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Abstract 

This paper proposes an improvement on the recently introduced Henry Gas Solubility Optimization 

(HGSO) metaheuristic algorithm that simulates the Henry’s gas law (i.e., the concentration of a gas sample 

in liquid solvent is proportional to the concentration of the sample in gas phase). As an improvement we 

apply quantum theory instead of standard procedure used in HSGO algorithm for updating solutions. The 

proposed algorithm is named as Quantum HGSO (QHGSO) algorithm in this paper. The suggested changes 

enhance the ability of HGSO to create a counterbalance between the exploitation and exploration for a 

better investigation of the solution space. For evaluating the capability of finding optimal solution of our 

proposed algorithm, a collection of forty-seven global optimization functions is solved. Moreover, three 

well-known engineering problems are studied to show the performance of the QHGSO algorithm in 

constrained optimization problems. Comparative results with other well-known metaheuristic algorithms 

have shown that the QHGSO algorithm outperforms others with higher computational performance.  

Keywords: Henry Gas Solubility Optimization Algorithm; Quantum Theory; Metaheuristics; 

Optimization; Physics-Based Algorithms. 

1. Introduction  

Global optimization problems have received a great deal of attention in recent years since they have 

been applied to different fields, including image processing [1], machine learning [2], Internet of Things 

(IoT) [3], and Transportation [4]. However, the complexity of solving these optimization problems has been 

brought into focus by not only researchers in the field of artificial intelligence, but also in other fields of 

mathematical sciences. As a result of this, a variety of methods and algorithms has been introduced to 

overcome these intricate problems.  

Nature-inspired algorithms in the literature are generally created based on natural phenomena, such as 

biology and physics and are classified into four main groups. The first group (i.e., stochastic algorithms) 

utilizes randomness to explore the search space, including Stochastic Hill Climbing (SHC) [5], Greedy 

Randomized Adaptive Search Procedure (GRASP) [6], Local Search (LS) [7], Adaptive Random Search 
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[8], Tabu Search [9], Iterated Local Search (ILS) [10], and Variable Neighborhood Search (VNS) [11]. The 

second group is called as population-based algorithms. The most well-known metaheuristic in this group is 

Genetic Algorithm [12]. These algorithms include Evolution Strategies [13], Evolutionary Programming 

[14], Adaptive Differential Evolution [15], Differential Evolution [16], and Gene Expression Programming 

[17]. The third group is named as Physics-Based algorithm, which is inspired by a variety of physical 

systems that mix both local and global search methods. These algorithms include Water Wave Optimization 

(WWO) [18], Ions Motion Algorithm [19], Mine Blast Algorithm (MBA) [20], Bacteria Chemotaxis [21] 

and Teaching–Learning-Based Optimization [22]. The last group algorithms imitate the social and 

individual behavior of natural swarms. These algorithms include Particle Swarm Optimization (PSO) [23], 

Grey Wolf Optimizer (GWO) [24], Volleyball Premier League Algorithm [25],  Dolphin Echolocation [26],  

Migrating Birds Optimization [27], Elephant Herding Optimization [28], Ant Colony Optimization [29], 

Cuckoo Search Algorithm [30], Bees Algorithm [31], Spider Optimization Algorithm (SOA) [32], Shuffled 

Frog Leaping [33], Cat Swarm Optimization [34], Firefly Algorithm [35], and Artificial Bee Colony [36].  

The proposal of Richard Feynman [37] regards to quantum computing systems based on quantum 

mechanics in 1982 was an inspiration for physics-inspired optimization algorithms. This effort lighted a 

way for quantum computing and it was an inspiration for Narayanan and Moore to propose their Quantum-

Inspired Genetic Algorithm (GA) in 1995 [38]. Later, in 2002, Han [39] improved the Evolutionary 

Algorithm (EA) using quantum theory based on [37] and [38]. 

As a promising alternative in the area of physics-based methodologies, the Henry Gas Solubility 

Optimization algorithm (HGSO) appears to be an useful tool for solving optimization problems [40]. This 

algorithm inspired by the rule of Henry who defined a law to describe solubility of gas in a fluid. More 

specifically, William Henry introduced a law for the utmost amount of solute which can be solved at a 

certain amount of solvent at a defined temperature or pressure in the late 1800s. This definition is known 

as solubility [40]. An example of the improved HGSO algorithm for solving the DNA motif discovery 

problem presented by Hashim et.al [41]. This problem is vitally important in terms of identifying the 

transcription factor binding sites which can assist in learning the mechanisms for regulation of gene 

expression. To solve the same problem, the HGSO is modified by adding a new phase which includes the 

main specifications of the motifs in DNA sequences.  

It is a theoretical foundation of modern physics which tends to describe the essence and behavior of 

substance and energy at the levels of atomic and subatomic. On the other hand, modern physics shed a new 

light to describe the behavior of matter and energy at the layer of the atomic and subatomic levels by 

introducing quantum physics which also called as quantum mechanics. This theory presented by physicist 

Max Planck in 1900. Due to the aforementioned points, the wave function which borrowed from quantum 

theory is used to define the status of every gas instead of what is defined in the classical HGSO.  

The intention of the proposed algorithm is to improve the performance of the original HGSO algorithm. 

This objective is done using a new scheme borrowed by the quantum theory for updating the position of 

each solution. The contributions of this study are the followings.  

a) Improving the Henry Gas Solubility Optimization algorithm using Chaotic coefficient in quantum 

behavior instead of random numbers; 

b) Evaluating the performance of the proposed QHGSO using a set of experiments (i.e., the forty-

seven optimization test functions and three engineering problems); 

c) Comparing the results of the proposed QHGSO with other well-known global optimization 

methods.  
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The rest of the paper is organized as follows. In section 2, a brief review on the related metaheuristics 

algorithms and its applications is presented. Section 3 presents a glimpse at the mechanism of the HGSO 

algorithm. Section 4 is dedicated to introducing the mechanism of the proposed algorithm. Section 5 

presents the experimental analysis of the proposed algorithm on studied test functions and engineering 

problems. Finally, conclusions and future research directions are presented in section 6. 

2. Literature Review  

This section provides a brief literature review on the classification of metaheuristic algorithms.  

Metaheuristic algorithms can be classified into four main groups as shown in Figure 1. Although there are 

numerous metaheuristic algorithms available, we only review the physic-based algorithms since our 

proposed algorithm is a variant in this category. The class of physic-based algorithms represent the methods 

which are inspired by laws and phenomena in the field of physic or chemistry and classified into five 

subdomains [42] as follows. These include quantum theory, electrostatics, electromagnetism, Newton’s 

gravitational law, and the laws of motion. The algorithms related to the group of quantum theory are 

inspired by new laws and formulations on subatomic level that are entirely different from classical laws 

and formulas that were unable to explain the subatomic behavior. This theory is benefited from a probability 

distribution function to define the position of each particle instead of velocity and acceleration in classic 

physics.  

Some of well-known algorithms in the quantum theory group are presented in the followings. Quantum-

Inspired Bacterial Swarming Optimization (QBSO) [43] modifies bacterial foraging optimization algorithm 

using quantum bit for defining probabilistic solution representation for each bacteria position. This 

algorithm is introduced for solving discrete optimization problems as a new approach in evolutionary 

algorithms and called as Quantum-Inspired Evolutionary Algorithm (QEA) [39]. This scheme is benefited 

from a string of Q-bits to define the individual as a probabilistic solution representation for solving 

combinatorial optimization problems. Quantum-Inspired Genetic Algorithm (QGA) presented by 

Narayanan et. al. [38] is used the same approach to define quantum bits instead of binary ones in solution 

representation for solving traveling salesman problem. For enhancing the performance of immune clonal 

algorithm, a Quantum-Inspired Immune Clonal Algorithm (QICA) is presented by Jiao et. al. [44]. In this 

algorithm the antibody is proliferated and separated into a set of subgroups. The antibodies in a subgroup 

are indicated by multistate gene quantum bits. Moreover, for updating the antibody, the general quantum 

rotation gate strategy and the dynamic adjusting angle mechanism are implemented to speed up the 

convergence. Continuous quantum ant colony optimization (CQACO) is presented by Li et. Al. [45] to 

overcome the drawback of ACO algorithm which is for discrete optimization problems. ACO algorithm is 

benefited from quantum bit to determine the position of each ant to expands the algorithm for continuous 

optimization problems and boosts its convergence rate. Due to the quantum-behaved particle swarm 

optimization a novel parameter control method is introduced by Sun et al. [46] to boost the performance of 

the quantum-behaved particle swarm optimization (QPSO). An Improved Quantum Evolutionary 

Algorithm (IQEA) is introduced by Zhang et. al.[47]. In this study a novel scheme of adaptive computing 

rotation angle of quantum rotation gate is planned on the foundation of the probability domain ratio of the 

related positions and applied for solving 0/1 knapsack problems.  

The Particle Swarm Optimization is empowered by quantum bits to update the quantum angles 

spontaneously in a paper titled as Quantum Swarm Evolutionary Algorithm (QSE) [48]. After converting 

a test suite reduction problem to the standard optimization problem, a novel scheme to evolutionary 
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algorithm using quantum bit in comparison with its original bit is presented in a paper titled as Reduced 

Quantum Genetic Algorithm (RQGA) [49]. To tackle some drawbacks of the quantum-inspired 

evolutionary algorithms and describing how the hitchhiking problem can slow down to find optimal 

solution and trapped in premature convergence, a Versatile Quantum-inspired Evolutionary Algorithm 

(VQEA) is introduced in Platel et.al [50]. In this algorithm, the attractor agents change their positions 

among the population via the search space and relocated at every generation without considering their 

fitness. Electrostatics-Based Algorithms and Electromagnetism-Based Algorithms are inspired by classical 

physics in the field of electrical phenomena consists of Charged System Search (CSS) [51] and 

Electromagnetism (EM) [52], respectively.  

