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ABSTRACT
In the upcoming decades, large facilities, such as the SKA, will provide resolved observations of the kinematics of millions of
galaxies. In order to assist in the timely exploitation of these vast data sets, we explore the use of a self-supervised, physics-
aware neural network capable of Bayesian kinematic modelling of galaxies. We demonstrate the network’s ability to model the
kinematics of cold gas in galaxies with an emphasis on recovering physical parameters and accompanying modelling errors. The
model is able to recover rotation curves, inclinations and disc scale lengths for both CO and H I data which match well with those
found in the literature. The model is also able to provide modelling errors over learned parameters, thanks to the application of
quasi-Bayesian Monte Carlo dropout. This work shows the promising use of machine learning, and in particular, self-supervised
neural networks, in the context of kinematically modelling galaxies. This work represents the first steps in applying such models
for kinematic fitting and we propose that variants of our model would seem especially suitable for enabling emission-line science
from upcoming surveys with e.g. the SKA, allowing fast exploitation of these large data sets.
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1 IN T RO D U C T I O N

In studying galaxy evolution, astronomers often use the atomic
Hydrogen (H I) 21-cm line to trace the outermost regions of galactic
discs (e.g. Warren, Jerjen & Koribalski 2004; Begum, Chengalur &
Karachentsev 2005; Sancisi et al. 2008; Heald et al. 2011; Koribalski
et al. 2018). This region can mark the continuous boundary be-
tween galaxies and their surrounding environments, including the
dark matter haloes within which galaxies are thought to reside.
The rotation curves of extended H I discs can be used to begin
probing the properties of dark matter haloes as well as allow the
detailed modelling of galaxies’ mass distributions when coupled
with ancillary observations (e.g. van Albada et al. 1985; de Blok
et al. 2008). In the local Universe, H I discs are useful in determining
the gaseous content of a galaxy as well as allowing astronomers
to probe kinematic properties ranging from substructures such as
bars, warps, counter-rotating discs, and spiral arms (e.g. Józsa et al.
2007; Spekkens & Sellwood 2007; Di Teodoro & Fraternali 2015;
Kamphuis et al. 2015). Molecular gas observations (typically of the
CO molecule) can provide a complimentary view of these regions at
high resolution, revealing the interplay between these gas phases. H I

is typically more extended than molecular gas, however, allowing it
to trace environmental properties such as extended tidal features and
the existence of dwarf companions (Hibbard et al. 2001; Sancisi et al.
2008; Heald et al. 2011; Serra et al. 2013; Bosma 2016; Koribalski
et al. 2018).

� E-mail: dawsonj5@cardiff.ac.uk

The evolution of H I gives astronomers insight into the method by
which galaxies accrete material from surrounding environments and
how the mass of galaxies builds and evolves through star formation.
The next generation of H I survey instruments (e.g. the Square
Kilometre Array, Dewdney et al. 2009; Australian Square Kilometre
Array Pathfinder, Johnston et al. 2007, 2008; the South African Meer-
Karoo Array Telescope, Jonas & MeerKAT Team 2016; the Chinese
Five-hundred metre Aperture Spherical Telescope, Li & Pan 2016)
are poised to collect observations spanning a large look-back time,
advancing our H I driven science as well as pushing this field of
astronomy firmly into the Big Data era.

Currently it is estimated that the Square Kilometre Array (SKA)
will collect data on the order of hundreds of petabytes per year. Given
that amount of data is not only too much to fully exploit by hand but
also too large to store, astronomers should be looking to develop real-
time models that can perform efficient science on incoming data. In an
ideal world, physical information would be extracted from incoming
data automatically, leaving the work of unravelling the prevailing
science to astronomers. However, with such large data volumes and
time-intensive techniques, how are astronomers to begin moving in
a direction in which we can fully exploit the data quality promised
by the SKA?

In previous work, we sought to begin addressing this challenge
via the application of machine learning (ML, Dawson et al. 2019),
and in particular neural networks, to extract kinematic properties
of cold gas in galaxies. Models and tools exist to do this kind of
work already. With the upcoming data releases from surveys such as
the Widefield ASKAP L-Band Legacy All-Sky Blind Survey (WAL-
LABY), it comes as no surprise that kinematic modelling tools (e.g.

C© 2021 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/574/6134745 by C
ardiff U

niversity user on 01 April 2021

http://orcid.org/0000-0003-4932-9379
mailto:dawsonj5@cardiff.ac.uk


Self-supervised kinematic modelling 575

3D-BAROLO1, Di Teodoro & Fraternali 2015; 2D-BAT2, Oh et al.
2017;FAT3, Kamphuis et al. 2015;KinMS4, Davis et al. 2013; Davis,
Zabel & Dawson 2020) have been in use and ongoing development
for some time. Yet these models typically require several minutes or
more to provide a full kinematic model of a single object, and longer
if errors are required, which may prove problematic for kinematic
analyses at SKA survey speeds.

