varian Prostar 335 LC detector), Thermo SCIENTIFIC Hypersil Gold C18, 5 μ , 150 x 4.6 mm (as an analytic column) with a gradient elution of H₂O/CH₃CN from 90/10 to 0/100 in 30 min, Flow = 1 mL/min, λ = 275 nm. Mass spectra were measured by Bruker Daltonics microTof-LC, in positive mode electrospray ionization (ESI).

^{*} Email: kandils1@cf.ac.uk

1.1 General method for the preparation of intermediates 4-5

Methacryloyl chloride **3** (8.4 mL, 85.96 mmol) was added over the course of 10 minutes to a stirring solution of the appropriate trifluoromethylaniline **1-2** (10.75 mmol) in N,N-dimethylacetamide (10 mL) at room temperature for 24h. After the reaction was complete, the mixture was diluted with ethyl acetate (100 mL), extracted with saturated NaHCO₃ solution (2 x 50 mL) then cold brine (2 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude oil residue was purified by flash column chromatography eluting with chloroform-ethyl acetate 95:5 v/v to obtain the titled compounds.

N-(4-cyano-3-(trifluoromethyl)phenyl)methacrylamide (4)¹⁹

Data in accordance with literature data. Yield; 92%. ¹H NMR (CDCl₃) δ 8.10 (d, *J* = 2Hz, 1H, Ar*H*), 8.06 (bs, 1H, N*H*), 8.01 (dd, J = 2, 8.5 Hz, 1H, Ar*H*), 7.81 (d, *J* = 8.5Hz, 1H, Ar*H*), 5.89 (d, *J* = 1Hz, 1H, CH₂), 5.62 (q, *J* = 1.5Hz, 1H, CH₂), 2.10 (dd, *J* = 0.5, 1.5 Hz, 3H, CH₃). ¹⁹F-NMR: (CDCl₃) δ -62.23.

N-(4-Nitro-2-(trifluoromethyl)phenyl)methacrylamide (5)¹⁹

Data in accordance with literature data. Yield; 94 %.¹H NMR (CDCl₃) δ 8.73 (d, J= 9 Hz, 1H, Ar*H*), 8.46 (d, J= 3 Hz, 1H, Ar*H*), 8.37 (dd, J= 9 Hz, 2.5 Hz, 1H, Ar*H*), 8.17 (bs, 1H, N*H*), 5.85 (q, J= 0.5 Hz, 1H, CH₂), 5.58 (q, J= 1.5 Hz, 1H, CH₂), 2.15-2.13 (dd, J= 1, 1.5 Hz, 1H, CH₃). ¹⁹F-NMR: (CDCl₃) d -61.31.

1.2 General method for the preparation of intermediates 6-7

To a stirred solution of the intermediate **4-5** (3 mmol) in DCM (7 mL) was added 30% hydrogen peroxide (3.6 mL, 32.03 mmol). The reaction mixture was placed in a water bath at rt and trifluoroacetic anhydride (3.7 mL, 26.7 mmol) was added slowly to the mixture, which was then stirred for 24 h. The reaction mixture was transferred to a separating funnel using DCM (30 mL). The organic layer was washed with distilled water (20 mL), sat. aq. Na₂S₂O₃ (4x20 mL), sat. aq. NaHCO₃ (3x20 mL) and brine (20 mL), dried over Na₂SO₄ and concentrated at reduced pressure.

N-(4-Cyano-3-(trifluoromethyl)phenyl)-2-methyloxirane-2-carboxamide (6)¹⁹

The data are in accordance with literature data. Obtained in 86% yield as a yellow solid. ¹H-NMR (CDCl₃): δ 8.38 (bs, 1H), 8.00 (d, J= 2.1 Hz, 1H), 7.88 (dd, J= 8.5 Hz, 2.1 Hz, 1H), 7.78 (d, J= 8.5 Hz, 1H), 3.00 (s, 2H), 1.68 (s, 3H).

2-Methyl-N-(4-nitro-2-(trifluoromethyl)phenyl)oxirane-2-carboxamide (7)¹²

Obtained in 71% yield as a yellow wax. ¹H-NMR (CDCl₃): δ 8.92 (bs, 1H), 8.74 (d, J= 9.6 Hz, 1H), 8.53 (d, J= 2.5 Hz, 1H), 8.44 (dd, J= 9.6 Hz, 2.5 Hz, 1H), 3.04 (d, J= 4.6 Hz, 1H), 3.02 (d, J= 4.6 Hz, 1H), 1.72 (s, 3H). ¹⁹F-NMR (CDCl₃): δ -61.69 (s, 3F). ¹³C-NMR (CDCl₃): δ 169.2, 142.9, 140.4, 128.35 (m), 123.7, 122.3 (m), 121.6, 119.2 (m), 56.5, 53.9, 16.4.

1.3 General method for the preparation of compounds 15-24.

To a mixture of sodium hydride (NaH) (60% in mineral oil, 0.050 g, 1.23 mmol) in anhydrous THF (2 mL) at 0 °C under Ar atmosphere was added a solution of the differently substituted thiophenol **8** - **14** (1.11 mmol) in 1 mL of anhydrous THF. This mixture was stirred at rt for 20 min. A solution of the intermediate **6** or **7** (0.74 mmol) in anhydrous THF (3 mL) was added slowly. The reaction mixture was stirred at room temperature for 24h. The mixture was then diluted with ethyl acetate (30 mL), washed with brine (15 mL) and water (30 mL), dried over Na₂SO₄ and concentrated under *vacuum*. The crude residue was purified by flash column chromatography eluting with *n*-hexane/EtOAc 100:0 v/v increasing to *n*-hexane/EtOAc 90:10 v/v.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(pyridin-2-ylthio) propanamide (15) yield 79%.

¹H NMR (CDCl₃) δ 9.64 (s, 1H, N*H*), 8.89 (s, 1H, Ar*H*), 8.39 (ddd, *J*= 1, 1.5, 5 Hz, 1H, Ar*H*), 8.13 (d, *J* = 2 Hz, 1H, Ar*H*), 8.00 (dd, *J* = 2, 8.5 Hz, 1H, Ar*H*), 7.91 (d, *J*= 8.5 Hz, 1H, Ar*H*), 7.61 (ddd, *J*= 2, 8, 8.5 Hz, 1H, Ar*H*), 7.37 (dt, *J*= 1, 8 Hz, 1H, Ar*H*), 7.17 (ddd, *J*= 1, 5, 7.5 Hz, 1H, Ar*H*), 3.61 (d, *J*= 15.5 Hz, 1H, C*H*₂), 3.50 (d, *J* = 15 Hz, 1H, C*H*₂), 1.63 (s, 3H, C*H*₃); ¹⁹F NMR (CDCl₃) δ -62.16 (s, 3F); ¹³C NMR (CDCl₃) δ 175.18 (C=O), 158.85 (Ar*C*), 148.32 (Ar*C*H), 141.69 (Ar*C*), 137.45 (Ar*C*H), 135.80 (Ar*C*H), 133.92 (q, ²J_{C-F} = 32.5 Hz, Ar*C*), 123.55 (Ar*C*H), 122.19 (q, ¹J_{C-F} = 271.3 Hz, CF₃), 121.66 (Ar*C*H), 120.92 (Ar*C*H), 117.16 (q, ³J_{C-F} = 5 Hz, Ar*C*H), 115.67 (Ar*C*), 104.15 (CN), 77.01 (COH), 41.48 (CH₂), 26.81 (CH₃). MS [ESI, m/z]: 382.1 [M+H⁺], 404.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 21.17 mins 99.5% **2-Hydroxy-2-methyl-***N***-(4-nitro-2-(trifluoromethyl)phenyl)-3-(pyridin-2-**

ylthio)propenamide (16) yield 75 %.

¹H NMR (CDCl₃) δ 10.26 (s, 1H, N*H*), 9.08 (s, 1H, Ar*H*), 8.84 (d, *J* = 9 Hz, 1H, Ar*H*), 8.52 (d, *J* = 3 Hz, 1H, Ar*H*), 8.42 (m, 2H, Ar*H*), 7.61 (m, 1H, Ar*H*), 7.37 (d, *J* = 8.5 Hz, 1H, Ar*H*), 7.18 (m, 1H, Ar*H*), 3.60 (d, *J* = 15 Hz, 1H, CH₂), 3.52 (d, *J* = 15 Hz, 1H, CH₂), 1.65 (s, 3H,

CH₃); ¹⁹F NMR (CDCl₃) δ -62.01 (s, 3F); ¹³C NMR (CDCl₃) δ 175.24 (C=O), 158.68 (ArC), 148.31 (ArCH), 142.62 (ArC), 141.00 (ArC), 137.40 (ArCH), 128.27 (ArCH), 123.36 (ArCH), 122.78 (q, ¹J_{C-F} = 272 Hz, CF₃), 122.36 (q, ³J_{C-F} = 5.5 Hz, ArCH), 122.04 (ArCH), 120.86 (ArCH), 119.28 (q, ²J_{C-F} = 32.5 Hz, ArC), 77.13 (COH), 41.46 (CH₂), 26.54 (CH₃). MS (ES+) m/z: 402.1 [M+H⁺], 424.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.98 mins 99.75% **2-Hydroxy-2-methyl-***N***-(4-nitro-2-trifluoromethyl)phenyl)-3-(4-(trifluoromethyl) phenylthio)propanamide (17)** yield 65 %.¹²

¹H-NMR (CDCl₃), δ : 9.59 (bs, 1H), 8.54 (d, *J* = 2.5 Hz, 1H), 8.49 (d, *J* = 9 Hz, 1H), 8.37 (dd, *J*₁ = 9, *J*₂ = 2.5 Hz, 1H), 7.52 (d, *J* = 9 Hz, 2H), 7.47 (d, *J* = 8 Hz, 2H), 3.87 (d, *J* = 14.5 Hz, 1H), 3.36 (s, 1H), 3.26 (d, *J* = 14.5 Hz, 1H), 1.62 (s, 3H). ¹⁹F-NMR (CDCl₃), δ : -62.80 (s, 3F), -61.56 (s, 3F); ¹³C-NMR (CDCl₃), δ : 172.80 (C=O), 142.95, 140.30, 138.97, 130.04, 129.13 (q, ²J_{C-F} = 32.5 Hz), 128.21, 125.79 (q, ³J_{C-F} = 3.6 Hz), 121.98, 123.73 (q, ¹J_{C-F} = 270 Hz), 122.79 (q, ¹J_{C-F} = 272.3 Hz, CF₃), 119.21 (q, ²J_{C-F} = 31.5 Hz), 75.63 (COH), 43.69 (CH₂), 26.16 (CH₃). MS [ESI, m/z]: 469.1 [M+H], 491.1 [M+Na]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 24.13 min.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-((2-(trifluoromethoxy) phenyl)thio)propenamide (18) yield 58 %. ¹²

¹H-NMR (CDCl₃): δ 9.64 (bs, 1H), 8.54 (d, *J* = 2.5 Hz, 1H), 8.47 (d, *J* = 9.0 Hz, 1H), 8.36 (dd, *J*= 9.0 Hz, 2.5 Hz, 1H), 7.58-7.55 (m, 1H), 7.29-7.24 (m, 1H), 7.23-7.17 (m, 2H), 3.84 (d, *J*= 14.5 Hz, 1H), 3.62 (bs, 1H), 3.15 (d, *J*= 14.5 Hz, 1H), 1.58 (s, 3H). ¹⁹F-NMR (CDCl₃): δ -61.70 (s, 3F), -57.34 (s, 3F), ¹³C-NMR (CDCl₃): δ 172.8 (C=O), 148.7, 142.8, 140.4, 133.8, 129.4, 128.0, 127.3, 127.1, 123.8, 122.3 (q, *J*= 5.5 Hz), 122.0, 121.1, 120.5 (q, *J*= 287.4 Hz, CF₃), 120.2 (q, *J*= 289.8 Hz), 75.4 (COH), 43.9 (CH₂), 26.1 (CH₃). MS [ESI, m/z]: 485.1 [M+H]⁺, 507.1 [M+Na]⁺. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.85 min.

3-((2,4-Difluorophenyl)thio)-2-hydroxy-2-methyl-N-(4-nitro-2-(trifluoromethyl) phenyl) propenamide (19) yield 74 %. ¹²

¹H-NMR (CDCl₃): δ 9.64 (bs, 1H), 8.55 (d, *J* = 3.0 Hz, 1H), 8.49 (d, *J* = 9.5 Hz, 1H), 8.38 (dd, *J*= 9.5 Hz, 3.0 Hz, 1H), 7.49-7.43 (m, 1H), 6.80-6.70 (m, 2H), 3.83 (d, *J*= 14.5 Hz,

1H), 3.67 (bs, 1H), 3.03 (d, *J*= 14.5 Hz, 1H), 1.56 (s, 3H). ¹⁹F-NMR (CDCl₃): δ -61.60 (s, 3F), -101.75 (s, F), -107.28 (s, F). ¹³C-NMR (CDCl₃): δ 172.8 (C=O), 164.4, 161.8, 142.8, 140.4, 136.4 (dd, *J*= 9.5 Hz, 2.0 Hz), 128.1, 122.3 (q, *J*= 6.3 Hz), 122.8 (q, *J*= 275.3 Hz, CF₃), 115.3 (d, *J*= 17.6 Hz), 119.0 (q, *J*= 31.1 Hz), 121.7, 112.0 (dd, *J*= 21.6 Hz, 4.1 Hz), 104.7 (m), 75.3 (COH), 44.6 (CH₂), 26.2 (CH₃). MS [ESI, m/z]: 437.1 [M+H]⁺, 459.0 [M+Na]⁺. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 24.11 min.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-((4-(trifluoro methoxy) phenyl)thio)propenamide (20) yield 81 %. ¹²

1H NMR (CDCl₃) δ 1.56 (s, 3H), 3.20 (d, *J* = 14 Hz, 1H), 3.75 (d, *J* = 14 Hz, 1H), 3.80 (s, 1H), 7.05 (d, *J* = 9 Hz, 2H), 7.46 (m, 2H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.82 (dd, *J* = 2.5, 8.5 Hz, 1H), 8.00 (d, *J* = 2 Hz, 1H), 9.15 (s, 1H); ¹⁹F NMR (CDCl₃) δ -58.09, -62.28; 13C NMR (CDCl₃) δ 173.25 (C=O), 148.34, 141.43, 135.75, 133.90 (q, ²J_{C-F} = 32.6 Hz), 132.80, 132.26, 123.18 (m), 121.76, 121.41, 119.24 (m), 117.20 (q, ³J_{C-F} = 4.9 Hz), 115.57, 104.27, 75.57 (COH), 44.97 (CH₂), 26.13 (CH₃). MS (ES+) m/z: 465.1 (M+H⁺), 487.1 (M+Na⁺). Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.50 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-((4-(trifluoromethoxy) phenyl)thio)propenamide (21) yield 77 %. ¹²

1H NMR (CDCl₃) δ 1.59 (s, 3H), 3.18 (d, *J* = 14 Hz, 1H), 3.63 (s, 1H), 3.83 (d, *J* = 14.5 Hz, 1H), 7.06 (d, *J* = 8 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 1H), 8.37 (dd, *J* = 2.5, 9 Hz, 1H), 8.49 (d, *J* = 9 Hz, 1H), 8.53 (d, *J* = 2.5 Hz, 1H), 9.64 (s, 1H); 19F NMR (CDCl₃) δ -61.64, -58.07; 13C NMR (CDCl₃) δ : 172.95 (C=O), 148.54, 142.89, 140.38, 132.63, 132.32, 128.21, 123.91 (CF₃), 122.28 (q, ³J_{C-F} = 5.9 Hz), 121.93, 121.74 (CF₃), 121.47, 119.24 (m), 73.54 (COH), 44.90 (CH₂), 26.18 (CH₃). MS (ES+) m/z: 485.1 (M+H⁺), 507.1 (M+Na⁺). Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 25.64 mins.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-((5-(trifluoromethyl) pyridin-2-yl)thio)propenamide (22) yield 79 %.¹²

¹H-NMR (CDCl₃): δ 9.51 (bs, 1H), 8.70-8.70 (m, 1H), 8.11 (d, *J*= 2.5 Hz, 1H), 8.00 (dd, *J*= 8.5 Hz, 2.5 Hz, 1H), 7.84-7.7.80 (m, 3H), 7.49 (d, *J* = 8.5 Hz, 1H), 3.60 (d, *J* = 15.0 Hz,

1H), 3.67 (d, J = 15.0 Hz, 1H), 1.65 (s, 3H). ¹⁹F-NMR (CDCl₃): δ -62.20 (s, 3F), -62.42 (s, 3F). ¹³C-NMR (CDCl₃): δ 174.4 (C=O), 164.0, 145.5 (q, J= 4.4 Hz), 141.4, 135.8, 134.0 (q, J= 3.0 Hz), 134.0 (q, J= 32.5 Hz), 125.3, 124.2 (m), 123.1, 122.1 (m), 121.6, 117.1 (q, J= 5.1 Hz), 115.5, 104.4, 77.2 (*C*OH), 41.0 (*C*H₂), 26.8 (*C*H₃). MS [ESI, m/z]: 450.1 [M+H]⁺, 472.1 [M+Na]⁺. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.48 min.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-((5-(trifluoromethyl) pyridin-2-yl)thio)propenamide (23) yield 76 %.¹²

¹H-NMR (CDCl₃), δ : 10.14 (bs, 1H), 8.81 (d, *J* = 9 Hz, 1H), 8.68 (m, 1H), 8.53 (d, *J* = 2.5 Hz, 1H), 8.45 (dd, *J*₁ = 9.5, *J*₂ = 3 Hz, 1H), 7.94 (s, 1H), 7.82 (dd, *J*₁ = 8.5, *J*₂ = 2.5 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 3.66 (d, *J* = 15 Hz, 1H), 3.61 (d, *J* = 15 Hz, 1H), 1.66 (s, 3H). ¹⁹F-NMR (CDCl₃), δ : -61.95 (s, 3F), -62.42 (s, 3F); ¹³C-NMR (CDCl₃), δ : 174.85 (C=O), 163.87, 145.57 (q, ³J_{C-F} = 4.4 Hz), 142.78,140.79, 134.04 (q, ³J_{C-F} = 6.5 Hz), 128.28, 124.09 (q, ²J_{C-F} = 42.3 Hz), 123.00, 122.36 (q, ³J_{C-F} = 5.5 Hz), 122.20, 123.13 (q, ¹J_{C-F} = 262.6 Hz, CF₃), 122.65 (q, 1JC-F = 272.4 Hz, CF₃), 119.42 (q, ²J_{C-F} = 31.6 Hz), 77.29 (COH), 41.11 (CH₂), 26.58 (CH₃). MS [ESI, m/z]: 470.1 [M+H], 492.1 [M+Na]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 25.58 min.

