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Abstract
Thermal energy storage (TES) is widely used in district heating and cooling systems
(DHCS) to act as a buffer between the supply and demand schedules. The adequate
control of charging and discharging modes of TES may improve the overall performance
of a DHCS and, to this end, an effective regulation of its state‐of‐charge (SoC) is
required. However, the calculation of SoC depends on the availability and accuracy of
temperature measurements. A model‐based observer for the calculation of the SoC of
water‐based TES tanks is presented. A dynamic model of a one‐dimensional stratified
water tank is adopted to develop the observer. Its effectiveness is assessed through
‘model‐in‐the‐loop’ cosimulations, with the observer and the feedback control system
being implemented in MATLAB/Simulink and a high‐fidelity water tank component
available in Apros being used as the plant model. Simulation results considering three
different system configurations demonstrate that the model‐based observer accurately
estimates the temperature distribution within the tank, leading to an effective SoC
computation and control—even in the case of sensor failure or upon limited sensor
availability.

1 | INTRODUCTION

The mismatch between the low‐cost generation and the peak
demand of thermal energy and the large distances between the
supply points and the thermal loads are two important chal-
lenges faced bydistrict heating and cooling systems (DHCS). To
address these issues, thermal energy storage (TES) is used to act
as a buffer between supply and demand schedules. TES pro-
vides flexibility and improves the performance of a DHCS as it
may act as a sink when excessive thermal energy is available
during minimum loading, and then operate as a source when
additional energy is required during peak loading—whilst
meeting the thermal demand of the consumers [1].

Different energy storage media may be adopted for TES
systems, but they are mainly classified as latent heat or sensible
heat materials. Latent heat‐based TES systems consist of a
container enclosing a phase change material (PCM) acting as a
storage medium and a heat exchanger surface for transferring
heat to and from the PCM. A PCM is a substance that releases
or absorbs heat, known as latent heat, when phase change

occurs. Change in phase takes place at a constant temperature
[2] and such a transition can range from solid to liquid, liquid
to gas or vice versa. Transition from a solid state to another
solid form is also possible—e.g. by the change from a crys-
talline form into another one [3].

Sensible heat‐based TES systems consist of a container
inside which the storage medium is placed, but no phase
change is present. The amount of thermal energy stored during
the system's charging process is dependent on the density,
specific heat capacity, volume and the type of the storage
material [4]. Water is typically used as the storage medium as it
can easily transport thermal energy throughout the DHCS. The
use of water/ice as a PCM for latent heat‐based TES systems is
also common [5].

Three‐dimensional (3‐D) dynamic models using compu-
tational fluid dynamics are used to accurately describe the
spatial thermal behaviour within a TES tank [6]. A common
modelling approach is thermal stratification, where horizontal
layers are defined throughout the height of the tank to repre-
sent temperature differences in the storage medium [7–9].
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Stratified 3‐D models are capable of precisely matching results
obtained experimentally, at the expense of increased modelling
complexity and computational times [10]. However, one‐
dimensional (1‐D) models may significantly reduce the
computational effort [11,12]. In a 1‐D stratified model, a
storage tank is also represented by horizontal layers, where the
storage medium may exhibit a different density at each layer
due to temperature variations. Each layer is modelled by a
differential equation based on the law of conservation of en-
ergy [13].

Despite their simplicity, stratified 1‐D models have the
capability to accurately represent the dynamic behaviour of
TES. For instance, the charging process of a stratified TES
tank, alongside analytical solutions, is presented in [6]. A
stratified vertical cylindrical model of a cold store, considering
heat conduction, is analysed in [1,14]. In [15], a smooth
continuous function is used to dynamically model the buoy-
ancy associated with charging and discharging processes, with
real data being employed to validate a tank model. A horizontal
cylindrical model is experimentally validated in [16], with
thermal conductivity and heat loss being considered. Adaptive
grid models are developed and validated experimentally in
[17,18], where finely spaced grids are used in the vicinity of the
temperature gradient instead of using fixed equally spaced
grids. A diffusivity factor to quantify the turbulent mixing of
the flow is presented in [19]. With the aid of experimental data,
[20] demonstrates that reduced models of water‐based TES
tanks for heating applications, including 1‐D representations,
exhibit sufficient accuracy.

Control systems are fundamental to maximise the perfor-
mance and efficiency of charging and discharging processes of
TES, with suitable mathematical models needed for an effec-
tive control system design. In a water‐based tank, the control
system is normally designed to regulate the mass flow rate of
the water entering the tank to achieve desired temperature
references [13,21]. Accurate temperature measurement is thus
essential to guarantee the system's performance. Given that the
location of temperature sensors is usually alongside the tank's
height, the stratification modelling approach is ideal to un-
derstand the data captured by each sensor. However, knowl-
edge of the state‐of‐charge (SoC), rather than temperature
information only is necessary for the effective energy man-
agement of TES. Effective SoC monitoring would enable op-
erators to understand the short‐term capability of the TES
tank and establish how much longer it would be useful before
recharging is required.

For SoC estimation in water‐based TES tanks, existing
references make use of the enthalpy (or specific heat) and the
mass of the water in each layer to calculate the total energy in
the tank, but this requires temperature information at any
moment. Although the SoC computation would be more ac-
curate as the number of layers increases [22], a limited number
of temperature sensors is deployed in real systems. In turn, any
sensor failure would prevent a useful SoC calculation, leading
to inefficient performance.