The algorithms related to Newton’s gravitational law which is another group based on classic physics 

and inspired by gravity law including Big Bang-Big Crunch (BBBC) [53], Galaxy-Based Search Algorithm 

(GBSA) [54], Gravitational Interaction Optimization (GIO) [55], Gravitational Search Algorithm (GSA) 

[56], Artificial Physics Optimization (APO) [57], Central Force Optimization (CFO) [58], Black Hole (BH) 

algorithm [59], Ray Optimization (RO) algorithm [60], Small-World Optimization Algorithm (SWOA) 

[61]. The algorithms belong to the last group inspired by the phenomena in the field of chemistry are 

including  Artificial Chemical Reaction Optimization Algorithm (ACROA) [62], Quantum Evolutionary 

Algorithm Hybridized with Enhanced Colliding Bodies (QEECB) [63], Plasma Generation Optimization 

(PGO) [64], Simulated Annealing (SA) [65], Gases Brownian Motion Optimization (GBMO) [66] and 

Henry Gas Solubility Optimization algorithm (HGSO) [40].  
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Figure 1: Four main groups of metaheuristic algorithms 

 

3. Henry Gas Solubility Optimization Algorithm 

Henry Gas Solubility Optimization algorithm is a newfound physics-inspired optimization method 

presented by Hashim et.al [40]. This new method inspired by Henry’s gas law which describes the rules for 

solubility gas in liquids. Henry’s law has ability to specify the solubility of low-solubility gases in fluids. 

Furthermore, two main factors which have direct effect on solubility are temperature and pressure. At 

temperature with the higher degrees, the solubility of solids increases, by contrast, gases have less chance 

to be soluble [67]. In terms of pressure, the capability of gas for solubility in liquids raises by increasing 

the amount of pressure [40]. Using these two important features, HGSO algorithm consists of eight steps 

as follows. The first step represents the initialization procedure which generates the number of gases 

(population), their positions and the value of Henry’s constant for each group j (𝐻𝑗(𝑡)), partial pressure 𝑃𝑖,𝑗 

of gas i at each group j. The mathematical equation of this stage is as follows. 

𝑋𝑖(𝑡 + 1) =  𝑋𝑚𝑖𝑛 + 𝑟 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛), (1) 

where 𝑋𝑖 represents the location of the ith gas in population N, r defined as a chaotic number between 0 

and 1, and 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 are the bounds of the problem and (t) is the iteration.  

𝐻𝑗(𝑡) =  𝑙1  × 𝑟𝑎𝑛𝑑 (0,1), 𝑃𝑖,𝑗 = 𝑙2  × 𝑟𝑎𝑛𝑑 (0,1) , 𝐶𝑗 = 𝑙3  × 𝑟𝑎𝑛𝑑 (0,1), (2) 

where 𝑙1 to 𝑙3 are constant numbers with value of 5E−02, 100 and 1E−02), respectively. 

In the second step, called clustering, the population of gases is classified into based on the number of 

gas kinds. All gases at every group have the same 𝐻𝑗. 

In the third step, called evaluation, to estimate the best gas in each cluster 𝑗 which obtain the highest 

equilibrium position in comparison with others in its kind. To find the best gas in whole swarm, ranking is 

used. 

An equation for updating Henry’s coefficient is used in step four as follows: 

𝐻𝑗(𝑡 + 1) =  𝐻𝑗(𝑡)  × 𝑒
(−𝐶𝑗(

1

𝑇(𝑡)
−1/𝑇𝜃))

,   𝑇(𝑡) =  𝑒(−𝑡/𝑖𝑡𝑒𝑟), (3) 

where 𝐻𝑗 illustrates the coefficient of Henry gas rule in each group j, T represents the temperature, 𝑇𝜃 

defined as a fixed quantity which its value is 298. Moreover, the iter represents the total number of iterations. 

The solubility update equation as follows in which 𝑆𝑖,𝑗 illustrates solvability of gas i at each group j, 𝑃𝑖,𝑗 

represents the parochial pressure on gas i at each group j and K used as a fixed value. 

𝑆𝑖,𝑗(𝑡) = 𝐾 × 𝐻𝑗(𝑡 + 1)  ×  𝑃𝑖,𝑗(𝑡). (4) 

Step six presents an equation for updating position of each gas in Eq.(5-6): 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝐹 × 𝑟 × 𝛾 × (𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) + 𝐹 × 𝑟 × 𝛼 × (𝑆𝑖,𝑗(𝑡) × 𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) (5) 

𝛾 = 𝛽 × 𝑒𝑥𝑝 (−
𝐹𝑏𝑒𝑠𝑡(𝑡) + 𝜀

𝐹𝑖,𝑗(𝑡) + 𝜀
) , 𝜀 = 0.05, (6) 

where 𝑋𝑖,𝑗 represents the status for each gas i at every group 𝑗, 𝑟 and 𝑡 a random value between 0 and 1 

and the iteration time, 𝑋𝑖,𝑏𝑒𝑠𝑡, shows the best gas 𝑖 at each group 𝑗, while 𝑋𝑏𝑒𝑠𝑡 presents the best gas among 
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whole population. Moreover, 𝛾 represents the capability of each gas j in every group 𝑖 interacted by the 

gases in its group, α shows the impact of the rest of the gases on gas i in group j and takes the value of 1 

and a fixed number will be assigned to β. 𝐹𝑖,𝑗 represents the fitness for each gas 𝑖 at each group 𝑗, on the 

other hand 𝐹𝑏𝑒𝑠𝑡 illustrates the fitness of the best gas in the whole population. An equation to avoiding local 

optimum situations as follows in step seven: 

𝑁𝑤 = 𝑁 ∗ (𝑟𝑎𝑛𝑑((𝐶2 − 𝐶1) + 𝐶1), 𝐶1  ;  𝐶1 = 0.1   , 𝐶2 = 0.2, (7) 

where 𝑁𝑤 and 𝑁 are worst agents and the number of search agents, respectively. 

Finally, at stage eight, an equation for updating the position of worst agents as follows: 

𝐺𝑖,𝑗 = 𝐺𝑀𝑖𝑛(𝑖,𝑗) + 𝑟 × (  𝐺𝑀𝑎𝑥(𝑖,𝑗) − 𝐺𝑀𝑖𝑛(𝑖,𝑗)), (8) 

where 𝐺𝑖,𝑗 shows the status for each gas i in group j, r used as a number which is distributed on [0,1], 

𝐺𝑀𝑖𝑛(𝑖,𝑗) and 𝐺𝑀𝑎𝑥(𝑖,𝑗) represents the bounds for the algorithm. Algorithm 1 presents the steps of HGSO 

algorithm. 

 

Algorithm 1: Pseudocode of HGSO algorithm 

Step 1: Initialization: Xi(1 = 1, 2, . . . N), number of gas types 𝑖, 𝐻𝑗, 𝑃𝑖, 𝑗, 𝐶𝑗, 𝑙1, 𝑙2 and 𝑙3. 

Step 2: Divide the population agents into number of gas types (cluster) with the same Henry’s constant 

value (Hj). 

Step 3: Evaluate each cluster j. 

Step 4: Get the best gas Xi, best in each cluster, and the best search agent Xbest. 

Step 5: while t < maximum number of iterations do 

Step 6:  

Step 7:  

Step 8:  

Step 9:  

Step 10:  

Step 11:  

Step 12:  

Step 13:  

for each search agent do 

Update the positions of all search agents using Eqs. (5-6). 

end for 

Update Henry’s coefficient of each gas type using Eq. (3). 

Update solubility of each gas using Eq. (4). 

Rank and select the number of worst agents using Eqs. (7). 

Update the position of the worst agents using Eq. (8). 

Update the best gas Xi,best, and the best search agent Xbest. 

Step14: end while 

Step 15: t = t + 1 

Step 16: return Xbest  

4. Advanced Quantum Henry Gas Solubility Optimization algorithm  

This section introduces a framework of our proposed algorithm which we call it Quantum Henry Gas 

Solubility Optimization (QHGSO) algorithm.  
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In this research, quantum theory is firstly used for updating the positions of solutions. Moreover, 

chaotic coefficient is used in quantum formula to reach deeper exploitation of the search space. For avoiding 

any local optimal solution, the proposed algorithm is empowered using a local search. The reason behind 

this modification for updating position formula is that the quantum theory predicts the position of each 

particle (Gas) based on a probability function. This probability function determines the most likely position 

for each particle (Gas) due to its best position achieved so far. In other words, this mechanism investigates 

the positions of the search space with high chance for being the optimum which introduces the exploitation 

aspect of our proposed algorithm. Furthermore, using chaotic numbers instead of random numbers in 

quantum formula enhances the exploration performance due to its power of generating diversified numbers 

to explore the search space. 

4.1. Initialization process 

The following formula represents the initial population of gases (N) and their positions: 

𝑋𝑖(𝑡 + 1) =  𝑋𝑚𝑖𝑛 + 𝑟 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛), (9) 

where 𝑋𝑖  shows the position of ith gas in the population N, r is defined as a random number which is 

distributed between 0 and 1,  𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are problem boundaries and t presents the iteration. Moreover, 

the following equations defining the Henry’s constant for each gas i type (𝐻𝑗(𝑡)) , sectorial pressure 𝑃𝑖,𝑗 

for every gas i in group j and ∇𝑠𝑜𝑙𝐸/𝑅 is a fixed value of type 𝑗(𝐶𝑖):  

𝐻𝑗(𝑡) =  𝑙1  × 𝑟𝑎𝑛𝑑 (0,1), 𝑃𝑖,𝑗 = 𝑙2  × 𝑟𝑎𝑛𝑑 (0,1) , 𝐶𝑗 = 𝑙3  × 𝑟𝑎𝑛𝑑 (0,1) (10) 

where 𝑙1 to 𝑙3 are constant numbers with value of 5E−02, 100, and 1E−02, respectively. 

In the following, the members of the crowd are categorized into same clusters as to the number of 

gas species. The population agents are divided into equal clusters equivalent to the number of gas types. 

Each cluster has similar gases and therefore has the same Henry’s constant value (𝐻𝑗).  