In the past decade, ML has become a popular solution to many Big
Data challenges in galaxy evolution studies (e.g. Dieleman, Willett &
Dambre 2015; Ackermann et al. 2018; Domı́nguez Sánchez et al.
2018a, b; Bekki 2019), but remains an underutilized resource among
the galaxy kinematics community. Computer vision, which often
utilizes ML techniques, has been successfully applied to kinematic
characterization (e.g. Stark et al. 2018). Yet, there is a distinct
absence of directly exploiting ML (with the notable exception of
a few recent works, e.g. Shen & Bekki 2020). Recently our group
has made attempts to exploit the use of ML in this field, featuring
the use of convolutional auto-encoders to identify disturbed cold gas
in galaxies using data from both simulations and observations (see
Dawson et al. 2019). We still have a long way to go in fully exploring
the application of ML to galaxy kinematic characterization but it
appears to be a promising avenue of research and one which we
explore further in this work.

While conventional ML models are capable of high empirical
accuracy and low testing time (e.g. Breiman 2001; Krizhevsky,
Sutskever & Hinton 2012), they are often highlighted for their
slow training times (Lim, Loh & Shih 2000) and, in some cases,
reluctance to generalize to unseen data sets (Dinh et al. 2017;
Kawaguchi, Pack Kaelbling & Bengio 2017). These qualities are
unsuitable for survey tasks proposed for the SKA and therefore,
we are required to look at alternative methods that incorporate the
benefits of ML, without the drawbacks associated with standard ML
practice.

Such an approach may exist in the form of self-supervised learning
(Liu et al. 2020), whereby models train themselves without the need
for an isolated training set. This has huge benefits in that one does
not require long training times on a throw-away-data set, essentially
eliminating data wastage. As with all ML approaches, self-supervised
learning does have its disadvantages including requiring fixed ana-
lytical functions to perform training, as well as results which change
depending on when one wishes to evaluate test data throughout the
model training procedure. Few pilot tests of these networks exist
in astronomy (and even fewer utilizing physics-aware capabilities,
e.g. Aragon-Calvo 2019) and none exist in the modelling of galaxy
kinematics. In this paper, we present the current results from our
first attempts at creating a self-supervised neural network with the
primary goal of inferring the kinematic properties of gas discs in
galaxies and an emphasis on extracting (simplistic) characteristics of
their rotation curves.

This paper is divided into three main sections. Section 2 gives
an in-depth description of the model architecture used throughout
this work, with emphasis lying on the decoder subnet described in
Section 2.4. Section 3 presents the results from testing the network
using synthetic and real interferometric observations and Section 4
summarizes the main outcomes of the work presented in this paper
as well as proposed avenues for future work.

1https://editeodoro.github.io/BBarolo/
2https://github.com/seheonoh/2dbat
3https://github.com/PeterKamphuis/FAT
4https://github.com/TimothyADavis/KinMSpy

2 TH E MO D EL

2.1 Input data

A typical interferometric observation returns visibilities in a complex
plane from which one can obtain a 3D datacube consisting of 2D
spatial flux observations separated into discrete channels which
correspond to observed frequency. It is this channelization that
allows astronomers to measure the line-of-sight velocities and hence
the kinematic properties of galaxies’ gas reservoirs. In practice,
one can collapse these datacubes further to create 2D maps that
reflect the mean properties of the gas in galaxies. A moment zero
(integrated intensity) map is simply a summation along a cube’s
frequency/velocity dimension

Moment zero =
∫

Ivdv =
∑

Iv, (1)

and a moment one (velocity) map is an intensity weighted averaging
of the line-of-sight velocities

Moment one =
∫

(v)Ivdv∫
Ivdv

=
∑

(v)Iv∑
Iv

. (2)

Working directly with the datacubes, or in fact the complex visibil-
ities, would be optimal for any fast pipeline kinematic modelling tool.
However, we have chosen to work with moment maps in this work
as a first step and to avoid the problems associated with channelized
inputs as explained further in Section 4. It should be noted that,
because of our choice to use moment maps, the models described in
this work are also suitable to analyse optical IFU maps, as they will
be handled similarly by the model described in this work and have
been shown to encode kinematic information which can be extracted
using both analytical and ML approaches (e.g. Stark et al. 2018;
Hansen et al. 2020). This will be explored further in future work
(Dawson et al., in preparation).

It should be noted that in this work, we are not making attempts to
mitigate the effects of ‘beam smearing’ (Blais-Ouellette et al. 1999;
Swaters 1999). During the recovery of datacubes from complex
visibilities, the raw observational datacubes are convolved with a
restoring beam which effectively encodes the complex visibility
plane coverage and is, in some ways, analogous to resolution. It
is this convolution step which gives rise to ‘beam smearing’, the
effects of which are discussed further in Section 3.1.2 along with
implications for interpreting the model results discussed in this work.
Counteracting ‘beam smearing’ will need to be tackled in future work
to maximize the effectiveness of models of this type.

2.2 Model aim

An auto-encoder (Rumelhart, Hinton & Williams 1986) is a model
composed of two subnets, an encoder and a decoder. In an un-
dercomplete auto-encoder, the encoder subnet extracts features and
reduces input images to a constrained number of nodes. This so-
called bottleneck forces the network to embed useful information
about the input images into a non-linear manifold from which the
decoder subnet reconstructs the input images and is scored against
the input image using a loss function.

