
Optimized environment exploration for autonomous underwater vehicles

Eduard Vidal1, Juan David Hernández1, Klemen Istenič1, and Marc Carreras1

Abstract— Achieving full autonomous robotic environment
exploration in the underwater domain is very challenging,
mainly due to noisy acoustic sensors, high localization error,
control disturbances of the water and lack of accurate un-
derwater maps. In this work we present a robotic exploration
algorithm for underwater vehicles that does not rely on prior
information about the environment. Our method has been
greatly influenced by many robotic exploration, view planning
and path planning algorithms. The proposed method constitutes
a significant improvement over our previous work [1]: Firstly,
we refine our exploration approach to improve robustness;
Secondly, we propose an alternative map representation based
on the quadtree data structure that allows different relevant
queries to be performed efficiently, reducing the computational
cost of the viewpoint generation process; Thirdly, we present
an algorithm that is capable of generating consistent maps
even when noisy sonar data is used. The aforementioned
contributions have increased the reliability of the algorithm,
allowing new real experiments performed in artificial structures
but also in more challenging natural environments, from which
we provide a 3D reconstruction to show that with this algorithm
full optical coverage is obtained.

I. INTRODUCTION

One of the areas where autonomous underwater vehicles
(AUVs) stand out over other available technologies, such as
remotely operated vehicles (ROVs) or manned submersible
vehicles (MSVs), is in inspection and mapping of complex
underwater reliefs. In situations where the vehicle’s naviga-
tion system is accurate and there are no unexpected obstacles
in the environment, following a preplanned trajectory is
usually sufficient to obtain good quality data. However, in
challenging scenarios where these conditions are not met, the
vehicle must be guided by an online path planner to adapt
the exploration trajectory to the relief perceived in situ.

Different algorithms have been proposed to automate the
exploration of a scene. These algorithms can be classified
into three main categories:

• View planning (VP) algorithms, which focus on de-
termining a suitable set of viewpoints that satisfy a
particular reconstruction or exploration criteria [2].

• Frontier-based (FB) algorithms, which focus on the
boundaries between different parts of a map to extract

Work on this paper has been supported by the EXCELLABUST,
ROBOCADEMY and ARCHROV Projects under the Grant agreements
H2020-TWINN-2015, CSA, ID: 691980, FP7-PEOPLE-2013-ITN-608096
and DPI2014-57746-C3-3-R respectively, and by the Spanish Government
FPU14/05493 PhD grant (to E. Vidal).

1E. Vidal, J.D. Hernández, K. Istenič, and M. Carreras are members of the
Underwater Robotics Research Center (CIRS), University of Girona, Spain.
J.D. Hernández current affiliation is: Department of Computer Science, Rice
University, Houston, USA. eduard.vidalgarcia@udg.edu,
juandhv@rice.edu, klemen.istenic@udg.edu and
marc.carreras@udg.edu.

Fig. 1. Sparus II AUV, a torpedo-shaped underwater robot with partial
hovering capabilities used to validate our approach.

information about what to do next [3].
• Coverage path planning (CPP) algorithms, which com-

pute a path that passes over all points of a surface of
interest while avoiding obstacles, by having usually a
prior map of the scene [4].

In this paper we present a method to automate the explo-
ration of unknown underwater environments. Our method
has been inspired by VP and FB approaches, and by our
previous publication [1]. The method does not require prior
information about the environment. First, information about
the environment is incorporated into a 2-dimensional (2D)
grid map, where each cell is labeled according to six possible
states. Then, the map is used to generate viewpoints that
promote further exploration of the environment. Those view-
points are generated using the frontiers between different
labels. Among all possible viewpoints, the best one is chosen
and a path is generated to steer the robot towards the selected
viewpoint. This procedure is repeated until the exploration
finishes.