3-((3,4-Difluorophenyl)thio)-2-hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl) phenyl)propenamide (24) yield 78 %. ¹²

¹H-NMR (CDCl₃), δ : 9.62 (bs, 1H), 8.58 -8.55 (m, 2H), 8.42 (dd, $J_1 = 9.5$, $J_2 = 2.5$ Hz, 1H), 7.28-7.25 (m, 1H), 7.05-7.00 (m, 1H), 3.78 (d, J = 14 Hz, 1H), 3.38 (bs, 1H), 3.17 (d, J = 14.5 Hz, 1H),1.59 (s, 3H). ¹⁹F-NMR (CDCl₃), δ : -61.60 (s, 3F), -135.41 (s, F), -137.51 (s, F); ¹³C-NMR (CDCl₃), δ : 172.79 (C=O), 150.14 (d, ¹J_{C-F} = 251.0 Hz), 150.02 (d, ¹J_{C-F} = 249.1 Hz), 142.94, 140.38, 130.07, 128.28,127.96 (q, ³J_{C-F} = 2.8 Hz), 122.82 (q, ¹J_{C-F} = 272.4 Hz, CF₃),122.38 (q, ³J_{C-F} = 5.5 Hz), 121.78, 120.72 (d, ²J_{C-F} = 18.4 Hz), 119.18 (q, ²J_{C-F} = 31.4 Hz), 117.90 (d, ²J_{C-F} = 17.9 Hz), 75.70 (COH), 45.41 (CH₂), 26.21 (CH₃). MS [ESI, m/z]: 437.1 [M+H], 459.0 [M+Na]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.79 min.

1.4 General method for the preparation of sulfoxide compounds 25-34.

To a stirring solution of the different sulfide **15-24** (0.7 mmol) in 5 mL anhydrous dichloromethane (DCM) was added 3-chloroperbenzoic acid (*m*CPBA) (0.8 mmol) portion wise maintaining the temperature at 0° C for 20-30 min. After further dilution, a solution of 5% sodium carbonate is added and the mixture stirred for 1 hour, the phases are then separated. The combined organic layers were washed, dried over anhydrous sodium sulfate and concentrated in vacuo. The crude residue was purified by column chromatography, preparative TLC or crystallization from methanol.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(pyridin-2-ylsulfinyl) propanamide (1 isomer A:1 isomer B) (25) yield 75 %.

¹H NMR (CDCl₃) δ [9.50 (s), 9.30 (s), 1H, NH], [8.72 (d, *J*= 4.5 Hz), 8.68 (d, *J*= 5 Hz), 1H, ArH], [8.21 (d, *J*= 1.5 Hz), 8.01 (m), 3H], 7.84 (m, 2H, ArH), [7.50 (m), 7.44 (m), 1H, ArH], [6.79 (s), 6.17 (s), 1H, OH], [3.69 (d, *J*= 13.5 Hz), 3.63 (d, *J*= 14 Hz), 1H, CH₂], [3.88 (d, *J*= 13.5 Hz), 3.31 (d, *J*= 13.5 Hz), 1H, CH₂], [1.73 (s), 1.66 (s), 3H, CH₃]; ¹⁹F NMR (CDCl₃) δ -62.17; ¹³C NMR (CDCl₃) δ (173.25, 172.78, *C*=O), 155.53 (ArC), (150.09, 149.77, ArCH), (141.50, 141.33, ArC) (138.66, 138.47, ArCH), (135.85, 135.78, ArCH), 134.18 (m, ArC), (125.50, 125.29, ArCH), (122.01, 121.74, ArCH), (120.41, 120.13, ArCH), 120.50 (q, ¹J_{C-F} = 263.8 Hz, CF₃), [117.49 (q, ³J_{C-F} = 5 Hz), 117.24 (q, ³J_{C-F} = 5 Hz), ArCH], (115.45, 115.51, CN), (104.80, 104.68, ArC), (76.12, 75.88, COH), (60.31, 59.02, CH₂), (27.73, 27.49, CH₃). MS (ES+) m/z: 398.1 [M+H⁺], 420.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 14.62 mins 97.81%.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(pyridin-2-ylsulfinyl) propanamide [2 isomer A:1 isomer B] (26) yield 71%

¹H NMR (CDCl₃) δ 9.89 (s, 1H, N*H*), [8.65 (d, *J* = 9.5 Hz), isomer B, 8.82 (d, *J* = 9 Hz, 1H), isomer A, 1H, Ar*H*], [8.68 (d, *J* = 5 Hz) isomer B, 8.70 (d, *J* = 4.5 Hz) isomer A, 1H, Ar*H*], [8.55 (d, *J* = 2.5 Hz, isomer B), 8.59 (d, *J* = 2.5 Hz, isomer A), 1H, Ar*H*], [8.42 (dd, *J* = 2.5, 9 Hz, isomer B), 8.48 (dd, *J* = 3, 9.5 Hz, isomer A), 1H, Ar*H*), [7.92 (m), 8.04 (m), 2H, Ar*H*], [7.46 (ddd, *J* = 1, 4.5, 7.5 Hz) isomer B, 7.50 (ddd, *J* = 2, 4.5, 4.5 Hz) isomer A, 1H, Ar*H*], [6.39 (s), isomer A, 6.98 (s), isomer B, 1H, O*H*], [3.34 (d, *J* = 13.5 Hz), 3.92 (d, *J* = 13.5 Hz), 1H, isomer A, C*H*₂], [3.64 (d, *J* = 14 Hz), 3.70 (d, *J* = 13.5 Hz), 1H, isomer B, C*H*₂], [1.67 (s) isomer A, 1.75 (s) isomer B, 3H, C*H*₃]; ¹⁹F NMR (CDCl₃) δ -61.64; ¹³C NMR

 $(CDCl_3) \delta$ (173.31, 172.84, *C*=O), (163.81, 163.19, Ar*C*), (149.84, 149.57, Ar*C*H), 143.08 (Ar*C*), 140.63 (Ar*C*), (138.75, 138.62, Ar*C*H), (128.30, 128.25, Ar*C*H), 126.58 (m, *C*F₃), (125.38, 125.28, Ar*C*H), 123.61 (m, Ar*C*), (122.63, 122.01, Ar*C*H), 122.43 (m, Ar*C*H), (120.55, 120.16, Ar*C*H), (76.12, 75.59 *CO*H), (59.66, 59.48, *C*H₂), (27.63, 27.58, *C*H₃). MS (ES+) m/z: 418.1 [M+H⁺], 440.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 16.02 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(4-(trifluoromethyl) phenylsulfinyl)propanamide (27) yield 66 %

¹H NMR (CDCl₃) δ 9.90 (s, 1H, NH), 8.79 (d, *J* = 9 Hz, 1H, ArH), 8.60 (d, *J* = 2.5 Hz, 1H, ArH), 8.50 (dd, *J* = 2.5, 9 Hz, 1H, ArH), 7.88 (d, *J* = 8.5 Hz, 2H, ArH), 7.82 (d, *J* = 8.5 Hz, 2H, ArH), 6.06 (bs, 1H, OH), 3.65 (d, *J*= 13 Hz, 1H, CH₂), 3.13 (d, *J* = 13.5 Hz, 1H, CH₂), 1.63 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.58 (s, 3F), -63.01 (s, 3F); ¹³C NMR (CDCl₃) δ 173.37 (C=O), 147.11 (ArC), 143.34 (ArC), 140.37 (ArC), 133.90 (q, ²J_{C-F} = 32.6 Hz, ArC), 128.25 (ArCH), 126.74 (q, ³J_{C-F} = 3.8 Hz, ArCH), 124.23 (ArCH), 123.28 (q, ¹J_{C-F} = 271 Hz, CF₃), 122.79 (ArCH), 122.74 (q, ¹J_{C-F} = 271.9 Hz, CF₃), 122.47 (q, ³J_{C-F} = 5.5 Hz, ArCH), 120.35 (q, ²J_{C-F} = 31.5 Hz, ArC), 76.74 (COH), 62.91 (CH₂), 28.09 (CH₃). MS [ESI, m/z]: 485.1 [M+H⁺], 507.1 [M+Na⁺], Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 19.66 min.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(2-(trifluoromethoxy) phenylsulfinyl)propanamide (28) yield 81%.

¹H NMR (CDCl₃) δ 9.82 (s, 1H, N*H*), 8.83 (d, *J* = 9 Hz, 1H, Ar*H*), 8.59 (d, *J* = 2.5 Hz, 1H, Ar*H*), 8.50 (dd, *J* = 2.5, 9 Hz, 1H, Ar*H*), 7.99 (m, 1H, Ar*H*), 7.63 (m, 2H, Ar*H*), 7.45 (m, 1H, Ar*H*), 5.85 (s, 1H, O*H*), 3.89 (d, *J*= 13 Hz, 1H, C*H*₂), 3.03 (d, *J*= 13 Hz, 1H, C*H*₂), 1.61 (s, 3H, C*H*₃); ¹⁹F NMR (CDCl₃) δ -61.58 (s, 3*F*), -57.18 (s, 3*F*); ¹³C NMR (CDCl₃) δ 173.14 (C=O), 154.94 (ArC), 143.20 (ArC), 141.94 (ArC), 133.71, 133.20 (ArCH), 131.83 (ArC), 130.75 (ArC), 130.24, 129.84 (ArCH), 128.28, 128.03 (ArCH), 125.53 (ArCH), 124.64 (ArC), 122.78 (ArCH), 122.42 (q, ³J_{C-F} = 5.6 Hz, ArCH), 121.11 (ArC), 119.81 (ArCH), 77.20 (COH), 59.41 (*C*H₂), 28.11 (*C*H₃). MS [ESI, m/z]: 501.1 [M+H⁺], 523.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 20.01 mins.

3-(2,4-Difluorophenylsulfinyl)-2-hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl) **phenyl) propanamide (29)** yield 80%.

¹H NMR (CDCl₃) δ 9.82 (s, 1H, NH), 8.81 (d, *J* = 9 Hz, 1H, Ar*H*), 8.60 (d, *J* = 3 Hz, 1H, Ar*H*), 8.50 (dd, *J* = 2.5, 9 Hz, 1H, Ar*H*), 7.21 (m, 1H, Ar*H*), 7.85 (m, 1H, Ar*H*), 6.99 (m, 1H, Ar*H*), 5.81 (s, 1H, OH), 3.85 (dd, *J*= 2, 13 Hz, 1H, CH₂), 3.12 (d, *J*= 13 Hz, 1H, CH₂), 1.62 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.58, -103.02, -109.35; ¹³C NMR (CDCl₃) δ 173.18 (C=O), 157.92 (d, ¹J_{C-F} = 237.5 Hz, ArC), 157.82 (d, ¹J_{C-F} = 237.5 Hz, ArC), 143.29 (ArC), 140.43 (ArC), 128.26 (ArCH), 127.38 (ArC), 127.01 (m, ArCH), 123.91 (m, CF₃), 122.84 (ArCH), 122.44 (q, ³J_{C-F} = 5 Hz, ArCH), 119.97 (m, ArC), 113.39 (m, ArCH), 105.10 (m, ArCH), 76.95 (COH), 59.67 (CH₂), 28.16 (CH₃). MS (ES+) m/z: 453.1 [M+H⁺], 475.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 18.00 mins.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(4-(trifluoro methoxy)phenylsulfinyl)propanamide (30) yield 76 %.

¹H NMR (CDCl₃) δ 9.46 (s, 1H, N*H*), 8.26 (d, *J* = 2 Hz, 1H, Ar*H*), 8.00 (dd, *J* = 2.5, 8.5 Hz, 1H, Ar*H*), 7.87 (d, *J* = 8.5 Hz, 1H, Ar*H*), 7.75 (d, *J*= 9 Hz, 2H, Ar*H*), 7.47 (d, *J*= 8 Hz, 2H, Ar*H*), 6.00 (s, 1H, O*H*), 3.57 (d, *J*= 13 Hz, 1H, C*H*₂), 3.07 (d, *J* = 13 Hz, 1H, C*H*₂), 1.61 (s, 3H, C*H*₃); ¹⁹F NMR (CDCl₃) δ -62.18, -57.79; ¹³C NMR (CDCl₃) δ 173.37 (C=O), 151.81 (Ar*C*), 141.23 (Ar*C*), 140.63 (Ar*C*), 135.89 (Ar*C*H), 134.06 (m, Ar*C*), 128.56 (m, *C*F₃), 125.79 (Ar*C*H), 122.12 (Ar*C*H), 122.00 (Ar*C*H), 121.05 (m, *C*F₃), 117.50 (q, ³J_{C-F} = 4.6 Hz, Ar*C*H), 115.42 (*C*N), 105.13 (Ar*C*), 76.73 (*C*OH), 62.37 (*C*H₂), 28.25 (*C*H₃). MS (ES+) m/z: 481.1 [M+H⁺], 503.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 19.58 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(4-(trifluoromethoxy) phenylsulfinyl)propenamide (31) yield 73%.

¹H NMR (CDCl₃) δ 9.91 (s, 1H, N*H*), 8.79 (d, *J* = 9 Hz, 1H, Ar*H*), 8.60 (d, *J* = 2.5 Hz, 1H, Ar*H*), 8.50 (dd, *J* = 3, 9.5 Hz, 1H, Ar*H*), 7.75 (d, *J*= 9 Hz, 2H, Ar*H*), 7.46 (d, *J*= 8 Hz, 2H, Ar*H*), 6.22 (s, 1H, O*H*), 3.62 (d, *J*= 13.5 Hz, 1H, CH₂), 3.15 (d, *J*= 13 Hz, 1H, CH₂), 1.63 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.60 (s, 3F), -57.81 (s, 3F); ¹³C NMR (CDCl₃) δ 173.45 (C=O), 151.71 (Ar*C*), 143.27 (Ar*C*), 140.84 (Ar*C*), 140.41 (Ar*C*), 128.26 (Ar*C*H), 125.77 (Ar*C*H), 122.74 (q, ¹J_{C-F} = 272.5 Hz, CF₃), 122.78 (Ar*C*H), 122.50 (q, ³J_{C-F} = 6.3 Hz, Ar*C*H),

122.07 (Ar*C*H), 120.28 (q, ${}^{1}J_{C-F}$ = 257.9 Hz, *C*F₃), 120.13 (q, ${}^{2}J_{C-F}$ = 31.3 Hz, Ar*C*), 76.61 (*C*OH), 63.16 (*C*H₂), 28.10 (*C*H₃). MS (ES+) m/z: 501.1 [M+H⁺], 523.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 21.23 mins.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(5-(trifluoromethyl) pyridin-2-ylsulfinyl)propanamide (32a, fast moving) yield 26%

¹H NMR (CDCl₃) δ 9.22 (s, 1H, NH), 8.94 (m, 1H, ArH), 8.08 (m, 2H, ArH), 7.97 (s, 1H, ArH), 7.79 (m, 2H, ArH), 6.18 (s, 1H, OH), 3.74 (d, *J*= 14 Hz, 1H, CH₂), 3.63 (d, *J* = 14 Hz, 1H, CH₂), 1.73 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -62.31 (s, 3F), -62.51 (s, 3F); ¹³C NMR (CDCl₃) δ 172.33 (C=O), 166.85 (ArC), 146.98 (q, ³J_{C-F} = 3.8 Hz, ArCH), 141.10 (ArC), 135.86 (ArCH), 135.28 (q, ³J_{C-F} = 3.8 Hz, ArCH), 134.31 (q, ²J_{C-F} = 32.5 Hz, ArC), 128.34 (q, ²J_{C-F} = 33.6 Hz, ArC), 122.01 (q, ¹J_{C-F} = 272.6 Hz, CF₃), 119.84 (q, ¹J_{C-F} = 269.1 Hz, CF₃), 117.01 (q, ³J_{C-F} = 5 Hz, ArCH), 115.34 (CN), 104.93 (ArC), 76.56 (COH), 57.35 (CH₂), 27.64 (CH₃). MS (ES+) m/z: 466.1 [M+H⁺], 488.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 18.87 mins.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(5-(trifluoro methyl) pyridin-2-ylsulfinyl)propanamide (32b, slow moving), yield 43.7%.

