
Regularization of Persistent Homology Gradient
Computation

Padraig Corcoran & Bailin Deng
School of Computer Science & Informatics

Cardiff University
Wales

Abstract

Persistent homology is a method for computing the topological features present in
a given data. Recently, there has been much interest in the integration of persistent
homology as a computational step in neural networks or deep learning. In order for
a given computation to be integrated in such a way, the computation in question
must be differentiable. Computing the gradients of persistent homology is an ill-
posed inverse problem with infinitely many solutions. Consequently, it is important
to perform regularization so that the solution obtained agrees with known priors. In
this work we propose a novel method for regularizing persistent homology gradient
computation through the addition of a grouping term. This has the effect of helping
to ensure gradients are defined with respect to larger entities and not individual
points.

1 Introduction

Persistent homology is a computational method from the field of applied topology for computing
the topological features present in a given data [1]. Informally, the features in question relate to the
number and scale of connected components and holes of different dimensions in the data. The direct
application of persistent homology has proven to be a useful method in the analysis of many different
types of data including image [2], health [3] and network data [4].

Given the recent advances and interest in neural networks or deep learning, there exists a trend of
attempting to integrate existing computational methods as computational steps in this framework.
This includes, for example, the integration of integer programming [5] and shortest path methods [6]
with deep learning. In these works, deep learning usually acts as a preprocessing step to the method
in question where it performs representation learning. Deep learning requires all computational steps
to be differentiable such that gradients can be back-propagated through each step and used to update
the method parameters. Therefore, for a given computational method to be integrated with deep
learning the method in question must be differentiable. Many useful computational methods, such as
integer programming, in their native form are not differentiable. Consequently much work has been
investing in making such computational methods differentiable so that they may be integrated with
deep learning. That is, developing methods for computing the gradients of the input with respect to
the output of the methods in question.

As discussed above, persistent homology has proven to be a useful computational method. Therefore
integrating it with deep learning has much potential. However, in its native form, persistent homology
is not differentiable. Therefore recently there has been much interest in attempting to make it
differentiable so that it may be integrated with deep learning [7, 8, 9, 10]. Computing gradients of
persistent homology outputs with respect to inputs is an inverse problem [11, 12]. Like many inverse
problems, it is ill-posed with infinitely many solutions. This point is obvious when one considers that

Topological Data Analysis and Beyond Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

(a) (b) (c)

(d) (e) (f)

Figure 1: Two sets of points in R2 containing 100 and 300 elements are displayed in (a) and (d)
respectively. Each set of points has an associated loss function measuring the distance between the
two clusters and two horseshoe ends respectively. The results of minimizing these loss functions
without regularization are displayed in (b) and (e) respectively. The results of minimizing these loss
functions with the proposed regularization are displayed in (c) and (f) respectively.

infinitely many different datasets can have the same number and scale of connected components and
holes of different dimensions. When attempting to solve an arbitrary ill-posed inverse problem, if
one does not consider the ill-posed nature of the problem, the solution obtained may not agree with
known priors. A common approach to overcome this issue is to perform regularization which biases
the solution toward known priors. This approach is commonly used to solve inverse problems in
the field of image processing. In this field two commonly used regularization approaches are total
variation (TV) and total generalized variation (TGV) which lead to piecewise constant and piecewise
linear images respectively [13].

To the authors knowledge, the use of regularization when computing gradients of persistent homology
has yet to be considered. Consequently, the use of current methods for computing such gradients can
lead to solutions which do not agree with known priors. For example, consider the two dimensional
point dataset in Figure 1(a) which contains two compact clusters. If we compute the gradients of
persistent homology using current methods and in turn minimize a loss function measuring the
distance between the clusters (see Appendix A), we obtain the result in Figure 1(b). Although this
result approaches the minimization of the loss function in question, it does not agree with a reasonable
prior that changes to topology features should be made at the level of larger entities and not individual
points. In this case the entities in question are the two clusters. As a second example, consider the
two dimensional point dataset in Figure 1(d) which contains a single horseshoe shaped cluster. If
we compute the gradients of persistent homology using current methods and in turn minimize a loss
function measuring the width of the horseshoe opening (see Appendix A), we obtain the result in
Figure 1(e). Again, although this result approaches the minimization of the loss function in question,
it does not agree with a reasonable prior that changes to topology features should be made at the level
of larger entities. In this case the entities in question are the two ends of the horseshoe.

The artefacts in the above two example results are a consequence of the fact that persistent homology
gradients are defined with respect to individual points and not larger entities. This motivates the
following insight. When computing persistent homology gradients, this computation should be
regularized through the addition of a grouping term such that gradients are defined with respect to
larger entities and not individual points. In this article we propose a novel method for regularizing the

2

computation of persistent homology gradients which achieves this goal. The result of applying this
method to the two dimensional datasets in Figures 1(a) and 1(d) with the respective loss functions
described above are displayed in Figures 1(c) and 1(f) respectively. It is evident that in the case of
these two examples, the proposed method does not exhibit the artefacts encountered above.