In this publication not only do we refine our explo-
ration approach to increase robustness, but we also tackle
the following two important problems. The first one is to
improve the map representation so that viewpoints can be
generated more efficiently. This is necessary because of
the lower computational resources available in underwater
robots (and because of the online nature of the algorithm),
and can also be interesting in other robotic fields. The
second one is to improve the robustness of the algorithm
when noise is present, specifically against false negative
measurements in acoustic exteroceptive sensors. Although
this is also domain specific, our method can be useful to
anyone using a sensor that suffers from this type of noise.
As shown in the results section, solving these two problems
truly enables the algorithm to perform as intended in the
underwater domain.



The remainder of this paper is organized as follows.
Section II briefly overviews relevant related work on robotic
exploration, view planning and path planning. Section III
describes the proposed online exploration method for au-
tonomous inspection of unexplored underwater structures
and Section IV provides a detailed description of the con-
tributions related to increase the consistency of the map.
Section V reports obtained results under simulated and real
experiments using the Sparus II AUV (see Figure 1). Finally,
in Section VI conclusions are presented and directions for
further research are discussed.

II. RELATED WORK

Over the last three decades there have been a significant
amount of contributions to the robotic exploration and VP
fields. This section briefly reviews the work of important
authors.

In [5] and [6], VP techniques were applied to ship hull
inspection, but a prior rough map was required to plan
the path to explore the propellers and rudders. A similar
approach was presented by Bircher et al. [7] for structural
inspection using unmanned aerial vehicles (UAVs). The
same authors have recently proposed a method that uses a
rapidly-exploring random tree (RRT) to perform exploration
without a prior map [8] [9]. Williams et al. [10] proposed
a VP target reinspection method for AUVs equipped with a
synthetic aperture sonar (SAS). Galceran et al. [11] presented
a 2.5-dimensional (2.5D) approach for inspection of complex
underwater structures. In this approach, a nominal path is
planned in advance using a prior map of the scene. Then,
during the mission execution, the path is reshaped online
to deal with the navigation drift and inaccuracies from the
initial map. Blaer et al. [12] presented a VP approach for 3-
dimensional (3D) site modeling with unmanned ground ve-
hicles (UGVs). In this case, a minimal set of covering views
is planned in 2D using a prior map of the scene, and then
the resulting model is improved in a second stage in which
further 3D views are planned. In [13] Connolly proposed the
next-best-view (NBV) methodology to autonomously plan
views to reconstruct a 3D object. Latombe et al. applied
NBV strategies to robotic exploration [14]. In the same line,
Vasquez-Gomez et al. [15] presented a NBV algorithm to
model arbitrary objects in 3D, and in [16] the same authors
refined their method by adding uncertainties. Their method
does not use prior knowledge about the object’s shape,
but it does require information about its position and size.
Isler et al. [17] have also developed a NBV approach with
uncertainties for active volumetric 3D reconstruction. Finally,
Burgard et al. explored FB methods and even extended them
to work with multiple robots in [18].

III. VIEW PLANNING EXPLORATION
ALGORITHM

The proposed algorithm operates according to the hier-
archical/deliberative robotic paradigm: first incorporate the
data from the sensors into a map (sense), then use the map
to generate viewpoints that promote further exploration of

the environment, and also generate a safe path to reach the
generated viewpoint (plan), and finally steer the robot so that
it follows the generated path (act).

A. Map Representation (Sense)

The proposed view planning (VP) approach plans the next-
best-view (NBV) at each iteration so that full coverage of the
scene is achieved with data from the following sensors:

• A profiling sonar that acquires 2D exteroceptive data of
the surroundings. Since a full 360o scan usually takes
several seconds to be completed, in our approach the
scanning sector has been limited to 120o. It is reoriented
online so that it points towards the target cell, while
always covering the front part of the vehicle for safety
purposes.

• An optical camera that gathers images of the scene.
There is no need to have online feedback from the
camera, since only its field of view (FOV) is taken into
account in the planning stage.