4.2. Evaluation 

In this phase, evaluating for each cluster j will be performed to finding the best gas which reaches the 

sublime equilibrium position in comparison with others in its kind. Afterward, sorting method is used to 

identify the optimum gas among the whole crowd. 

4.3. Updating the Henry’ coefficient 

The following formula explains the updating process of the Henry's coefficient. 

𝐻𝑗(𝑡 + 1) =  𝐻𝑗(𝑡)  × 𝑒
(−𝐶𝑗(

1

𝑇(𝑡)
−1/𝑇𝜃))

      ,   𝑇(𝑡) =  𝑒(−𝑡/𝑖𝑡𝑒𝑟) (11) 

4.4. Updating solubility phase 

The formula for updating solubility is described below:  

𝑆𝑖,𝑗(𝑡) = 𝐾 × 𝐻𝑗(𝑡 + 1)  ×  𝑃𝑖,𝑗(𝑡) (12) 

4.5. Updating the position based on quantum behavior 

The dynamic behavior of a particle is entirely different in comparison with the particle in traditional 

swarm algorithms such as HGSO in which determining the exact values of x and v is not possible 
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concurrently. There is just one thing is possible which is that calculating the probability of being a particle 

in position x from probability density function |𝛹(𝑥, 𝑡) |2. The density function shape is correlated to the 

potential field the particle lies in [68] and afterward the probability density function determines the 

probability distribution function of the particle’s position. The updating position of each particle or gas is 

calculated in the following equation using Monte-Carlo method by [69]:  

𝑋𝑖,𝑗(𝑡 + 1) = {
𝑃𝑖 − 𝛽 ∗ (𝑀𝐵𝑒𝑠𝑡 − 𝑋𝑖,𝑗(𝑡)) ∗ ln (

1

𝑢
) ,      𝑖𝑓 𝑘 ≥ 0.5

𝑃𝑖 + 𝛽 ∗ (𝑀𝐵𝑒𝑠𝑡 − 𝑋𝑖,𝑗(𝑡)) ∗ ln (
1

𝑢
) ,      𝑖𝑓 𝑘 ≤ 0.5

 

((13) 

𝑃𝑖=𝜃 ∗ 𝑝𝐵𝑒𝑠𝑡𝑖 + (1 − 𝜃) ∗ 𝑔𝐵𝑒𝑠𝑡𝑖  
((14) 

𝑀𝑏𝑒𝑠𝑡 = 
1

𝑁
 ∑ 𝑝𝐵𝑒𝑠𝑡𝑖

𝑁

𝑖=1
 

((15) 

Equations (13)-(15) are used for updating position of the gases in the HGSO. 𝑃𝑖 presents the local 

attractor, 𝑝𝐵𝑒𝑠𝑡𝑖 illustrates the best position that the 𝑖𝑡ℎ gas has obtained up to now and  𝑔𝐵𝑒𝑠𝑡𝑖 represents 

the best position of all gases at each iteration.  𝑀𝑏𝑒𝑠𝑡 introduces the average best status of the whole crowd, 

𝑘 is a random number between 0 and 1. Also, 𝑢 and 𝜃 are chosen as chaotic numbers distributed on [0,1], 

since the chaotic function generates numbers with more diversity to help the exploration performance of 

the QHGSO. The parameter 𝛽 in Eq. (14) indicates contraction expansion (CE) coefficient and utilized to 

control of the convergence rate. The value of parameter 𝛽 starts from 1 and reduced permanently to 0.4 to 

seek the global optimum. The reason behind this is to empower the local search mechanism of the QHGSO. 

A formula for this parameter is introduced in Eq. (16) [70]. 

𝛽 = 𝛽𝑚𝑎𝑥 − [{
𝛽𝑚𝑎𝑥−𝛽𝑚𝑖𝑛

𝑖𝑡𝑚𝑎𝑥
} *it] (16) 

where βmax and βmin are the starting and ending points for contraction expansion factor, respectively. 

In addition, it indicates the contemporary iteration and 𝒊𝒕𝒎𝒂𝒙 illustrates the last iteration number. 

4.6. Escaping from a local optimum situation  

In this step the following equations are used for avoiding in local optimum situations: 

𝑁𝑤 = 𝑁 ∗ (𝑟𝑎𝑛𝑑((𝐶2 − 𝐶1) + 𝐶1), 𝐶1  ;  𝐶1 = 0.1   , 𝐶2 = 0.2 (17) 

𝑋𝑖,𝑗(𝑡 + 1) = 𝐴𝑖 ∗ (𝑋𝑖,𝑗(𝑡))      (18) 

4.7. Updating the position for each worst agent  

We use the same equation in this step like the original ones as follows: 

𝐺𝑖,𝑗 = 𝐺𝑀𝑖𝑛(𝑖,𝑗) + 𝑟 × (  𝐺𝑀𝑎𝑥(𝑖,𝑗) − 𝐺𝑀𝑖𝑛(𝑖,𝑗)) (19) 

The pseudocodes the QHGSO algorithm are shown in the following.  
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Algorithm 2: Pseudocode of QHGSO algorithm 

1: Initialization: Xi(1 = 1, 2, . . . N), number of gas types i, Hj, Pi,j, Cj, l1, l2 and l3. 

2: Divide the population agents into number of gas types (cluster) with the same Henry’s constant 

value (Hj). 

3: Evaluate each cluster j. 

4: Get the best gas Xi,best in each cluster, and the best search agent Xbest. 

5: while t < maximum number of iterations do 

6:  

7:  

8:  

9:  

10:  

11:  

12:  

13:  

for each search agent do 

Update the positions of all search agents using Eqs. (13-15). 

end for 

Update Henry’s coefficient of each gas type using Eq. (11). 

Update solubility of each gas using Eq. (12). 

Rank and select the number of worst agents using Eqs. (17-18). 

Update the position of the worst agents using Eq. (19). 

Update the best gas Xi,best, and the best search agent Xbest. 

14: end while 

15: t = t + 1 

16: return Xbest  

 

From what has been discussed above, these modifications can make the HGSO faster and achieving 

better solutions in comparison with the state of the art of metaheuristics. This superiority will be discussed 

in forthcoming sections.  

5.  Numerical Experiments 

This section provides the numerical results obtained using the proposed QHGSO algorithm. 

5.1. Parameter settings 

In terms of evaluating the QHSPO algorithm, we compare the performance of nine well-known 

metaheuristic algorithms, including Henry Gas Solubility Optimization Algorithm (HGSO) [40], Salp 

Swarm Algorithm (SSA) [71], Grasshopper Optimization Algorithm [72], Whale Optimization Algorithm 

(WOA) [73], Dragonfly Optimization Algorithm (DA) [74], Sine Cosine Algorithm (SCA) [75], Moth 

Flame Optimization (MFO) [76], Ant Lion Optimizer (ALO) [77], Grey Wolf Optimizer (GWO) [24]. We 

note that the parameters used in each method were used as mentioned in the original reference. In addition, 

for a fair comparison between these algorithms and the proposed algorithm, the common parameters are set 

to the same value for all these algorithms. For example, the population size is set to 30, the maximum 

number of iterations is set to 200 and for providing a statistical analysis each method was run 30 times. All 

algorithms are implemented using Matlab R2018b that installed on Windows 10 64bit with the system of 

2.60 GHz processor with 4GB RAM. 



10 

 

5.2. Analysis on benchmark test functions 

5.2.1. Description of test functions  

In this section the performance of the proposed algorithm has been analyzed based on 47 standard test 

function (CEC'05) in comparison with nine well-known metaheuristics algorithms which are introduced 

recently. These functions are classified into three main groups: (1) unimodal, (2) multimodal, and (3) fixed 

dimension multimodal functions. The unimodal test functions (F1-F11) consist of just one global optimum 

point and used as a metric to reflect the exploitation power. While the multimodal test functions (F12-F47) 

consider a variety of local optimum spots to evaluate exploration performance; accordingly, these two types 

of benchmark functions can mirror the performance of the proposed algorithm in terms of exploitation and 

exploration capability. The definition of each function is described in Table 1 and Table 2 in Appendix. It 

is worth noting that the dimension of the function is shown by Dim, R and  𝒇𝒎𝒊𝒏 , are the boundaries of the 

search space problem, and the value of fitness function, respectively. Table 1 : Standard benchmark functions 

Type of 

functio

ns 

No. Objective Function Name Dim R 𝑓𝑚𝑖𝑛 

U
n

im
o
d

a
l 

fu
n

ct
io

n
s 

1 𝑓1 = (∑ 𝑥𝑖
2

𝑛

𝑖=1
)2 Chung Reynolds 30 [-100,100] 0 

2 𝑓2(𝑥) =∑ 𝑥𝑖
2

𝑛

𝑖=1
 Sphere 30 [-5.12,5.12] 0 

3 
𝑓3(𝑥) =  ∑(𝑥4𝑖−3 − 10𝑥4𝑖−2)

2 + 5 (𝑥4𝑖−1 − 𝑥4𝑖)
2

𝐷/4

𝑖=1

+  (𝑥4𝑖−2 − 𝑥4𝑖−1)
4 +  10 (𝑥4𝑖−3 − 𝑥4𝑖)

4 

 

 

 

 

Powell Singular 1 30 [-4,5] 0 

4 
𝑓4(𝑥) =  ∑(𝑥𝑖−1 − 10𝑥𝑖)

2 + 5 (𝑥𝑖+1 − 𝑥𝑖+2)
2

𝐷−2

𝑖=2

+  (𝑥𝑖 −  2𝑥𝑖+1)
4 +  10 (𝑥𝑖−1 − 𝑥𝑖+2)