The layout of this paper is as follows. In Section 2 we describe the proposed method for regularizing
the computation of persistent homology gradients. In Section 3 we briefly draw some conclusions
from this work.

2 Regularized Gradient Computation

This section is structured as follows. In Section 2.1 we briefly review necessary background material
on persistent homology and describe a current method for computing gradients with respect to
persistent homology. In Section 2.2 we describe the proposed method for performing regularization
of this gradient computation.

2.1 Persistent Homology & Gradient Computation

An (abstract) simplicial complex K is a finite collection of sets such that for each σ ∈ K all subsets
of σ are also contained in K. Each element σ ∈ K is called a k-simplex where k = |σ| − 1 is the
dimension of the simplex. Given a finite set of points X = {x1, . . . , xm} in Rn, the corresponding
Rips complexRr for a specified r ≥ 0 radius value is defined as follows:

Rr(X) = {σ ⊆ X : ∀x, y ∈ σ, ‖x− y‖ ≤ r} (1)

The k-simplices in this simplicial complex equal unordered (k+1)-tuples of points which are pairwise
within distance r [14]. Computing the homology ofRr(X) returns the homology groups Hi for each
natural number i. An element of Hi represents the existence of an i-dimensional hole in Rr(X).
That is, an element of H0 represents the existence of a path-component inRr(X) while an element
of H1 represents the existence of a one dimensional hole inRr(X) [15]. A Rips filtration of X is a
finite sequence of N Rips complexesRr1(X), . . . ,RrN (X) associated with an increasing sequence
r1, . . . , rN of radius values. A Rips filtration induces a sequence of inclusion maps defined as:

Rr1(X) ↪−→ Rr2(X) ↪−→ . . . ↪−→ RrN (X) (2)

Given a Rips filtration, instead of computing the homology of each Rips complex in the sequence
independently, persistent homology computes the homology of the inclusions Rp(X) ↪−→ Rq(X)
for all p < q [15]. The result of this computation is a set of persistence diagrams {D0, . . . , Dh}
where Di corresponds to the homology group Hi. Each persistence diagram is a multiset of points
{(p, q) ∈ R2, p ≤ q} where (p, q) ∈ Di represents the existence of an element of Hi appearing in
Rp(X) and subsequently disappearing in Rq(X). The value q − p is called the persistence of the
element in question.

Let (p, q) be an element in a given persistence diagram Di. There exists a map γ : R → Rr(X)
which maps p and q to simplices in the Rips filtration whose addition results in the appearance and
disappearance respectively of the corresponding element in Hi [16, 9]. Therefore, one can adjust the
values p and q by adjusting the radius values at which the simplices γ(p) and γ(q) respectively are
added in the Rips filtration. Specifically, the radius value at which a simplex is added in the Rips
filtration is defined by the following map δ : Rr → R:

δ(σ) = max
x,y∈σ

‖x− y‖ (3)

Both the maps γ and δ are differentiable and in turn the map γ ◦ δ is differentiable [16]. Let l be
a real valued differentiable loss function which is a function of Di. The map l ◦ γ ◦ δ is in turn
differentiable and can be minimized using any gradient based optimization technique.

2.2 Regularization

As described in the previous section, the map l ◦ γ ◦ δ is differentiable. If the map l is a function
of a single element (p, q) in a given persistence diagram Di, the map l ◦ γ ◦ δ is locally a function
of at most four elements of X . The elements in question are the two pairs of points maximum

3

distance apart in the simplices whose introduction resulted in the appearance and disappearance of
the topological feature in question. In this case, taking a single in the direction of the gradient of
l ◦ γ ◦ δ will alter the positions of at most these four elements of X .

The above approach to minimizing a loss function changes topological features at the level of
individual points. This does not agree with our prior that changes to topological features should be
made at the level of larger entities consisting of sets of points. To overcome this challenge we propose
a novel method for regularizing persistent homology gradient computation through the addition of a
grouping term. This has the effect of helping to ensure gradients are defined with respect to larger
entities and not individual points.

Let Set be the space of finite sets of points in Rn. Let X ∈ Set be the set of input points which
we wish to optimize with respect to the loss function l. Let X ′ be the initial value of X before
optimization and ρ : Set → Set be the corresponding bijection from X ′ to X . Let G be the set of
all unordered pairs of elements in X ′ and k : [0,∞]→ [0, 1] be a given kernel. Broadly speaking, a
kernel maps smaller values to a value approaching 1 and larger values to a value approaching 0. An
example of a kernel is the uniform kernel defined as follows where s is a specified scale parameter:

k(x) =

{
1 ‖x‖ ≤ s
0 ‖x‖ > s

(4)

Given a specified kernel, we define the proposed regularization term τ : Set→ R as follows:

τ(X) =
∑

(a,b)∈G

k(‖a− b‖)(‖a− b‖ − ‖ρ(a)− ρ(b)‖)2 (5)

This term measures the discrepancy between pairwise distances in X ′ and the corresponding pairwise
distances in X . Minimizing this term helps to ensure the structure of local groups of points in X ′ is
preserved in X . That is, if a change is made to a single point this term will help ensure that a similar
change is made to all points in a corresponding group where this group is a local neighbourhood
defined by the kernel in question.