¹H NMR (CDCl₃) δ 9.42 (s, 1H, NH), 8.97 (m, 1H, ArH), 8.27 (dd, *J* = 2, 8 Hz, 1H, ArH), 8.21 (d, *J* = 2 Hz, 1H, ArH), 8.16 (d, *J* = 8 Hz, 1H, ArH), 8.04 (dd, *J*= 2, 8.5 Hz, 1H, ArH), 7.86 (d, *J*= 8.5 Hz, 1H, ArH), 5.75 (s, 1H, OH), 4.00 (d, *J*= 13 Hz, 1H, CH₂), 3.27 (d, *J* = 13Hz, 1H, CH₂), 1.66 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -62.18 (s, 3F), -62.42 (s, 3F); ¹³C NMR (CDCl₃) δ 172.94 (C=O), 167.70 (ArC), 147.10 (q, ³J_{C-F} = 3.8 Hz, ArCH), 141.35 (ArC), 135.90 (ArCH), 135.80 (q, ³J_{C-F} = 3.8 Hz, ArCH), 134.00 (q, ²J_{C-F} = 32.5 Hz, ArC), 128.32 (q, ²J_{C-F} = 33.8 Hz, ArC), 122.71 (q, ¹J_{C-F} = 274.3 Hz, CF₃), 122.11 (q, ¹J_{C-F} = 272.3 Hz, CF₃), 122.02 (ArCH), 119.88 (ArCH), 117.49 (q, ³J_{C-F} = 5 Hz, ArCH), 115.45 (CN), 104.95 (ArC), 76.40 (COH), 60.14 (CH₂), 27.87 (CH₃). MS (ES+) m/z: 466.1 [M+H⁺], 488.1 [M+Na⁺]. t_R = 18.79 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(5-(trifluoromethyl) pyridin-2-ylsulfinyl)propanamide (33a, fast moving) yield 31.2%.

¹H NMR (CDCl₃) δ 9.79 (s, 1H, N*H*), 8.95 (m, 1H, Ar*H*), 8.56 (d, *J* = 2.5 Hz, 1H, Ar*H*), 8.52 (d, *J* = 9.5 Hz, 1H, Ar*H*), 8.40 (dd, *J* = 2.5, 9.5 Hz, 1H, Ar*H*), 8.14 (d, 8.5 Hz, 1H, Ar*H*), 8.07

(ddd, J= 0.5, 2, 8.5 Hz, 1H, Ar*H*), 6.28 (s, 1H, O*H*), 3.75 (d, J= 14 Hz, 1H, C*H*₂), 3.63 (d, J= 14 Hz, 1H, C*H*₂), 1.76 (s, 3H, C*H*₃); ¹⁹F NMR (CDCl₃) δ -61.60 (s, 3F), -62.47 (s, 3F); ¹³C NMR (CDCl₃) δ 172.33 (C=O), 166.45 (Ar*C*), 146.87 (q, ${}^{3}J_{C-F} = 4.1$ Hz, Ar*C*H), 142.96 (Ar*C*), 140.29 (Ar*C*), 135.39 (q, ${}^{3}J_{C-F} = 3.8$ Hz, Ar*C*H), 128.30 (Ar*C*H), 128.05 (Ar*C*), 123.82 (Ar*C*), 122.44 (q, ${}^{3}J_{C-F} = 5$ Hz, Ar*C*H), 121.76 (Ar*C*H), 121.64 (m, CF₃), 120.81 (m, CF₃), 120.36 (Ar*C*H), 76.53 (COH), 57.50 (CH₂), 27.69 (CH₃). MS (ES+) m/z: 486.1 [M+H⁺], 508.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 20.02 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(5-(trifluoro methyl)pyridin-2-ylsulfinyl)propanamide (33b, slow moving) yield 49.7%.

¹H NMR (CDCl₃) δ 9.82 (s, 1H, NH), 8.97 (m, 1H, ArH), 8.81 (d, *J* = 9 Hz, 1H, ArH), 8.59 (d, *J* = 2.5 Hz, 1H, ArH), 8.49 (dd, *J* = 2.5, 9 Hz, 1H, ArH), 8.28 (dd, *J*=2, 8 Hz, 1H, ArH), 8.19 (d, *J*= 8.5 Hz, 1H, ArH), 5.77 (bs, 1H, OH), 4.02 (d, *J*= 13 Hz, 1H, CH₂), 3.29 (d, *J*= 13 Hz, 1H, CH₂), 1.65 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.58 (s, 3F), -62.40 (s, 3F); ¹³C NMR (CDCl₃) δ 172.97 (*C*=O), 168.10 (Ar*C*), 147.01 (q, ³J_{C-F} = 4.1 Hz, Ar*C*H), 143.22 (Ar*C*), 140.46 (Ar*C*), 135.85 (q, ³J_{C-F} = 3.6 Hz, Ar*C*H), 128.34 (Ar*C*), 128.32 (Ar*C*H), 123.86 (Ar*C*), 122.74 (Ar*C*H), 122.47 (q, ³J_{C-F} = 5.6 Hz, Ar*C*H), 119.12 (q, ¹J_{C-F} = 242.5, Hz, 2CF₃), 119.91 (Ar*C*H), 76.57(COH), 59.39 (CH₂), 27.83 (CH₃). MS [ESI, m/z]: 486.1 [M+H⁺], 508.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 19.99 mins.

3-(3,4-Difluorophenylsulfinyl)-2-hydroxy-2-methyl-*N***-(4-nitro-2-(trifluoromethyl) phenyl) propanamide (34a,** fast moving) yield 26%.

1H NMR (CDCl₃) δ 9.78 (s, 1H, N*H*), 8.59 (d, *J*= 9.5 Hz, 1H, Ar*H*), 8.57 (d, *J*= 2.5 Hz, 1H, Ar*H*), 8.42 (dd, *J* = 2.5, 9 Hz, 1H, Ar*H*), 7.56 (m, 1H, Ar*H*), 7.40 (m, 1H, Ar*H*), 7.35 (m, 1H, Ar*H*), 6.00 (s, 1H, O*H*), 3.43 (d, *J*= 14 Hz, 1H, CH₂), 3.23 (d, *J*= 14 Hz, 1H, CH₂), 1.84 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.64 (s, 3F), -130.81 (s, F), -132.56 (s, F); ¹³C NMR (CDCl₃) δ 172.12 (C=O), 153.52 (Ar*C*), 153.44 (Ar*C*), 143.06 (Ar*C*), 140.33 (Ar*C*), 137.72 (Ar*C*), 128.22 (Ar*C*H), 123.81 (Ar*C*), 122.45 (q, ³J_{C-F} = 5 Hz, Ar*C*H), 121.81 (Ar*C*H), 120.75 (m, Ar*C*H), 120.55 (Ar*C*), 118.83 (d, ²J_{C-F} = 18.8 Hz, Ar*C*H), 113.93 (d, ²J_{C-F} = 20 Hz, Ar*C*H), 76.66 (COH), 59.62 (CH₂), 26.67 (CH₃). MS (ES+) m/z: 453.1 ([M+H]⁺, 475.0 [M+Na]⁺. HPLC, t_R = 20.39 min.

3-(3,4-Difluorophenylsulfinyl)-2-hydroxy-2-methyl-*N***-(4-nitro-2-(trifluoromethyl) phenyl)propanamide (34b,** slow moving) yield 48%

¹H NMR (CDCl₃) δ 9.86 (s, 1H, NH), 8.79 (d, *J*= 9.5 Hz, 1H, Ar*H*), 8.60 (d, *J*= 2.5 Hz, 1H, Ar*H*), 8.51 (dd, *J* = 3, 9.5 Hz, 1H, Ar*H*), 7.60 (m, 1H, Ar*H*), 7.43 (m, 2H, Ar*H*), 5.94 (s, 1H, OH), 3.58 (d, *J*= 13 Hz, 1H, CH₂), 3.07 (d, *J*= 13 Hz, 1H, CH₂), 1.61 (s, 3H, CH₃). ¹⁹F NMR (CDCl₃) δ -61.58 (s, 3F), -130.65 (s, F), -132.17 (s, F); ¹³C NMR (CDCl₃) δ 173.37 (C=O), 152.28 (Ar*C*), 151.54 (Ar*C*), 143.32 (Ar*C*), 140.34 (Ar*C*), 139.22 (Ar*C*), 128.27 (Ar*C*H), 122.81 (Ar*C*H), 122.50 (q, ³J_{C-F} = 6.3 Hz, Ar*C*H), 123.81 (Ar*C*), 120.08 (Ar*C*), 120.50 (m, Ar*C*H), 119.05 (d, ²J_{C-F} = 18.8 Hz, Ar*C*H), 113.56 (d, ²J_{C-F} = 18.8 Hz, Ar*C*H), 76.83 (COH), 62.30 (CH₂), 28.22 (CH₃). MS (ES+) m/z: 453.1 [M+H⁺], 475.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 20.16 mins.

2. Cell growth inhibition viability Assay

All bicalutamide derivatives were screened for their antiproliferative activity using the Oncotest monolayer assay against four human prostate cancer cell lines (22Rv1, DU-145, LNCaP and VCap). Bicalutamide and Enzalutamide were used as positive controls. A modified propidium iodide (PI) based monolayer assay was used to assess the anticancer activity of the compounds. Briefly, cells were harvested from exponential phase cultures, counted and plated in 96- well flat-bottom microtiter plates at a cell density of 8000–12,000 cells/well. After a 24 h recovery period to allow the cells to resume exponential growth, 10 µL of culture medium (six control wells/plate) or culture medium with test compound were added. The compounds were applied in half-log increments at 10 concentrations in triplicate. After a total treatment period of 96 h, cells were washed with 200 µL PBS to remove dead cells and debris. Then, 200 mL of a solution containing 7 mg/mL propidium iodide (PI) and 0.1% (v/v) Triton X-100 was added. After an incubation period of 1–2h at room temperature, fluorescence (FU) was measured using the EnSpire Multimode Plate Reader (excitation l= 530 nm, emission I = 620 nm) to quantify the amount of attached viable cells. IC_{50} values were calculated by 4 parameter non-linear curve fit using Oncotest Warehouse Software. For calculation of mean IC₅₀ values the geometric mean was used.³⁸

3. X-ray crystal structure determination of compound 34

Single-crystal XRD data were collected at room temperature on an Agilent SuperNova Dual Atlas diffractometer with a mirror monochromator using Cu (λ =1.5418 Å) radiation. Crystal structures were solved using SHELXS ³⁵ and refined using SHELXL. ³⁶ Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were inserted in idealized positions, and a riding model was used with Uiso set at 1.2 or 1.5 times the value of Ueq for the atom to which they are bonded. 34a: C₁₇H₁₃F₅N₂O₅S, FW = 452.35, T = 296(2) K, Monoclinic, P21/c, a = 14.3383(3) Å, b = 12.1211(2) Å, c = 10.8432(2) Å, β = 93.254(2), V = 1881.47(6) ų, Z = 4, $D_{cal} = 1.597 \text{ Mg/m}^3$, m = 2.309 mm⁻¹, Crystal size = 0.436 x 0.187 x 0.113 mm³, Reflections collected = 17738, Independent reflections = 3946, R_{int} = 0.0268, Parameters = 274, G-o-f = 1.065, Final R1 = 0.0403, wR2 = 0.1116 on (I > 2s(I)), R1 = 0.0473, wR2 = 0.1199 on all data. 34b: C₁₇H₁₃F₅N₂O₅S, FW = 452.35, T = 296(2) K, Monoclinic, I2/a, a = 13.1919(3) Å, b = 11.2526(2) Å, c = 25.9866(5) Å, β = 99.610(2), V = 3803.40(13) Å³, Z = 8, D_{cal} = 1.580 Mg/m³, m = 2.285 mm⁻¹, Crystal size = 0.395 x 0.225 x 0.173 mm³, Reflections collected = 17851, Independent reflections = 3997, R_{int} = 0.0185, Parameters = 273, G-o-f = 1.051, Final R1 = 0.0381, wR2 = 0.1041 on (I > 2s(I)), R1 = 0.0401, wR2 = 0.1069 on all data. CCDC 2040881-2040882 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

4. Docking studies

The X-ray crystal structure of the human androgen receptor – ligand binding domain hAR-LBD was downloaded from the Protein Data Bank (PDB code; 3RLJ)²⁶ and prepared for docking using the MOE (Molecular Operating Environment)³⁹ protein preparation tools. The chemical structures of our compounds were constructed, rendered and minimized with the MMFF94x force field in MOE. The docking simulations were performed using MOE default settings. The docking output database was saved as a mol2 file, and the visual inspection of the docking modes was performed in MOE.

NAME	CM-SK65ox(4)	
EXPNO PROCNO	1	
Date	20140206	
Time	16.09	
INSTRUM	Avance500	
PROBHD	5 mm ONP 1H/13	
PULPROG	~ zq30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10330.578	Ηz
FIDRES	0.157632	Ηz
AQ	3.1719923	sec
RG	812	
DW	48.400	use
DE	6.50	use
	291.2	n aaa
	1.00000000	sec
IDU	Ţ	
	CHANNEL fl ====	
NUC1	1H	
P1	11.50	use
PL1	-1.00	dB
PL1W	11.38419914	W
SF01	500.1330885	MHz
SI	65536	
SF	500.1300000	MHz
WDW	EM	
SSB	0 20	TT
СР	0.30	пΖ
GD DC	1 00	
T C	1.00	

CM-SK65ox(4) NAME EXPNO 2 PROCNO 1 20140206 Date_ Time 16.11 INSTRUM Avance500 PROBHD 5 mm QNP 1H/13 zgfhigqn 131072 PULPROG TD SOLVENT CDC13 16 NS DS 4 113636.367 Hz SWH 0.866977 Hz FIDRES 0.5767668 sec AQ 2300 RG DW 4.400 use 6.00 use DE 291.2 K ΤE D1 1.00000000 sec 0.03000000 sec D11 D12 0.00002000 sec TD0 1 ====== CHANNEL f1 ====== NUC1 19F 18.60 use Ρ1 -1.50 dB PL1 PL1W 11.14113998 W 470.5453180 MHz SF01 ====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 use -2.00 dB PL2 14.85 dB PL12 PL2W 14.33185768 W 0.29600734 W PL12W SFO2 500.1320005 MHz SI 65536 SF 470.5923770 MHz ΕM WDW SSB 0 0.30 Hz LB GΒ 0 РC 1.40