4 

Powell Singular 2 30 [-4,5] 0 

5 𝑓5(𝑥) =  ∑|𝑥𝑖|
𝑖+1

𝑛

𝑖=1

 Powell Sum 30 [-1,1] 0 

6 𝑓6(𝑥) = −∑|𝑥𝑖|

𝑛

𝑖=1

 Schwefel 2.20 30 [-100,100] 0 

7 𝑓7(𝑥) =  𝑀𝑎𝑥1≤𝑛≤𝑛 |𝑥𝑖| Schwefel 2.21 30 [-100,100] 0 

8 𝑓8(𝑥) =∑ |𝑥𝑖|
𝑛

𝑖=1
+ ∏|𝑥𝑖|

𝑛

𝑖=1

 Schwefel 2.22 30 [-100,100] 0 

9 𝑓9(𝑥) =∑ 𝑥𝑖
10

𝑛

𝑖=1
 Schwefel 2.23 30 [-10,10] 0 

10 𝑓10(𝑥) = ∑ (⟦𝑥𝑖⟧)
𝑛

𝑖=1
 Step 1 30 [-100,100] 0 

11 𝑓11(𝑥) = ∑ 𝑖 ∗ 𝑥𝑖
2

𝑛

𝑖=1
 Sum Squares 30 [-10,10] 0 
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M
u

lt
im

o
d

a
l 

fu
n

ct
io

n
s 

12 

𝑓12(𝑥) =  −20exp (−0.2√
1

𝑑
∑ 𝑥𝑖

2
𝑛

𝑖=1
)

− exp(
1

𝑑
∑cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

)  +20 + 𝑒 

Ackley 30 [-35,35] 0 

13 𝑓13(𝑥) =∑ |𝑥𝑖  sin(𝑥𝑖) + 0.1 𝑥𝑖|
𝑑

𝑖=1
 Alpine 30 [-10,10] 0 

14 𝑓14(𝑥) =  ∑((𝑥𝑖
2)(𝑥𝑖+1

2 +1))

𝑛−1

𝑖=1

+ (𝑥𝑖+1
2 )(𝑥𝑖

2+1) ) Brown 30 [-1,4] 0 

15 𝑓15(𝑥) =  𝑥1
2 + 106  ∑𝑥𝑖

2

𝑛

𝑖=2

 Cigar 30 [-100,100] 0 

16 
𝑓16(𝑥) =  −exp (−0.5 ∑ 𝑥𝑖

2
𝑛

𝑖=1
) 

 

Exponential 30 [-1,1] -1 

17 𝑓17(𝑥) =  ∑
𝑥𝑖
2

4000

𝑑

𝑖=1
− ∏cos (

𝑥𝑖

√𝑖
)

𝑑

𝑖=1

+ 1 Griewank 30 [-600,600] 0 

18 𝑓18(𝑥) =  (1 − 𝑛 −∑ 𝑥𝑖

𝑛−1

𝑖=1

)𝑛−∑ 𝑥𝑖
𝑛−1
𝑖=1  Mishra 1 30 [0,1] 2 

19 𝑓19(𝑥) = (1 − 𝑛 −∑ 0.5(𝑥
𝑖

𝑛−1

𝑖=1

+ 𝑥𝑖+1)
𝑛−∑ 0.5(𝑥𝑖

𝑛−1
𝑖=1 +𝑥𝑖+1) Mishra 2 30 [0,1] 2 

20 𝑓20(𝑥) =  [
1

𝑛
 ∑|𝑥𝑖|

𝑛

𝑖=1

− (∏|𝑥𝑖|

𝑛

𝑖=1

)
1
𝑛]

2

 Mishra 11 30 [0,10] 0 

21 𝑓21(𝑥) =  ∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1] Quartic 30 [-1.28,1.28] 0 

22 𝑓22(𝑥) = 10𝑑 + ∑ [𝑥𝑖
2 − 10 cos 2𝜋𝑥𝑖]

𝑑

𝑖=1

 Rastrigin 30 [-5.12,5.12] 0 

23 𝑓23(𝑥) =  ∑ [(𝑥𝑖 − 1)
2 + (𝑥1 − 𝑥𝑖

2)
2
]

𝑛

𝑖=2

 Schwefel 2.25 30 [0,10] 0 

24 𝑓24(𝑥) =  [(−∑|𝑥𝑖|

𝑛

𝑖=1

) ∗ exp(−∑sin(𝑥𝑖)
2

𝑛

𝑖=1

)] Xin-She Yang 2 30 [-2 𝜋, 2 𝜋] 0 

25 
𝑓25(𝑥) =  [exp (−∑(

𝑥𝑖

15
)
10

𝑛

𝑖=1

) − 2 exp (−∑(𝑥𝑖)
2

𝑛

𝑖=1

)

∗∏𝑐𝑜𝑠2(𝑥𝑖)

𝑛

𝑖=1

] 

Xin-She Yang 3 30 [-20,20] 0 

26 𝑓26(𝑥) =  ∑ 𝑥𝑖
2

𝑛

𝑖=1
+ (

1

2
 ∑ 𝑖𝑥𝑖

2
𝑛

𝑖=1
)2 + (

1

2
 ∑ 𝑖𝑥𝑖

2
𝑛

𝑖=1
)4 Zakharov 30 [-5,10] 0 

 

 

Table 2 : Fixed-dimension multimodal functions description. 

No. Objective Function Name Dim R 𝑓𝑚𝑖𝑛 
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27 𝑓27(𝑥) =  200 ∗ exp(−0.2 ∗ (√𝑥1
2 + 𝑥2

2 )) Ackley 2 2 [-32,32] 0 

28 𝑓28(𝑥) =  |𝑥1
2 + 𝑥2

2 + 𝑥1 ∗  𝑥2 | + |sin(𝑥1)| + |cos(𝑥2)| Bartels Conn 2 [-500,500] 0 

29 𝑓29(𝑥) =  𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1) − 0.4 cos(4𝜋𝑥2) + 0.7 Bohachevsky 1 2 [-100,100] 0 

30 𝑓30(𝑥) =  𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1) ∗ 0.4 cos(4𝜋𝑥2) + 0.3 Bohachevsky 2 2 [-100,100] 0 

31 𝑓31(𝑥) =  𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1 +  4𝜋𝑥2) + 0.3 Bohachevsky 3 2 [-100,100] 0 

32 𝑓32(𝑥) =  1.05𝑥1
4 + 2𝑥1

2 +
1

6
∗ 𝑥1

6 + 𝑥1 ∗  𝑥2 + 𝑥2
2 

Camel-Three 

Hump 
2 [-5,5] 0 

33 

𝑓33(𝑥) =  𝑥1
2 + 12𝑥1 + 11 + 10 cos(𝜋𝑥1/2) + 8 sin(5𝜋𝑥1/2)

− (
1

5
)
0.5

 exp (−0.5(𝑥2 − 0.5)
2) 

Chichinadze 2 [-30,30] 0 

34 
𝑓34(𝑥) =  −.0001 [|sin(𝑥1) cos(𝑥2) exp|100

− [𝑥1
2 + 𝑥2

2]0.5/𝜋||  + 1 ]
0.1

 
Cross-in-Tray 2 [-10,10] 0 

35 𝑓35(𝑥) =  −

(

 
 
 
 

1

(|𝑒
|100−

√𝑥12+ 𝑥22 
𝜋

|
 sin(𝑥1) cos(𝑥2)  |  +  1  )  

0.1 

)

 
 
 
 

 
ScCrossLegTabl

e * 
2 [-10,10] 0 

36 𝑓36(𝑥) =  𝑥1
2 + 𝑥2

2 + 25 ( 𝑆𝑖𝑛2(𝑥1) +  𝑆𝑖𝑛
2(𝑥2) Egg Crate 2 [-5,5] 0 

37 𝑓37(𝑥) =  − ∑ 𝑐𝑖

4

𝑖=1

exp [−∑ 𝑎𝑖𝑗 (𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗=1

] Hartman 6 [0,1] 0 

38 𝑓38(𝑥) =  0.26(𝑥1
2 + 𝑥2

2) − 0.04𝑥1𝑥2 Matyas 2 [-10,10] 0 

39 𝑓39(𝑥) = 1 + 𝑆𝑖𝑛
2(𝑥1) + 𝑆𝑖𝑛

2(𝑥2) − 0.1𝑒
−𝑥1

2− 𝑥2
2

 Periodic 2 [-10,10] 0 

40 

𝑓40(𝑥) = (333.75−𝑥1
2)−𝑥2

6 + 𝑥1
2(11𝑥1

2𝑥2
4 − 2) + 5.5𝑥2

8

+
𝑥1

2𝑥2
 

Rump 

2 [-500,500] 0 

41 𝑓41(𝑥) = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 Rotated Ellipse 2 [-500,500] 0 

42 

𝑓42(𝑥) = 𝑔(𝑟). ℎ(𝑡), 

𝑤ℎ𝑒𝑟𝑒, 𝑔(𝑟) = [sin(𝑟) −
sin(2𝑟)

2
+
sin(3𝑟)

3
+
sin(4𝑟)

4
+ 4] (

𝑟2

𝑟 + 1
) 

, ℎ(𝑡) = 0.5 cos(2𝑡 − 0.5) +  cos(𝑡) + 2  , 𝑟 = √𝑥1
2 + 𝑥2

2  , 𝑡 =

𝑎𝑡𝑎𝑛2(𝑥1, 𝑥2) 

Sawtoothxy 

2 [-20,20] -1 
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43 𝑓43(𝑥) = 0.5 +
sin2(𝑥1

2 + 𝑥2
2)
2
− 0.5

1 + 0.001(𝑥1
2 + 𝑥2

2)
2 

Scahffer1 

2 [-100,100] 0 

44 𝑓44(𝑥) = 0.5 +
sin2√𝑥1

2 + 𝑥2
2 − 0.5

[1 + 0.001(𝑥1
2 + 𝑥2

2)
2
]
 

Schaffer6 

2 [-100,100] 2 

45 𝑓45(𝑥) = (𝑥1
2 − 4𝑥2

2)
2
+ (𝑥1

2 − 2𝑥1 + 4𝑥2)
2
 

Stenger 
2 [-1,4] 2 

46 𝑓46(𝑥) = 4 − 4𝑥1
3 + 4𝑥1 + 𝑥2

2 

Trecanni 

2 [-5,5] 0 

47 𝑓47(𝑥) = 𝑥1
2 − 100 cos(𝑥1)

2 − 100 cos(
𝑥1
2

30
) + 𝑥2

2

− 100 cos(𝑥2)
2 − 100 cos(

𝑥2
2

30
) 

Venter 
2 [-50,50] 0 

 

 

5.2.2. Analysis of exploration and exploitation and measures of performance  

In terms of trading off between exploration and exploitation to better search the space solution and 

avoiding any local optimum situations, our proposed algorithm is benefited from three parameters to reach 

the aforementioned points: 𝑺𝒊,𝒋 , A and F. 𝑺𝒊,𝒋 represents the solubility for each individual gas i at every 

group j which is rely on each iteration. A is a chaotic coefficient for updating and escaping local optimum 

situations. And finally, F represents the way which has a potential to create diversity by means of changing 

the way of seeking for some search agents.  