The information provided by both sensors is used to
incrementally build a representation of the surroundings. The
world is represented with a 2D grid map, where each cell
can be labeled as:

• Unknown cells, representing areas that require further
inspection.

• Empty cells, reflecting areas that have been inside the
sonar FOV, but did not have sufficient sonar detections
to be marked as occupied.

• Occupied cells, reflecting those regions which had suf-
ficient detections.

• Viewed cells, reflecting occupied space that has been
inside the camera FOV.

• Range candidates, being unknown cells next to empty
and occupied cells.

• Camera candidates, being occupied cells next to empty
and viewed cells.

Initially, all cells are unknown. Figure 2 depicts all pos-
sible labels in a simulated case, where also the sonar and
camera FOV can be observed.

B. View Planning and Path generation (Plan)

Two tasks are performed during the VP process:
• Generate sonar and camera viewpoints: sonar and cam-

era target cells, identified during the map generation
process, reflect key locations in the map that must be in-
spected in order to continue exploration. For this reason,
viewpoints are located at a user-defined distance from
the target cells along the surface’s normal direction.

• Select the best viewpoint: the distance between each
viewpoint and the current robot configuration is com-
puted as described in our previous work [1]. The com-
puted distance reflects not only how far the viewpoint is
with respect to the robot position, but also the required
orientation changes.

Figure 3 depicts an example of the viewpoints generated
for a given configuration of cells. For visualization purposes,



Empty cells

Occupied cells

Viewed cells

Range candidates

Camera candidates

Camera FOV

Range viewpoint

Camera viewpoint

Planning path

Previous path

Sonar FOV

Sonar beam

Fig. 2. Example showing the robot performing an inspection of a structure.
All possible cell labels are present in a single image. FOVs of both sensors
are also shown.

the best sonar and camera viewpoints are displayed, but only
the closest one is used to guide the robot. No preference is
given to a particular type of viewpoint.

δβ

Target cells

Camera viewpoint

Range viewpoint

Fig. 3. Example of selected sonar and camera viewpoints. Their corre-
sponding target cells are also highlighted. Viewpoints are placed at a user
configurable distance (β and δ) along the perpendicular direction of the
estimated surface.

Once the NBV has been selected, a start-to-goal planner
is used to generate a path that allows the robot to safely
navigate from its current position to the selected viewpoint.
We use the asymptotic optimal rapidly-exploring random tree
(RRT*) [19] path planner (from the open motion planning
library (OMPL) [20]). Different components of the path
planner have been reimplemented to adapt its behavior to our
needs. The configuration sampler has been modified to reuse
the last obtained solution, thus ensuring that new solutions
are at least as good as the previous one. This characteristic
was proposed by Hernández et al. [21] and was also used in
our previous work. Figure 4 reflects this behavior. Finally,
paths are evaluated according to the integral of a cost
function that reflects the amount of occupied cells around a

specific configuration. This allows to combine our two main
path planning objectives: minimize path length while keeping
a safe distance to the obstacles.

(a) (b)

(c) (d)

Fig. 4. The path generated using the online RRT* path planner converges
fast to a solution that minimizes the path length while keeping a safe distance
to the obstacles: (a) initial solution, (b) the solution improves but it is still
inefficient, (c) the solution converges to the optimal solution, and (d) the
solution has converged.

C. Trajectory Tracking (Act)

Finally, a line of sight (LOS) controller [22] is used to
follow the generated path. The controller sends velocity com-
mands to the vehicle in order to keep the robot trajectory as
close as possible to the generated path. In our approach, we
consider that external perturbations, such as water currents,
are handled at the control stage, which is out of the scope
of our research.

IV. MAP OPTIMIZATION CONTRIBUTIONS
A. Map Representation

In our previous work [1] the map was stored as a 2D
array of integers, where each label was associated to a
particular integer value. In this representation, cell types
could be accessed and modified in constant time. However,
this approach requires a lot of memory for large maps, and
other operations such as range queries, k-nearest neighbors
queries, or iteration over a specific label require traversing
all the cells in the map.