To bridge the aforementioned gaps, this study presents a
model‐based observer for the accurate calculation of the SoC

of sensible heat‐based TES tanks. To this end, a 1‐D stratified
dynamic model of a water‐based TES tank is adopted. The
observer is designed to accurately estimate the temperature at
different horizontal layers, leading to an effective SoC
computation—even in the case of sensor failure or for limited
sensor availability. The observer model has been implemented
in MATLAB/Simulink and a ‘model‐in‐the‐loop’ (MiL) simu-
lation method has been adopted to perform cosimulations with
Apros—a commercial software where high‐fidelity mathe-
matical models of real DHCS's components are available.
Simulation results considering different system configurations
are shown to demonstrate the effectiveness of SoC calculation.

2 | STRATIFIED 1‐D MODEL OF A
WATER ‐BASED TES TANK

The operating temperatures in a heating network fluctuate
between 55°C and 95°C [23]. This implies that if water is
selected as the storage medium, its phase does not change and
a sensible heat‐based TES tank can be adopted. A stratified 1‐
D model of the water tank is used, with Figure 1 showing an
example for a tank stratification into five layers and its oper-
ation within a DHCS [13,21]. The heat produced by the
combined heat and power (CHP) unit is managed by a pump
system to coordinate the filling of the tank and the amount of
heat supplied to a thermal load. For a charging process, the
system collects hot water through the top of the tank and, for
discharging, cold water through the bottom. It is assumed that
the tank is fully charged when the temperature in all layers is
90°C and, conversely, fully discharged when the temperature in
all layers is 60°C.

The modelling approach used is based on the law of
conservation of energy and has been borrowed from [18]. The
mathematical representation of the tank is constituted by
nonlinear dynamic equations, where the thermal conductivity
of water is neglected as its effect on the general system per-
formance is insignificant [13]. The change in the total internal
energy stored _Ust[ J/s] in a tank of height H [m] and a cross‐
sectional area Ac [m

2] is:

F I GURE 1 Schematic of a five‐layer water‐based TES tank for
operation in a DHCS [13]
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_Ust ¼ ρcpAcH _Tt ¼ _Qh þ
_Qc ð1Þ

where Tt [°C] is the internal temperature of the tank, and ρ
[kg/m3] and cp [J/kg°C] the density and specific heat of water
at Tt, respectively. The energy balance in the tank considers the
change in the internal energy due to the energy injected by the
streams of hot water _Qh[ J/s] and cold water _Qc[ J/s].
Rewriting Equation (1) as a function of Tt and of the tem-
peratures of the hot stream Th [°C] and the cold stream Tc [°C]
yields:

_Ust ¼ ρcpAcH _Tt ¼ _mhcpðTh − TtÞ þ _mccpðTc − TtÞ ð2Þ

where _mh[kg/s] is the mass flow rate of the hot stream at a
constant Th, whereas _mc[kg/s] is the mass flow rate of the cold
stream at a constant Tc. For a TES tank with n layers, Equation
(2) is extended to:

ρ1cp1AcΔh _T 1 ¼ _mhcp1ðTh − T 1Þ þ _mccp1ðT 2 − T 1Þ ð3Þ

ρicpiAcΔh _Ti ¼ _mhcpiðTi−1 − TiÞ þ _mccpiðTiþ1 − TiÞ ð4Þ

ρncpnAcΔh _Tn ¼ _mhcpnðTn−1 − TnÞ þ _mccpnðTc − TnÞ

ð5Þ

where Ti [°C] is the temperature measured at layer i, with i = 1,
2, …, n. For a uniform distribution, each layer has a height
given by H/n = Δh.

Charging and discharging processes cannot be performed
simultaneously (i.e. when _mh ≠ 0, _mc ¼ 0; and when _mc ≠ 0,
_mh ¼ 0); therefore, mass flow rate is considered as a single
input variable. For simplicity, _m is defined as the mass flow rate
through the tank, where _m > 0 for the charging process
( _mh ≠ 0) and _m < 0 for discharging ( _mc ≠ 0). This way,
Equations (3)–(5) become:

ρ1cp1AcΔh _T 1 ¼
_mcp1ðTh − T 1Þ ∀ _m > 0
_mcp1ðT 1 − T 2Þ ∀ _m < 0

�

ð6Þ

ρicpiAcΔh _Ti ¼
_mcpiðTi−1 − TiÞ ∀ _m > 0
_mcpiðTi − Tiþ1Þ ∀ _m < 0

�

ð7Þ

ρncpnAcΔh _Tn ¼
_mcpnðTn−1 − TnÞ ∀ _m > 0
_mcpnðTn − TcÞ ∀ _m < 0

�

ð8Þ

Simulations are conducted to provide confidence in the
TES tank model described by Equations (6)–(8). The model is
implemented in MATLAB/Simulink, with simulation results
compared with those obtained using an existing water tank
component available in Apros. For a simple yet representative
comparison between the two software engines, the MATLAB
model has been stratified into five layers (n = 5) and, for
consistency, the number of calculation nodes selected in the
Apros tank element has been set as 5 as well. This way, a

calculation node in the Apros tank represents a stratified layer
in the model. For simplicity, the tank's performance is assessed
under a step variation of mass flow rate input without any
controllers being implemented. Figure 2 shows a screenshot of
the water tank simulated in Apros. As it can be seen, a tem-
perature sensor for each calculation node is available (see the
temperature measurements at the left‐hand side of Figure 2).
Table 1 shows the dimensions of the tank and the initial
conditions.