In this research, for gaining the exploration and exploitation, a dimension-wise manifold evaluation 

technique represented by Hussain et al. [72] is used. Therefore, the average value together with high 

distance within dimensions indicates exploration and the opposite situation represents the exploitation. 

Therefore, for evaluating the performance of each algorithm in comparison with our proposed 

metaheuristics, the following measures are used:  

Mean of fitness values (Mean): 

𝑀𝑒𝑎𝑛 =
1

𝑁𝑟
∑ 𝐹𝑖
𝑁𝑟
𝑖=1 , (20) 

Standard deviation (STD): 

𝑆𝑇𝐷 = √
1

𝑁𝑟−1
∑ (𝐹𝑖 −𝑚𝑒𝑎𝑛)

2𝑁𝑟
𝑖=1 . (21) 

5.3. Results and discussion 

In this section, the comparison results between the proposed quantum HGSO algorithm and other 

methods such as HGSO, SSA, GOA, WOA, DA, SCA, MFO, ALO and GWO algorithms. The results are 

given in Table 3-6 and Figure 2.   
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From these results it can be noticed the superiority of our proposed algorithm in terms of Mean and 

STD metrics as in Tables 3-5. For example, the QHGSO obtains best values for F1-F11, F15-F17, F24, 

F26-F34, and F36-F46. In the case of assessing the performance of the proposed QHGSO to solve the 

unimodal functions, it can be observed that it has high ability to find solution than other algorithms. For the 

multi modal test functions, all algorithms obtained near optimal solutions, however, the proposed QHSGO 

still provides better performance than most of them. Finally, in the fixed dimension test functions, QHGSO 

reached optimal point in F27, F29, F31, F32, F34, F36, F38-F47 while others do not reach the optimal point 

in these test functions. It is worth mentioning that QHGSO obtained the best results in comparison with the 

traditional HGSO at F1 till F11 except F5 which had the equal results. In the following, in the fixed-

dimension functions, QHGSO reached best results among other algorithms specially HGSO in 13 test 

functions and in the rest of them obtained equal except F35. Besides, in terms of investigating performance 

stability of algorithms, it can be seen the high stability of the proposed QHGSO which allocates the first 

rank in STD metric among other comparison algorithms. Table 3 : Comparison results obtained for the unimodal 

benchmark functions in terms of average of fitness value. 

F Measure QHGSO HGSO SSA GOA WOA DA SCA MFO ALO GWO 

F1 

Mean 0.00E+00 8.05E-137 3.74E+03 5.14E+04 1.02E-48 1.53E+07 3.44E+06 3.25E+07 8.31E+05 1.45E-16 

STD 0.00E+00 4.41E-136 3.66E+03 1.11E+05 3.90E-48 1.97E+07 8.90E+06 5.64E+07 1.53E+06 2.82E-16 

F2 

Mean 0.00E+00 3.44E-75 1.22E-01 5.81E-01 1.93E-29 8.26E+00 2.74E+00 6.11E+00 2.08E+00 1.31E-11 

STD 0.00E+00 1.88E-74 8.14E-02 4.94E-01 9.42E-29 
4.48E+00 3.09E+00 6.76E+00 1.47E+00 8.80E-12 

F3 

Mean 0.00E+00 9.57E-68 1.39E+01 7.87E+00 1.56E-07 2.40E+02 1.83E+02 1.31E+03 1.91E+01 1.30E-04 

STD 0.00E+00 5.24E-67 1.19E+01 6.17E+00 4.18E-07 
1.92E+02 1.88E+02 1.42E+03 1.44E+01 9.80E-05 

F4 

Mean 0.00E+00 2.71E-60 3.15E+01 4.18E+01 1.86E-27 9.39E+02 5.97E+02 4.17E+03 7.87E+01 1.77E-07 

STD 0.00E+00 1.48E-59 2.53E+01 4.76E+01 7.47E-27 
7.17E+02 6.36E+02 5.37E+03 8.01E+01 2.49E-07 

F5 

Mean 0.00E+00 0.00E+00 2.59E-262 5.17E-229 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.16E-243 0.00E+00 

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F6 

Mean 0.00E+00 2.44E-61 7.76E-08 1.34E-06 4.42E-70 1.66E-16 2.03E-23 1.03E-43 2.56E-07 4.60E-84 

STD 0.00E+00 7.06E-61 8.60E-08 1.45E-06 1.93E-69 
8.51E-16 4.71E-23 5.64E-43 2.66E-07 2.52E-83 

F7 

Mean 0.00E+00 3.02E-37 1.82E+01 9.72E+00 5.44E+01 3.63E+01 5.65E+01 6.90E+01 2.45E+01 3.54E-02 

STD 0.00E+00 1.31E-36 3.82E+00 2.70E+00 2.51E+01 
9.91E+00 8.02E+00 9.14E+00 5.10E+00 2.86E-02 

F8 

Mean 0.00E+00 2.77E-38 5.67E+18 1.61E+31 1.11E-18 3.31E+02 6.12E+00 7.47E+02 9.47E+24 8.54E-05 

STD 0.00E+00 1.07E-37 3.05E+19 6.27E+31 3.52E-18 
1.84E+02 6.20E+00 2.39E+02 5.18E+25 6.60E-05 

F9 

Mean 0.00E+00 0.00E+00 1.32E+01 1.32E-01 8.43E-61 4.05E+05 3.53E+07 4.66E+06 2.40E+03 1.01E-31 

STD 0.00E+00 0.00E+00 3.26E+01 6.02E-01 4.59E-60 
8.74E+05 7.80E+07 1.11E+07 9.87E+03 3.53E-31 

F10 

Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F11 

Mean 0.00E+00 1.10E-121 3.40E-15 6.32E-13 7.72E-142 2.23E-26 1.40E-44 1.95E-89 5.11E-14 9.10E-164 

STD 0.00E+00 6.00E-121 5.89E-15 8.37E-13 3.99E-141 
1.18E-25 6.57E-44 8.51E-89 8.69E-14 0.00E+00 

 



15 

 

  



16 

 

Table 4 : Statistical results obtained for the multimodal functions in terms of average of fitness value. 

F Measure QHGSO HGSO SSA GOA WOA DA SCA MFO ALO GWO 

F12 

Mean 8.70E+00 1.87E+01 3.92E-20 9.61E+00 7.28E+00 4.26E+00 1.46E+01 7.83E-03 0.00E+00 1.39E-87 

STD 6.12E+00 1.39E+01 3.36E-19 1.67E+01 1.88E+00 2.97E+00 7.07E+00 3.81E-03 0.00E+00 7.84E-89 

F13 

Mean 8.65E-01 1.26E+01 5.86E-30 1.04E+02 5.34E-02 1.09E+01 3.20E-02 7.07E-11 0.00E+00 2.00E-104 

STD 2.31E+00 1.03E+01 1.53E-27 9.77E+01 6.46E-02 
2.95E+01 3.65E-03 9.32E-12 0.00E+00 5.14E-102 

F14 

Mean 7.17E+02 1.00E+03 1.47E-57 9.25E+02 2.80E-31 3.37E-42 6.22E+03 4.94E-95 -1.00E+00 -1.00E+00 

STD 1.90E+03 2.17E+03 1.45E-48 0.00E+00 1.38E-30 
3.32E-36 4.27E+02 1.11E-98 -1.00E+00 -1.00E+00 

F15 

Mean -9.98E-01 -3.74E-01 
-

1.00E+00 
-8.30E-01 -9.69E-01 

-9.48E-01 -8.34E-01 -1.00E+00 0.00E+00 0.00E+00 

STD -9.98E-01 -2.87E-01 
-

1.00E+00 
-9.37E-01 -9.74E-01 

-9.71E-01 -7.83E-01 -1.00E+00 0.00E+00 0.00E+00 

F16 

Mean 1.48E+00 2.61E+00 0.00E+00 1.02E+02 5.25E+00 2.64E+01 1.01E+01 3.37E-02 2.00E+00 2.00E+00 

STD 1.49E+00 4.19E+00 0.00E+00 1.69E+01 6.87E+00 
1.34E+01 7.23E+00 4.75E-09 2.00E+00 2.00E+00 

F17 

Mean 1.61E+01 6.31E+08 2.00E+00 2.00E+00 1.30E+11 2.00E+00 2.00E+00 2.30E+00 2.00E+00 2.00E+00 

STD 1.36E+01 5.61E+07 2.00E+00 2.00E+00 3.06E+11 
2.00E+00 2.00E+00 1.07E+01 2.00E+00 2.00E+00 

F18 

Mean 4.35E+00 5.40E+08 2.00E+00 2.00E+00 1.28E+10 2.00E+00 2.00E+00 2.54E+00 0.00E+00 4.19E-05 

STD 1.78E+01 1.31E+10 2.00E+00 2.00E+00 5.22E+11 
2.00E+00 2.00E+00 5.32E+00 0.00E+00 2.30E-09 

F19 

Mean 7.35E-19 3.05E-18 0.00E+00 4.71E-27 3.25E-08 0.00E+00 0.00E+00 2.76E-12 2.52E-05 5.01E-04 

STD 4.08E-17 3.64E-17 0.00E+00 7.39E-26 0.00E+00 
0.00E+00 0.00E+00 1.02E-10 1.07E-04 5.47E-05 

F20 

Mean 4.16E-01 2.85E+00 1.11E-02 9.72E-01 5.73E-01 9.25E-01 1.28E+00 4.90E-03 0.00E+00 0.00E+00 