In order to support those operations, which are really use-
ful to efficiently generate viewpoints, we evaluated different
possibilities:

• Store each cell type in a set, providing O(log(n)) access
time, or even in a hash table, providing arguably O(1)
access time. With this approach, memory requirements
are reduced because there is no need to store unknown
cells. However, range and nearest neighbor queries are
not supported.

• Use a library such as Octomap [23]. This approach has
the benefit of using a well established and tested library.
However, it is designed to store a probability for each
cell, supporting only three states (Unknown, Empty and



Occupied). Furthermore, although it would be possible
to instantiate an Octomap for each label, range and
nearest neighbor queries are not natively supported.

• Design our own map representation, based on the
quadtree (a quadtree is a tree data structure in which
each node has exactly four children [24]. See Figure 5)
and octree data structures, as in the Octomap library,
but supporting all the operations that are required to
optimize the viewpoint generation. This is the option
that we chose.

As a result, in this work we propose the use of multiple
quadtrees, each containing only the cells of a particular label.
By storing each label in a different quadtree, all cells that
have a particular label can be obtained by simply traversing
the corresponding tree. This also allows to perform range
and k-nearest queries for a specific cell label.

Bearing all this in mind, our approach uses separate
quadtrees for the following labels:

• Empty cells.
• Occupied cells.
• Sonar candidates.
• Camera candidates.
• Occupied cells that have not been viewed. When no

camera target cells are present, these are the cells that
generate camera viewpoints.

By isolating the sonar and camera candidates in the map
generation stage we avoid having to recompute all target
cells during the view planning stage. This is a key aspect for
improving the performance of our VP algorithm.

Furthermore, the start-go-goal planner can use range or k-
nearest queries to efficiently determine the cost of a particular
state without having to explore the complete neighborhood
of that state.

B. Map Generation

To acquire occupancy data from the environment we use
a scanning profiling sonar. This type of sensors are able to
provide 2D exteroceptive data by measuring the intensity
of the acoustic return over time after an initial pulse is
emitted. Usually the sensor reports a range, which internally
is obtained by isolating and thresholding the strongest peak
of the acoustic return. However, sometimes the acoustic
return is too weak, and the sensor reports empty space even
though an obstacle is within the maximum range of the
sensor.

The common approach to incorporate range measurements
into a grid map is to consider all cells prior to the detection
as empty space and the cell corresponding to the detection
as occupied. This approach usually works great, but when
false negative measurements are present, it can lead to empty
cells appearing behind occupied cells, creating inconsistent
maps (Figure 6). This is a problem for our algorithm because
viewpoints could then be generated in unreachable locations.

To solve this problem, in [1] we used a region growing
approach to compute all the reachable cells from the robot
position. This was performed at each planning iteration, so

1 2
3 4

(a) (b)

(c) (d)

Fig. 5. Quadtree data structure example: (a) the structure being mapped,
(b) a rasterized version of the structure, in which the space is represented
using cells of the same size, (c) quadtree representation of the structure, in
which the space is recursively subdivided, and (d) the corresponding tree.

Profiling sonar

Empty cell//behind an obstacle

(a)

(b)

(c)

Fig. 6. Using the traditional approach, the map consistency is affected by
false negative measurements: (a) initially the map contains unknown cells,
(b) then a false negative measurement is incorporated, resulting in empty
cells along all the beam until the maximum range of the sonar, and (c)
finally a correct measurement is incorporated, generating an occupied cell
but without deleting the empty cells behind it.

that all unreachable empty cells were reset to the unknown
label. This approach had two drawbacks: it was highly
inefficient and cells were only eliminated when completely
isolated.

As an alternative, we evaluated the possibility of storing
cell connectivity as a graph, and then use a fully dynamic
connectivity algorithm. However, they are difficult to imple-
ment, and in fact we do not want to keep track of isolated
empty cells: we just want to delete them as soon as we detect
them.