	CI	1-SF	ς6	4	(6	5 C	X_	_4)		
EXPNO									1		
PROCNO									1		
Date_				2	0	1	40	21	1		
Time							19	.1	6		
INSTRUM			А	v	a	n	се	250	0		
PROBHD	5	mm	Q	Ν	Ρ		1H	[/1	3		
PULPROG					р	e	nċ	lan	ıt		
TD					-		65	53	6		
SOLVENT						(CD	Cl	3		
NS								51	2		
DS									4		
SWH			2	9	7	6	1.	90	4	Ηz	
FIDRES				0		4	54	13	1	Ηz	
AQ			1		1	0	10	54	8	sec	
RG							3	25	0		
DW						1	6.	80	0	used	С
DE							12	.0	0	used	С
TE							29	8.	1	K	
CNST2		14	15		0	0	00	00	0		
D1		2	2.	0	0	0	00	00	0	sec	
D4		().	0	0	1	72	41	4	sec	
D12		().	0	0	0	02	00	0	sec	
D15		().	0	0	4	31	03	4	sec	
D20		().	0	0	3	45	00	0	sec	
TDO									4		
	CF	IANI	νE	L		f	1				_
======= NUC1	Cł	IANI	νE	L		f	1	== 13	== C		=
====== NUC1 P1	CI	IANI	νE	L		f	1 7	== 13	C 0	use	=
====== NUC1 P1 P2	CH	IANI	νE	L		f	1 7 14	== 13 .2	C 0	useo	
====== NUC1 P1 P2 PL1	CH	IANI	νE	L		f	1 7 14 -2	== 13 .2 .4	C 0 0	useo useo dB	
======= NUC1 P1 P2 PL1 PL1W	Cł	101	NE	L 2	7	f 8	1 7 14 -2 46	== 13 .2 .4 .0	C 0 0 7	useo useo dB W	
======= NUC1 P1 P2 PL1 PL1W SF01	Cł	101 12	NE 1. 25	L 2	7 7	f 8 7	1 7 14 -2 46 03	== 13 .2 .4 .0 52	C 0 0 7 3	useo useo dB W MHz	
======= NUC1 P1 P2 PL1 PL1W SF01	CH	101 12	NE 1.	L 2	7 7	f 8 7	1 7 14 -2 46 03	== 13 .2 .4 .0 52 64	C 0 0 7 3	useo useo dB W MHz	
NUC1 P1 P2 PL1 PL1W SF01	CH	IO 10 12 HANN	NE L. 25	L 2	77	f 8 7 f	1 7 14 -2 46 03	== 13 .2 .4 .0 52 64 ==	C 0 0 7 3	used used dB W MHz	
NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2	CH	IOI 101 12	NE 25 NE	L 2	7 7 W	f 8 7 f	1 74 -2 46 03 2 1t	== 13 .2 .4 .0 52 64 == .21	EC 0 0 7 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	useo useo dB W MHz	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2	CH	IANN 101 12 IANN	NE 25 NE	L 2	7 7 W	f 8 7 f	1 7 14 -2 46 03 2 1t	== 13 .2 .4 .0 552 64 == .21	C 0 0 7 3 	used used dB W MHz	
NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3	CH	IOI 101 12	NE 25 NE	L 2	7 7 W	f 8 7 f	1 74 -2 46 03 2 1t	== 13 .2 .4 .0 52 64 == .21 1 .5	C 0 0 7 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	useo useo dB W MHz ====	
NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4	CH	IOI 101 12	NE 25 NE	1 2 1	7 7 W	f 8 7 f	1 74 -2 46 03 2 1t 11	== 13 .2 .4 .0 552 64 == 1 .5 .0	C 0 0 7 3 6 H 0 0	useo useo dB MHz useo useo	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 P202	CH	101 12 HAND	NE 25 NE	1 2 1	7 7 ₩	f 8 7 f	1 7 14 -2 46 03 2 1 1 1 23 80	== 13 .2 .4 .0 552 64 == 1 .5 .0 .0	C 0 0 0 7 3 6 H 0 0 0 0	useo dB W MHz useo useo	
NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2	CH	101 12 HANN	NE 25 NE	1 2 1	7 7 W	f 87 f	1 74 -2 46 03 21t 11 23 80 -2	== 13 .2 .4 .0 52 64 == 1 1 .5 .0 .0 .0	C 0 0 0 7 3 6 H 0 0 0 0 0	useo dB W MHz useo useo dB	
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	CH	HANN 101 12 HANN	NE 25 NE	L 2 L	7 7 w	f 87 f a	1 74 463 21t 11 230 -2 14	== 13 .2 .4 .0 52 64 == .1 .0 .52 .64 .0 .0 .0 .0 .0	C 0 0 0 7 3 6 H 0 0 0 5	useo dB W MHz useo useo dB dB	
NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL12 PL12 PL2W	CH	101 12 HANN	VE 25 VE	L 2. L	77 ₩ 3	f 87 f a	1 74-26 03 21t 1123 22 14	=== 13 .2 .4 .0 552 64 === 1 1 .5 0 .0 0 .0 0 .0 0 .8 6 7 6	C 0 0 7 3 6 H 0 0 0 5 8	useo dB W MHz useo useo dB dB W	
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	CH	100 12 HANN 14		L 2 L 32	77 ₩ 391	f 87 fa 16	1 74 -26 03 21t 123 21t 123 -24 85 00	== 13 .2 .4 .0 52 64 == 1 1 .5 .0 .0 .0 .0 .8 .76	C 0 0 0 7 3 6 H 0 0 0 0 5 8 4	useo dB W MHz ==== useo useo dB dB W W	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02	CH	10: 12 HANN 14 (50	1. 2.5 1. 1. 2.5 1. 2.5	L 2 · L 32 ·	77 ₩ 391	f 87 fa 163	1 74 246 21t 123 21t 123 20 20 20 20 20 20 20 20 20 20 20 20 20	== 13 2.4 0522 64 == 21 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	C00073 6H00005845	used dB W MHz used used dB dB W W W MHz	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL12W PL12W SF02 SI	CH	101 12 HANN 14 (50	125 NE	L 2 · L 32 ·	77 w 391	f 87 fa 163	1 74 -403 21t 11 200 21t 11 200 200 200 200 200 200 200 200 200 2	== 13 2.4 552 64 == 1 1 52 64 = 1 1 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C00073 6H000058458	usee dB W MHz usee usee dB dB W W W MHz	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02 SI SF UDV	CH	101 12 HANN 14 (50 12	4 · 0 · 0 2 5	L 2 · L 32 ·	77 ₩ 391 7	f 87 fa 163 5	1 742603 21t 1230214 850202377	== 13 2.4 52 64 == 13 52 64 == 10 00 00 00 00 00 00 00 00 00	C00073 6H0000584580	usee dB W MHz usee usee dB dB dB W W MHz MHz	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF WDW SCD	CH	103 12 HANN 14 (50 12	125 NE 125 NE	L 2 · L 32 ·	77 7 391 7	f 87 f a 163 5	1 74263 21t 1230232 77	== 13 2.2 4.0 52 64 == 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0	C00073 6H0000584580Mc	usee dB W MHz usee usee dB dB W W MHz MHz	
======= NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02 SI SF WDW SSB LD	CH	103 12 HANN 14 (50 12	VE 25 VE 4 25	L 2. L 32.	77 7 391 7	f 87 fa 163 5	1 7403 21 120023277 1	== 132.24 10522664 == 115.00 00.08 07300 2769 E 289 E	C00073 6H0000584580M00	usee dB W MHz ==== usee dB dB W W MHz MHz	
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF WDW SSB LB	CH	101 12 HANN 14 (50	VE 25 VE 4 20.0 25	L 2. L 32.	77 7 391 7	f 87 f a 163 5	1 74 203 21t 1230 22 14 50 202 77 1	== 13 2.2 4.0 522 64 == 11 50 00 .0 876 100 .0 .0 .0 .0 .0 .0 .0 .0 .0	C00073 6H0000584580M000	usee dB W MHz ==== usee dB dB W W MHz Hz	
NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF WDW SSB LB GB	CH	101 12 HANN 14 (50	1 • 1 • 2 5 1	L 2. L 32.	77 7 391 7	f 87 fa 163 5	1 74 12 21 12 80 22 77 1	== 132.40 524.00 524 == 11 500 00.00 769 E .00 .00 .00 .00 .00 .00 .00	C00073 6H0000584580M0000	usee dB W MHz usee dB dB W W MHz MHz Hz	

Area % Report

Sample ID: SK64_2nd -- C:\Documents and Settings\user\Desktop\Sahar\Data\SK64_2nd-ACN_W_10-90-263nm.met-14-02-2014 11-40-54.dat Method: C:\Documents and Settings\user\Desktop\Sahar\ACN_W_10-90-263nm.met Acquired: 14/02/2014 11:41:38; Printed: 14/02/2014 12:20:19 Analysis Comment: {Data Description}

NAME	CM-SK41_31ox(2)	
EXPNO	1	
Date	⊥ 20131204	
Date_ Time	13 /6	
TNGTRIM	Avance500	
PROBHD	5 mm ONP 1 H / 13	
PIILPROG	2 Mill 201 111/10	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10330.578	Ηz
FIDRES	0.157632	Ηz
AQ	3.1719923	sec
RG	512	
DW	48.400	use
DE	6.50	use
TE	292.3	K
D1	1.00000000	sec
TDO	1	
	CHANNEL f1 ====	===
NUC1	1H	
P1	11.50	use
PL1	-1.00	dB
PL1W	11.38419914	W
SF01	500.1330885	MHz
SI	65536	
SF	500.1300000	MHz
WDW	EM	
SSB	0	
TR	0.30	ΗZ
GB	1 00	
РU	1.00	

-20

-40

0

-120

-140

-160

-180

CM-SK41_31ox(2) NAME EXPNO 2 PROCNO 1 20131204 Date_ Time 13.48 INSTRUM Avance500 PROBHD 5 mm QNP 1H/13 zgfhigqn 131072 PULPROG TD SOLVENT CDC13 16 NS DS 4 113636.367 Hz SWH 0.866977 Hz FIDRES 0.5767668 sec AQ 1440 RG DW 4.400 use 6.00 use DE 292.6 K ΤE D1 1.00000000 sec 0.03000000 sec D11 D12 0.00002000 sec TD0 1 ====== CHANNEL f1 ====== NUC1 19F 18.60 use Ρ1 -1.50 dB PL1 PL1W 11.14113998 W SF01 470.5453180 MHz ====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 use -2.00 dB PL2 14.85 dB PL12 PL2W 14.33185768 W 0.29600734 W PL12W SFO2 500.1320005 MHz SI 65536 SF 470.5923770 MHz ΕM WDW SSB 0 0.30 Hz LB GΒ 0 РC 1.40

-200

ppm

NAME	CM-SK41_310x(2)
EXPNO	3	
PROCNO	1	
Date_	20131204	
Time	13.55	
INSTRUM	Avance500	
PROBHD	5 mm QNP 1H/13	
PULPROG	pendant	
TD	65536	
SOLVENT	CDC13	
NS	256	
DS	4	
SWH	29761.904	Ηz
FIDRES	0.454131	Hz
AO	1 1010548	500
RG	3250	500
DW	16 800	11560
DF	12 00	11900
TF	292 8	K K
CNGT2	1/15 0000000	11
	2 0000000	000
		200
D4 12	0.001/2414	Sec
DIZ D15	0.00002000	sec
DIJ	0.00431034	sec
	0.00343000	sec
IDU	۷. ۲	
	CHANNEL f1 ===	
======================================	CHANNEL f1 ===	=====
======= NUC1 P1	CHANNEL f1 === 13C 7 20	
======= NUC1 P1 P2	CHANNEL f1 === 13C 7.20	usec
======= NUC1 P1 P2 PI 1	CHANNEL f1 === 13C 7.20 14.40 -2.00	usec usec
======= NUC1 P1 P2 PL1 PL1W	CHANNEL f1 === 13C 7.20 14.40 -2.00	usec usec dB
NUC1 P1 P2 PL1 PL1W SF01	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125 7703643	usec usec dB W
NUC1 P1 P2 PL1 PL1W SF01	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643	usec usec dB W MHz
======= NUC1 P1 P2 PL1 PL1W SF01	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 ===	usec usec dB W MHz
======= NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16	usec usec dB W MHz
NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H	usec usec dB W MHz
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50	usec usec dB W MHz =====
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00	usec usec dB W MHz ====== usec usec
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80 00	usec usec dB W MHz ====== usec usec
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00	usec usec dB W MHz ====== usec usec dB
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.500 23.00 80.00 -2.00 14.85	usec usec dB W MHz ====== usec usec usec dB dB
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 14.85 14.33185768	usec dB W MHz usec usec usec dB dB W
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL22 PL22 PL22 PL12 PL2W PL12W PL12W	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734	usec dB W MHz ====== usec usec dB dB W W W
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL12 PL12W PL12W SF02	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734 500 1320005	usec dB W MHz ====== usec usec dB dB W W W MHz
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02 ST	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734 500.1320005	usec usec dB W MHz usec usec usec dB dB W W W MHz
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734 500.1320005 32768	usec usec dB W MHz usec usec usec dB dB W W W MHz MHz
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL2 PL12 PL12W SF02 SI SF WDW	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734 500.1320005 32768 125.7577890	usec usec dB W MHz usec usec usec dB dB W W MHz MHz
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL2 PL12 PL2W PL12W SF02 SI SF WDW SSB	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734 500.1320005 32768 125.7577890 EM	usec usec dB W MHz usec usec usec dB dB W W MHz MHz
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF SF SF SB LB	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734 500.1320005 32768 125.7577890 EM	usec dB W MHz ===== usec usec dB dB W W MHz MHz
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF SF SB LB CB	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734 500.1320005 32768 125.7577890 EM 0	usec usec dB W MHz ===== usec usec dB dB W W MHz MHz Hz
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	CHANNEL f1 === 13C 7.20 14.40 -2.00 101.27846527 125.7703643 CHANNEL f2 === waltz16 1H 11.50 23.00 80.00 -2.00 14.85 14.33185768 0.29600734 500.1320005 32768 125.7577890 EM 0 1.00	usec dB W MHz ===== usec usec dB dB W W MHz Hz

n din kalan bahan ba Ang din kalan bahan b

Area % Report

Sample ID: SK41 -- C:\Documents and Settings\user\Desktop\Sahar\Data\SK41-ACN_W_10-90-263nm.met-02-12-2013 15-34-41.dat Method: C:\Documents and Settings\user\Desktop\Sahar\ACN_W_10-90-263nm.met Acquired: 02/12/2013 15:35:15; Printed: 02/12/2013 16:18:18 Analysis Comment: {Data Description}

CM-SK62(62B) NAME EXPNO 1 PROCNO 1 20140117 Date_ 9.11 Time INSTRUM Avance500 PROBHD 5 mm QNP 1H/13 zg30 65536 PULPROG TD CDC13 SOLVENT 16 NS DS 2 10330.578 Hz SWH 0.157632 Hz 3.1719923 sec 724 FIDRES AQ RG 48.400 use DW 6.50 use DE ΤE 291.2 K 1.00000000 sec D1 TD0 1 ====== CHANNEL fl ====== 1H NUC1 11.50 use Ρ1 PL1 -1.00 dB 11.38419914 W PL1W 500.1330885 MHz SF01 SI 65536 SF 500.1300000 MHz ΕM WDW 0 SSB LB 0.30 Hz GΒ 0 РC 1.00

0

-20

-40

-100

-120

-140

-160

-180

CM-SK62(62B) NAME EXPNO 2 PROCNO 1 20140117 Date_ Time 9.12 INSTRUM Avance500 PROBHD 5 mm QNP 1H/13 zgfhigqn 131072 PULPROG TD SOLVENT CDC13 16 NS DS 4 113636.367 Hz SWH 0.866977 Hz FIDRES 0.5767668 sec AQ 2300 RG DW 4.400 use 6.00 use DE 291.4 K ΤE D1 1.00000000 sec 0.03000000 sec D11 D12 0.00002000 sec TD0 1 ====== CHANNEL f1 ====== NUC1 19F 18.60 use Ρ1 -1.50 dB PL1 PL1W 11.14113998 W 470.5453180 MHz SF01 ====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 use -2.00 dB PL2 14.85 dB PL12 PL2W 14.33185768 W 0.29600734 W PL12W SFO2 500.1320005 MHz SI 65536 SF 470.5923770 MHz ΕM WDW SSB 0 0.30 Hz LB GΒ 0 РC 1.40

ppm

NAME CM-SK62(B) EXPNO 1 PROCNO 20140121 Date_ Time 19.11 INSTRUM Avance500 5 mm QNP 1H/13 PROBHD pendant PULPROG 65536 ТD SOLVENT CDC13 NS 512 DS 4 SWH 29761.904 Hz 0.454131 Hz FIDRES AQ 1.1010548 sec 3250 RG DW 16.800 usec 12.00 usec DE 291.7 K ΤE CNST2 145.0000000 2.00000000 sec D1 D4 0.00172414 sec 0.00002000 sec D12 D15 0.00431034 sec D20 0.00345000 sec TD0 4 ====== CHANNEL f1 ======= NUC1 13C 7.20 usec Ρ1 P2 14.40 usec -2.00 dB PL1 101.27846527 W PL1W SF01 125.7703643 MHz ====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H 11.50 usec РЗ Ρ4 23.00 usec PCPD2 80.00 usec -2.00 dB PL2 PL12 14.85 dB 14.33185768 W PL2W PL12W 0.29600734 W 500.1320005 MHz SFO2 32768 SI SF 125.7577890 MHz ΕM WDW SSB 0 1.00 Hz LB GB 0 PC 1.40

0

Page 1 of 1

Area % Report

Sample ID: SK62B -- C:\Documents and Settings\user\Desktop\Sahar\Data\SK62B-ACN_W_10-90-263nm.met-16-01-2014 16-17-57.dat Method: C:\Documents and Settings\user\Desktop\Sahar\ACN_W_10-90-263nm.met Acquired: 16/01/2014 16:20:43; Printed: 16/01/2014 17:01:28 Analysis Comment: {Data Description}

Supporting Information

Synthesis, biological evaluation and X-ray analysis of bicalutamide sulfoxide analogues for the potential treatment of prostate cancer Sahar B. Kandil^{a*}, Benson M. Kariuki^b, Christopher McGuigan^a and Andrew D. Westwell^a

^aSchool of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, Wales, United Kingdom. ^bSchool of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.

1. Chemistry

All chemicals were purchased from Sigma-Aldrich or Alfa Aesar and were used without further purification. Thin Layer Chromatography (TLC): pre-coated aluminium backed plates (60 F254, 0.2 mm thickness, Merck) were visualized under both short and long wave UV light (254 and 366 nm). Flash column chromatography was carried out using silica gel supplied by Fisher (60A, 35-70 mm) ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded on a Bruker Avance 500 MHz spectrometer at 25°C. Chemical shifts (δ) are expressed in parts per million (ppm) and coupling constants (J) are given in hertz (Hz). The following abbreviations are used in the assignment of NMR signals: s (singlet), bs (broad singlet); d (doublet), t (triplet), q (quartet), qn (quintet), m (multiplet), dd (doublet of doublet), dt (doublet of triplet), td (triple doublet); dq (double quartet), m (multiplet), dm (double multiplet).

The purity of the final compounds was verified to be >95% by reverse-phase HPLC analysis using either I) Thermo SCIENTIFIC, SPECTRA SYSTEM P4000, detector SPECTRA SYSTEM UV2000, Varian Pursuit XRs 5 C18, 150 x 4.6 mm (as an analytic column) or II) Varian Prostar (LC Workstation-Varian Prostar 335 LC detector), Thermo SCIENTIFIC Hypersil Gold C18, 5 μ , 150 x 4.6 mm (as an analytic column) with a gradient elution of H₂O/ CH₃CN from 90/10 to 0/100 in 30 min, Flow = 1 mL/min, λ = 275 nm. Mass spectra were measured by Bruker Daltonics microTof-LC, in positive mode electrospray ionization (ESI).

^{*} Email: kandils1@cf.ac.uk

1.1 General method for the preparation of intermediates 4-5

Methacryloyl chloride **3** (8.4 mL, 85.96 mmol) was added over the course of 10 minutes to a stirring solution of the appropriate trifluoromethylaniline **1-2** (10.75 mmol) in N,N-dimethylacetamide (10 mL) at room temperature for 24h. After the reaction was complete, the mixture was diluted with ethyl acetate (100 mL), extracted with saturated NaHCO₃ solution (2 x 50 mL) then cold brine (2 x 50 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude oil residue was purified by flash column chromatography eluting with chloroform-ethyl acetate 95:5 v/v to obtain the titled compounds.

N-(4-cyano-3-(trifluoromethyl)phenyl)methacrylamide (4)¹⁹

Data in accordance with literature data. Yield; 92%. ¹H NMR (CDCl₃) δ 8.10 (d, *J* = 2Hz, 1H, Ar*H*), 8.06 (bs, 1H, N*H*), 8.01 (dd, J = 2, 8.5 Hz, 1H, Ar*H*), 7.81 (d, *J* = 8.5Hz, 1H, Ar*H*), 5.89 (d, *J* = 1Hz, 1H, CH₂), 5.62 (q, *J* = 1.5Hz, 1H, CH₂), 2.10 (dd, *J* = 0.5, 1.5 Hz, 3H, CH₃). ¹⁹F-NMR: (CDCl₃) δ -62.23.

N-(4-Nitro-2-(trifluoromethyl)phenyl)methacrylamide (5)¹⁹

Data in accordance with literature data. Yield; 94 %.¹H NMR (CDCl₃) δ 8.73 (d, J= 9 Hz, 1H, Ar*H*), 8.46 (d, J= 3 Hz, 1H, Ar*H*), 8.37 (dd, J= 9 Hz, 2.5 Hz, 1H, Ar*H*), 8.17 (bs, 1H, N*H*), 5.85 (q, J= 0.5 Hz, 1H, CH₂), 5.58 (q, J= 1.5 Hz, 1H, CH₂), 2.15-2.13 (dd, J= 1, 1.5 Hz, 1H, CH₃). ¹⁹F-NMR: (CDCl₃) d -61.31.