Simulation results are shown in Figure 3. As it can be
observed, there is a good agreement between the results ob-
tained in MATLAB and Apros.

Note: It should be highlighted that the comparison pre-
sented in this section has been included to provide confidence
in the effectiveness of the modelling approach. This has been
achieved by demonstrating that the mathematical model
described by Equations (6)–(8) offers similar results as those
from a commercial software package. Although a large number
of stratified layers as in [17,18] would describe more faithfully
the internal thermal behaviour of the tank, such as an increased
accuracy in the temperature variations along the tank's height
would imply increasing the number of equations describing the
models and, in turn, increasing the computation time (for both
Apros and MATLAB). In addition, the design of the model‐
based observer later presented in Section 3 for temperature
estimation and, subsequently, SoC calculation, would signifi-
cantly increase in complexity as the number of layers, and thus

F I GURE 2 Screenshot of the water tank component available in
Apros (five sensors are included)
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system states, increase. A five‐layer water tank representation
as shown in Figure 1 is sufficient to capture the required
temperature information to estimate the amount of energy
stored in the tank, with this number being consistent with the
discrete number of temperature sensors deployed in practical
TES systems [24,25].

3 | MODEL‐BASED OBSERVER DESIGN

3.1 | Limitations of the linear TES model for
linear observer design

Linear time‐invariant plant models are normally necessary to
design effective linear control structures. However, the highly
nonlinear dynamics of the TES system restricts the adoption of
linear models for accurate temperature estimation. To examine
this, let:

_x¼ Ax þ Bu ð9Þ

y¼ Cx ð10Þ

be the state‐space representation of the five‐layer stratified TES
tank shown in Figure 1. Both the system state variables and
system outputs are the temperatures at each layer i (yi = Ti = xi,
i = 1, 2, …, 5) and mass flow rate _m is the input of the system.
Thus, the state vector is defined as x¼ ½x1; x2;…; x5�T , the
output vector as y¼ ½y1; y2;…; y5�

T , the scalar input as u¼ _m
and the control matrix as B¼ ½ΔTl1=γ1;Tl2=γ2;…;Tl5=γ5�

T .
The output matrixC = I5�5 is a 5� 5 identity matrix and system
matrix A is given as:

A ¼

am1 cm1 0 0 0
bm2 am2 cm2 0 0
0 bm3 am3 cm3 0
0 0 bm4 am4 cm4
0 0 0 bm5 am5

2

6
6
6
6
4

3

7
7
7
7
5

ð11Þ

Elements ami, bmi, cmi and ΔTli of A and B depend on the
operating mode of the tank. This is summarised as follows,
where subindex ‘0’ stands for initial conditions:

• Charging mode: ami ¼ − _m0=γi, bmi ¼ _m0=γi, cmi = 0,
γi = AcΔhρi,0, ΔTl1 = Th − T1,0, ΔTli = Ti−1,0 − Ti,0

• Discharging mode: ami ¼ − _m0=γi, bmi = 0, cmi ¼ _m0=γi,
γi = AcΔhρi,0, ΔTl5 = T5,0 − Tc, ΔTli = Ti,0 − Ti+1,0

Initial conditions should be obtained from specific equilib-
rium points, but the solution of Equations (6)–(8) is non‐trivial.
For instance, given that _m¼ 0 for equilibrium (i.e. for _x¼ 0),
Ti,0 may be arbitrarily chosen from an infinite number of solu-
tions. System linearisation at such an equilibrium point yields:

_x¼ 05�5xþ Bu ð12Þ

where 05�5 is 5 � 5 matrix with zero entries. The output
equation of the state‐space representation remains as in
Equation (10).

From Equations (10) and (12), it can be observed that the
linearised model is valid only for a very small range of oper-
ation as the initial temperature differences ΔTli inside the tank
may vary significantly. Furthermore, for fully charged or fully
discharged conditions (i.e. all initial layer temperatures are
either 90°C or 60°C, respectively), null dynamics for four of
the five layers would arise.

It can be emphasised that even when linear controllers
designed using linearised models may offer a good perfor-
mance [13,21], the high non‐linearity of the TES system makes
the design of a linear observer for adequate temperature esti-
mation (and ultimately SoC calculation) unfeasible.

3.2 | Limitations of the non‐linear TES
model for the observer design

The non‐linear state‐space representation of the TES system
has the form [26].