In this paper we present a novel algorithm that is able to
keep the coherency in the map and it is easy to implement,
while being light on the computations.

The algorithm operates using the hit and miss approach
[25], which uses the total amount of empty and occupied



detections of a cell to determine its state. After determining
the proportion between them (Equation 1), a user defined
threshold is used to classify the cell as empty or occupied
(Equation 2 and lines 12 and 20 of Algorithm 1). From our
experience, the hit and miss approach takes care of false
positives just fine if a proper threshold is set, since it balances
how many empty detections are required to compensate for
an occupied detection.

τ =
#occupied detections

#occupied detections+#empty detections
(1)

label(τ) =
{
occupied if τ > threshold
empty otherwise (2)

Our contribution, however, lies in the fact that empty
detections are only taken into account under certain con-
ditions. Empty detection counters are initialized for each
possible direction (north, south, east and west), and they store
information about the direction from which the detection
has been obtained. Furthermore, an incremental stamp is
also stored for each cell, thus reflecting the order in which
the state of each cell has changed. With this information at
our disposal, the empty detections for a particular cell are
computed according to Algorithm 2. Essentially, for each
direction, the following conditions must be met in order to
count their empty detections:

1) The neighbor in the direction that is being currently
checked must be an empty cell. This condition has
been imposed because it is impossible for a sonar beam
to detect empty space behind occupied space.

2) The neighbor in the direction that is being currently
checked must have changed its state before the evalu-
ated cell. This means that the neighbor’s stamp must
be smaller. In other words, if the state of a cell c2 is
determined using the detections coming from another
nearby empty cell c1, the cell c1 can not use empty
detections coming from the cell c2 when reevaluating
its state in the future.

By setting the previous conditions, empty cells can only
appear next to other empty cells, thus avoiding the formation
of isolated empty regions in the map. The cell corresponding
to the sonar position is always assigned the label Empty
regardless of its counters (because it is impossible for the
sensor to be placed on top of an obstacle), and this is what
allows empty cells to appear in the map at the beginning of
the map generation process.

During the map generation, the quadtree data structures
are updated when the functions setEmpty(), setOccupied() or
setUnknown() are called (lines 14, 22 and 25 of Algorithm 1).
Inside these functions it is also determined if the evaluated
cell is a range or camera candidate. In parallel, the state
of all cells within the camera FOV is also updated in the
corresponding quadtree.

This algorithm adds a constant computational cost per cell
to check the map coherency. Then, the algorithm operates in
linear time with respect to the amount of cells that have to
be deleted.

Algorithm 1: updateMap
Input:
Beam origin, beam direction, range and maximum
range.
Output:
Updated map.

1 begin
2 setEmpty(beam origin cell)
3 assignZeroStamp(beam origin cell)
4 foreach cell ∈ beam do
5 updateCounter(cell)
6 cells to check.append(cell)
7 foreach cell ∈ cells to check do
8 computeDetections(cell)
9 if dealing with empty detection then

10 if total detections == 0 continue
11 computeOccupancy(cell)
12 if occupancy ≥ th continue
13 if isEmpty(cell) continue
14 setEmpty(cell)
15 assignNewStamp(cell)
16 cells to check.append(

nonempty neighbors)

17 else
18 if total detections > 0 then
19 computeOccupancy(cell)
20 if occupancy < th continue
21 if isOccupied(cell) continue
22 setOccupied(cell)

23 else
24 if isUnknown(cell) continue
25 setUnknown(cell)

26 assignMaxStamp(cell)
27 cells to check.append(

empty neighbors)

Algorithm 2: computeDetections
Input:
Cell position.
Output:
empty detections and total detections.

1 begin
2 empty detections = 0
3 foreach direction do
4 if isEmpty(neighbor at direction) and

neighbor at direction.stamp ≤ cell.stamp
then

5 empty detections +=
cell.empty detections from direction

6 total detections =
empty detections+ cell.occupied detections



Finally, to compare our algorithm to the well-known
method used in the Octomap library, Table I is presented.