1.2 General method for the preparation of intermediates 6-7

To a stirred solution of the intermediate **4-5** (3 mmol) in DCM (7 mL) was added 30% hydrogen peroxide (3.6 mL, 32.03 mmol). The reaction mixture was placed in a water bath at rt and trifluoroacetic anhydride (3.7 mL, 26.7 mmol) was added slowly to the mixture, which was then stirred for 24 h. The reaction mixture was transferred to a separating funnel using DCM (30 mL). The organic layer was washed with distilled water (20 mL), sat. aq. Na₂S₂O₃ (4x20 mL), sat. aq. NaHCO₃ (3x20 mL) and brine (20 mL), dried over Na₂SO₄ and concentrated at reduced pressure.

N-(4-Cyano-3-(trifluoromethyl)phenyl)-2-methyloxirane-2-carboxamide (6)¹⁹

The data are in accordance with literature data. Obtained in 86% yield as a yellow solid. ¹H-NMR (CDCl₃): δ 8.38 (bs, 1H), 8.00 (d, J= 2.1 Hz, 1H), 7.88 (dd, J= 8.5 Hz, 2.1 Hz, 1H), 7.78 (d, J= 8.5 Hz, 1H), 3.00 (s, 2H), 1.68 (s, 3H).

2-Methyl-N-(4-nitro-2-(trifluoromethyl)phenyl)oxirane-2-carboxamide (7)¹²

Obtained in 71% yield as a yellow wax. ¹H-NMR (CDCl₃): δ 8.92 (bs, 1H), 8.74 (d, J= 9.6 Hz, 1H), 8.53 (d, J= 2.5 Hz, 1H), 8.44 (dd, J= 9.6 Hz, 2.5 Hz, 1H), 3.04 (d, J= 4.6 Hz, 1H), 3.02 (d, J= 4.6 Hz, 1H), 1.72 (s, 3H). ¹⁹F-NMR (CDCl₃): δ -61.69 (s, 3F). ¹³C-NMR (CDCl₃): δ 169.2, 142.9, 140.4, 128.35 (m), 123.7, 122.3 (m), 121.6, 119.2 (m), 56.5, 53.9, 16.4.

1.3 General method for the preparation of compounds 15-24.

To a mixture of sodium hydride (NaH) (60% in mineral oil, 0.050 g, 1.23 mmol) in anhydrous THF (2 mL) at 0 °C under Ar atmosphere was added a solution of the differently substituted thiophenol **8** - **14** (1.11 mmol) in 1 mL of anhydrous THF. This mixture was stirred at rt for 20 min. A solution of the intermediate **6** or **7** (0.74 mmol) in anhydrous THF (3 mL) was added slowly. The reaction mixture was stirred at room temperature for 24h. The mixture was then diluted with ethyl acetate (30 mL), washed with brine (15 mL) and water (30 mL), dried over Na₂SO₄ and concentrated under *vacuum*. The crude residue was purified by flash column chromatography eluting with *n*-hexane/EtOAc 100:0 v/v increasing to *n*-hexane/EtOAc 90:10 v/v.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(pyridin-2-ylthio) propanamide (15) yield 79%.

¹H NMR (CDCl₃) δ 9.64 (s, 1H, N*H*), 8.89 (s, 1H, Ar*H*), 8.39 (ddd, *J*= 1, 1.5, 5 Hz, 1H, Ar*H*), 8.13 (d, *J* = 2 Hz, 1H, Ar*H*), 8.00 (dd, *J* = 2, 8.5 Hz, 1H, Ar*H*), 7.91 (d, *J*= 8.5 Hz, 1H, Ar*H*), 7.61 (ddd, *J*= 2, 8, 8.5 Hz, 1H, Ar*H*), 7.37 (dt, *J*= 1, 8 Hz, 1H, Ar*H*), 7.17 (ddd, *J*= 1, 5, 7.5 Hz, 1H, Ar*H*), 3.61 (d, *J*= 15.5 Hz, 1H, CH₂), 3.50 (d, *J* = 15 Hz, 1H, CH₂), 1.63 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -62.16 (s, 3F); ¹³C NMR (CDCl₃) δ 175.18 (C=O), 158.85 (ArC), 148.32 (ArCH), 141.69 (ArC), 137.45 (ArCH), 135.80 (ArCH), 133.92 (q, ²J_{C-F} = 32.5 Hz, Ar*C*), 123.55 (ArCH), 122.19 (q, ¹J_{C-F} = 271.3 Hz, CF₃), 121.66 (ArCH), 120.92 (ArCH), 117.16 (q, ³J_{C-F} = 5 Hz, Ar*C*H), 115.67 (Ar*C*), 104.15 (CN), 77.01 (COH), 41.48 (CH₂), 26.81 (CH₃). MS [ESI, m/z]: 382.1 [M+H⁺], 404.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 21.17 mins 99.5%

2-Hydroxy-2-methyl-N-(4-nitro-2-(trifluoromethyl)phenyl)-3-(pyridin-2-

ylthio)propenamide (16) yield 75 %.

¹H NMR (CDCl₃) δ 10.26 (s, 1H, N*H*), 9.08 (s, 1H, Ar*H*), 8.84 (d, *J* = 9 Hz, 1H, Ar*H*), 8.52 (d, *J* = 3 Hz, 1H, Ar*H*), 8.42 (m, 2H, Ar*H*), 7.61 (m, 1H, Ar*H*), 7.37 (d, *J* = 8.5 Hz, 1H, Ar*H*), 7.18 (m, 1H, Ar*H*), 3.60 (d, *J* = 15 Hz, 1H, CH₂), 3.52 (d, *J* = 15 Hz, 1H, CH₂), 1.65 (s, 3H,

CH₃); ¹⁹F NMR (CDCl₃) δ -62.01 (s, 3F); ¹³C NMR (CDCl₃) δ 175.24 (C=O), 158.68 (ArC), 148.31 (ArCH), 142.62 (ArC), 141.00 (ArC), 137.40 (ArCH), 128.27 (ArCH), 123.36 (ArCH), 122.78 (q, ¹J_{C-F} = 272 Hz, CF₃), 122.36 (q, ³J_{C-F} = 5.5 Hz, ArCH), 122.04 (ArCH), 120.86 (ArCH), 119.28 (q, ²J_{C-F} = 32.5 Hz, ArC), 77.13 (COH), 41.46 (CH₂), 26.54 (CH₃). MS (ES+) m/z: 402.1 [M+H⁺], 424.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.98 mins 99.75% **2-Hydroxy-2-methyl-***N***-(4-nitro-2-trifluoromethyl)phenyl)-3-(4-(trifluoromethyl) phenylthio)propanamide (17)** yield 65 %.¹²

¹H-NMR (CDCl₃), δ : 9.59 (bs, 1H), 8.54 (d, *J* = 2.5 Hz, 1H), 8.49 (d, *J* = 9 Hz, 1H), 8.37 (dd, *J*₁ = 9, *J*₂ = 2.5 Hz, 1H), 7.52 (d, *J* = 9 Hz, 2H), 7.47 (d, *J* = 8 Hz, 2H), 3.87 (d, *J* = 14.5 Hz, 1H), 3.36 (s, 1H), 3.26 (d, *J* = 14.5 Hz, 1H), 1.62 (s, 3H). ¹⁹F-NMR (CDCl₃), δ : -62.80 (s, 3F), -61.56 (s, 3F); ¹³C-NMR (CDCl₃), δ : 172.80 (C=O), 142.95, 140.30, 138.97, 130.04, 129.13 (q, ²J_{C-F} = 32.5 Hz), 128.21, 125.79 (q, ³J_{C-F} = 3.6 Hz), 121.98, 123.73 (q, ¹J_{C-F} = 270 Hz), 122.79 (q, ¹J_{C-F} = 272.3 Hz, CF₃), 119.21 (q, ²J_{C-F} = 31.5 Hz), 75.63 (COH), 43.69 (CH₂), 26.16 (CH₃). MS [ESI, m/z]: 469.1 [M+H], 491.1 [M+Na]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 24.13 min.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-((2-(trifluoromethoxy) phenyl)thio)propenamide (18) yield 58 %. ¹²

¹H-NMR (CDCl₃): δ 9.64 (bs, 1H), 8.54 (d, *J* = 2.5 Hz, 1H), 8.47 (d, *J* = 9.0 Hz, 1H), 8.36 (dd, *J*= 9.0 Hz, 2.5 Hz, 1H), 7.58-7.55 (m, 1H), 7.29-7.24 (m, 1H), 7.23-7.17 (m, 2H), 3.84 (d, *J*= 14.5 Hz, 1H), 3.62 (bs, 1H), 3.15 (d, *J*= 14.5 Hz, 1H), 1.58 (s, 3H). ¹⁹F-NMR (CDCl₃): δ -61.70 (s, 3F), -57.34 (s, 3F), ¹³C-NMR (CDCl₃): δ 172.8 (C=O), 148.7, 142.8, 140.4, 133.8, 129.4, 128.0, 127.3, 127.1, 123.8, 122.3 (q, *J*= 5.5 Hz), 122.0, 121.1, 120.5 (q, *J*= 287.4 Hz, CF₃), 120.2 (q, *J*= 289.8 Hz), 75.4 (COH), 43.9 (CH₂), 26.1 (CH₃). MS [ESI, m/z]: 485.1 [M+H]⁺, 507.1 [M+Na]⁺. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.85 min.

3-((2,4-Difluorophenyl)thio)-2-hydroxy-2-methyl-N-(4-nitro-2-(trifluoromethyl) phenyl) propenamide (19) yield 74 %. ¹²

¹H-NMR (CDCl₃): δ 9.64 (bs, 1H), 8.55 (d, *J* = 3.0 Hz, 1H), 8.49 (d, *J* = 9.5 Hz, 1H), 8.38 (dd, *J*= 9.5 Hz, 3.0 Hz, 1H), 7.49-7.43 (m, 1H), 6.80-6.70 (m, 2H), 3.83 (d, *J*= 14.5 Hz,

1H), 3.67 (bs, 1H), 3.03 (d, *J*= 14.5 Hz, 1H), 1.56 (s, 3H). ¹⁹F-NMR (CDCl₃): δ -61.60 (s, 3F), -101.75 (s, F), -107.28 (s, F). ¹³C-NMR (CDCl₃): δ 172.8 (C=O), 164.4, 161.8, 142.8, 140.4, 136.4 (dd, *J*= 9.5 Hz, 2.0 Hz), 128.1, 122.3 (q, *J*= 6.3 Hz), 122.8 (q, *J*= 275.3 Hz, CF₃), 115.3 (d, *J*= 17.6 Hz), 119.0 (q, *J*= 31.1 Hz), 121.7, 112.0 (dd, *J*= 21.6 Hz, 4.1 Hz), 104.7 (m), 75.3 (COH), 44.6 (CH₂), 26.2 (CH₃). MS [ESI, m/z]: 437.1 [M+H]⁺, 459.0 [M+Na]⁺. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 24.11 min.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-((4-(trifluoro methoxy) phenyl)thio)propenamide (20) yield 81 %. ¹²

1H NMR (CDCl₃) δ 1.56 (s, 3H), 3.20 (d, *J* = 14 Hz, 1H), 3.75 (d, *J*= 14 Hz, 1H), 3.80 (s, 1H), 7.05 (d, *J* = 9 Hz, 2H), 7.46 (m, 2H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.82 (dd, *J*= 2.5, 8.5 Hz, 1H), 8.00 (d, *J* = 2 Hz, 1H), 9.15 (s, 1H); ¹⁹F NMR (CDCl₃) δ -58.09, -62.28; 13C NMR (CDCl₃) δ 173.25 (C=O), 148.34, 141.43, 135.75, 133.90 (q, ²J_{C-F} = 32.6 Hz), 132.80, 132.26, 123.18 (m), 121.76, 121.41, 119.24 (m), 117.20 (q, ³J_{C-F} = 4.9 Hz), 115.57, 104.27, 75.57 (COH), 44.97 (CH₂), 26.13 (CH₃). MS (ES+) m/z: 465.1 (M+H⁺), 487.1 (M+Na⁺). Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.50 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-((4-(trifluoromethoxy) phenyl)thio)propenamide (21) yield 77 %. ¹²

1H NMR (CDCl₃) δ 1.59 (s, 3H), 3.18 (d, *J* = 14 Hz, 1H), 3.63 (s, 1H), 3.83 (d, *J* = 14.5 Hz, 1H), 7.06 (d, *J* = 8 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 1H), 8.37 (dd, *J* = 2.5, 9 Hz, 1H), 8.49 (d, *J* = 9 Hz, 1H), 8.53 (d, *J* = 2.5 Hz, 1H), 9.64 (s, 1H); 19F NMR (CDCl₃) δ -61.64, -58.07; 13C NMR (CDCl₃) δ : 172.95 (C=O), 148.54, 142.89, 140.38, 132.63, 132.32, 128.21, 123.91 (CF₃), 122.28 (q, ³J_{C-F} = 5.9 Hz), 121.93, 121.74 (CF₃), 121.47, 119.24 (m), 73.54 (COH), 44.90 (CH₂), 26.18 (CH₃). MS (ES+) m/z: 485.1 (M+H⁺), 507.1 (M+Na⁺). Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 25.64 mins.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-((5-(trifluoromethyl) pyridin-2-yl)thio)propenamide (22) yield 79 %.¹²

¹H-NMR (CDCl₃): δ 9.51 (bs, 1H), 8.70-8.70 (m, 1H), 8.11 (d, *J*= 2.5 Hz, 1H), 8.00 (dd, *J*= 8.5 Hz, 2.5 Hz, 1H), 7.84-7.7.80 (m, 3H), 7.49 (d, *J* = 8.5 Hz, 1H), 3.60 (d, *J* = 15.0 Hz,

1H), 3.67 (d, J = 15.0 Hz, 1H), 1.65 (s, 3H). ¹⁹F-NMR (CDCl₃): δ -62.20 (s, 3F), -62.42 (s, 3F). ¹³C-NMR (CDCl₃): δ 174.4 (C=O), 164.0, 145.5 (q, J= 4.4 Hz), 141.4, 135.8, 134.0 (q, J= 3.0 Hz), 134.0 (q, J= 32.5 Hz), 125.3, 124.2 (m), 123.1, 122.1 (m), 121.6, 117.1 (q, J= 5.1 Hz), 115.5, 104.4, 77.2 (*C*OH), 41.0 (*C*H₂), 26.8 (*C*H₃). MS [ESI, m/z]: 450.1 [M+H]⁺, 472.1 [M+Na]⁺. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.48 min.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-((5-(trifluoromethyl) pyridin-2-yl)thio)propenamide (23) yield 76 %.¹²

¹H-NMR (CDCl₃), δ : 10.14 (bs, 1H), 8.81 (d, *J* = 9 Hz, 1H), 8.68 (m, 1H), 8.53 (d, *J* = 2.5 Hz, 1H), 8.45 (dd, *J*₁ = 9.5, *J*₂ = 3 Hz, 1H), 7.94 (s, 1H), 7.82 (dd, *J*₁ = 8.5, *J*₂ = 2.5 Hz, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 3.66 (d, *J* = 15 Hz, 1H), 3.61 (d, *J* = 15 Hz, 1H), 1.66 (s, 3H). ¹⁹F-NMR (CDCl₃), δ : -61.95 (s, 3F), -62.42 (s, 3F); ¹³C-NMR (CDCl₃), δ : 174.85 (C=O), 163.87, 145.57 (q, ³J_{C-F} = 4.4 Hz), 142.78,140.79, 134.04 (q, ³J_{C-F} = 6.5 Hz), 128.28, 124.09 (q, ²J_{C-F} = 42.3 Hz), 123.00, 122.36 (q, ³J_{C-F} = 5.5 Hz), 122.20, 123.13 (q, ¹J_{C-F} = 262.6 Hz, CF₃), 122.65 (q, 1JC-F = 272.4 Hz, CF₃), 119.42 (q, ²J_{C-F} = 31.6 Hz), 77.29 (COH), 41.11 (CH₂), 26.58 (CH₃). MS [ESI, m/z]: 470.1 [M+H], 492.1 [M+Na]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 25.58 min.

3-((3,4-Difluorophenyl)thio)-2-hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl) phenyl)propenamide (24) yield 78 %. ¹²

¹H-NMR (CDCl₃), δ : 9.62 (bs, 1H), 8.58 -8.55 (m, 2H), 8.42 (dd, $J_1 = 9.5$, $J_2 = 2.5$ Hz, 1H), 7.28-7.25 (m, 1H), 7.05-7.00 (m, 1H), 3.78 (d, J = 14 Hz, 1H), 3.38 (bs, 1H), 3.17 (d, J = 14.5 Hz, 1H),1.59 (s, 3H). ¹⁹F-NMR (CDCl₃), δ : -61.60 (s, 3F), -135.41 (s, F), -137.51 (s, F); ¹³C-NMR (CDCl₃), δ : 172.79 (C=O), 150.14 (d, ¹J_{C-F} = 251.0 Hz), 150.02 (d, ¹J_{C-F} = 249.1 Hz), 142.94, 140.38, 130.07, 128.28,127.96 (q, ³J_{C-F} = 2.8 Hz), 122.82 (q, ¹J_{C-F} = 272.4 Hz, CF₃),122.38 (q, ³J_{C-F} = 5.5 Hz), 121.78, 120.72 (d, ²J_{C-F} = 18.4 Hz), 119.18 (q, ²J_{C-F} = 31.4 Hz), 117.90 (d, ²J_{C-F} = 17.9 Hz), 75.70 (COH), 45.41 (CH₂), 26.21 (CH₃). MS [ESI, m/z]: 437.1 [M+H], 459.0 [M+Na]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 23.79 min.