TABLE 1 Parameters of the five‐layer water tank

Variable Value Unit

Volume capacity (Vt) 100 m3

Horizontal area (Ah) 9.95 m2

Diametre (d) 3.56 m

Layer height (h) 2 m

Tank height (H) 10 m

Layer lateral area (Al) 22.37 m2

Initial temperatures (T1, T2, T3, T4, T5) 60 °C

F I GURE 3 Comparison of results obtained with MATLAB and Apros
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_x¼ Axþ Bðx; uÞu ð13Þ
y¼ Cx ð14Þ

where A and C are the linear system and output matrices
obtained from system linearisation at _m¼ 0 (as discussed in
Section 3.1) and B(x, u) is a matrix whose entries depend on
the temperature of the layers and on the operating mode of the
system (defined by x and u, respectively). For the five‐layer
stratified TES tank,

Bðx; uÞ ¼

ðTh − x1Þ=AcΔhρ1
ðx1 − x2Þ=AcΔhρ2

⋮
ðx4 − x5Þ=AcΔhρ5

2

6
6
4

3

7
7
5 ∀ u > 0

ðx1 − x2Þ=AcΔhρ1
⋮

ðx4 − x5Þ=AcΔhρ4
ðx5 − TcÞ=AcΔhρ5

2

6
6
4

3

7
7
5 ∀ u < 0

8
>>>>>>>>>><

>>>>>>>>>>:

ð15Þ

The pair (A, C) defines the observability of the system [27].
Given that A in Equation (12) is a null matrix and C in
Equation (14) is an identity matrix, the system is fully
observable only when all output variables are measured—
otherwise the observability matrix would not be full rank and,
thus, it would not be possible to estimate all the states.
Additionally, any given state variable xi can be observed only
through its respective output yi; that is, the observer would
offer redundant information as it would estimate variables
being directly measured (since yi = Ti = xi).

The aspects above pose important design limitations.
As there may be a limited number of sensors within a
TES tank, this may lead to not having access to the
necessary outputs of the system to adequately estimate state
vector x (i.e. layer temperatures) for an effective SoC
calculation.

3.3 | Non‐linear model‐based observer
design

Consider the discrete Luenberger observer structure [26]
shown in Figure 4. Mathematically, this is described by:

bx ½kþ 1� ¼ Abx ½k� þ B bx ½k�; u½k�ð Þu½k� þ L y½k� − by ½k�ð Þ

ð16Þ

by ½k� ¼ C bx ½k� ð17Þ

where k stands for the discrete instants of time for which the
system is solved, bx½k� and by½k� are the estimated state and
output vectors at k, respectively, and L is a matrix of appro-
priate dimensions with scalar gains as entries.

The estimation error ee½k� and the error dynamics ee½kþ 1�
are given by, respectively,

ee½k� ¼ x½k� − bx ½k� ð18Þ
ee½kþ 1� ¼ ðA − LCÞee½k� þ B ee½k�; u½k�ð Þu½k� ð19Þ

From Equation (19), the observer dynamics are asymp-
totically stable if A − LCð Þ is asymptotically stable [26] as the
non‐linear matrix B ex ½k�; u½k�ð Þ in Equation (16) is bounded
from Tc to Th (notice in Equation (15) that as the states tend to
these temperatures, matrix B x; uð Þ becomes null). Equa-
tions (16) and (17) can be rewritten as:

bx ½kþ 1� ¼ Aobx ½k� þ Bo bx ½k�; u½k�ð ÞU½k� ð20Þ

by ½k� ¼ Cobx ½k� ð21Þ

where

Ao ¼ A − LC ð22Þ

Bo bx ½k�; u½k�ð Þ ¼ B bx ½k�; u½k�ð Þ L½ � ð23Þ

Co ¼ C ð24Þ

and vector U[k] contains the inputs of the observer:

U½k� ¼ u½k�
y½k�

� �

ð25Þ

For the five‐layer water‐based TES tank, assuming it is
equipped with sensors for each layer, the input vector of the
observer becomes,

U½k� ¼ u½k� y1½k�⋯ y5½k�
� �T

ð26Þ

Matrix L in Equation (22) is a 5 � 5 matrix determining
the poles of the observer. Thus, if the eigenvalues of L are on
the left‐hand side of the s‐plane, then the observer is stable.
From the observability analysis of the system presented in
Section 3.2, since each state variable xi can be observed only
through its respective output yi, L has the form:

L¼ diag l1;…; l5ð Þ ð27Þ

F I GURE 4 Nonlinear Luenberger observer for the TES system
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where ‘diag’ implies that L is a square matrix with entries li in
the main diagonal and, since A = 05�5 and C = I5�5,

Ao ¼ −L ð28Þ

From Equation (28), if the coefficients of L are all positive,
the observer will be stable. Given that the dynamics of a thermal
system such as a TES tank are sufficiently slow (as shown by the
simulation results in Figure 3), all the observer eigenvalues can be
set at −0.1 rad/s for a convergence time of around 20 s.

For a five‐layer TES tank considering only two sensors at the
top and at the bottom layers, the input vector of the observer is:

U½k� ¼ u½k� y1½k� 0 0 0 y5½k�
� �T

ð29Þ

For such a configuration, it would only be possible to directly
observe the temperatures at the top and at the bottom of the
tank, that is x1[k] and x5[k]. However, the remaining states can be
estimated using the nonlinear model of the system and by setting
l2, l3 and l4 of L in Equation (27) to zero. In other words, the
states of the intermediate layers (i.e. bx2½k�, bx3½k�, bx4½k�) are
estimated based only on matrix B bx½k�; u½k�ð Þ. If B bx½k�; u½k�ð Þ is
updated for each time step with the estimated states, and given
the dependency of bx2½k�, bx3½k� and bx4½k� on bx1½k� and bx5½k�, the
full observed state vector bx½k�will eventually converge to x[k]—
as bx1½k� converges to x1[k] and bx5½k� to x5[k].