TABLE I
QUALITATIVE COMPARISON BETWEEN OUR PRESENTED APPROACH AND

THE OCTOMAP APPROACH

Benefits Drawbacks

Presented
approach

The state of a cell
not only depends on
its measurements, but
also on the state of
its neighbors, providing
coherency

Based on some heuris-
tics and less on probabil-
ities. More memory con-
sumption and computa-
tions. Requires a threshold
to be specified

Octomap
Less memory consump-
tion, less computations
and probability based

Uniform prior probabil-
ity must be specified, and
thresholds are also re-
quired. Each cell is con-
sidered as an indepen-
dent measurement, uncor-
related to its neighbors

V. RESULTS

To validate our approach, experiments have been con-
ducted in simulated and real environments using the Sparus
II AUV (see Figure 1). This AUV is a compact torpedo-
shaped robot with a reconfigurable payload area, in which the
scanning profiling sonar and the cameras have been installed
for the experiments presented in this work. It has partial
hovering capabilities, meaning that surge, heave and yaw
degrees of freedom (DOFs) are actuated, while sway, roll
and pitch remain underactuated.

Most of the tests were carried out in a scenario located
outside the harbor of St. Feliu de Guı́xols (Figure 7),
Girona, which consists of a series of breakwater concrete
blocks. These blocks are designed to dissipate the force of
the incoming waves, providing a challenging scenario for
underwater robotics. The model of the complete harbor has
also been used to simulate longer missions in different survey
areas (Figure 10).

A. Simulated environments

The first experiment consisted in adding noise (false
negatives) to the sonar data and compare the consistency
of the generated map. Without the proposed algorithm (our
previous approach) many cells are labeled as empty behind
cells labeled as occupied, and this becomes a problem
when viewpoints are generated in those areas. With the
proposed algorithm those empty cells are eliminated and
remain as unknown cells during the exploration. Figure 8
shows simulated results comparing both behaviors. An extra
10% of empty scans were added to simulate sonar noise.

The second experiment is related to the performance of the
algorithm. The computational time of our previous approach
and the proposed approach have been measured for different
map sizes, and results are shown in Figure 9. Simulated
missions were carried out in different parts of the harbor, as
shown in Figure 10, producing 4 different maps of increasing
size.

Fig. 7. Aerial view of the St. Feliu de Guı́xols harbor. Breakwater concrete
blocks appear at the bottom of the image.

(a)

(b)

(c)

(d)

Fig. 8. Experiment showing the consistency of the generated map when
noise is added. On the left, our previous approach, and on the right, the
proposed approach: (a) some empty cells appear on top of the obstacle, (b)
they disappear when they get unconnected from the rest of empty cells, (c)
more empty cells appear, and (d) final reconstruction of the block.

Experimental results suggest that the computational time
of our previous approach can be approximated to be pro-
portional to the amount of cells in the map, which makes
sense because many parts of the algorithm required complete
traversal of all the cells in the map.

On the other hand, experimental results show that the
proposed algorithm is able to compute the viewpoints almost
in constant time. This is explained by the fact that the
amount of operations performed in the view planning stage
is proportional the the amount of occupied cells that have
not been seen, which usually remain low during a mission.

This experiment is also important because it demonstrates
that the vehicle successfully follows both concave and con-
vex obstacles without colliding with the walls of the harbor.



0.1 0.4 1.6 5.4

1

10

100

1000

Cells in the map (·105)

C
om

pu
ta

tio
na

l
tim

e
(m

s)

Map generation, old approach

Map generation, new approach

View planning, old approach

View planning, new approach

Fig. 9. Execution time comparison. The computational cost of the old
approach is proportional to the amount of cells in the map, while in the
proposed approach it is only proportional to the amount of cells that are
occupied but not seen, which usually remains low.