1.4 General method for the preparation of sulfoxide compounds 25-34.

To a stirring solution of the different sulfide **15-24** (0.7 mmol) in 5 mL anhydrous dichloromethane (DCM) was added 3-chloroperbenzoic acid (*m*CPBA) (0.8 mmol) portion wise maintaining the temperature at 0° C for 20-30 min. After further dilution, a solution of 5% sodium carbonate is added and the mixture stirred for 1 hour, the phases are then separated. The combined organic layers were washed, dried over anhydrous sodium sulfate and concentrated in vacuo. The crude residue was purified by column chromatography, preparative TLC or crystallization from methanol.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(pyridin-2-ylsulfinyl) propanamide (1 isomer A:1 isomer B) (25) yield 75 %.

¹H NMR (CDCl₃) δ [9.50 (s), 9.30 (s), 1H, NH], [8.72 (d, *J*= 4.5 Hz), 8.68 (d, *J*= 5 Hz), 1H, ArH], [8.21 (d, *J*= 1.5 Hz), 8.01 (m), 3H], 7.84 (m, 2H, ArH), [7.50 (m), 7.44 (m), 1H, ArH], [6.79 (s), 6.17 (s), 1H, OH], [3.69 (d, *J*= 13.5 Hz), 3.63 (d, *J*= 14 Hz), 1H, CH₂], [3.88 (d, *J*= 13.5 Hz), 3.31 (d, *J*= 13.5 Hz), 1H, CH₂], [1.73 (s), 1.66 (s), 3H, CH₃]; ¹⁹F NMR (CDCl₃) δ -62.17; ¹³C NMR (CDCl₃) δ (173.25, 172.78, *C*=O), 155.53 (Ar*C*), (150.09, 149.77, Ar*C*H), (141.50, 141.33, Ar*C*) (138.66, 138.47, Ar*C*H), (135.85, 135.78, Ar*C*H), 134.18 (m, Ar*C*), (125.50, 125.29, Ar*C*H), (122.01, 121.74, Ar*C*H), (120.41, 120.13, Ar*C*H), 120.50 (q, ¹J_{C-F} = 263.8 Hz, *C*F₃), [117.49 (q, ³J_{C-F} = 5 Hz), 117.24 (q, ³J_{C-F} = 5 Hz), Ar*C*H], (115.45, 115.51, *C*N), (104.80, 104.68, Ar*C*), (76.12, 75.88, *C*OH), (60.31, 59.02, *C*H₂), (27.73, 27.49, *C*H₃). MS (ES+) m/z: 398.1 [M+H⁺], 420.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 14.62 mins 97.81%.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(pyridin-2-ylsulfinyl) propanamide [2 isomer A:1 isomer B] (26) yield 71%

¹H NMR (CDCl₃) δ 9.89 (s, 1H, N*H*), [8.65 (d, *J* = 9.5 Hz), isomer B, 8.82 (d, *J* = 9 Hz, 1H), isomer A, 1H, Ar*H*], [8.68 (d, *J* = 5 Hz) isomer B, 8.70 (d, *J* = 4.5 Hz) isomer A, 1H, Ar*H*], [8.55 (d, *J* = 2.5 Hz, isomer B), 8.59 (d, *J* = 2.5 Hz, isomer A), 1H, Ar*H*], [8.42 (dd, *J* = 2.5, 9 Hz, isomer B), 8.48 (dd, *J* = 3, 9.5 Hz, isomer A), 1H, Ar*H*), [7.92 (m), 8.04 (m), 2H, Ar*H*], [7.46 (ddd, *J* = 1, 4.5, 7.5 Hz) isomer B, 7.50 (ddd, *J* = 2, 4.5, 4.5 Hz) isomer A, 1H, Ar*H*], [6.39 (s), isomer A, 6.98 (s), isomer B, 1H, O*H*], [3.34 (d, *J* = 13.5 Hz), 3.92 (d, *J* = 13.5 Hz), 1H, isomer A, C*H*₂], [3.64 (d, *J* = 14 Hz), 3.70 (d, *J* = 13.5 Hz), 1H, isomer B, C*H*₂], [1.67 (s) isomer A, 1.75 (s) isomer B, 3H, C*H*₃]; ¹⁹F NMR (CDCl₃) δ -61.64; ¹³C NMR

(CDCl₃) δ (173.31, 172.84, *C*=O), (163.81, 163.19, Ar*C*), (149.84, 149.57, Ar*C*H), 143.08 (Ar*C*), 140.63 (Ar*C*), (138.75, 138.62, Ar*C*H), (128.30, 128.25, Ar*C*H), 126.58 (m, *C*F₃), (125.38, 125.28, Ar*C*H), 123.61 (m, Ar*C*), (122.63, 122.01, Ar*C*H), 122.43 (m, Ar*C*H), (120.55, 120.16, Ar*C*H), (76.12, 75.59 *CO*H), (59.66, 59.48, *C*H₂), (27.63, 27.58, *C*H₃). MS (ES+) m/z: 418.1 [M+H⁺], 440.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 16.02 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(4-(trifluoromethyl) phenylsulfinyl)propanamide (27) yield 66 %

¹H NMR (CDCl₃) δ 9.90 (s, 1H, N*H*), 8.79 (d, *J* = 9 Hz, 1H, Ar*H*), 8.60 (d, *J* = 2.5 Hz, 1H, Ar*H*), 8.50 (dd, *J* = 2.5, 9 Hz, 1H, Ar*H*), 7.88 (d, *J* = 8.5 Hz, 2H, Ar*H*), 7.82 (d, *J* = 8.5 Hz, 2H, Ar*H*), 6.06 (bs, 1H, *OH*), 3.65 (d, *J*= 13 Hz, 1H, *CH*₂), 3.13 (d, *J* = 13.5 Hz, 1H, *CH*₂), 1.63 (s, 3H, *CH*₃); ¹⁹F NMR (CDCl₃) δ -61.58 (s, 3F), -63.01 (s, 3F); ¹³C NMR (CDCl₃) δ 173.37 (C=O), 147.11 (Ar*C*), 143.34 (Ar*C*), 140.37 (Ar*C*), 133.90 (q, ²J_{C-F} = 32.6 Hz, Ar*C*), 128.25 (Ar*C*H), 126.74 (q, ³J_{C-F} = 3.8 Hz, Ar*C*H), 124.23 (Ar*C*H), 123.28 (q, ¹J_{C-F} = 271 Hz, *C*F₃), 122.79 (Ar*C*H), 122.74 (q, ¹J_{C-F} = 271.9 Hz, *C*F₃), 122.47 (q, ³J_{C-F} = 5.5 Hz, Ar*C*H), 120.35 (q, ²J_{C-F} = 31.5 Hz, Ar*C*), 76.74 (*C*OH), 62.91 (*C*H₂), 28.09 (*C*H₃). MS [ESI, m/z]: 485.1 [M+H⁺], 507.1 [M+Na⁺], Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 19.66 min.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(2-(trifluoromethoxy) phenylsulfinyl)propanamide (28) yield 81%.

¹H NMR (CDCl₃) δ 9.82 (s, 1H, NH), 8.83 (d, *J* = 9 Hz, 1H, ArH), 8.59 (d, *J* = 2.5 Hz, 1H, ArH), 8.50 (dd, *J* = 2.5, 9 Hz, 1H, ArH), 7.99 (m, 1H, ArH), 7.63 (m, 2H, ArH), 7.45 (m, 1H, ArH), 5.85 (s, 1H, OH), 3.89 (d, *J*= 13 Hz, 1H, CH₂), 3.03 (d, *J*= 13 Hz, 1H, CH₂), 1.61 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.58 (s, 3*F*), -57.18 (s, 3*F*); ¹³C NMR (CDCl₃) δ 173.14 (C=O), 154.94 (ArC), 143.20 (ArC), 141.94 (ArC), 133.71, 133.20 (ArCH), 131.83 (ArC), 130.75 (ArC), 130.24, 129.84 (ArCH), 128.28, 128.03 (ArCH), 125.53 (ArCH), 124.64 (ArC), 122.78 (ArCH), 122.42 (q, ³J_{C-F} = 5.6 Hz, ArCH), 121.11 (ArC), 119.81 (ArCH), 77.20 (COH), 59.41 (CH₂), 28.11 (CH₃). MS [ESI, m/z]: 501.1 [M+H⁺], 523.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 20.01 mins.

3-(2,4-Difluorophenylsulfinyl)-2-hydroxy-2-methyl-*N***-(4-nitro-2-(trifluoromethyl) phenyl) propanamide (29)** yield 80%.

¹H NMR (CDCl₃) δ 9.82 (s, 1H, NH), 8.81 (d, *J* = 9 Hz, 1H, Ar*H*), 8.60 (d, *J* = 3 Hz, 1H, Ar*H*), 8.50 (dd, *J* = 2.5, 9 Hz, 1H, Ar*H*), 7.21 (m, 1H, Ar*H*), 7.85 (m, 1H, Ar*H*), 6.99 (m, 1H, Ar*H*), 5.81 (s, 1H, OH), 3.85 (dd, *J*= 2, 13 Hz, 1H, CH₂), 3.12 (d, *J*= 13 Hz, 1H, CH₂), 1.62 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.58, -103.02, -109.35; ¹³C NMR (CDCl₃) δ 173.18 (C=O), 157.92 (d, ¹J_{C-F} = 237.5 Hz, Ar*C*), 157.82 (d, ¹J_{C-F} = 237.5 Hz, Ar*C*), 143.29 (Ar*C*), 140.43 (Ar*C*), 128.26 (Ar*C*H), 127.38 (Ar*C*), 127.01 (m, Ar*C*H), 123.91 (m, *C*F₃), 122.84 (Ar*C*H), 122.44 (q, ³J_{C-F} = 5 Hz, Ar*C*H), 119.97 (m, Ar*C*), 113.39 (m, Ar*C*H), 105.10 (m, Ar*C*H), 76.95 (*C*OH), 59.67 (*C*H₂), 28.16 (*C*H₃). MS (ES+) m/z: 453.1 [M+H⁺], 475.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 18.00 mins.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(4-(trifluoro methoxy)phenylsulfinyl)propanamide (30) yield 76 %.

¹H NMR (CDCl₃) δ 9.46 (s, 1H, N*H*), 8.26 (d, *J* = 2 Hz, 1H, Ar*H*), 8.00 (dd, *J* = 2.5, 8.5 Hz, 1H, Ar*H*), 7.87 (d, *J* = 8.5 Hz, 1H, Ar*H*), 7.75 (d, *J*= 9 Hz, 2H, Ar*H*), 7.47 (d, *J*= 8 Hz, 2H, Ar*H*), 6.00 (s, 1H, O*H*), 3.57 (d, *J*= 13 Hz, 1H, C*H*₂), 3.07 (d, *J* = 13 Hz, 1H, C*H*₂), 1.61 (s, 3H, C*H*₃); ¹⁹F NMR (CDCl₃) δ -62.18, -57.79; ¹³C NMR (CDCl₃) δ 173.37 (C=O), 151.81 (Ar*C*), 141.23 (Ar*C*), 140.63 (Ar*C*), 135.89 (Ar*C*H), 134.06 (m, Ar*C*), 128.56 (m, *C*F₃), 125.79 (Ar*C*H), 122.12 (Ar*C*H), 122.00 (Ar*C*H), 121.05 (m, *C*F₃), 117.50 (q, ³J_{C-F} = 4.6 Hz, Ar*C*H), 115.42 (*C*N), 105.13 (Ar*C*), 76.73 (*C*OH), 62.37 (*C*H₂), 28.25 (*C*H₃). MS (ES+) m/z: 481.1 [M+H⁺], 503.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 19.58 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(4-(trifluoromethoxy) phenylsulfinyl)propenamide (31) yield 73%.

¹H NMR (CDCl₃) δ 9.91 (s, 1H, N*H*), 8.79 (d, *J* = 9 Hz, 1H, Ar*H*), 8.60 (d, *J* = 2.5 Hz, 1H, Ar*H*), 8.50 (dd, *J* = 3, 9.5 Hz, 1H, Ar*H*), 7.75 (d, *J*= 9 Hz, 2H, Ar*H*), 7.46 (d, *J*= 8 Hz, 2H, Ar*H*), 6.22 (s, 1H, O*H*), 3.62 (d, *J*= 13.5 Hz, 1H, CH₂), 3.15 (d, *J*= 13 Hz, 1H, CH₂), 1.63 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.60 (s, 3F), -57.81 (s, 3F); ¹³C NMR (CDCl₃) δ 173.45 (C=O), 151.71 (Ar*C*), 143.27 (Ar*C*), 140.84 (Ar*C*), 140.41 (Ar*C*), 128.26 (Ar*C*H), 125.77 (Ar*C*H), 122.74 (q, ¹J_{C-F} = 272.5 Hz, CF₃), 122.78 (Ar*C*H), 122.50 (q, ³J_{C-F} = 6.3 Hz, Ar*C*H),

122.07 (Ar*C*H), 120.28 (q, ${}^{1}J_{C-F}$ = 257.9 Hz, *C*F₃), 120.13 (q, ${}^{2}J_{C-F}$ = 31.3 Hz, Ar*C*), 76.61 (*C*OH), 63.16 (*C*H₂), 28.10 (*C*H₃). MS (ES+) m/z: 501.1 [M+H⁺], 523.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 21.23 mins.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(5-(trifluoromethyl) pyridin-2-ylsulfinyl)propanamide (32a, fast moving) yield 26%

¹H NMR (CDCl₃) δ 9.22 (s, 1H, NH), 8.94 (m, 1H, ArH), 8.08 (m, 2H, ArH), 7.97 (s, 1H, ArH), 7.79 (m, 2H, ArH), 6.18 (s, 1H, OH), 3.74 (d, *J*= 14 Hz, 1H, CH₂), 3.63 (d, *J* = 14 Hz, 1H, CH₂), 1.73 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -62.31 (s, 3F), -62.51 (s, 3F); ¹³C NMR (CDCl₃) δ 172.33 (C=O), 166.85 (ArC), 146.98 (q, ³J_{C-F} = 3.8 Hz, ArCH), 141.10 (ArC), 135.86 (ArCH), 135.28 (q, ³J_{C-F} = 3.8 Hz, ArCH), 134.31 (q, ²J_{C-F} = 32.5 Hz, ArC), 128.34 (q, ²J_{C-F} = 33.6 Hz, ArC), 122.01 (q, ¹J_{C-F} = 272.6 Hz, CF₃), 119.84 (q, ¹J_{C-F} = 269.1 Hz, CF₃), 117.01 (q, ³J_{C-F} = 5 Hz, ArCH), 115.34 (CN), 104.93 (ArC), 76.56 (COH), 57.35 (CH₂), 27.64 (CH₃). MS (ES+) m/z: 466.1 [M+H⁺], 488.1 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 18.87 mins.

N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-2-methyl-3-(5-(trifluoro methyl) pyridin-2-ylsulfinyl)propanamide (32b, slow moving), yield 43.7%.

¹H NMR (CDCl₃) δ 9.42 (s, 1H, NH), 8.97 (m, 1H, ArH), 8.27 (dd, *J* = 2, 8 Hz, 1H, ArH), 8.21 (d, *J* = 2 Hz, 1H, ArH), 8.16 (d, *J* = 8 Hz, 1H, ArH), 8.04 (dd, *J*= 2, 8.5 Hz, 1H, ArH), 7.86 (d, *J*= 8.5 Hz, 1H, ArH), 5.75 (s, 1H, OH), 4.00 (d, *J*= 13 Hz, 1H, CH₂), 3.27 (d, *J* = 13Hz, 1H, CH₂), 1.66 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -62.18 (s, 3F), -62.42 (s, 3F); ¹³C NMR (CDCl₃) δ 172.94 (C=O), 167.70 (ArC), 147.10 (q, ³J_{C-F} = 3.8 Hz, ArCH), 141.35 (ArC), 135.90 (ArCH), 135.80 (q, ³J_{C-F} = 3.8 Hz, ArCH), 134.00 (q, ²J_{C-F} = 32.5 Hz, ArC), 128.32 (q, ²J_{C-F} = 33.8 Hz, ArC), 122.71 (q, ¹J_{C-F} = 274.3 Hz, CF₃), 122.11 (q, ¹J_{C-F} = 272.3 Hz, CF₃), 122.02 (ArCH), 119.88 (ArCH), 117.49 (q, ³J_{C-F} = 5 Hz, ArCH), 115.45 (CN), 104.95 (ArC), 76.40 (COH), 60.14 (CH₂), 27.87 (CH₃). MS (ES+) m/z: 466.1 [M+H⁺], 488.1 [M+Na⁺]. t_R = 18.79 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(5-(trifluoromethyl) pyridin-2-ylsulfinyl)propanamide (33a, fast moving) yield 31.2%.

¹H NMR (CDCl₃) δ 9.79 (s, 1H, N*H*), 8.95 (m, 1H, Ar*H*), 8.56 (d, *J* = 2.5 Hz, 1H, Ar*H*), 8.52 (d, *J* = 9.5 Hz, 1H, Ar*H*), 8.40 (dd, *J* = 2.5, 9.5 Hz, 1H, Ar*H*), 8.14 (d, 8.5 Hz, 1H, Ar*H*), 8.07

(ddd, *J*= 0.5, 2, 8.5 Hz, 1H, Ar*H*), 6.28 (s, 1H, O*H*), 3.75 (d, *J*= 14 Hz, 1H, C*H*₂), 3.63 (d, *J*= 14 Hz, 1H, C*H*₂), 1.76 (s, 3H, C*H*₃); ¹⁹F NMR (CDCl₃) δ -61.60 (s, 3F), -62.47 (s, 3F); ¹³C NMR (CDCl₃) δ 172.33 (*C*=O), 166.45 (Ar*C*), 146.87 (q, ³J_{C-F} = 4.1 Hz, Ar*C*H), 142.96 (Ar*C*), 140.29 (Ar*C*), 135.39 (q, ³J_{C-F} = 3.8 Hz, Ar*C*H), 128.30 (Ar*C*H), 128.05 (Ar*C*), 123.82 (Ar*C*), 122.44 (q, ³J_{C-F} = 5 Hz, Ar*C*H), 121.76 (Ar*C*H), 121.64 (m, *C*F₃), 120.81 (m, *C*F₃), 120.36 (Ar*C*H), 76.53 (*C*OH), 57.50 (*C*H₂), 27.69 (*C*H₃). MS (ES+) m/z: 486.1 [M+H⁺], 508.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 20.02 mins.