3.4 | Observer reconfiguration upon sensor
failure

Reliability due to sensor failure is a possible scenario in any
practical system. For the presented observer, sensor failure
would imply the possibility of sudden changes in its input
vector U[k]. Under a failure condition, leading to unavailability
of temperature measurements, the elements of matrix L would
need to be expressed as a function of the nonzero elements of
y[k]. In other words,

L y½k�ð Þ ¼ diag l1 y1½k�
� �

;…; l5 y5½k�
� �� �

ð30Þ

where

li yi½k�
� �

¼
0:1 ∀ yi½k� ∈ y½k�
0 ∀ yi½k� ∉ y½k�

�

ð31Þ

3.5 | Control of the TES tank based on its
SoC

As mentioned in Section 1, the total energy available in a
water‐based TES tank is typically calculated using the mean
value of temperature alongside the tank's height and the mass

of water [23]. The temperature in each layer i is used to
compute the energy available in the layer using Ui = mihi(Ti),
where mi is the mass of water in the layer and hi is the specific
enthalpy of water at temperature Ti. The total energy Ust [ J] in
the tank would be obtained by adding the energy of all layers.
Ust would be available at any moment if the temperature of the
layers is monitored continuously.

The SoC calculation adopted makes use of the available
temperature measurements. The SoC operation range is
defined using the minimum to maximum possible tempera-
tures of the stored water. For instance, if the minimum tem-
perature is 60°C, this corresponds to a specific enthalpy value
of 251.18 kJ/kg and the TES tank is fully discharged (i.e.
SoC = 0%). Conversely, the TES tank is fully charged
(SoC = 100%) at a maximum temperature of 90°C and a
specific enthalpy of 377.4 kJ/kg.

A feedback control scheme based on the SoC, as shown in
Figure 5, is implemented. This makes use of the nonlinear
observer presented in Section 3.3. The reference signal r% is a
value between 0% and 100% corresponding to the SoC pre-
viously defined. Look‐up tables are used to convert the
reference SoC (r%) to a given specific enthalpy reference rh and
subsequently to a given temperature reference rT suitable for
the TES model. The mean value of the temperatures estimated
by the observer is used as the feedback signal of the control
system.

From the state‐space representation of the TES system in
Equations (10) and (12), a transfer function between the average
temperature of the tank layers Tave ¼ T 1 þ T 2 þ⋯þ T 5ð Þ=5
and the mass flow rate _m is given as:

GðsÞ ¼
TaveðsÞ

_mðsÞ
¼ avg C sI − Að Þ

−1B
� �

ð32Þ

where operator ‘avg’ implies that G(s) is the average of the
transfer functions obtained from C sI − Að Þ

−1B and, more
explicitly,

GðsÞ ¼
1

AcΔh
Kave

s
ð33Þ

In Equation (33), the value of Kave depends on the mean value
of the observer output (i.e. temperatures of the layers); that is,

F I GURE 5 SoC feedback control scheme of a TES tank using a
nonlinear model‐based observer
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Kave ¼

ΔTl1
ρ1
þ

ΔTl2
ρ2
þ

ΔTl3
ρ3
þ

ΔTl4
ρ4
þ

ΔTl5
ρ5

5
ð34Þ

A proportional controller kp = 3.5 is chosen. Due to the
system's high nonlinearity, the value of the proportional gain
was determined empirically.

4 | MiL CONFIGURATION FOR
MATLAB AND APROS COSIMULATION

Different software packages have been developed to simulate
complex dynamics of real systems. These use powerful solver
engines and may include libraries with high‐fidelity mathe-
matical models for a variety of components. Availability of
specialised software tools and the adoption of a model‐based
design (MBD) approach have enabled the development of
control, signal processing and communications systems
without the need for expensive laboratory facilities including
practical system components.

Following an MBD approach, the effectiveness of the
model‐based observer presented in Section 3 is demonstrated
through the MiL configuration shown in Figure 6. The MiL
simulation is carried out as a cosimulation using two software
platforms, with the control scheme and the nonlinear observer
being implemented in MATLAB/Simulink and a high‐fidelity
water tank representation available in Apros being used as the
plant model. The link between the two software platforms
is achieved via an open platform communication (OPC)
protocol—widely adopted in automation and process control
[28] and available in both MATLAB and Apros.

The OPC protocol is used to define the interface between
clients and servers, allowing to access data in real‐time [28].
Data exchange between MATLAB and Apros is shown in
Figure 7. When Apros is launched, the OPC server is created
and the protocol is made available. The variables generated in
processes running in Apros can be then read and written by
MATLAB using the OPC toolbox. For the model‐based
observer implemented in MATLAB, temperature values of the
TES tank in Apros are read and mass flow rate is modified
according to the output of the controller—also implemented in
MATLAB.