Let % : Set→ R be a specified loss function which is a function of the persistent homology of the
corresponding input. We define a regularized version of this loss l : Set→ R, which integrates the
regularization term in Equation 5, as follows:

l(X) = %(X) + λτ(X) (6)

In this equation λ is a specified real valued weighting parameter. This regularized version of the loss
will help ensure that changes to topological features will not be made at the level of individual points,
but will instead be made at the level of larger entities consisting of sets of points.

The result of applying the proposed regularization method to the sets of points in Figures 1(a) and 1(d)
are displayed in Figures 1(c) and 1(f) respectively. In both cases a uniform kernel with a s parameter
value of 1.0 and a λ parameter value of 1.0 was used. The loss function terms % in question equal
the squared persistence of the element in H0 corresponding to the merging of the two clusters and
the squared persistence of the element in H1 corresponding to the merging of the two ends of the
horseshoe respectively. These functions are formally defined in the Appendix A section of this article.
Optimization was performed using the Adam optimizer with a learning rate of 0.01 [17].

From these figures, we see that the distance between the clusters and the distance between the ends of
the horseshoe are reduced and this is achieved in a manner which agrees with our prior that changes
to topological features are made at the level of larger entities. This contrasts with the results displayed
in Figures 1(b) and 1(e) respectively where no regularization is applied and consequently changes to
topological features are made at the level of individual points.

3 Conclusions & Future Work

To the authors knowledge, this work presents the first attempt to perform regularization of persistent
homology gradient computation. Given the increasing usefulness of integrating persistent homology
and deep learning plus the need to perform such regularization, we believe this topic has the potential
to develop into an active area of research in the field of applied topology.

4

References
[1] Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American

Mathematical Society, 2010.

[2] Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local behavior
of spaces of natural images. International journal of computer vision, 76(1):1–12, 2008.

[3] Monica Nicolau, Arnold J Levine, and Gunnar Carlsson. Topology based data analysis identifies
a subgroup of breast cancers with a unique mutational profile and excellent survival. National
Academy of Sciences, 108(17):7265–7270, 2011.

[4] Padraig Corcoran. Stable and discriminative topological graph analysis. arXiv preprint
arXiv:2001.10537, 2020.

[5] Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program
as a layer. In AAAI Conference on Artificial Intelligence, 2020.

[6] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable perturbed optimizers. arXiv preprint arXiv:2002.08676,
2020.

[7] Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. A topological regularizer for classifiers
via persistent homology. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2573–2582, 2019.

[8] Fan Wang, Huidong Liu, Dimitris Samaras, and Chao Chen. Topogan: A topology-aware
generative adversarial network. In European Conference on Computer Vision, 2020.

[9] Rickard Brüel Gabrielsson, Bradley J Nelson, Anjan Dwaraknath, and Primoz Skraba. A
topology layer for machine learning. In International Conference on Artificial Intelligence and
Statistics, pages 1553–1563, 2020.

[10] Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders.
In International Conference on Machine Learning, 2020.

[11] Steve Oudot and Elchanan Solomon. Inverse problems in topological persistence. In Topological
Data Analysis, pages 405–433. Springer, 2020.

[12] Elchanan Solomon, Alexander Wagner, and Paul Bendich. A fast and robust method for global
topological functional optimization. arXiv preprint arXiv:2009.08496, 2020.

[13] Sebastian Lunz, Ozan Öktem, and Carola-Bibiane Schönlieb. Adversarial regularizers in inverse
problems. In Advances in Neural Information Processing Systems, pages 8507–8516, 2018.

[14] Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathematical
Society, 45(1):61–75, 2008.

[15] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6(1):17, 2017.

[16] Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. A framework for differential calculus on
persistence barcodes. arXiv preprint arXiv:1910.00960, 2019.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

5

A Loss Functions for Figure 1

In this section we formally define the loss function terms % in Equation 6 applied to the datasets in
Figures 1(a) and 1(d) to obtain the results in Figures 1(b), 1(c), 1(e) and 1(f).

Let D be the space of persistence diagrams. Let %0 : D → R be a loss function defined as:

%0(D) =
∑

{(p,q)∈D:
q−p>0.10,
q−p<∞}

(q − p)2. (7)

This loss function was applied to the persistence diagram D0 corresponding to the dataset in Fig-
ure 1(a) to compute the results in Figures 1(b) and 1(c).

Let %0 : D → R be the loss function defined as:

%1(D) =
∑

{(p,q)∈D:
q−p>0.25}

(q − p)2. (8)

This loss function was applied to the persistence diagram D1 corresponding to the dataset in Fig-
ure 1(d) to compute the results in Figures 1(e) and 1(f).

6

	Introduction
	Regularized Gradient Computation
	Persistent Homology & Gradient Computation
	Regularization

	Conclusions & Future Work
	Loss Functions for Figure 1