2-Hydroxy-2-methyl-*N*-(4-nitro-2-(trifluoromethyl)phenyl)-3-(5-(trifluoro methyl)pyridin-2-ylsulfinyl)propanamide (33b, slow moving) yield 49.7%.

¹H NMR (CDCl₃) δ 9.82 (s, 1H, NH), 8.97 (m, 1H, ArH), 8.81 (d, *J* = 9 Hz, 1H, ArH), 8.59 (d, *J* = 2.5 Hz, 1H, ArH), 8.49 (dd, *J* = 2.5, 9 Hz, 1H, ArH), 8.28 (dd, *J*=2, 8 Hz, 1H, ArH), 8.19 (d, *J*= 8.5 Hz, 1H, ArH), 5.77 (bs, 1H, OH), 4.02 (d, *J*= 13 Hz, 1H, CH₂), 3.29 (d, *J*= 13 Hz, 1H, CH₂), 1.65 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.58 (s, 3F), -62.40 (s, 3F); ¹³C NMR (CDCl₃) δ 172.97 (*C*=O), 168.10 (Ar*C*), 147.01 (q, ³J_{C-F} = 4.1 Hz, Ar*C*H), 143.22 (Ar*C*), 140.46 (Ar*C*), 135.85 (q, ³J_{C-F} = 3.6 Hz, Ar*C*H), 128.34 (Ar*C*), 128.32 (Ar*C*H), 123.86 (Ar*C*), 122.74 (Ar*C*H), 122.47 (q, ³J_{C-F} = 5.6 Hz, Ar*C*H), 119.12 (q, ¹J_{C-F} = 242.5, Hz, 2CF₃), 119.91 (Ar*C*H), 76.57(COH), 59.39 (CH₂), 27.83 (CH₃). MS [ESI, m/z]: 486.1 [M+H⁺], 508.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 19.99 mins.

3-(3,4-Difluorophenylsulfinyl)-2-hydroxy-2-methyl-*N***-(4-nitro-2-(trifluoromethyl) phenyl) propanamide (34a,** fast moving) yield 26%.

1H NMR (CDCl₃) δ 9.78 (s, 1H, NH), 8.59 (d, *J*= 9.5 Hz, 1H, Ar*H*), 8.57 (d, *J*= 2.5 Hz, 1H, Ar*H*), 8.42 (dd, *J* = 2.5, 9 Hz, 1H, Ar*H*), 7.56 (m, 1H, Ar*H*), 7.40 (m, 1H, Ar*H*), 7.35 (m, 1H, Ar*H*), 6.00 (s, 1H, O*H*), 3.43 (d, *J*= 14 Hz, 1H, CH₂), 3.23 (d, *J*= 14 Hz, 1H, CH₂), 1.84 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ -61.64 (s, 3F), -130.81 (s, F), -132.56 (s, F); ¹³C NMR (CDCl₃) δ 172.12 (C=O), 153.52 (Ar*C*), 153.44 (Ar*C*), 143.06 (Ar*C*), 140.33 (Ar*C*), 137.72 (Ar*C*), 128.22 (Ar*C*H), 123.81 (Ar*C*), 122.45 (q, ³J_{C-F} = 5 Hz, Ar*C*H), 121.81 (Ar*C*H), 120.75 (m, Ar*C*H), 120.55 (Ar*C*), 118.83 (d, ²J_{C-F} = 18.8 Hz, Ar*C*H), 113.93 (d, ²J_{C-F} = 20 Hz, Ar*C*H), 76.66 (COH), 59.62 (CH₂), 26.67 (CH₃). MS (ES+) m/z: 453.1 ([M+H]⁺, 475.0 [M+Na]⁺. HPLC, t_R = 20.39 min.

3-(3,4-Difluorophenylsulfinyl)-2-hydroxy-2-methyl-*N***-(4-nitro-2-(trifluoromethyl) phenyl)propanamide (34b,** slow moving) yield 48%

¹H NMR (CDCl₃) δ 9.86 (s, 1H, NH), 8.79 (d, *J*= 9.5 Hz, 1H, ArH), 8.60 (d, *J*= 2.5 Hz, 1H, ArH), 8.51 (dd, *J* = 3, 9.5 Hz, 1H, ArH), 7.60 (m, 1H, ArH), 7.43 (m, 2H, ArH), 5.94 (s, 1H, OH), 3.58 (d, *J*= 13 Hz, 1H, CH₂), 3.07 (d, *J*= 13 Hz, 1H, CH₂), 1.61 (s, 3H, CH₃). ¹⁹F NMR (CDCl₃) δ -61.58 (s, 3F), -130.65 (s, F), -132.17 (s, F); ¹³C NMR (CDCl₃) δ 173.37 (C=O), 152.28 (ArC), 151.54 (ArC), 143.32 (ArC), 140.34 (ArC), 139.22 (ArC), 128.27 (ArCH), 122.81 (ArCH), 122.50 (q, ³J_{C-F} = 6.3 Hz, ArCH), 123.81 (ArC), 120.08 (ArC), 120.50 (m, ArCH), 119.05 (d, ²J_{C-F} = 18.8 Hz, ArCH), 113.56 (d, ²J_{C-F} = 18.8 Hz, ArCH), 76.83 (COH), 62.30 (CH₂), 28.22 (CH₃). MS (ES+) m/z: 453.1 [M+H⁺], 475.0 [M+Na⁺]. Reverse-phase HPLC, eluting with H₂O/CH₃CN from 90/10 to 0/100 in 30 min; flow = 1 mL/min, t_R = 20.16 mins.

2. Cell growth inhibition viability Assay

All bicalutamide derivatives were screened for their antiproliferative activity using the Oncotest monolayer assay against four human prostate cancer cell lines (22Rv1, DU-145, LNCaP and VCap). Bicalutamide and Enzalutamide were used as positive controls. A modified propidium iodide (PI) based monolayer assay was used to assess the anticancer activity of the compounds. Briefly, cells were harvested from exponential phase cultures, counted and plated in 96- well flat-bottom microtiter plates at a cell density of 8000-12,000 cells/well. After a 24 h recovery period to allow the cells to resume exponential growth, 10 μ L of culture medium (six control wells/plate) or culture medium with test compound were added. The compounds were applied in half-log increments at 10 concentrations in triplicate. After a total treatment period of 96 h, cells were washed with 200 µL PBS to remove dead cells and debris. Then, 200 mL of a solution containing 7 mg/mL propidium iodide (PI) and 0.1% (v/v) Triton X-100 was added. After an incubation period of 1–2h at room temperature, fluorescence (FU) was measured using the EnSpire Multimode Plate Reader (excitation I= 530 nm, emission I = 620 nm) to quantify the amount of attached viable cells. IC_{50} values were calculated by 4 parameter non-linear curve fit using Oncotest Warehouse Software. For calculation of mean IC₅₀ values the geometric mean was used.³⁸

3. X-ray crystal structure determination of compound 34

Single-crystal XRD data were collected at room temperature on an Agilent SuperNova Dual Atlas diffractometer with a mirror monochromator using Cu (λ =1.5418 Å) radiation. Crystal structures were solved using SHELXS ³⁵ and refined using SHELXL. ³⁶ Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were inserted in idealized positions, and a riding model was used with Uiso set at 1.2 or 1.5 times the value of Ueq for the atom to which they are bonded. **34a**: C₁₇H₁₃F₅N₂O₅S, FW = 452.35, T = 296(2) K, Monoclinic, P21/c, a = 14.3383(3) Å, b = 12.1211(2) Å, c = 10.8432(2) Å, β = 93.254(2), V = 1881.47(6) Å³, Z = 4, $D_{cal} = 1.597 \text{ Mg/m}^3$, m = 2.309 mm⁻¹, Crystal size = 0.436 x 0.187 x 0.113 mm³, Reflections collected = 17738, Independent reflections = 3946, R_{int} = 0.0268, Parameters = 274, G-o-f = 1.065, Final R1 = 0.0403, wR2 = 0.1116 on (I > 2s(I)), R1 = 0.0473, wR2 = 0.1199 on all data. **34b**: $C_{17}H_{13}F_5N_2O_5S$, FW = 452.35, T = 296(2) K, Monoclinic, I2/a, a = 13.1919(3) Å, b = 11.2526(2) Å, c = 25.9866(5) Å, β = 99.610(2), V = 3803.40(13) Å³, Z = 8, D_{cal} = 1.580 Mg/m³, m = 2.285 mm⁻¹, Crystal size = 0.395 x 0.225 x 0.173 mm³, Reflections collected = 17851, Independent reflections = 3997, R_{int} = 0.0185, Parameters = 273, G-o-f = 1.051, Final R1 = 0.0381, wR2 = 0.1041 on (I > 2s(I)), R1 = 0.0401, wR2 = 0.1069 on all data. CCDC 2040881-2040882 contain the supplementary crystallographic data for this paper. These data can be obtained free The Cambridge Crystallographic of charge from Data Centre via www.ccdc.cam.ac.uk/structures.

4. Docking studies

The X-ray crystal structure of the human androgen receptor – ligand binding domain hAR-LBD was downloaded from the Protein Data Bank (PDB code; 3RLJ)²⁶ and prepared for docking using the MOE (Molecular Operating Environment)³⁹ protein preparation tools. The chemical structures of our compounds were constructed, rendered and minimized with the MMFF94x force field in MOE. The docking simulations were performed using MOE default settings. The docking output database was saved as a mol2 file, and the visual inspection of the docking modes was performed in MOE.

NAME	CM-SK65ox(4)	
EXPNO PROCNO	1	
Date	20140206	
Time	16.09	
INSTRUM	Avance500	
PROBHD	5 mm ONP 1H/13	
PULPROG	~ zq30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10330.578	Ηz
FIDRES	0.157632	Ηz
AQ	3.1719923	sec
RG	812	
DW	48.400	use
DE	6.50	use
	291.2	n aaa
	1.00000000	sec
IDU	Ţ	
	CHANNEL fl ====	
NUC1	1H	
P1	11.50	use
PL1	-1.00	dB
PL1W	11.38419914	W
SF01	500.1330885	MHz
SI	65536	
SF	500.1300000	MHz
WDW	EM	
SSB	0 20	TT
СР	0.30	пΖ
GD DC	1 00	
T C	1.00	

CM-SK65ox(4) NAME EXPNO 2 PROCNO 1 20140206 Date_ Time 16.11 INSTRUM Avance500 PROBHD 5 mm QNP 1H/13 zgfhigqn 131072 PULPROG TD SOLVENT CDC13 16 NS DS 4 113636.367 Hz SWH 0.866977 Hz FIDRES 0.5767668 sec AQ 2300 RG DW 4.400 use 6.00 use DE 291.2 K ΤE D1 1.00000000 sec 0.03000000 sec D11 D12 0.00002000 sec TD0 1 ====== CHANNEL f1 ====== NUC1 19F 18.60 use Ρ1 -1.50 dB PL1 PL1W 11.14113998 W 470.5453180 MHz SF01 ====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 use -2.00 dB PL2 14.85 dB PL12 PL2W 14.33185768 W 0.29600734 W PL12W SFO2 500.1320005 MHz SI 65536 SF 470.5923770 MHz ΕM WDW SSB 0 0.30 Hz LB GΒ 0 РC 1.40

	CI	1-SF	6	4	(6	5 C	X_	_4)		
EXPNO									1		
PROCNO									1		
Date_				2	0	1	40	21	1		
Time							19	.1	6		
INSTRUM			А	v	a	n	се	250	0		
PROBHD	5	mm	Q	Ν	Ρ		1H	[/1	3		
PULPROG					р	e	nċ	lan	ıt		
TD					-		65	53	6		
SOLVENT						(CD	Cl	3		
NS								51	2		
DS									4		
SWH			2	9	7	6	1.	90	4	Ηz	
FIDRES				0		4	54	13	1	Ηz	
AQ			1		1	0	10	54	8	sec	
RG							3	25	0		
DW						1	6.	80	0	used	С
DE							12	.0	0	used	С
TE							29	8.	1	K	
CNST2		14	15		0	0	00	00	0		
D1		2	2.	0	0	0	00	00	0	sec	
D4		().	0	0	1	72	41	4	sec	
D12		().	0	0	0	02	00	0	sec	
D15		().	0	0	4	31	03	4	sec	
D20		().	0	0	3	45	00	0	sec	
TDO									4		
	CF	IANI	νE	L		f	1				_
======= NUC1	Cł	IANI	νE	L		f	1	== 13	== C		=
====== NUC1 P1	CI	IANI	νE	L		f	1 7	== 13	C 0	use	=
====== NUC1 P1 P2	CH	IANI	νE	L		f	1 7 14	== 13 .2	C 0	useo	
====== NUC1 P1 P2 PL1	CH	IANI	νE	L		f	1 7 14 -2	== 13 .2 .4	C 0 0	useo useo dB	
======= NUC1 P1 P2 PL1 PL1W	Cł	101	NE	L 2	7	f 8	1 7 14 -2 46	== 13 .2 .4 .0	C 0 0 7	useo useo dB W	
======= NUC1 P1 P2 PL1 PL1W SF01	Cł	101 12	NE 1. 25	L 2	7 7	f 8 7	1 7 14 -2 46 03	== 13 .2 .4 .0 52	C 0 0 7 3	useo useo dB W MHz	
======= NUC1 P1 P2 PL1 PL1W SF01	CH	101 12	NE 1.	L 2	7 7	f 8 7	1 7 14 -2 46 03	== 13 .2 .4 .0 52 64	C 0 0 7 3	useo useo dB W MHz	
NUC1 P1 P2 PL1 PL1W SF01	CH	IO 10 12 HANN	NE L. 25	L 2	77	f 8 7 f	1 7 14 -2 46 03	== 13 .2 .4 .0 52 64 ==	C 0 0 7 3	used used dB W MHz	
NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2	CH	IOI 101 12	NE 25 NE	L 2	7 7 W	f 8 7 f	1 74 -2 46 03 2 1t	== 13 .2 .4 .0 52 64 == .21	EC 0 0 7 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	useo useo dB W MHz	
NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2	CH	IANN 101 12 IANN	NE 25 NE	L 2	7 7 W	f 8 7 f	1 7 14 -2 46 03 2 1t	== 13 .2 .4 .0 552 64 == .21	C 0 0 7 3 	used used dB W MHz	
NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3	CH	IOI 101 12	NE 25 NE	L 2	7 7 W	f 8 7 f	1 74 -2 46 03 2 1t	== 13 .2 .4 .0 52 64 == .21 1 .5	C 0 0 7 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	useo useo dB W MHz ====	
NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4	CH	IOI 101 12	NE 25 NE	1 2 1	7 7 W	f 8 7 f	1 74 -2 46 03 2 1t 11	== 13 .2 .4 .0 552 64 == 1 .5 .0	C 0 0 7 3 6 H 0 0	useo useo dB MHz useo useo	
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	CH	101 12 HAND	NE 25 NE	1 2 1	7 7 ₩	f 8 7 f	1 7 14 -2 46 03 2 1 1 1 23 80	== 13 .2 .4 .0 552 64 == 1 .5 .0 .0	C 0 0 0 7 3 6 H 0 0 0 0	useo dB W MHz useo useo	
NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2	CH	101 12 HANN	NE 25 NE	1 2 1	7 7 W	f 87 f	1 74 -2 46 03 21t 11 23 80 -2	== 13 .2 .4 .0 52 64 == 1 1 .5 .0 .0 .0	C 0 0 0 7 3 6 H 0 0 0 0 0	useo dB W MHz useo useo dB	
NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12	CH	HANN 101 12 HANN	NE 25 NE	L 2 L	7 7 w	f 87 f	1 74 463 21t 11 230 -2 14	== 13 .2 .4 .0 52 64 == .1 .0 .52 .64 =. .0 .0 .0 .0 .0	C 0 0 0 7 3 6 H 0 0 0 5	useo dB W MHz useo useo dB dB	
NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL12 PL12 PL2W	CH	101 12 HANN	VE 25 VE	L 2. L	77 ₩ 3	f 87 f a	1 74-26 03 21t 1123 22 14	=== 13 .2 .4 .0 552 64 === 1 1 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	C 0 0 7 3 6 H 0 0 0 5 8	useo dB W MHz useo useo dB dB W	
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	CH	100 12 HANN 14	1.0 1.0 1.0 1.0 1.0	L 2 L 32	77 ₩ 391	f 87 fa 16	1 74 -26 03 21t 123 21t 123 -24 85 00	== 13 .2 .4 .0 52 64 == 1 1 .5 .0 .0 .0 .0 .8 .76	C 0 0 0 7 3 6 H 0 0 0 0 5 8 4	useo dB W MHz ==== useo useo dB dB W W	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02	CH	10: 12 HANN 14 (50	1. 2.5 1. 1. 2.5 1. 2.5	L 2 · L 32 ·	77 ₩ 391	f 87 fa 163	1 74 246 21t 123 21t 123 20 20 20 20 20 20 20 20 20 20 20 20 20	== 13 2.4 0522 64 == 21 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	C00073 6H00005845	used dB W MHz used used dB dB W W W MHz	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL2 PL12 PL2W PL12W SF02 SI	CH	101 12 HANN 14 (50	125 NE	L 2 · L 32 ·	77 w 391	f 87 fa 163	1 74 -403 21t 11 200 21t 11 200 200 200 200 200 200 200 200 200 2	== 13 2.4 52 64 == 10 52 64 = 11 52 64 = 50 00 00 00 00 00 00 00 00 00	C00073 6H000058458	usee dB W MHz usee usee dB dB W W W MHz	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02 SI SF UDV	CH	101 12 HANN 14 (50 12	4 · 0 · 0 2 5	L 2 · L 32 ·	77 ₩ 391 7	f 87 fa 163 5	1 742603 21t 1230214 850202377	== 13 2.4 52 64 == 13 52 64 == 10 00 00 00 00 00 00 00 00 00	C00073 6H0000584580	usee dB W MHz usee usee dB dB dB W W MHz MHz	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF WDW SCD	CH	103 12 HANN 14 (50 12	125 NE 125 NE	L 2 · L 32 ·	77 7 391 7	f 87 fa 163 5	1 74263 21t 1230232 77	== 13 2.2 4.0 52 64 == 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0	C00073 6H0000584580Mc	usee dB W MHz usee usee dB dB W W MHz MHz	
======= NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02 SI SF WDW SSB LD	CH	103 12 HANN 14 (50 12	VE 25 VE 4 25	L 2. L 32.	77 w 391 7	f 87 fa 163 5	1 7403 21 120023277 1	== 132.24 .00 .52264 == .10 .00 .00 .00 .00 .00 .00 .00	C00073 6H0000584580M00	usee dB W MHz ==== usee dB dB W W MHz MHz	
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF WDW SSB LB	CH	101 12 HANN 14 (50	VE 25 VE 4 20.0 25	L 2. L 32.	77 7 391 7	f 87 f a 163 5	1 74 203 21t 1230 22 14 50 202 77 1	== 13 2.2 4.0 52 64 == 11 50 00 00 00 00 00 00 00 00 00	C00073 6H0000584580M000	usee dB W MHz ==== usee dB dB W W MHz Hz	
NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF WDW SSB LB GB	CH	101 12 HANN 14 (50	1 • 1 • 2 5 1	L 2. L 32.	77 7 391 7	f 87 fa 163 5	1 74 12 21 12 80 22 77 1	== 132.40 524.00 524 == 11 10 524 11 500 00 00 00 00 00 00 00 00 0	C00073 6H0000584580M0000	usee dB W MHz usee dB dB W W MHz MHz Hz	