5 | SIMULATIONS AND RESULTS

5.1 | Simulation conditions

The effectiveness and performance of the model‐based
observer presented in Section 3 were assessed through MiL
cosimulations (as described in Section 4) for charging and
discharging cycles of the TES system. To this end, the tank's
SoC is varied by introducing ramp changes in the reference
signal r%[k]. The slope of the ramp is set to 1% (i.e. 1% of the
total charging capacity every 100 s) to prevent sudden changes
in mass flow rate.

The number of sensors for the five‐layer stratified tank in
Figure 1 is six (a temperature sensor per layer and one sensor
for mass flow rate) assuming that the system is fully equipped.
Resistance temperature detector (RTD) sensors are typically
used in heat accumulators, with several types of sensors being
available for flow metering. Although practical temperature and
flow sensors provide accurate measurements with very low
levels of noise (of up to 30 μ°C and around 0.01 kg/s,
respectively) [29,30], a random signal error is introduced to test
the system's tolerance to large measurement errors. The
induced noise into temperature and mass flow rate signals
generates metering errors of ±0.5°C and ±0.5 kg/s,
respectively.

Three simulation scenarios have been considered. The
initial layer temperatures of the TES tank in Apros and the
initial operating point for the observer in MATLAB are
assumed different. This is shown in Table 2. Additionally,
while the observer considers initial hot and cold stream
temperatures of Th = 90°C and Tc = 60°C, for the tank
component these temperatures are selected as Th = 88°C and
Tc = 60°C. This has been done to assess the effect of un-
certainty in the charging and discharging of temperatures on
the estimation of the temperature distribution alongside the
water tank.

5.2 | Fully equipped TES tank

In this scenario, the TES tank features temperature sensors at
each layer. For such a case, the observer input vector U[k] is
described by Equation (26), where the input signal is u½k� ¼ _m
and the i‐th output signal is yi[k] = Ti[k]. A single charging and
discharging cycle of the tank is simulated. Simulation results are
provided in Figures 8–11.

F I GURE 6 MiL configuration for MATLAB and Apros cosimulation

F I GURE 7 Communication between Apros and MATLAB for MiL
cosimulation
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Figure 8 shows the performance of the SoC control
scheme, where a comparison between the actual SoC calculated
from the Apros data (SoCA, green trace), the estimated SoC
from the observer data (dSoC , blue trace) and the SoC refer-
ence signal r% (black trace) are presented. For completeness,
the specific enthalpy (hA, bh, rh) and average temperature of the
layers (Tave,A, bT ave, rT) are also shown. The system has an
initial SoC of 55%. At the beginning of the simulation, the
system is requested to reach 70% of SoC, charging the TES
tank. After 3.3 h of simulation time, the system is requested to

decrease its SoC to 45%, discharging the tank instead. As it can
be seen, the accurate temperature estimation from the
observer, together with the control configuration shown in
Figure 5, enables an effective manipulation of the system's SoC
during the charging and discharging cycles. It should be
emphasised that the ripple exhibited in the plots produced
from observer data (blue traces) arises from the measurement
error considered in the temperature sensors (as mentioned in
Section 5.1 and shown more clearly in Figure 9).

Figure 9 shows the measured temperatures T1[k] to T5[k]
inside the tank (top plots) and the sensedmass flow rate (bottom
plot). Notice that all signals exhibit measurement error—as

TABLE 2 Initial temperatures

T1,0 T2,0 T3,0 T4,0 T5,0

Model‐based observer (MATLAB) 75 75 75 75 75

Water‐based TES tank (Apros) 87.13 81.42 74.96 69.35 65.14

F I GURE 8 Control of SoC for a fully equipped TES tank: SoC (top
plots), specific enthalpy (middle plots) and average temperature (bottom
plots). Traces for reference values are provided in a black colour, data from
Apros with green, and values from the observer data (MATLAB) in blue

F I GURE 9 Measurement from sensors in a fully equipped TES tank:
Temperature per layer (top plots) and mass flow rate (bottom plot)

F I GURE 1 0 Comparison of the estimated layer temperatures (in
MATLAB, red traces) against actual temperatures (in Apros, black traces)
for a fully equipped TES tank

F I GURE 1 1 Temperature estimation error in each layer for a fully
equipped TES tank
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discussed in Section 5.1. As it can be seen, an increment in the
value of themeasured temperatures for all layers occurs from 0 h
to 2 h into the simulation when the mass flow rate is positive (i.e.
charging stage). Conversely, a decrement is presented from 3.3 h
to 5 h into the simulation when themass flow rate is negative (i.e.
discharging stage). This is consistent with the SoC behaviour
shown in Figure 8. It can also be noticed that all layers exhibit a
different temperature given that theTES tank has not been either
fully charged or fully discharged.

Figure 10 shows a comparison between the estimated
temperatures bT i½k� obtained from the model‐based observer
and the actual temperatures Ti,A[k] obtained directly from the
TES tank in Apros. It can be noticed that there is a good
agreement between these signals, with the slight differences
arising due to sensor measurement error being considered (see
the traces for Ti[k] in Figure 9). For completeness, the esti-
mation error eei½k� ¼ Ti;A½k� − bT i½k� is shown in Figure 11. As
it can be seen, all the estimated temperatures bT i½k� quickly
converge to the actual values Ti,A[k].