The aim of the model used in this work is to extract seman-
tically meaningful information from observational data. Typical
approaches using a convolutional auto-encoder (CAE, Masci et al.
2011; such as that presented in Dawson et al. 2019) are powerful
for extracting arbitrary (hyperparametric) features that define data-
set characteristics. During training, a CAE learns to minimize the
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Figure 1. A simplified pictorial representation of the neural network used
throughout this work. The model features two convolutional encoder subnets
which concatenate learned features before passing them to a decoder subnet.
The model receives moment maps as inputs and minimizes the loss between
decoder-generated moment map outputs and the inputs throughout training.
In the diagram, grey squares indicate convolutional layers, blue rectangles
depict linearly connected layers, and the grey cube represents the auxiliary
3D cube containing the coordinate axes passed into the network.

difference between input and output tensors rather than the difference
between an output and target label (whether this be a continuous
or categorical set of target classes). A CAE works similarly to a
powerful non-linear generalization of principle component analysis
(PCA, Plaut 2018) whereby it finds a continuous non-linear latent
surface on which input data best lies. In this work, however, we
would like to extract semantically meaningful parameters of observed
systems. In order to achieve this, we have combined a convolutional
auto-encoder with a set of analytical, gradient trackable, functions
which approximate the functional forms of observed kinematics of
galaxies.

The model, known as a semantic auto-encoder (SAE, Kodirov,
Xiang & Gong 2017), is a modified CAE created using PyTorch5

0.4.1, an open source ML library capable of GPU accelerated
tensor computation and automatic differentiation (Paszke et al.
2017). The model has a neural network architecture suited to
self-supervised learning, with additional Bayesian capabilities.
Fig. 1 shows a simplified pictorial representation of the model
architecture.

The encoder subnets extract lower dimensional feature represen-
tations from input images (here, the integrated intensity and mean
velocity maps as described in Section 2.1) using a combination of
convolutional and linearly connected layers; the decoder then recon-
structs the input images from the learned feature representations.
In a standard convolutional auto-encoder, the decoder would make
use of transposed convolution operations, however in this network,
the decoder is composed of analytical functions written using native
PyTorch. This imposes a constraint on the CAE by forcing the
network to generate a semantic encoding of the input images.
As highlighted by Aragon-Calvo (2019), the decoder function can
take any possible form, no matter how representative of the true
underlying functions being modelled. In this way, we can be assured
that the encoders are learning semantically meaningful properties
of the input images and are no longer tied to traditional training
methods, instead allowing the network to train on all available data
(including test data) in a self-supervised manner. An SAE becomes
physics-aware once the assumption is made that the decoder function
can be used to reveal physically meaningful information about the
input. In this paper, the physics-awareness of the model refers

5http://pytorch.org/

Table 1. The SAE encoder subnet architecture used throughout this paper.
The first column lists the name of each layer/operation, the second column
describes the type of layer/operation, the third column shows the dimensions
of each layer’s output tensors (hence the input shape to the next layer).
The dimensions follow the PyTorch convention (batch size, number of
channels, height, width). The filter column shows the dimensions (height,
width) of kernels used to perform the convolution and pooling operations.
The convolutional and linearly connected layer groups are separated by a
blank row for clarity.

Name Layer/operation Dimensions Filter

Input – (64,1,64,64) –
Conv 2D Convolution (64,16,64,64) (3,3)
Pool 2D Max Pooling (64,16,32,32) (2,2)
Conv 2D Convolution (64,32,32,32) (3,3)
ReLU ReLU – –
Pool 2D Max Pooling (64,32,16,16) (2,2)
Conv 2D Convolution (64,64,16,16) (3,3)
ReLU ReLU – –
Pool 2D Max Pooling (64,64,8,8) (2,2)
Conv 2D Convolution (64,128,8,8) (3,3)
ReLU ReLU – –
Pool 2D Max Pooling (64,128,4,4) (2,2)
Lc1 Linear (64,1,1,2048) –
ReLU ReLU – –
Drop Dropout (p = 0.1) – –
Lc2 Linear (64,1,1,256) –
Htanh Hard tanh activation – –
Output – (64,1,1,2) –

to our main focus of approximating parametrization for rotation
curves, intensity profiles and recovering galaxy inclinations (see
Section 2.4).

For a more in-depth background to the use of auto-encoders,
we refer the reader to Bourlard & Kamp (1988) and Hinton &
Salakhutdinov (2006). For both a concise and thorough introduction
to the use of self-supervised, physics aware, neural networks in
astronomy, we recommend Aragon-Calvo (2019).

2.3 The encoder subnets

Within the network, the encoders are two convolutional-classifier-
like subnets. Each comprises a series of four convolutional and two
fully connected layers, interspersed with pooling layers and activa-
tion functions. The encoders are used to extract and dimensionally
reduce features from input images. The two subnets independently
receive a moment zero map (a 2D intensity profile, normalized in the
range 0–1) and a moment one map (a 2D velocity profile, normalized
into the range –1–1), respectively. Throughout this work, we ensure
that the input maps have size of 64 × 64 pixels. All input maps whose
sizes are larger or smaller, like those discussed in Sections 3.2 and
3.3, are subsequently up/down-sampled to a size of 64 × 64 using
PyTorch’s torch.nn.Upsample class, in bilinear mode. Each
moment map carries valuable information for the decoder functions
as described in Section 2.4. With this in mind, the output of the
encoders are two vectors which are concatenated before passing
to the decoder subnet. For an in-depth look at the encoder subnet
structure see Table 1.