Area % Report

Sample ID: SK64_2nd -- C:\Documents and Settings\user\Desktop\Sahar\Data\SK64_2nd-ACN_W_10-90-263nm.met-14-02-2014 11-40-54.dat Method: C:\Documents and Settings\user\Desktop\Sahar\ACN_W_10-90-263nm.met Acquired: 14/02/2014 11:41:38; Printed: 14/02/2014 12:20:19 Analysis Comment: {Data Description}

NAME	CM-SK41_31ox(2)	
EXPNO	1	
Date	⊥ 20131204	
Date_ Time	13 /6	
TNGTRIM	Avance500	
PROBHD	5 mm ONP 1 H / 13	
PIILPROG	2 Mill 201 111/10	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10330.578	Ηz
FIDRES	0.157632	Ηz
AQ	3.1719923	sec
RG	512	
DW	48.400	use
DE	6.50	use
TE	292.3	K
D1	1.00000000	sec
TDO	1	
	CHANNEL f1 ====	===
NUC1	1H	
P1	11.50	use
PL1	-1.00	dB
PL1W	11.38419914	W
SF01	500.1330885	MHz
SI	65536	
SF	500.1300000	MHz
WDW	EM	
SSB	0	
TR	0.30	ΗZ
GB	1 00	
РU	1.00	

-20

-40

0

-120

-140

-160

-180

CM-SK41_31ox(2) NAME EXPNO 2 PROCNO 1 20131204 Date_ Time 13.48 INSTRUM Avance500 PROBHD 5 mm QNP 1H/13 zgfhigqn 131072 PULPROG TD SOLVENT CDC13 16 NS DS 4 113636.367 Hz SWH 0.866977 Hz FIDRES 0.5767668 sec AQ 1440 RG DW 4.400 use 6.00 use DE 292.6 K ΤE D1 1.00000000 sec 0.03000000 sec D11 D12 0.00002000 sec TD0 1 ====== CHANNEL f1 ====== NUC1 19F 18.60 use Ρ1 -1.50 dB PL1 PL1W 11.14113998 W SF01 470.5453180 MHz ====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 use -2.00 dB PL2 14.85 dB PL12 PL2W 14.33185768 W 0.29600734 W PL12W SFO2 500.1320005 MHz SI 65536 SF 470.5923770 MHz ΕM WDW SSB 0 0.30 Hz LB GΒ 0 РC 1.40

-200

ppm

NAME	Cľ	1-S	K	4]	L_	3	Τı	03	X (2)		
EXPNO										3		
PROCNO										1		
Date_				2	20	1	3	1:	20	4		
Time							1	3	. 5	5		
INSTRUM			j	A٦	7a	n	С	e	50	0		
PROBHD	5	mm	(QÌ	JΡ		1	H,	/1	3		
PULPROG					р	e	n	d	an	t		
TD							6	5.	53	6		
SOLVENT							Cl	D	C1	3		
NS								1	25	6		
DS										4		
SWH				29	97	6	1	•	90	4	Ηz	
FIDRES				().	4	5	4	13	1	Ηz	
AQ				1.	. 1	0	1	0.	54	8	sec	2
RG								3	25	0		
DW						1	6	•	80	0	use	eC
DE							1	2	.0	0	use	ec
TE							2	9:	2.	8	Κ	
CNST2		1	4	5.	. 0	0	0	0	00	0		
D1			2	• (0 (0	0	0	00	0	sec	2
D4			0	• (0 (1	7	2	41	4	sec	2
D12			0	• (0 (0	0	2	00	0	sec	2
D15			0	• (0 (4	3	1	03	4	sec	2
D20			0	• (0 (3	4	5	00	0	sec	2
TDO										2		
	ar	T 73 N.T	N T 1			ء	1					
========	Cŀ	IAN	N	ΕI		f	1	-	==	==		
======= NUC1	CH	IAN	N	ΕI		f	1	-	==	== C		==
====== NUC1 P1	Cŀ	IAN	N	ΕI		f	1	7	== 13 .2	== C 0	use	== eC
======= NUC1 P1 P2	CH	IAN	N	ΕI		f	1	74	== 13 .2 .4	== C 0 0	use use	== 20
NUC1 P1 P2 PL1 D11W	CH	IAN	N]	ΕI		f	1	742	== 13 .2 .4	== C 0 0 0	use use dB	== eC eC
NUC1 P1 P2 PL1 PL1W SE01	Cŀ	10	NI 1	EI	27	f 8 7	1 1 	7426	== 13 .2 .4 .0 52	== C 0 0 7 7	use use dB W	
NUC1 P1 P2 PL1 PL1W SF01	CH	10 1	N 1 2	EI •2	27	f 8 7	1 1 - 4 0	7 4 2 3	== 13 • 4 • 0 52 64	== 0 0 7 3	use use dB W MHz	== 2 2
======= NUC1 P1 P2 PL1 PL1W SF01	CH	10 10	NI 1 2	EI • 2 5 •	27.7	f 8 7 f	1 1 	74263	== 13 • 4 • 0 52 64	== 0 0 7 3	use use dB W MHz	
======= NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPBG2	CH	IAN 10 1 IAN	N 1 2 N	EI .2 5. EI	27.7	f 8 7 f	1 1 - 4 0 2	74263	== 13 .2 .4 .0 52 64 ==	== C 0 0 7 3 ==	use use dB W MHz	== 2 2 2 ==
NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2	CH	10 10 1	N 1 2 N	EI .2 5. EI	27 7 .7	f 8 7 f	1 - 4 0 2	74263	== 13 .2 .4 .0 52 64 == z1	== C 0 0 7 3 == 6	use use dB W MHz	== 2 2 2 ==
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3	CH	10 10 1	N] 1 2	EI .2 5. EI	27 7 W	f 8 7 f	1 	74263 t	== 13 .2 .4 .0 52 64 == 21 1	== C 0 0 7 3 == H 0	use use dB W MHz	== 2 2 ==
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4	CH	IAN 10 1 IAN	N 1 2	EI .2 5. EI	27.7 .7	f 87 f	1 1 	74263 t	== 13 .2 .4 .0 52 64 == 21 1 .5	== C 0 0 7 3 == 6 H 0 0	use use dB W MHz use	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2	CH	IO 10 1	N] 2 N]	EI .2 5. EI	27.7 .7	f 8 7 f	1 1 4 0 2 1 1 2 8	74263 til30	== 13 .2 .4 .0 52 64 == 1 .5 .0	== C 0 0 7 3 == 6 H 0 0 0	use use dB W MHz use	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2	CH	10 1 HAN	N 1 2	EI .2 5. EI	27.7 .7	f 87 f	1 1 	74263 t 1302	== 13 .2 .4 .0 52 64 == 21 .5 .0 .0	== C 0 0 7 3 == H 0 0 0 0 0	use use dB W MHz use use dB	
====== NUC1 P1 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12	CH	10 1 HAN	N 1 2	EI .25. EI	27.7 .7	f 87 f	1 	74263 t 13024	== 13 .2 .0 52 64 == 21 .5 .0 .0 .0	== C 0 0 7 3 == 6 H 0 0 0 5	use use dB W MHz use use dB dB	
======= NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL12 PL12 PL2W	CH	10 1 HAN	N 1 2 N 1	EI .2 5. EI	27 7 w	f 87 f a	1 1 4 0 2 1 1 2 8 - 1 8	74263 t 130245	== 13 .2 .0 52 64 = 1 .5 .0 .0 .0 .0 .76	== C 0 0 0 7 3 = 6 H 0 0 0 5 8	use dB W MHz use use dB dB W	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL12 PL12W PL12W	CH	10 1 HAN	N 1 2 N 1 4 0	EI .25. EI	27 7 33 33	f 87 fa	1 1 4 0 2 1 1 2 8 - 1 8 0	74263 t 1302450	== 13 .2 .0 52 64 == 1 .5 .0 .0 .0 .76 73	== C00073 =6 H0000584	use dB W MHz use use dB dB W W	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL12 PL12W PL12W SF02	CH	10 1 HAN 1 5	NI 1 2 NI 4 0	EI .2.5. EI	27 7 39 339	f 87 fa 163	1 1 4 0 2 1 2 8 - 1 8 0 2	74263 t 13024500	$= = 132 \cdot 400 \cdot 524 = 1100 \cdot 1000 \cdot 10000 \cdot 1000 \cdot 1000 \cdot 1000 \cdot 1000 \cdot 1000 $	== C00073 =6 H00005845	use dB W MHz use use dB dB dB W W MHz	
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02 SI	CH	10 1 HAN 1 5	N] 1 2 N] 4 0	EI .5. EI	27.7 .7 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	f 87 fa 163	1 1 4 0 2 1 2 8 - 1 8 0 2 3	74263 t 130245002	== 132.000000000000000000000000000000000000	=C00073 =6H000058458	use dB W MHz use use dB dB W W MHz	
====== NUC1 P1 P2 PL1 PL1W SF01 ======= CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL2W PL12W SF02 SI SF	CH	10 10 1 HAN 1 5 1	N 1 2 N 1 2 2	EI .5. EI .22. .0. .0.	27.7 .7 .3329 .1	f 87 fa 163 5	1 1 - 4 0 2 1 2 8 - 1 8 0 2 3 7	74263 t 1302450027	== .4.0564 .5264 00.8673006 769	=C00073 =6H0000584580	use use dB W MHz use use dB dB dB W W MHz MHz	
 NUC1 P1 P2 PL1 F1 SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL2 PL12 PL2W PL12W SF02 SI SF WDW	CH	10 1 HAN 1 5 1	NI 1 2 NI 4 0 2	EI .2 .5 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	27.7 7 3329.1 .7	f 87 fa 163 5	1 1 4 0 2 1 1 2 8 - 1 8 0 2 3 7	74263 t 1302450027	== 1324 	=C00073 =6H0000584580M	use use dB MHz use use dB dB W W MHz MHz	
 NUC1 P1 P2 PL1 F1 SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL12 PL12 PL12W SF02 SI SF WDW SSB	CH	10 1 HAN 1 5 1	NI 1 2 NI 4 0 0	EI .5.EI	277 7 329 . 7	f 87 fa 163 5	1 1 4 0 2 1 1 2 8 - 1 8 0 2 3 7	74263 t 1302450027	== 1324 	=C00073 =6H0000584580M0	use dB W MHz use use dB dB W W MHz MHz	
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL12 PL12W PL12W SF02 SI SF WDW SSB LB	CH	10 1 HAN 1 5 1	NI 12 NI 400 2	EI .5. EI 	27 7 w 339 1 .7	f 87 fa 163 5	1 1 4 0 2 1 1 2 8 - 1 8 0 2 3 7	74263 t 13024500227 1	== 1324 .0264 == 11500.0867 .00769E .0	=C00073 =6H0000584580M00	use dB W MHz use use dB dB W W MHz MHz Hz	
 NUC1 P1 P2 PL1 PL1W SF01 CPDPRG2 NUC2 P3 P4 PCPD2 PL2 PL2 PL22 PL12 PL2W PL12W SF02 SI SF WDW SSB LB GB	CH	10 1 HAN 1 5 1	NI 12. NI 400	EI .25 EI .22 .0 .22 .0 .5	277 30 3921 .7	f 87 fa 3 5	1 	74263 t 13024500027 1	== 13240264 =11500086730769E .0	=C00073 =6H0000584580M000	use dB W MHz use use dB dB W W MHz MHz Hz	

Area % Report

Sample ID: SK41 -- C:\Documents and Settings\user\Desktop\Sahar\Data\SK41-ACN_W_10-90-263nm.met-02-12-2013 15-34-41.dat Method: C:\Documents and Settings\user\Desktop\Sahar\ACN_W_10-90-263nm.met Acquired: 02/12/2013 15:35:15; Printed: 02/12/2013 16:18:18 Analysis Comment: {Data Description}

NAME Expno	CM-SK62(62B) 1	
PROCNO	1	
Date	20140117	
Time	9.11	
INSTRUM	Avance500	
PROBHD	5 mm QNP 1H/13	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	ک 10220 570	U 🚽
SMU	10330.378	п∠ Ц7
AO	3 1719923	500
RG	724	500
DW	48.400	use
DE	6.50	use
TE	291.2	Κ
D1	1.0000000	sec
TDO	1	
	CHANNEL f1 ====	
NUC1	1H	
P1	11.50	use
PLI	-1.00	dB
PLIW	11.38419914	W NATT-
SFUL	JUU.1330885 65526	MHZ
ST ST	500 1300000	MH 7
WDW	500.1500000 EM	1.111 2
SSB	0	
LB	0.30	Ηz
GB	0	
PC	1.00	

0

-20

-40

-100

-120

-140

-160

-180

CM-SK62(62B) NAME EXPNO 2 PROCNO 1 20140117 Date_ Time 9.12 INSTRUM Avance500 PROBHD 5 mm QNP 1H/13 zgfhigqn 131072 PULPROG TD SOLVENT CDC13 16 NS DS 4 113636.367 Hz SWH 0.866977 Hz FIDRES 0.5767668 sec AQ 2300 RG DW 4.400 use 6.00 use DE 291.4 K ΤE D1 1.00000000 sec 0.03000000 sec D11 D12 0.00002000 sec TD0 1 ====== CHANNEL f1 ====== NUC1 19F 18.60 use Ρ1 -1.50 dB PL1 PL1W 11.14113998 W 470.5453180 MHz SF01 ====== CHANNEL f2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 use -2.00 dB PL2 14.85 dB PL12 PL2W 14.33185768 W 0.29600734 W PL12W SFO2 500.1320005 MHz SI 65536 SF 470.5923770 MHz ΕM WDW SSB 0 0.30 Hz LB GΒ 0 РC 1.40

ppm

NAME CM-SK62(B) EXPNO 1 PROCNO 20140121 Date_ Time 19.11 INSTRUM Avance500 5 mm QNP 1H/13 PROBHD pendant PULPROG 65536 ТD SOLVENT CDC13 NS 512 DS 4 SWH 29761.904 Hz 0.454131 Hz FIDRES AQ 1.1010548 sec 3250 RG DW 16.800 usec 12.00 usec DE 291.7 K ΤE CNST2 145.0000000 2.00000000 sec D1 D4 0.00172414 sec 0.00002000 sec D12 D15 0.00431034 sec D20 0.00345000 sec TD0 4 ====== CHANNEL f1 ======= NUC1 13C 7.20 usec Ρ1 P2 14.40 usec -2.00 dB PL1 101.27846527 W PL1W SF01 125.7703643 MHz ====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H 11.50 usec РЗ Ρ4 23.00 usec PCPD2 80.00 usec -2.00 dB PL2 PL12 14.85 dB 14.33185768 W PL2W PL12W 0.29600734 W 500.1320005 MHz SFO2 32768 SI SF 125.7577890 MHz ΕM WDW SSB 0 1.00 Hz LB GB 0 PC 1.40

0

Page 1 of 1

Area % Report

Sample ID: SK62B -- C:\Documents and Settings\user\Desktop\Sahar\Data\SK62B-ACN_W_10-90-263nm.met-16-01-2014 16-17-57.dat Method: C:\Documents and Settings\user\Desktop\Sahar\ACN_W_10-90-263nm.met Acquired: 16/01/2014 16:20:43; Printed: 16/01/2014 17:01:28 Analysis Comment: {Data Description}