STD 2.56E-01 3.03E+00 3.34E-02 7.68E-01 3.29E-01 
4.05E-01 6.57E-01 4.73E-03 0.00E+00 0.00E+00 

F21 

Mean 6.56E+01 1.77E+02 0.00E+00 1.92E+02 3.57E+01 1.52E+02 8.85E+01 1.35E+01 0.00E+00 8.12E-86 

STD 4.64E+01 2.06E+02 0.00E+00 2.36E+02 8.95E+01 
1.86E+02 8.05E+01 1.05E+00 0.00E+00 3.15E-84 

F22 

Mean 2.69E+02 4.62E+02 0.00E+00 3.84E+02 0.00E+00 1.40E-03 0.00E+00 1.20E-11 0.00E+00 3.23E-63 

STD 1.95E+02 1.75E+02 0.00E+00 0.00E+00 0.00E+00 
6.27E+02 0.00E+00 6.08E-10 0.00E+00 6.14E-65 

F23 
Mean 3.27E-09 9.85E-08 1.01E-76 7.92E-14 1.55E-26 5.85E-49 1.86E-08 1.77E-106 1.94E-08 1.94E-08 

STD 1.03E-09 1.16E-07 4.79E-78 0.00E+00 1.11E-23 6.18E-48 3.50E-08 7.68E-113 3.45E-32 0.00E+00 

F24 
Mean 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 0.00E+00 1.07E-39 

STD 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 0.00E+00 6.25E-51 

F25 
Mean 2.43E+02 4.51E+02 6.59E+02 1.81E+02 6.54E+01 4.00E+02 3.77E+02 3.33E-02 -2.00E+02 -2.00E+02 

STD 9.38E+01 1.46E+02 5.96E+02 6.64E+02 5.62E+01 4.90E+02 2.26E+02 1.99E-01 -2.00E+02 -2.00E+02 

F26 

Mean 
-

2.00E+02 

-

2.00E+02 

-

2.00E+02 
-2.00E+02 -2.00E+02 

-2.00E+02 -2.00E+02 -2.00E+02 1.00E+00 1.00E+00 

STD 
-

2.00E+02 

-

2.00E+02 

-

2.00E+02 
-2.00E+02 -2.00E+02 

-2.00E+02 -2.00E+02 -2.00E+02 1.00E+00 1.00E+00 

 

 

 

 



17 

 

Table 5 : Statistical results obtained for the fixed-dimension multimodal functions in terms of average of fitness value. 

F Measure QHGSO HGSO SSA GOA WOA DA SCA MFO ALO GWO 

F27 

Mean 
-

2.00E+02 

-

2.00E+02 

-

2.00E+02 
-2.00E+02 -2.00E+02 

-2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 

STD 0.00E+00 0.00E+00 1.60E-06 1.78E-05 3.08E-14 2.81E-05 2.33E-13 0.00E+00 3.65E-06 0.00E+00 

F28 

Mean 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

STD 0.00E+00 0.00E+00 9.88E-05 1.57E-03 0.00E+00 
5.07E-04 0.00E+00 0.00E+00 4.80E-05 0.00E+00 

F29 

Mean 0.00E+00 0.00E+00 1.55E-10 1.38E-02 0.00E+00 6.14E-04 0.00E+00 0.00E+00 3.45E-10 0.00E+00 

STD 0.00E+00 0.00E+00 1.35E-10 7.54E-02 0.00E+00 
3.36E-03 0.00E+00 0.00E+00 3.21E-10 0.00E+00 

F30 

Mean 1.80E-01 1.80E-01 1.80E-01 1.80E-01 1.80E-01 1.80E-01 1.80E-01 1.80E-01 1.80E-01 1.80E-01 

STD 0.00E+00 0.00E+00 6.42E-11 7.54E-09 0.00E+00 
1.02E-04 0.00E+00 0.00E+00 1.61E-10 0.00E+00 

F31 

Mean 0.00E+00 0.00E+00 4.46E-11 2.53E-08 5.16E-05 5.05E-05 0.00E+00 3.56E-08 3.48E-10 0.00E+00 

STD 0.00E+00 0.00E+00 7.50E-11 2.97E-08 1.16E-04 
2.74E-04 0.00E+00 1.89E-07 6.80E-10 0.00E+00 

F32 

Mean 0.00E+00 
4.88E-

106 
2.22E-14 5.07E-12 2.99E-02 

8.52E-12 1.54E-29 3.57E-39 9.95E-03 7.63E-74 

STD 0.00E+00 
1.86E-

105 
2.87E-14 3.05E-12 9.11E-02 

4.67E-11 7.73E-29 1.94E-38 5.45E-02 4.12E-73 

F33 

Mean 
-

4.26E+01 

-

4.29E+01 

-

4.27E+01 
-4.26E+01 -4.26E+01 

-4.26E+01 -4.28E+01 -4.29E+01 -4.26E+01 -4.27E+01 

STD 1.54E-01 1.09E-01 2.19E-01 1.92E-01 2.02E-01 
1.69E-01 1.73E-01 3.61E-14 2.14E-01 2.07E-01 

F34 

Mean 
-

2.06E+00 

-

2.06E+00 

-

2.06E+00 
-2.06E+00 -2.06E+00 

-2.06E+00 -2.06E+00 -2.06E+00 -2.06E+00 -2.06E+00 

STD 1.17E-07 1.00E-04 5.49E-15 1.00E-12 1.78E-06 
2.48E-12 5.89E-05 9.03E-16 3.24E-14 8.52E-08 

F35 

Mean 6.55E+04 
-

1.00E+00 

-

1.00E+00 
-1.00E+00 -1.00E+00 

5.68E+04 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
2.27E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F36 

Mean 0.00E+00 
3.46E-

107 
4.95E-13 6.33E+00 5.10E-46 

4.87E-13 1.94E-30 9.53E-42 1.50E-12 5.24E-85 

STD 0.00E+00 
8.94E-

107 
5.75E-13 5.19E+00 2.66E-45 

2.38E-12 6.01E-30 2.69E-41 1.16E-12 2.35E-84 

F37 

Mean 
-

2.33E+00 

-

2.87E+00 

-

3.23E+00 
-3.25E+00 -3.16E+00 

-3.25E+00 -2.79E+00 -3.23E+00 -3.27E+00 -3.24E+00 

STD 3.79E-01 2.02E-01 8.31E-02 6.23E-02 2.39E-01 
8.59E-02 4.57E-01 6.08E-02 7.07E-02 1.14E-01 

F38 
Mean 0.00E+00 6.45E-96 4.85E-15 2.96E-12 4.35E-76 1.99E-09 6.06E-22 3.09E-13 1.46E-14 9.38E-42 

STD 0.00E+00 2.74E-95 5.20E-15 5.96E-12 2.36E-75 1.09E-08 2.34E-21 9.87E-13 1.81E-14 4.08E-41 

F39 
Mean 9.00E-01 9.00E-01 9.33E-01 9.97E-01 9.27E-01 9.33E-01 9.10E-01 9.60E-01 9.43E-01 9.37E-01 

STD 4.52E-16 4.52E-16 4.79E-02 1.83E-02 4.50E-02 4.79E-02 3.08E-02 4.98E-02 5.04E-02 4.92E-02 

F40 
Mean 0.00E+00 2.48E-05 1.99E-03 1.19E+03 7.52E+02 5.75E-09 2.95E-04 4.46E-17 6.22E+00 2.85E-05 

STD 0.00E+00 1.36E-04 7.37E-03 3.79E+03 4.12E+03 1.50E-08 7.02E-04 1.66E-16 2.77E+01 5.25E-05 

F41 
Mean 0.00E+00 4.32E-98 1.09E-10 2.81E-08 7.00E-61 3.23E-13 5.50E-26 1.59E-35 3.54E-10 1.28E-62 

STD 0.00E+00 2.37E-97 2.11E-10 2.77E-08 3.83E-60 1.77E-12 2.12E-25 8.21E-35 3.23E-10 7.01E-62 

F42 

Mean 0.00E+00 
2.71E-

103 
2.05E-12 2.85E-10 6.73E-34 

5.72E-08 4.73E-28 1.90E-40 8.02E-12 8.35E-73 

STD 0.00E+00 
1.48E-

102 
2.09E-12 2.34E-10 2.79E-33 

3.13E-07 1.33E-27 4.14E-40 9.41E-12 4.58E-72 

F43 Mean 0.00E+00 0.00E+00 5.96E-15 1.09E-12 8.32E-05 6.00E-13 0.00E+00 0.00E+00 4.03E-14 0.00E+00 
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STD 0.00E+00 0.00E+00 6.31E-15 7.88E-13 4.56E-04 1.96E-12 0.00E+00 0.00E+00 4.20E-14 0.00E+00 

F44 
Mean 0.00E+00 0.00E+00 7.77E-03 7.45E-03 9.88E-03 7.13E-03 3.45E-03 8.42E-03 7.13E-03 7.61E-03 

STD 0.00E+00 0.00E+00 3.95E-03 4.18E-03 1.02E-02 4.37E-03 4.56E-03 3.36E-03 4.37E-03 3.93E-03 

F45 
Mean 0.00E+00 

9.63E-

100 
7.25E-14 2.01E-11 4.76E-08 

1.32E-14 9.75E-05 3.28E-14 1.42E-13 1.31E-06 

STD 0.00E+00 3.66E-99 1.04E-13 2.17E-11 1.65E-07 7.22E-14 3.48E-04 1.80E-13 1.29E-13 2.77E-06 

F46 

Mean 0.00E+00 
3.26E-

102 
3.42E-14 7.02E-12 1.20E-05 

2.39E-15 1.08E-12 -1.54E-15 9.14E-14 7.08E-06 

STD 0.00E+00 
1.78E-

101 
3.14E-14 5.67E-12 5.29E-05 

1.93E-14 5.93E-12 1.79E-15 1.06E-13 1.22E-05 

F47 
Mean 

-

4.00E+02 

-

4.00E+02 

-

3.99E+02 
-4.00E+02 -4.00E+02 

-3.99E+02 -4.00E+02 -4.00E+02 -3.98E+02 -4.00E+02 

STD 0.00E+00 0.00E+00 3.76E+00 2.34E-08 0.00E+00 4.52E+00 0.00E+00 0.00E+00 5.62E+00 0.00E+00 

 

To recapitulate, as can be seen in Figure 2, the convergence curve for QHGSO algorithm in test 

function 46 has a very fast slope and it converges faster than the other algorithms. Therefore, due to the 

aforementioned facts, it can be inferred that our proposed algorithm has the superiority on other well-known 

algorithms, including the original HGSO algorithm.  