450x300 m

200x200 m 100x100 m

50x50 m

Fig. 10. To measure performance, different survey areas have been used.
The map shown in the figure corresponds to the longest exploration (2.4
km), where the robot started outside of the harbor and entered to explore
all the wharves. The cell size was set to 0.5x0.5 meters for all cases.

B. Real man-made environment

Real experiments were also conducted to validate our
proposed algorithm. Figure 11 shows a mission where Sparus
II AUV successfully mapped two breakwater blocks. The
mission was performed at a depth of 1.75 meters and the
robot navigated a total of 98 meters.

C. Real natural environment

Figure 13 shows a mission where Sparus II AUV suc-
cessfully mapped a rock surrounded by water, located near
the St. Feliu de Guı́xols harbor (Figure 12). This natural
environment is challenging due to its irregular shape and
also because it is located next to the coast cliffs, providing
narrow passages of difficult access.

This experiment was performed at a depth of 2.5 meters
and the total robot displacement was 172 meters. It was
performed in approximately 17 minutes.

During the execution of this mission, three unsynchronized
GoPro Hero 4 Black edition cameras were recording images
from the side of the vehicle. The cameras were attached at
the front of the vehicle and oriented right, right-forward, and

Fig. 11. Real experiment showing the inspection of two breakwater
concrete blocks. The size of the blocks is approximately 12x12 meters.
The inspection began in front of the block that appears on the right of the
image.

30 m

Fig. 12. Aerial top view of Punta del Molar. The explored rock has been
highlighted inside the orange rectangle. The coast cliffs can be seen on the
top and left sides of the image.

Fig. 13. Real experiment showing the inspection of a natural rock
surrounded by water next to the harbor of St. Feliu de Guı́xols. The rock is
60 meters long (please see Figure 12 for further reference). The inspection
began approximately in the same place where the robot ended, and the robot
explored the rock clockwise because the cameras were mounted on the right.
Empty space cells are not represented.



right-backward to ensure that maximum 3D information was
captured while maintaining spatial overlap.

With the acquired images, a reconstruction was made
(Figure 14) using an optical 3D reconstruction procedure,
as described in [26] (the reconstruction procedure is out of
the scope of this work).

Fig. 14. Optical 3D reconstruction of the explored environment (top view
with a few enlarged details).

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have refined our view planning (VP)
exploration algorithm and we have addressed two important
problems: First, we have improved the map representation
so that viewpoints can be generated more efficiently. This
is particularly important in the underwater domain, as com-
putational resources are scarce; Second, we have improved
the robustness of the algorithm against sonar noise. Both
improvements have allowed new and challenging experi-
ments to be performed, not only in simulation but also in
real man-made and natural scenarios, which present complex
irregular shapes. Finally, we strongly believe our work can
be interesting to many other people working in robotic
exploration and view planning.

Further work will include going from a 2-dimensional
(2D) map to a 3-dimensional (3D) map of the environ-
ment. The data acquisition sensor will probably have to be
upgraded, but authors believe that the main ideas of the
algorithm will remain valid. It also remains to be studied how
to improve the algorithm performance when higher amounts
of navigation drift are present.

REFERENCES

[1] E. Vidal, J. D. Hernández, K. Istenic, and M. Carreras, “Online View
Planning for Inspecting Unexplored Underwater Structures,” IEEE
Robotics and Automation Letters (RA-L), vol. 99, 2017.

[2] W. Scott, G. Roth, and J. F. Rivest, “View Planning for Automated 3D
Object Reconstruction Inspection,” ACM Computing Surveys, vol. 35,
no. 1, pp. 64–96, 2003.

[3] B. Yamauchi, “A frontier-based approach for autonomous explo-
ration,” in Proceedings - IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation (CIRA), pp. 146–151,
IEEE Comput. Soc. Press, 1997.

[4] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1258–1276, 2013.