5.3 | TES tank with reduced number of
sensors

In this scenario, a limited number of sensors installed alongside
the water tank's height are assumed. Compared to the previous
scenario, temperature measurements at layers 2 to 4 are not
available and, thus, U[k] is described by Equation (29); that is
only the sensors for the top and bottom layers are considered.
Several charging and discharging cycles of the TES tank are
simulated, with simulation results provided in Figures 12–15.

The performance of the SoC control scheme is shown in
Figure 12. Changes in SoC are required in a range between
35% and 75%. As it can be seen, the actual and estimated SoC
do not converge initially, restricting the tracking performance
of the control system. However, the control performance
improves after 7 h into the simulation, allowing to properly
control the system's SoC.

Figure 13 shows the measured temperatures at the top and
bottom layers of the tank (top plots) and themeasuredmass flow
rate (bottom plot). Although there are restricted temperature
measurements due to the limited availability of sensors, the
model‐based observer is capable of estimating an accurate
temperature distribution along the tank's height (see Figure 14)
for the calculation of the system's SoC—as shown in Figure 12.

Figure 14 shows a comparison of the estimated layer
temperatures obtained from the model‐based observer (red
traces) with respect to the actual temperatures from the TES
tank in Apros (black traces), while Figure 15 shows the esti-
mation error. As it can be seen, the estimated temperatures
bT 1½k� and bT 5½k� quickly converge to their actual value as there
is a sensor present for these layers. However, estimation of
temperatures for the intermediate layers without sensors,
namely bT 2½k�, bT 3½k� and bT 4½k�, is slower. The initial estimation
error at the middle layers restricts the tracking performance at
the beginning of the simulation, which is consistent with the
results shown in Figure 12. However, convergence is achieved

for all estimated temperatures after 7 h into the simulation,
with the estimation error becoming negligible.

5.4 | Sensor failure

In the third simulation scenario, a fully equipped tank with a
temperature sensor per layer is considered, but the sensor
failure is assessed. During the simulation, the availability of
sensed signals T2[k], T3[k] and T4[k] is interrupted at different
moments into the simulation. As a result, the configuration of
U[k] progressively changes from Equations (26) to (29).
Simulation results are provided in Figures 16–19.

Figure 16 shows the control of the system's SoC as a
percentage of total charging capacity, specific enthalpy and the
average temperature. As in Section 5.3, several charging and

F I GURE 1 2 Control of SoC for a TES tank with a reduced number of
sensors: SoC (top plots), specific enthalpy (middle plots) and average
temperature (bottom plots). Traces for reference values are provided in a
black colour, data from Apros with green and values from the observer data
(MATLAB) in blue

F I GURE 1 3 Measurements from sensors in a TES tank with a
reduced number of sensors: Temperature of the top and bottom layers (top
plots) and mass flow rate (bottom plot)
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discharging cycles of the TES tank are simulated, with SoC
being modified in a range between 35% and 75%. As in the
simulation with a fully equipped TES tank (Section 5.2), an
adequate control of the system's SoC is achieved as a result of
the accurate estimation from the observer—despite multiple
sensor failure.

Figure 17 shows the temperature measurements from the
five sensors inside the tank (top plots) and the measured mass
flow rate (bottom plot). As it can be seen, a disruption in the
sensor signals for T2[k], T3[k] and T4[k] occurs at 5, 10 and
15 h into the simulation, respectively. This results in temper-
ature measurements for the intermediate layers becoming
unavailable.

Figure 18 shows a comparison between the estimated
temperatures obtained from the model‐based observer in
MATLAB and the actual temperatures from the TES tank in
Apros. The estimation error is provided in Figure 19. As it can
be seen, despite the disruption in three temperature sensors,
the difference in initial temperature conditions, and the dif-
ference in the charging temperature between the observer
representation and the TES tank, the temperature estimation
quickly converges to the actual values. A good accuracy is
maintained throughout the whole simulation.

5.5 | Brief discussion on the observer
performance and limitations

The simulation results in this section demonstrate that the
presented model‐based observer accurately estimates the

F I GURE 1 4 Comparison of the estimated layer temperatures (in
MATLAB, red traces) against actual temperatures (in Apros, black traces)
for a TES tank with a reduced number of sensors

F I GURE 1 5 Temperature estimation error in each layer for a TES
tank with a reduced number of sensors

F I GURE 1 6 Control of SoC for a fully equipped TES tank with
sensor failure: SoC (top plots), specific enthalpy (middle plots) and average
temperature (bottom plots). Traces for reference values are provided in a
black colour, data from Apros with green and values from the observer data
(MATLAB) in blue

F I GURE 1 7 Measurements from sensors in a fully equipped TES tank
during sensor failure: Temperature per layer (top plots) and mass flow rate
(bottom plot)
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temperature distribution within a TES tank regardless of the
availability of temperature sensors for the internal layers
alongside the tank's height. As a result, this enables a good
estimation of the system's SoC. This, in turn, allows an accu-
rate control of the charging and discharging processes of the
tank. The observer is capable of supporting the operation of
the control system to achieve a good performance in case of
sensor failure. However, it should be emphasised that sensor
accuracy and the initialisation conditions represent critical
factors for a reliable estimation.