 

Figure 2 : Convergence curves of competitive algorithms 
 

 

5.4. Non-parametric test analysis 

Overall, it is evident that evaluating the performance of our proposed algorithm just based on mean 

value and STD may not be reliable since the uncertainty of 30 runs is an inevitable process. Due to this fact, 

we use Wilcoxon sum rank test [78] with p-value at 5% as a non-parametric test for determining the 

significance difference between our proposed algorithm comparing to the other nine famous 

aforementioned metaheuristics in Table 6. 
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 This method illustrates the supremacy of our proposed algorithm due to the p-values, that are lower 

than 0.05. However, there is no significant difference between the proposed method other methods at some 

functions such as F10 and F12. Also, no significant difference with HGSO, WOA, DA, SCA, MFO, and 

GWO at F5. At F27-29 there is no significant difference between the proposed QHGSO and WOA, SCA, 

MFO, and GWO.  

Table 6 : The results of the Wilcoxon's rank sum test for comparison between QHGSO and other algorithms. 

  HGSO SSA GOA WOA DA SCA MFO ALO GWO 

F1 
P-val 1.21E-12 1.2E-12 1.2E-12 1.2E-12 1.2E-12 1.2E-12 1.2E-12 1.2E-12 1.2E-12 

H 1 1 1 1 1 1 1 1 1 

F2 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F3 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F4 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F5 
P-val NAN 5.85E-09 1.21E-12 NAN NAN NAN NAN 1.21E-12 NAN 

H 0 1 1 0 0 0 0 1 0 

F6 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.160802 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 0 1 1 1 1 

F7 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F8 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F9 
P-val 0.333711 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 0 1 1 1 1 1 1 1 1 

F10 
P-val NAN NAN NAN NAN NAN NAN NAN NAN NAN 

H 0 0 0 0 0 0 0 0 0 

F11 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.081523 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 0 1 1 1 1 

F12 
P-val NAN NAN NAN NAN NAN NAN NAN NAN NAN 

H 0 0 0 0 0 0 0 0 0 

F13 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F14 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F15 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 3.45E-07 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F16 
P-val NAN 3.49E-12 1.21E-12 NAN 1.21E-12 1.21E-12 1.2E-12 1.21E-12 NAN 

H 0 1 1 0 1 1 1 1 0 

F17 
P-val NAN 1.21E-12 1.21E-12 0.041911 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 0 1 1 1 1 1 1 1 1 
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F18 
P-val NAN 1.21E-12 1.21E-12 NAN NAN 1.21E-12 0.041926 NAN 1.21E-12 

H 0 1 1 0 0 1 1 0 1 

F19 
P-val NAN 1.21E-12 1.21E-12 NAN NAN 1.21E-12 0.081523 NAN 1.21E-12 

H 0 1 1 0 0 1 0 0 1 

F20 
P-val 1.21E-12 1.21E-12 1.21E-12 NAN 1.94E-09 1.27E-05 0.000313  1.21E-12 

H 1 1 1 0 1 1 1 0 1 

F21 
P-val 6.12E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

H 1 1 1 1 1 1 1 1 1 

F22 
P-val NAN 1.21E-12 1.21E-12 0.010994 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 0 1 1 1 1 1 1 1 1 

F23 
P-val 1.21E-12 1.21E-12 1.21E-12 NAN 1.27E-05 NAN 1.21E-12 NAN 1.21E-12 

H 1 1 1 0 1 0 1 0 1 

F24 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.011035 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F25 
P-val 0.068253 0.000661 0.000661 0.000661 0.000661 0.000661 0.000661 0.000661 0.000661 

H 0 1 1 1 1 1 1 1 1 

F26 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F27 
P-val NAN 1.2E-12 1.21E-12 NAN 0.041926 NAN NAN 1.21E-12 NAN 

H 0 1 1 0 1 0 0 1 0 

F28 
P-val NAN 1.21E-12 1.21E-12 NAN 5.85E-09 NAN NAN 1.21E-12 NAN 

H 0 1 1 0 1 0 0 1 0 

F29 
P-val NAN 1.21E-12 1.21E-12 NAN 0.011035 NAN NAN 1.21E-12 NAN 

H 0 1 1 0 1 0 0 1 0 

F30 
P-val NAN NAN 1.19E-12 NAN 0.160802 NAN NAN 0.160742 NAN 

H 0 0 1 0 0 0 0 0 0 

F31 
P-val NAN 1.21E-12 1.21E-12 1.21E-12 0.005584  0.000662 1.21E-12  

H 0 1 1 1 1 0 1 1 0 

F32 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 5.85E-09 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F33 
P-val 6.01E-08 1.06E-05 0.000224 6.09E-05 0.000569 7.2E-05 1.21E-12 3.35E-05 3.57E-06 

H 1 1 1 1 1 1 1 1 1 

F34 
P-val 2.78E-11 5.26E-11 5.26E-11 0.279929 5.26E-11 7.54E-11 5.26E-11 5.26E-11 1.13E-05 

H 1 1 1 0 1 1 1 1 1 

F35 
P-val 1.69E-14 1.69E-14 1.69E-14 1.69E-14 0.041774 1.69E-14 1.69E-14 1.69E-14 1.69E-14 

H 1 1 1 1 1 1 1 1 1 

F36 
P-val 1.21E-12 1.21E-12 5.36E-13 1.21E-12 6.25E-10 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F37 
P-val 1.16E-07 2.52E-11 2.63E-11 5.07E-10 3.02E-11 6.74E-06 1.65E-11 1.44E-11 3.69E-11 

H 1 1 1 1 1 1 1 1 1 

F38 P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 6.25E-10 1.21E-12 1.21E-12 1.21E-12 1.21E-12 
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H 1 1 1 1 1 1 1 1 1 

F39 
P-val NAN 0.00063 2.57E-13 0.002787 0.000618 0.081523 5.19E-07 5.98E-05 0.000313 

H 0 1 1 1 1 0 1 1 1 

F40 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.005582 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F41 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.66E-11 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F42 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 3.45E-07 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F43 
P-val NAN 1.2E-12 1.21E-12 0.160802 0.021577 NAN NAN 1.21E-12 NAN 

H 0 1 1 0 1 0 0 1 0 

F44 
P-val NAN 1.6E-13 2.07E-13 2.75E-09 1.77E-09 2.21E-06 1.97E-11 2.62E-13 1.67E-09 

H 0 1 1 1 1 1 1 1 1 

F45 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.011035 1.21E-12 4.57E-12 1.21E-12 1.21E-12 

H 1 1 1 1 1 1 1 1 1 

F46 
P-val 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.143116 1.21E-12 0.344232 1.21E-12 1.21E-12 

H 1 1 1 1 0 1 0 1 1 

F47 
P-val NAN 0.160742 0.002698 NAN 0.041865 NAN NAN 0.010953 NAN 

H 0 0 1 0 1 0 0 1 0 

 

5.5 Influence of changing the parameters 

In this section, we study the influence of changing the value of the parameters on the performance of the 

proposed algorithm. This achieved through considering five Scenarios according to the parameters L1, L2, 

L3, C1, and C2 as given in Table 7.  The comparison results are given in Table 8 and it can be noticed the 

scenarios 2, 3, and 5 provide better results than other scenarios. In addition, by using the Friedman test it 

can be noticed that mean rank of scenarios 1, 2, 3, 4, and 5 is 2.5, 2.87, 2.6, 4, and 3 with p-value 0.1842. 

This indicates there is no significant difference.  

Table 7: The five Scenarios to test the influence of parameters. 

Parameter Original Value 
Scenarios 

1 2 3 4 5 

L1 5E−02 5E−04 5E−02 5E−02 5E−02 5E−02 

L2 100 100 120 100 100 100 

L3 1E−02 1E−02 1E−02 1E−07 1E−02 1E−02 

𝐶1 0.1 0.1 0.1 0.1 0.2 0.1 

𝐶2 0.2 0.2 0.2 0.2 0.2 0.3 

 

Table 8: Results of variant set of values for five parameters. 

Scenarios 
Functions 

1 3 8 15 18 21 26 30 42 
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1 0 6.19E-197 1.27E-97 4.89E-194 2 5.22E-05 1.28E-195 0.18 3.65E-212 

2 0 2.12E-196 7.39E-98 3.13E-195 2 8.31E-05 9.14E-196 0.18 7.21E-205 

3 0 2.13E-197 6.63E-98 2.73E-192 2 6.21E-05 1.72E-195 0.18 6.58E-217 

4 0 2.12E-196 1.29E-97 8.89E-193 2 0.000276 2.99E-195 0.18 5.04E-206 

5 0 2.12E-196 6.78E-98 7.35E-193 2 0.000787 1.35E-195 0.18 4.38E-217 

 

From the previous results it can be observed the high performance of the proposed QHGSO to find the 

optimal solution for the most tested functions. Moreover, in terms of diversity, the quantum behavior 

provides HGSO with a suitable tool to explore the areas of search space with high probability to having 

optimal point. It is worth noting that, this mechanism empowers the HGSO algorithm to reach better 

solutions in less time (iterations) among other algorithms.  On the other hand, in terms of algorithm 

limitations, we should point to the variety of parameters to be tuned and its some random factors which 

effects on exploration performance of the proposed algorithm; although we enhance the exploration of 

original HGSO using quantum behavior in the updating position phase, but our proposed algorithm can be 

hybridized with other operators to boost its performance.  