[5] A. Kim and R. M. Eustice, “Next-best-view visual {SLAM} for
bounded-error area coverage,” IROS Workshop on Active Semantic
Perception, no. Mi, 2012.

[6] F. S. Hover, R. M. Eustice, A. Kim, B. J. Englot, H. Johannsson,
M. Kaess, and J. J. Leonard, “Advanced Perception, Navigation
and Planning for Autonomous In-Water Ship Hull Inspection,” The
International Journal of Robotics Research, vol. 31, no. 12, pp. 1445–
1464, 2012.

[7] A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel,
and R. Siegwart, “Structural Inspection Path Planning via Iterative
Viewpoint Resampling with Application to Aerial Robotics,” IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 6423–
6430, 2015a.

[8] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding Horizon ”Next Best View” Planner for 3D Exploration,”
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1462–1468, 2016.

[9] C. Papachristos, S. Khattak, and K. Alexis, “Uncertaintyaware Reced-
ing Horizon Exploration and Mapping using Aerial Robots,” IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 4568–
4575, 2017.

[10] D. P. Williams, F. Baralli, M. Micheli, and S. Vasoli, “Adaptive under-
water sonar surveys in the presence of strong currents,” Proceedings -
IEEE International Conference on Robotics and Automation (ICRA),
vol. 2016-June, pp. 2604–2611, 2016.

[11] E. Galceran, R. Campos, N. Palomeras, M. Carreras, and P. Ridao,
“Coverage path planning with realtime replanning for inspection of 3D
underwater structures,” Proceedings - IEEE International Conference
on Robotics and Automation (ICRA), pp. 6586–6591, 2014.

[12] P. S. Blaer and P. K. Allen, “Data acquisition and view planning for
3-D modeling tasks,” IEEE International Conference on Intelligent
Robots and Systems (IROS), pp. 417–422, 2007a.

[13] C. Connolly, “The Determination of next best views,” IEEE Inter-
national Conference on Robotics and Automation (ICRA), vol. 2,
pp. 432–435, 1985.

[14] H. González-Baños and E. Mao, “Planning robot motion strategies for
efficient model construction,” Robotics Research, vol. 19, pp. 345–352,
2000.

[15] J. I. Vasquez-Gomez, E. Lopez-Damian, and L. E. Sucar, “View
planning for 3D object reconstruction,” IEEE International Conference
on Intelligent Robots and Systems (IROS), pp. 4015–4020, 2009.

[16] J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid, “View/state
planning for three-dimensional object reconstruction under uncer-
tainty,” Autonomous Robots, vol. 41, no. 1, pp. 89–109, 2017.

[17] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza, “An informa-
tion gain formulation for active volumetric 3D reconstruction,” Pro-
ceedings - IEEE International Conference on Robotics and Automation
(ICRA), vol. 2016-June, pp. 3477–3484, 2016.

[18] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Co-
ordinated multi-robot exploration,” IEEE Transactions on Robotics,
vol. 21, no. 3, pp. 376–386, 2005.

[19] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[20] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, pp. 72–82,
dec 2012.

[21] J. D. Hernández, M. Moll, E. Vidal, M. Carreras, and L. E. Kavraki,
“Planning Feasible and Safe Paths Online for Autonomous Underwater
Vehicles in Unknown Environments,” in IEEE International Confer-
ence on Intelligent Robots and Systems (IROS), 2016.

[22] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley & Sons, Ltd, 2011.

[23] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, pp. 189–206, 2013.

[24] R. Sedgewick, Algorithms, 2nd ed. Addison-Wesley, 1988.
[25] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,

2005.
[26] J. D. Hernández, K. Istenič, N. Gracias, N. Palomeras, R. Campos,

E. Vidal, R. Garcı́a, and M. Carreras, “Autonomous Underwater
Navigation and Optical Mapping in Unknown Natural Environments,”
Sensors, vol. 16, no. 8, p. 1174, 2016.