The encoders learn the following properties: subnet 1: observed
galaxy inclination (i) and free parameters of the intensity profile
which make up ξ 1 in Fig. 1; subnet 2: the parameters of the velocity
profile of the galaxy which make up ξ 2 in Fig. 1.
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2.4 The decoder subnet

Here, we detail the functions required for reconstructing the moment
zero and moment one input maps from the concatenated feature
representations ξ 1 and ξ 2 as shown in Fig. 1. In recovering the
moment maps, we are primarily interested in modelling two profiles.
Firstly, the intensity

I(r) = I0 exp

(
− rx,y

rscale

)
exp

(
− z

rz-scale

)
, (3)

where I0 is the intensity normalization factor (set to 1 throughout,
due to the global normalization described above), rx, y is the radius in
the xy plane, in arcseconds, rscale is the intensity scale length in the xy
plane, z is the position in the z axis, and rz-scale is the intensity scale
length in the z axis set to a value of 1 spaxel throughout this work,
to emulate a thin disc. Intensity values are determined by combining
the integrals of equation (3) across each spaxel in the xy and z planes.

Secondly, the rotational velocity

V(r) = 2Vmax

π
arctan

(
− r

rturn

)
, (4)

where Vmax is the asymptotic line of sight velocity, r is the radius in
arcseconds, and rturn is the velocity profile scale length.

Here, our choice of exponential intensity profile and arctan
velocity profile are entirely arbitrary (i.e. not driven by any physical
theory), but are choices motivated by some of the simplest forms
that can approximately fit the typical discs and rotation curves found
in the Universe. Clearly objects that do not follow these functional
forms will not be appropriately fit by this network and we discuss
this further in Section 3.5. However, it should be noted that this
analytical-style decoder implementation would be equally valid for
other functional forms. For example, one could choose to fit bulge-
disc models with such an architecture, or include the influence of
central point masses or the effects of dark matter haloes. These more
realistic networks will be explored in future works.

An auxiliary 3D tensor of radii (labelled r in Fig. 1) is passed into
the network, cloned, and evaluated using equations (3) and (4). The
2D moment maps are then created using equations (1) and (2). The
velocity profile is later converted into line-of-sight velocity map via
an inclination projection and velocity weighting based on the pixel
angles about the line-of-sight axis.

2.5 Model training procedure

The network is trained with minimal optimization of hyperparam-
eters in order to demonstrate the simple nature of this architecture.
At all times the network utilizes a PyTorch’s MSELoss function
which computes the mean squared error

L = 1

N

N∑
i=0

(
f (xi) − yi

)2
, (5)

between the model outputs, yi, and inputs, xi, for every forward pass
of a batch of size N. In this case, this is the squared difference between
the moment zero and moment one inputs and decoder generated
outputs. It is worth noting here that all synthetically generated
moment maps have the same position angle and consequently any
observational data used for training and testing have been de-rotated
using published position angle measurements. We do this as position
angle is a non-physical parameter which we can easily account for
in pre-processing (with e.g. the fit kinematic pa routine of
Krajnović et al. 2006).

We use an adaptive Adam learning rate optimiser (Kingma &
Ba 2014) which begins with a value of 10−4 and reduces via
multiplication of 0.975 every two epochs. We find that the model
converges well after 300 epochs for all training runs presented in this
paper.

Where synthetic training data is used, the network receives batches
of 64 input moment map pairs. Initial tests showed the network to
be largely unaffected by batch size and so 64 is arbitrarily chosen to
increase training speed.

The models and PYTHON training scripts used for the work
presented in this paper are publicly available on GitHub.6

2.6 Model testing procedure

Testing the network can be done in three distinct ways, depending on
the situation at hand. In order to test data, one can choose whether to
train the network on the test data alone (we call this testing procedure
solo testing), to train on the test data alongside other examples (we
call this testing procedure combined), or to use the network in full
test mode having only trained on examples not including those data
that we wish to test (called blind testing).

One can imagine the case where sufficient training data has been
passed through the network in a survey, such that in order to return
rapid kinematic modelling of new observations, one simply passes
the new observations through the network with no prior exposure
to the training procedure. This blind testing has the advantage of
rapid testing speed but at the potential cost of lowered predictive
accuracy, in an epistemic uncertainty dominated regime. One can
also imagine the case whereby initial survey data has been collected
and some sample of the data set the network used to train is also in
need of testing. As the network has seen these data during the training
procedure, combined testing has the advantage of potentially higher
accuracy at the expense of time needed to train the model. It should
come as no surprise that the ideal testing scenario for this network
is combined, with a sufficiently large training set in an aleatoric
uncertainty dominated regime. However, there are cases (such as at
first light of a survey) where the only test data available are that which
the network was trained on. It is in this scenario that solo testing will
occur and although this testing regime lacks the benefits afforded
by combined testing, it has the potential advantage of predictions
not being influenced by anomalous data whose population increases
with training set size.

2.7 Monte Carlo dropout

In this section, we summarize the use of Monte Carlo dropout
(henceforth MC dropout; Gal & Ghahramani 2016) to provide quasi-
statistical modelling uncertainties over learned parameters within the
model.

