Implications of within-scan patient head motion on B$_1^+$-homogeneity and Specific Absorption Rate at 7T

Emre Kopanoglu1, Alix Plumley1, Cem M. Deniz2, Arcan M. Erturk3,4, Richard G. Wise1

1 Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
2 Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
3 Medtronic, Restorative Therapies Group, Minneapolis, Minnesota, USA
4 University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA

Synopsis
Parallel-transmit pulses are commonly used to improve B$_1^+$-homogeneity at higher field strengths, while local-SAR constraints are applied to ensure safety. However, patient motion may become unavoidable with longer scans or less cooperative patients, and motion may affect B$_1^+$-homogeneity and local-SAR. We investigated the effect of all 6 degrees-of-freedom of head motion on B$_1^+$-homogeneity and local-SAR for parallel-transmit multi-spoke pulses using simulations. We observed more than a 2-fold increase in local-SAR due to motion for some pulses. We also investigated the changes in B$_1^+$-homogeneity of spokes pulses using in-vivo B$_1^+$-maps and showed regional variations between 12%-22% in the excitation profile.

Introduction
The use of multi-channel parallel-transmit (pTx) arrays has been commonly investigated to improve B$_1^+$-homogeneity at higher field strengths (7T). However, the possibility of creating local-SAR/local-temperature hotspots due to constructive interference of the electric field has raised questions on safety. Thus, local-SAR/local-temperature has been used as a safety constraint in pulse design, and several safety margins have been applied in practice to account for modelling imperfections$^{1-10}$. However, the effect of patient motion on B$_1^+$-homogeneity and safety remains as an important question that has received little attention. Patient motion might become unavoidable especially with longer scans or less cooperative patients, such as in pediatric imaging$^{11-14}$, or for patients with Parkinson’s15 or dementia16.

Earlier studies have investigated the effect of body position on B$_1^+$-homogeneity and local-SAR$^{17-20}$. However, these studies have been limited to a subset of motion types and have focussed on the initial positioning of the patient rather than motion during the scan. In this study, we investigate, using simulation, the effect of all 6 degrees-of-freedom head motion during scan on B$_1^+$-homogeneity and local-SAR for multi-spoke pulses. Moreover, we show the effect of head motion on excitation profiles at 7T using in-vivo B$_1^+$-maps of an 8-channel pTx coil.

Methods
Simulations were conducted using Sim4Life (ZMT, Zurich, Switzerland) for an 8-channel loop array and the body model Ella (IT’IS, Zurich, Switzerland). Patient motion was modelled by keeping the body model stationary and moving the RF array. This approach i) prevents changes in electromagnetic properties of the model due to voxelization effects as it keeps the tissues in the body model intact, ii) isolates the B$_1^+$-related effects as no image-registration is required. The array was i) displaced along or rotated around
the three main axis, and ii) displaced along two-dimensions on coronal and axial planes for a total of 105 positions. Displacements and rotations of 1/2/5/10/15/20 mm or degrees were simulated, unless the prescribed motion would overlap the coil and the body model. Adaptive voxelization was used with maximum voxel size of 2mm for the model and <40% of conductor width for the array. Coil elements were checked for connectivity and voxelization prior to simulation.

For six different axial slices (each separated by 18mm), 1-, 2-, 3-spokes RF excitation pulses were designed to optimize for in-slice B_1^\dagger-homogeneity21. Normalized root-mean-squared error (nRMSE) was calculated on the complex excitation profiles since phase changes also contribute to error due to motion in practice. 1-gram averaged maximum local-SAR was calculated for each relative position of the model and normalized by the maximum local-SAR for the case without motion.

In vivo experiments were conducted on a 7T scanner (Siemens Healthcare, Erlangen, Germany) with an 8/-32-channel pTx/Rx coil (Nova Medical, MA, USA). The participant moved his head between scans while B_1^\dagger-maps and GRE images were acquired. Images were registered using masks created from the GRE images and head motion was estimated to be Right/Anterior/Yaw: -2.6mm/7.5mm/0degree (position2), 5.6mm/15.5mm/1.6degree (position3), 5.4mm/0.4mm/0.9degree (position4). 1-/2-/3-spoke pulses were designed using the B_1^\dagger-maps acquired in the first position. Using the in-vivo B_1^\dagger-maps acquired at different positions, the excitation profiles of the designed pulses were simulated. The difference between the excitation profiles due to participant motion were analysed.