A limitation of the observer structure presented is that
temperature sensors located at the top and bottom layers of the

tank are required for a good SoC calculation. These two
temperature measurements are needed to guarantee the
convergence of the intermediate states (estimated by the
nonlinear model) to the actual values. Absence of such sensors
would not be ideal, as in such conditions the temperature
estimation for the top and bottom layers would directly depend
on the temperatures of the hot and cold streams. Any uncer-
tainty with respect to the stream temperatures may lead to a
wrong estimation of the temperatures of the top and bottom
layers and, in turn, may lead to a wrong estimation of the in-
termediate states—resulting in an inaccurate SoC calculation.

5.6 | On the uses and benefits of
temperature and SoC estimators for TES in
DHCS

Temperature sensing in DHCS has two main purposes:
metering for customer billing and the control of different
components (e.g. valves, heat accumulators, chillers, boilers,
CHP units). Following a fault in a temperature sensor,
the customer may be wrongly billed or may experience
discomfort—for instance, due to a wrong supply temperature
for space heating or cooling.

It has been estimated that the potential annual savings
afforded by TES in district heating systems (DHS) can reach
5% of the total cost depending on the system configuration
[31], with energy savings up to 1400 TWh in all Europe [32].
Additionally, annual heat losses due to a wrong supply tem-
perature have been estimated at ∼10% [33]. From this
perspective, improvements in the reliability of sensors and
control systems may help reducing losses in DHS while
increasing energy savings—thus decreasing costs. These
beneficial characteristics may be likely exhibited by district
cooling systems (DCS) and combined DHCS supported by
TES as well, although to the knowledge of the authors, ref-
erences in the open literature are yet to be made available.

RTD sensors, typically used in TES systems, have a failure
rate of 110 failures per million hours. According to [34], a 3‐
sensor system has a reliability of ∼38% in a year. This means
that from every 100 components using a 3‐temperature sensor
system, 62 will present a failure once a year, and 31 failures may
be related directly to the sensor or to analogue‐to‐digital
converters. As the number of sensors increases, the probability
of failure does as well. Relevant fault detection methods have
been developed to reduce DHS downtime following failure of
system components, thus minimising losses [33,35,36]. How-
ever, even when the system may still run with faulty sensors,
problems remain.

The implementation of an observer for temperature esti-
mation enables the control of a TES system with a reduced
number of sensors, thus increasing its reliability. It also allows
that in the case of sensor failure, the control system keeps
working effectively while the failure is addressed. This may
prevent comfort issues in end‐users.

The control approach presented may also provide additional
benefits to a practical system. The control system is based on the

F I GURE 1 8 Comparison of the estimated layer temperatures (in
MATLAB, red traces) against actual temperatures (in Apros, black traces)
for a fully equipped TES tank during sensor failure

F I GURE 1 9 Temperature estimation error in each layer for a fully
equipped TES tank during sensor failure
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SoC, which provides a quantitative description of the total en-
ergy available in a TES tank within minimum and maximum
temperature constraints. These constraints are defined at a
DHCS level as the minimum and maximum operating temper-
atures. Even when SoC is not an essential requirement for
conventional control strategies of TES systems [37], the control
management of a DHCS is typically performed manually [38].
Therefore, the SoC provides the operator with a clearer view of
the TES operating conditions at any time. This is particularly
beneficial for short‐term TES units, which are subjected to daily
charging and discharging cycles, andwhose controlmanagement
considers changes in weather conditions [39]. In addition, the
approach here followed may enable to optimise the operation of
the TES system [40,41] and the automated control management
of a DHCS by implementing model predictive control [42]—
however, this falls out of the scope of this study.

6 | CONCLUSIONS

Effective control systems are required to maximise the per-
formance of charging and discharging processes of TES in
DHCS. To achieve this, SoC monitoring is essential to un-
derstand the short‐term capability of a TES tank and to
establish how much longer it would be useful before
recharging is required. Following this line, a method to calcu-
late the SoC of sensible heat‐based TES tanks has been pre-
sented. SoC computation is based on an observer that
estimates the internal temperature of the storage medium (in
this case, water) alongside the tank's height by making use of
measurements from temperature sensors—which are usually
provided by manufacturers.

A model‐based observer structure making use of a 1‐D
stratified dynamic model of a water‐based TES tank has
been used. It has been shown that the adopted tank represen-
tation is sufficient to ensure a good observer performance—
corroborated through comparisons with a water tank compo-
nent available in the commercial software (Apros). The
model‐based observer configuration guarantees a good tem-
perature estimation alongside the height of the water tank,
resulting both in a simple temperature control schemebased on a
proportional controller and in a reliable SoC calculation even for
a limited availability of sensors or in the event of multiple sensor
failure. Simulation results show a good performance of the
control scheme, leading to an efficient TES charging and dis-
charging processes—which could, in turn, result in an improved
overall energy consumption of the system.

An MiL configuration supported by the OPC communi-
cation protocol has been used. This has enabled real‐time
cosimulations between MATLAB/Simulink and Apros. Such a
configuration has been instrumental to assess the performance
of the model‐based observer acting on a detailed and high‐
fidelity representation of a water‐based TES tank available in
commercial software. The MiL configuration presented is
useful for other applications where verified models of practical
components are available but the possibility to conduct the
experimental work is not an option.
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