In conventional neural network training circumstances, dropout
may be interpreted as permuting a trained model (Srivastava et al.
2014) via the probabilistic zeroing of weights in linearly connected
layers. Traditionally, dropout layers are used throughout training in
order to force the network to behave as an ensemble of architectures
increased testing accuracy and generalization power. In the case of
MC dropout, after training, dropout is reapplied to the network in
evaluation mode and inputs are passed through the model many times,
effectively sampling a posterior where the model architecture is
marginalized out. Gal (2016) first proposed the idea of approximating

6https://github.com/SpaceMeerkat/Corellia/
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Figure 2. A randomly selected synthesized galaxy, created using KinMS and evaluated using the network in blind testing mode. The black dashed lines and
grey areas show the mean and 1σ modelling uncertainties respectively for profiles predicted by the neural network model. The blue dashed lines show the target
profiles which were used to create the input maps. The galaxy was created with the following known parameters: i = 37.2◦, rscale = 10.0′′, rturn = 1.6′′, and
Vmax sin(i) = 173.6 km s−1. The network predicted parameters are shown as text in the upper-middle, upper-right, and lower-right subplots.

distributions over parameters learned in neural networks in this way
and has since been used in astronomy (e.g. for the probabilistic
labelling of galaxy morphologies, Walmsley et al. 2019).

For an input x (comprised of a moment 0 and moment 1 map),
training data D, model weights w, T forward-pass evaluations,
and encoder output k, the predicted parameter means and standard
deviations are given by equations (6) and (7), respectively.

k̂ = 1

T

∑
t

P (k|x, wt) (6)

σ = 1

T

∑
t

|k − kt| (7)

For a comprehensive derivation of equations (6) and (7), as well
as the implications for using an arbitrary dropout probability, we
refer the reader to Walmsley et al. (2019). Examples of the posterior
distributions, p(k|w,D), over learned parameters using MC dropout
for a randomly selected synthesized galaxy are described further in
Section 3.1.1.

It should be noted that, as the network does not use dropout to zero
weights in the convolutional layers, σ does not represent a complete
error over learned parameters. Instead one should consider σ as a
lower limit error over parameters whose use becomes immediately
obvious for pipeline flagging purposes or to generate relative errors
within a test set. The errors produced through this technique are
strictly errors due to the modelling technique, and will underestimate
the true error in any parameter, which arises due to both modelling
and observational uncertainties.

3 R ESULTS AND DISCUSSION

In this section, we present exemplar test results for highly spatially
resolved galaxy observations. In each case, we have trained new
networks using the procedures described in Section 2.5.

Table 2. Parameter values and ranges for all synthet-
ically generated galaxies using the KinMS package.
The units for rscale and rturn are absent due to both
quantities being fractions of the input map size. The
position angle of each galaxy is fixed at 0 as it is not
a physically meaningful parameter. Throughout model
training, parameters are drawn uniformly in the ranges
listed.

Parameter Size/range Units

Position angle 0 deg
Inclination 10–90 deg
rscale 0.1–0.35 –
rturn 0.01–0.8 –
Vmax sin(i) 50–500 km s−1

3.1 Synthesized examples

3.1.1 Input–output

In order to explore the limitations of the network, we tested the
model using synthetic galaxies generated using the PYTHON based
kinematic simulator KinMS7 (KINematic Molecular Simulation,
Davis et al. 2013, 2020). Fig. 2 shows the inputs and outputs as
well as both known and predicted profiles for a galaxy generated
using the same analytical functions described in Section 2.4 with
inclination, maximum velocity, and scale lengths drawn randomly
in the ranges shown in Table 2, and a fixed beam size of two
resolution elements. It is clear that the model is able to recover
the galaxy’s rotation curve (and other parameters) well in blind
testing mode, whereby the model has not yet trained on the test data.

7https://github.com/TimothyADavis/KinMSpy
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Self-supervised kinematic modelling 579

Figure 3. Corner plot showing the level of covariance between learned parameters for one randomly generated, synthesized galaxy (discussed further in
Section 3.1). The accompanying histograms represent quasi-probabilistic distributions thanks to the use of Monte Carlo dropout. This galaxy was passed through
the network in test mode 10 000 times in order to build the distributions. We observe well constrained learned parameters with Gaussian like profiles, allowing
for quasi-probabilistic modelling errors for the parameters. The only strong covariance observed is that between the maximum line-of-sight velocity and the
velocity profile scale length, which is entirely expected and present in traditional kinematic analyses.

The quasi-probabilistic distributions for each learned parameter for
this galaxy are shown in Fig. 3, highlighting the Gaussian-like
nature of the learned parameter distributions as well as an expected
covariance between rturn and Vmax sin(i).

As seen in Fig. 4, the model is able to recover the desired physical
parameters of synthesized galaxies well, heuristically. For the 1739
test galaxies shown in Fig. 4, we measure the average deviation of
parameters: i, rscale, rturn, and Vmaxsin(i), from the 1:1 line as σ i =
1.1◦, σrscale = 0.004′′, σVmaxsin(i) = 3.8 km s−1, and σrturn = 0.02′′,
respectively.