6. Applications of QHGSO in Classical Engineering Problems 

We now investigate a typical three engineering design problems to show the ability of proposed 

approach in constrained optimization problems. 

6.1.  Welded Beam Design 

The Error! Reference source not found. shows the schematic of this Welded Beam Design problem. 

The objective of this problem is to minimize the overall fabrication cost under various constrains. 

According to this figure, four different variables, including the width, length welded area, the depth, and 

the thickness are considered.  

B

A

Load

1x2x

3x

4x
 

Figure 2: Welded beam design problem 

The corresponding mathematical model of this problem is as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = 1.10471𝑥2𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) (1) 

𝑔1(𝑥⃗) = 𝜏(𝑥⃗) − 𝜏𝑚𝑎𝑥 ≤ 0 (2) 

𝑔2(𝑥⃗) = 𝜎(𝑥⃗) − 𝜎𝑚𝑎𝑥 ≤ 0 (3) 
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𝑔3(𝑥⃗) = 𝛿(𝑥⃗) − 𝛿𝑚𝑎𝑥 ≤ 0 (4) 

𝑔4(𝑥⃗) = 𝑥1 − 𝑥4 ≤ 0 (5) 

𝑔5(𝑥⃗) = 𝑃 − 𝑃𝑐(𝑥⃗) ≤ 0 (6) 

𝑔6(𝑥⃗) = 0.125 − 𝑥1 ≤ 0 (7) 

𝑔7(𝑥⃗) = 1.10471𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0 (8) 

0.10 ≤ 𝑥1 ≤ 2.00, (9) 

0.10 ≤ 𝑥2 ≤ 10.00, (10) 

0.10 ≤ 𝑥3 ≤ 10.00, (11) 

0.10 ≤ 𝑥4 ≤ 2.00, (12) 

where 

𝜏(𝑥⃗) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2
2𝑅
+ (𝜏′′)2 

𝜏′ =
𝑃

√2𝑥1𝑥2
, 𝜏′′ =

𝑀𝑅

𝐽
,𝑀 = 𝑃(𝐿 +

𝑥2
2
) 

𝑅 = √
𝑥2
2

4
+ (
𝑥1 + 𝑥3
2

)
2

 

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2
2

4
+ (
𝑥1 + 𝑥3
2

)
2

]} 

𝜎(𝑥⃗) =
6𝑃𝐿

𝑥4𝑥3
2 , 𝛿(𝑥⃗) =

6𝑃𝐿3

𝐸𝑥4𝑥3
2 

𝑃𝑐(𝑥⃗) =
4.013𝐸√

𝑥3
2𝑥4
6

36
𝐿2

(1 −
𝑥3
2𝐿
√
𝐸

4𝐺
) 

𝑃 = 6000𝑙𝑏, 𝐿14 𝑖𝑛, 𝛿𝑚𝑎𝑥 = 0.25 𝑖𝑛., 

𝐸 = 30 × 106 𝑝𝑠𝑖, 𝐺 = 30 × 106 𝑝𝑠𝑖 

𝜏𝑚𝑎𝑥 = 13600 𝑝𝑠𝑖, 𝜎𝑚𝑎𝑥 = 30000 𝑝𝑠𝑖 

 

The objective function of this mathematical model is donated in Eq (1), the  constraints are presented 

in in Eqs (2) - (8), and finally,  variables are shown Eq. (9) - (12). There have been many studies that attempt 

to solve this problem. We here mention HS [79] , improved HS [80] Deb [81], CSS [82]MCSS [83], and  

ACO [84], for the comparison. Table 9 shows all results related to implementing proposed algorithm and 

other algorithms.  

Table 9: Comparison of proposed methods for the welded beam design problem. 

Algorithm 
Optimum variables Optimum 

cost 𝑥1 𝑥2 𝑥3 𝑥4 

QHGSO 0.2152 6.8989 8.8150 0.2160 2.2864 
HS  0.2442 6.2231 8.2915 0.2443 2.3807 
Improved HS 0.4575 4.7313 5.0853 0.6600 4.1185 

GA (Deb)  0.2489 6.1730 8.1789 0.2533 2.4331 

CSS 0.2792 5.6256 7.7512 0.2796 2.5307 
MCSS 0.2434 6.2552 8.2915 0.2444 2.3841 

ACO 0.2444 6.2189 8. 2915 0.2444 2.3815 

With respect to obtained results illustrated in Table 9, QHGSO can obtain the optimal result in 

comparison with others. 
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6.2. Tension/compression Spring Design 

As shown in Figure 3, the second constrained engineering problem, named Tension/compression 

spring design, has three variables with the objective function of minimizing deflection. We have also 

different kinds of constraints, including surge frequency, and shear stress. 

1x

2x

3x

 

Figure 3: Tension/compression spring design  

 The mathematical model of this problem can be defined as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = (𝑥3 + 2)𝑥2𝑥1
2 (13) 

𝑔1(𝑥⃗) = 1 −
𝑥2
3𝑥3

71785𝑥1
4 ≤ 0 (14) 

𝑔2(𝑥⃗) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0 (15) 

𝑔3(𝑥⃗) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0 
(16) 

𝑔4(𝑥⃗) =
𝑥1 + 𝑥2
1.5

− 1 ≤ 0 (17) 

0.05 ≤ 𝑥1 ≤ 2.00, (18) 

0.25 ≤ 𝑥2 ≤ 1.30, (19) 

2.00 ≤ 𝑥3 ≤ 15.00, (20) 

We use  a set of various methods, which are selected from [73],  Coello [85], Kaveh and Talathari [84], 

He and Wang [86], Mahdavi [80] Kaveh [87] to show validity of performance proposed approach. The 

comparison results of implementing different approaches are shown in Table 10. The results show that VPL 

has been able to find very good results compared to the others. 

Table 10: Comparison of proposed methods for Tension/compression spring design 

Algorithm 
Optimum variables 

Optimum cost 𝑥1 𝑥2 𝑥3 

QHGSO 0.05019 0.3316 12.8342 0.01239 
GA (Coello) 0.05140 0.3516 11.6322 0.01270 

ES  0.05190 0.3639 10.8905 0.01268 

ACO  0.05180 0.3615 11.000 0.01264 
DE  0.05160 0.3547 11.4100 0.01267 

WOA  0.05120 0.3452 12.00400 0.01261 
IHS  0.05110 0.3498 12.0764 0.01267 
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6.3. Pressure Vessel Design 

The last constrained problem that we investigate in this study is Pressure Vessel Design. The objective 

of this problem is to minimize the total cost, including welding, forming and materials.  Figure 4 shows the 

general schematic of this problem that include three different variables.  

1x

3x

4x 2x

3x

 

Figure 4: Pressure vessel design and its features 

A typical form of pressure vessel design optimization problem can be expressed as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = 0.62224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥4𝑥1

2 + +19.84𝑥3𝑥1
2 (21) 

𝑔1(𝑥⃗) = −𝑥1 + 0.0193𝑥3 ≤ 0 (22) 

𝑔2(𝑥⃗) = −𝑥3 + 0.00954𝑥3 ≤ 0 (23) 

𝑔3(𝑥⃗) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0 (24) 

𝑔4(𝑥⃗) = 𝑥4 − 240 ≤ 0 (25) 

0 ≤ 𝑥1 ≤ 99, (26) 

0 ≤ 𝑥2 ≤ 99, (27) 

10 ≤ 𝑥3 ≤ 200, (28) 

10 ≤ 𝑥4 ≤ 200, (29) 

We implement various kinds of method, which inspired from the literature, to show the validation of 

proposed algorithm. These approaches can be mentioned as, [88], different genetic algorithm approaches, 

[85] ,[89], CPSO [86],  and DE [90]. Table 11 illustrates the best obtained solutions from all proposed 

approaches. As clearly seen that proposed approach can obtain the best results in this problem, accordingly.  

Table 11: Comparison of proposed approaches for Pressure vessel design problem. 

Algorithm 
Optimum variables Optimum 

cost 𝑥1 𝑥2 𝑥3 𝑥1 

QHGSO 0.8152 0.4265 42.09125 176.7423 6044.95 

WOA 0.8125 0.4375 42.09829 176.6389 6059.74 

CPSO  0.8125 0.4375 42.0912 176.7465 6061.07 
GA(Coello) 0.8125 0.4375 40.3239 200.0000 6288.74 

GA (Coello and Montes) 0.9375 0.4375 42.0973 176.6540 6059.94 

DE  0.8125 0.4375 42.0984 176.6376 6059.73 
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7. Conclusions  

In this study, a modified version of the Henry Gas Solubility Optimization is introduced. The HGSO 

is a recently developed metaheuristic algorithm which emulates the Henry’s law. The proposed algorithm 

depends on applying the quantum theory for improving the behavior of exploring search space and the 

convergence of the solutions toward the global solution. In terms of performance measuring the obtained 

results proved that the QHGSO has high quality performance on test functions. The results are compared 

with a set of well-known MH algorithms including HGSO, SSA, GOA, WOA, DA, SCA, MFO, ALO and 

GWO. We have also investigated the performance of proposed algorithm in three constrained engineering 

problems.  According to the experimental results, it can be concluded that the proposed QHGSO 

outperforms other MH methods in terms of average of fitness and the convergence curve.  

Further research directions can be suggested in two approaches, namely methodological and 

application based as follows. In terms of the first approach, the QHGSO algorithm can be extended to the 

binary version using Q-bits. Furthermore, the multi-objective version of QHGSO is worth researching. 

Moreover, this algorithm can be hybridized with other algorithms to take their advantages to reach better 

performance in terms of exploration and exploitation. For the latter group, the following works can be 

implemented. The QHGSO can be adapted for solving the combinatorial optimization problems, including 

Vehicle Routing Problem, Scheduling Problem, Timetabling Problem, and Location Problem. It is worth 

noting that, the QHGSO algorithm also has the ability to use in other fields such as Image Segmentation, 

Feature Selection, and Engineering Design problems. 
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