Results

Figure 1 shows the variation of nRMSE for a 3-spoke pulse designed for imaging the temporal lobe. The excitation profile was more sensitive to in-slice motion (right-left, anterior-posterior and yaw). Figure 2 demonstrates the change in the profile as the body model rotates in yaw. Figure 3 shows that, while the inner-slices are more sensitive to in-(axial-)slice motion, the outer slices (cerebellum/crown) are more susceptible to superior-inferior, roll and pitch motion.

Figure 4 shows the change in the maximum local-SAR observed for all 18 pulses. In 3% of the cases, the maximum local-SAR increased by more than 50% compared to the respective maximum local-SAR at the centre position and increased by more than 2-fold in ten cases. For one slice/pulse combination, local-SAR increased with a slope of 6.5%-per-mm of lateral motion.

Figure 5 shows the changes in the excitation profiles simulated using in-vivo B_1^\dagger-maps. The head motion caused 12%-22% change in the excitation profiles.

Discussion

We have demonstrated that the B_1^\dagger-homogeneity created via multi-spoke pTx pulses is highly susceptible to within-scan patient motion. This is especially important for patient populations that may not stay still for extended durations$^{11-16}$. More importantly, the results showed that maximum local-SAR is highly sensitive to motion for some slice/pulse combinations (rather than just motion extent) and rapidly increases with the amount of motion. Finally, the range of increase in maximum local-SAR due to motion is similar to previous literature, although we observed the maximum increase for lateral displacement which was excluded in Refs$^{17-20}$.

Figure 1: The nRMSE in the excitation profile compared to the initial (centre, denoted by the black dot) position is given for all six degrees-of-freedom of motion: displacement along right-left, anterior-posterior, superior-inferior; and rotation in pitch, roll and yaw. Panels in the top row also show off-axis motion on the axial (left, centre) and coronal planes (right). Inset shows the slice the pulse was designed for. In this slice, B1+-homogeneity was less sensitive to motion in superior-inferior, pitch and roll; the nRMSE increased rapidly with radial displacement (2.4%-per-mm, graph not shown) and rotation (4.6%-per-degree) on the axial plane.

Figure 2: The variation in the excitation profile of a 3-spoke pulse (same slice as Figure 1) is demonstrated for rotational motion around the z-axis (yaw). As expected, the intensity of the difference images increases with the amount of rotation. The difference between channel weights becomes apparent as the change due to motion is non-trivial and highly spatially-varying. Contrarily, for quadrature mode with a 1-spoke pulse (equal-amplitudes, progressive phase-increments), the error is dominated by a global phase change due to rotation while the effects of coil loading are less pronounced, and the error images resemble scaled versions of the magnitude excitation profile (data not shown).
Figure 3: The nRMSE in the excitation profile is calculated for six different 3-spoke pulses designed to minimize the in-slice B_1^+-inhomogeneity in six different slices (slice locations shown on the right). Off-axis cases on the axial and coronal planes were omitted for clarity. While the slices in the centre are more susceptible to motion in the axial plane (right-left, anterior-posterior, yaw), the outer slices are more susceptible to motion in superior-inferior, pitch and roll.

Figure 4: The change in the maximum local-SAR due to motion is shown for 1-spoke, 2-spoke and 3-spoke pulses for all slices (slice locations shown on the right). The maximum local-SAR for any slice/pulse was normalized by the maximum local-SAR of the same pulse without motion. The maximum local-SAR increased by more than 2-fold in 10 cases, and more than 50% in a total of 57 (3%) cases (note that datapoints for axial and coronal motion are displayed on multiple panels). The extreme increases in maximum local-SAR do not depend only on the amount of displacement/rotation, which prevents determining safety margins for different motion types.
Figure 5: Excitation profiles were simulated for 1-spoke, 2-spoke, 3-spoke pulses using in-vivo B1+ maps. Pulses were designed to generate 90° flip angle around the centre of the field of view for position 1. All B1+ maps were registered to the first position before calculating the profiles. **Rows 1-3:** Excitation profiles simulated using in-vivo B1+ maps. **Rows 4-6:** Complex difference images calculated with respect to the respective excitation profiles at position 1. Arrows indicate the regions where reported values were calculated (isolated variations confined to a few voxels were not used in analysis). Variations between 12% and 22% were observed in the simulated excitation profiles.

REFERENCES