It is clear from Fig. 4 that the error estimates do not represent the
total errors over the parameters and only encode the modelling error.
This makes the presented errors strictly lower limit estimates, and
mostly useful for comparing reliability within the data set, rather than
external use. This can be seen by the fact that on average only ∼35%
of the data points in Fig. 4 have errorbars which overlap with the 1:1
true-versus-predicted line. For the presented data set, these errors
likely underestimate the total error by a factor of ∼2.5. Including
errors in the observations themselves will help to narrow this gap
and will be explored further in future work.

3.1.2 The effect of resolution

One expects rscale, pred to artificially increase with beam size for
a fixed rscale. However, rscale is not known for observations of
galaxies whose values rscale fall below some fraction of the beamsize.
We see this effect happening as shown in Fig. A1 in a non-
complex manner. Therefore, we recommend enforcing flagging
based on inclination which appears to be strongly linked with
those galaxies whose rscale is under predicted (along the minor
axis). In the edge-on galaxy case, the minor axis is no longer
well resolved resulting in a poor recovery of the intensity profile.
However, this is a well-known issue in moment based kinematic
modelling, in which the intensity profiles and kinematics can
never be fully derived in edge-on galaxies due to line-of-sight
effects.

As we have included no method for mitigating the changes induced
by varying beam size, it comes as no surprise that the network will
behave differently given a sufficiently large ratio of beam size to
galaxy extent. Given that we do not have a mechanism for dealing
with ‘beam smearing’ in the current network architecture, we expect
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Figure 4. True versus predicted plots for each learnable parameter in the network. Black markers and error bars pertain to the tested galaxies and the red
dashed line indicates the 1:1 line on which perfect predictions should ideally lie. This model was trained using purely synthetic data with a restoring beamsize
of two resolution elements and only including well resolved examples as discussed in Section 3.1. Those galaxies whose projected rturn fell below 1.5 times the
restoring beamsize were removed in order to mimic the automated flagging of poorly resolved galaxies at high inclination in a survey. Of the 2000 synthesized
galaxies tested, 261 (13%) were removed using this cut.

to see its influence, lowering the apparent line-of-sight velocities
close to the centre of galaxies where the iso-velocity contours are
closest together. For minimizing the effects of varying beam size, we
recommend convolving the 3D spatial cube r (see Fig. 1), evaluated
using equation (3), with the restoring beam before creating the output
maps. The advantage of this approach being that the restoring beam
is often included in data-product header units, and so should be
readily available for creating kernels with which to perform the
aforementioned convolution. We consider this approach as beyond
the scope of the work presented in this paper, but will be included
in future work focusing on retrieving the properties of marginally
resolved galaxies.

3.1.3 Fill factor

In previous work, we showed that the fill factor (i.e. the number of
zeroed pixels) in a velocity map’s field of view, impacts the behaviour
of NN models which take them as inputs (Dawson et al. 2019). With
the NN model presented in this work, we have seen little evidence that
this has an effect on the galaxies’ predicted parameters. We attribute
this behaviour to the nature of the training procedure, whereby in
combined and solo testing, the network does not rely solely upon
inference of unseen data.

3.2 H I examples

The primary goal of developing a network like that presented in this
paper is to demonstrate the applicability of ML to SKA science.
As such, in this section we show the network performs well with
H I observational data. In order to do this we present two example
test galaxies, NGC 2403 and NGC 3198, observed using the Very
Large Array (VLA) as part of The H I Nearby Galaxy Survey
(THINGS; Walter et al. 2008), and showing a diversity of rotation
curve shapes. These galaxies are 2 of 17 THINGS galaxies used for
mixed training and testing using the network and chosen heuristically
for the appearance of their well defined rotating H I discs. The names
and publications for the galaxies used in this sample are shown in
Table A1.

Fig. 5 shows the derived intensity profile and rotation curve
for NGC 2403. We include the rotation curve modelled using
BBarolo (Di Teodoro & Fraternali 2015) on the datacube (Di
Teodoro & Lelli, private communication). In comparison, we see
that the neural network’s predicted rotation curve matches closely
and so we are convinced that the network is able to recover
physical information well. Although the galaxy’s intensity profile
does not strictly exhibit an exponential form, this has little impact
in the recovery of the rotation curve which is the networks primary
objective.
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Figure 5. An example galaxy, NGC 2403, observed in H I and evaluated using the network in combined testing mode. Maps in the left-hand and middle
columns share x- and y-axis sizes of 64 × 64 pixels. In this way, we are directly observing the input and output maps of the model. The right-hand column has
undergone an x-axis rescaling to match observational scales found in the literature. The black dashed lines and grey areas show the mean and 1σ modelling
errors, respectively, for profiles predicted by the neural network. The blue dashed line shows a major axis cut of the input intensity map. The red dashed line and
filled area show the best fit and associated errors modelled using BBarolo on the datacube. In order to make a direct comparison between the network’s and
BBarolo’s derived rotation curves, the network’s velocity profile has been corrected for by the predicted inclination term. The network predicted parameters
are shown as text in the upper-middle, upper right-hand, and lower right-hand subplots. We see that this galaxy has a velocity profile which can be roughly
approximated by an arctan function meaning the kinematic parameters are well recovered by the model.

Fig. 6 shows the derived intensity profile and rotation curve for
NGC 3198. This galaxy exhibits a mild warp and a flat rotation
curve (Gentile et al. 2013) with a slight rise at ∼200′′. Warped H I

discs are not uncommon in the outer regions of galaxies. At present,
our network architecture is not set up to model these (however,
one could easily extend the model in order to do so). Again, we
include the rotation curve modelled using BBarolo on the datacube
(Di Teodoro & Lelli, private communication) in Fig. 6. Crucially,
although this warping behaviour is not included in our model, in
this case, the network still returns reasonable parameter estimations,
showing that it could still be usable for parameter estimations across
a broadly diverse population of galaxies.

3.3 CO examples

In order to demonstrate the flexibility of this network architec-
ture, we trained a model to recover the kinematic properties
of galaxies observed in the CO line using the Atacama Large
Millimeter/submillimeter Array (ALMA). Our samples are drawn
from the mm-Wave Interferometric Survey of Dark Object Masses
(WISDOM) project (see Table A2 for more information) and have
high spatial resolution. Due to the nature of these objects being
targeted for their evidence of black hole influence on the gas
kinematics, we expect to see small values of aV for the sample.
As seen in Fig. 7, this effect is clearly visible, highlighting the
predictable behavioural nature of the network. It is also clear in
Fig. 7, that NGC 1387 (FCC184, Zabel et al. 2020; Boyce et al.,
in preparation), an exemplar galaxy from the WISDOM sample,
exhibits an exponential intensity profile which the network can easily
recover.

Such an example demonstrates the transferable nature of this
network architecture and training style but without the difficulties
often associated with traditional transfer learning tasks. This means
that such architectures and training styles can be applied to a
multitude of different data sets with the possibility of architectural
modifications suiting other types of data outside of interferometry
and even astronomy.

3.4 Testing speed

The network can retrieve a mean field approximation for all learnable
parameters, of a single galaxy observation, in 0.0025 s on a single
Intel(R) Core(TM) i7-6700 CPU core. This time-scales linearly
with the number of MC dropout samples one wishes to collect
(i.e. for a set of 1000 MC dropout samples, a typical test on an
individual galaxy would take 2.5 s) to generate pseudo-probabilistic
distributions. However, as the batch throughput size is limited only
by the available device memory, it is possible to retrieve values
for learnable parameters, and hence MC dropout samples, in the
same time frames as listed above for multiple observations. This
means that one could potentially return hundreds to thousands
of parametrization and associated pseudo-errors in a matter of
seconds.

3.5 Caveats

There are a few caveats pertaining to the use of the model described in
this work. These caveats may impact the way in which users handle
the network and the confidence levels associated with parameter
estimations.

MNRAS 503, 574–585 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/574/6134745 by C
ardiff U

niversity user on 01 April 2021



582 J. M. Dawson et al.

Figure 6. An example galaxy, NGC 3198, observed in H I and evaluated using the network in combined testing mode. Maps in the left-hand and middle
columns share x- and y-axis sizes of 64 × 64 pixels. In this way, we are directly observing the input and output maps of the model. The right-hand column has
undergone an x-axis rescaling to match observational scales found in the literature. The black dashed lines and grey areas show the mean and 1σ modelling
errors, respectively, for profiles predicted by the neural network. The blue dashed line shows a major axis cut of the input intensity map. The red dashed line and
filled area show the best fit and associated errors modelled using BBarolo on the datacube. In order to make a direct comparison between the network’s and
BBarolo’s derived rotation curves, the network’s velocity profile has been corrected for by the predicted inclination term. The network predicted parameters
are shown as text in the upper-middle, upper right-hand, and lower right-hand subplots. We see that this galaxy has a velocity profile which can be roughly
approximated by an arctan function meaning the kinematic parameters are well recovered by the model.

Figure 7. An example WISDOM galaxy, NGC 1387, observed in CO and evaluated using the network in combined testing mode. The left-hand and middle
columns share x- and y-axis sizes of 64 × 64 pixels. In this way, we are directly observing the input and output maps of the model. The right-hand column has
undergone an x-axis rescaling to match observational scales found in the literature. The black dashed lines and grey areas show the mean and standard deviation,
respectively, for profiles predicted by the neural network model. The blue dashed line shows a major axis cut of the input intensity map. The red dashed line
shows the KinMS reconstructed rotation curve. The network predicted parameters are shown as text in the upper-middle, upper right-hand, and lower right-hand
subplots. We easily see that this galaxy has an intensity profile and velocity profile which can be roughly approximated by an exponential and an arctan function,
respectively, meaning the kinematic parameters are well recovered by the model.
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A key factor in recovering sensible parametrization using the
network is the choice of decoder functions (see Section 2.4). In
this work, we have used simple, general, functions in the form of an
exponential (see equation 3), and an arctan (see equation 4). However,
should one wish to model specific emission line components of
galaxies, it would be prudent to adopt more tailored functional
forms. For example, it has been shown that H I discs can display
depressions in their intensities in their central regions, typically
filled by molecular gas (Wong & Blitz 2002), for which a truncated
Gaussian intensity profile (Martinsson et al. 2013) would be more
appropriate when reconstructing the intensity maps. Additionally,
when modelling the very outer regions of H I discs, one might
consider adopting a more complex multiparameter function capable
of encoding the sharpness of the turnover at rturn and the behaviour
of the curve after this point (e.g. Rix et al. 1997), or even declining
velocities in the central regions (Lelli, McGaugh & Schombert 2016).
A declining rotation curve would be challenging for the current model
to fit (and impossible to fully retrieve). However, due to the nature of
the loss function chosen in this work (see equation 5), the network
will prioritize fitting to the higher velocity regions of galaxies.

As described in Section 3.1.2, the resolution of input images im-
pacts the ability of the network to correctly predict ascale, particularly
in the high inclination regime. This places constraints on the user’s
confidence in parameter estimations when working in both the large-
beam and high inclination cases combined. Additionally, we can see
in Fig. 4 that the network struggles to accurately recover inclinations
at the very low inclination range. This is a predictable effect caused
by the loss of line-of-sight velocity information for face on discs but
again, in the case of survey pipelines, these low inclined galaxies
will require additional flagging. In both the aforementioned caveat
cases, it is worth noting that traditional kinematic modelling methods
also struggle to accurately estimate parameters, in particular, when
working with moment maps. Extensions of the network’s framework
presented here to kinematically model datacubes may alleviate these
issues and will be explored in future work.

4 C O N C L U S I O N S

We have demonstrated the performance of a neural network model
architecture which can be used to recover rotation curves of galaxies
from their kinematics. The model was tested on synthetically gener-
ated galaxies as well as observations using both H I and CO emission
lines.

Testing on synthetically generated galaxies has highlighted the
powerful performance of the network as well as areas where the
network’s performance is sub optimal. For the latter areas, we have
discussed solutions including: an additional convolution with the
restoring beam to counteract the effects of ‘beam smearing’, and
flagging high inclination data in a large beam and high inclination
regime.

Testing observational H I data from THINGS has shown that this
style of network is well suited to work with data like that expected
from the SKA in the near future. We have shown that the network is
capable of estimating velocity curves for discs exhibiting a variety of
profiles. In order to do this, we have directly compared the rotation
curves estimated by the network to those modelled directly from
the cubes using kinematic modelling tools. The network is able to
perform adequate recovery of parameters even in cases where it
would not be possible to reproduce the true rotation curves. These
promising results give us confidence that adopting more flexible
decoder functions will extend the applicability of the model for more
specific use cases should one wish to model H I discs exclusively.

Testing observational CO data from the WISDOM project has
shown that the network is suitable for a range of emission line
observations. Unlike traditional ML models, the network architecture
and training styles outlined in this work prevent the need for transfer
learning which is often time consuming and fraught with ungainly
challenges associated with systematic properties of training sets.
We have shown that the model outlined in this work can recover
rotation curves which heuristically match rotation curves extracted
from ALMA observations using more time-consuming approaches.

As previously stated, improvements to the model architecture in
this work include but are not limited to: adapting the model to
use more complex intensity and velocity profiles in the decoder
subnet, automatically accounting for large beam effects such as beam
smearing and information loss either via systematic offsets in model
predictions or via the incorporation of an extra convolutional layer
in the decoder subnet, and reintroducing a position angle estimation
step. An idealized improvement on the model would be to work
directly with interferometric datacubes themselves, or even visibil-
ities, without the need to generate moment maps prior to training
and testing. However, we have found that the discretized nature
of channels in interferometric datacubes presents a non-gradient-
trackable step in the decoder’s reconstruction of datacube inputs.
This discontinuity in the gradient tree prevents back propagation via
gradient descent and consequently halts model training. We propose
adapting this self-supervised approach to work with datacubes as
a lucrative avenue of research for challenging current kinematic
modelling tools in preparation for the SKA and other upcoming
large facilities.
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Figure A1. The effects of varying the ratio of beam size to galaxy extent. It
is clear to see that an increased beam size results in an artificial lengthening
of the intensity profile scale length. It can also be seen that the spread in
median offset increases with rscale, which occurs due to information loss as
the convolved flux is ‘smeared’ out beyond the field of view. The value of
rscale at which this effect begins to take hold is clearly inversely proportional
to the beamsize.

Table A1. Information regarding the THINGS sample galaxies used through-
out his work. Columns give the following information: Object, the target name
as given in THINGS project publications, Publication records the relevant
publication in which the THINGS targets appear.

Object Publication

DDO 53 NGC 3621 All from Walter et al. (2008), de Blok et al. (2008)
NGC 925 NGC 4736
NGC 2403 NGC 4826
NGC 2841 NGC 5055
NGC 2903 NGC 5236
NGC 3184 NGC 6946
NGC 3198 NGC 7331
NGC 3351 NGC 7793
NGC 3521

Table A2. Information regarding the WISDOM project sample used through-
out this work. Table columns give the following information: Object, the target
name as given in WISDOM project publications, Observation type gives the
emission line ALMA observed for the target, Publication records the relevant
publication in which ALMA observations of the targets appear.

Object Observation type Publication

NGC 3665 12CO(2–1) Onishi et al. (2017)
NGC 0383 12CO(2–1) North et al. (2019)
NGC 0524 12CO(2–1) Smith et al. (2019)
NGC 1387 12CO(2–0) Zabel et al. (2020), Boyce et al. (in preparation)
NGC 4429 12CO(3–2) Davis et al. (2017b)
NGC 4697 12CO(2–1) Davis et al. (2017a)
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