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 12 

Abstract 13 

Intermittent streams, dominant in arid and semi-arid regions, are suggested to be more 14 

representative of the global river network than perennial rivers. Even so, the impacts of constant 15 

changes in hydrological regime on the functioning of these streams and riparian areas remain to 16 

be elucidated. In this study, two native deciduous litter species were used to compare microbial-17 

decomposition patterns between the channel of an intermittent stream and its riparian area over 18 

one year. Overall, the stream channel presented higher decomposition rates and fungal biomass 19 

than the riparian area, for both litter species. Despite a prolonged absence of streambed surface 20 

water (254 days), differences in hydrological conditions in the wetter seasons (autumn and winter) 21 

led to lingering effects, shaping and differentiating decomposition dynamics in both zones 22 

throughout the whole hydrological cycle. As the present results highlight the importance of the 23 

“hydrological imprint” for the leaves degradation process, long term studies seem to be advisable 24 

over short-term ones to better understand the functioning of intermittent streams. 25 
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Introduction 29 

Intermittent streams designate watercourses that cease to flow for some time throughout 30 

the year in response to fluctuating hydrological cycles (Skoulikidis et al. 2017). Despite their high 31 

(>50%) representativeness in the global river network (Steward et al. 2012; Datry et al. 2014) 32 

these streams have historically attracted far less attention than their perennial counterparts. A bias 33 

of interest occurred, nonetheless, in the last decade in the face of climate changes and increased 34 

water demands, both concurring to regime alterations from perennial to temporary conditions. 35 

The growing proportion and geographical expansion of intermittent streams, even out of their 36 

dominant arid and semi-arid areas of occurrence (Schneider et al. 2017), presently strengthens the 37 

urgency of understanding their still poorly characterized ecological processes and services 38 

provided to humans (Datry et al. 2018). 39 

The decomposition of dead organic matter is a key ecosystem process that plays a 40 

fundamental role in carbon and nutrient cycling globally (Raymond et al. 2013), since up to 90% 41 

of global terrestrial plant production escapes herbivory and enters the detrital pool (Cebrian 1999). 42 

In forested streams, where the food web is mainly based on the leaf litter inputs from surrounding 43 

ecosystems (Wallace et al. 1997), the water stimulates leaching of leaf soluble compounds 44 

(Gessner et al. 1999) and enhances the mechanical fragmentation of detrital material due to 45 

physical abrasion (Ferreira et al. 2006). This boosts the decomposer activity of microbial 46 

assemblages (Mora-Gómez et al. 2018; Niyogi et al. 2020) and invertebrate detritivores (Martínez 47 

et al. 2015; Abril et al. 2016). Therefore, ecosystems such as perennial streams, are more efficient 48 

in catabolizing detrital material than surrounding terrestrial ecosystems (Hutchens and Wallace 49 

2002) or than intermittent streams due to the more or less elongated presence of the dry periods 50 

that characterize these systems (Pinna and Basset 2004; Datry et al. 2011; Martínez et al. 2015).  51 

As intermittent streams dry out, streambeds becomes “terrestrialized” by acquiring 52 

structural and functional features of the nearby soils (Arce et al. 2019), the similarity likely 53 

depending on the duration of the dry phase and inundation frequency (Harms and Grimm 2012; 54 

Mori et al. 2017). Whether such convergence of conditions directs similar decomposition 55 

dynamics is largely unknown. A single study (Lohse et al. 2020), to our knowledge, compared 56 
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microbial-mediated decomposition of leaves incubated in the streambed of an intermittent stream 57 

and its riparian floor with results suggesting divergent patterns ruled by water presence (rather 58 

than flow) in the streambed during the hydrological period. In fact, the effects of drought on leaf 59 

processing has consequences extending beyond the water scarcity period (Datry et al. 2011; 60 

Martínez et al. 2015). This “drought legacy” effect (Mora-Gómez et al. 2020) has been attributed 61 

to an alteration of the invertebrate community density and richness rather than to the microbial 62 

compartment (Acuña et al. 2005; Corti et al. 2011), since decomposers may resist to desiccation 63 

(Gonçalves et al. 2019) and persist in moist substrata (Sridhar and Bärlocher 1993) being able 64 

recover their activity when flow resumes (Langhans and Tockner 2006; Bruder et al. 2011; 65 

Gonçalves et al. 2019).  66 

The main goal of this study was to compare leaf litter decomposition patterns, mediated 67 

by microbial activity, in the channel and its riparian area of an intermittent stream (running dry 68 

for 254 days) over one year. For this, leaf litter of two native deciduous tree species - Castanea 69 

sativa Mill. (chestnut) and Quercus robur L. (oak) - were used. We hypothesize faster 70 

decomposition rates and higher fungal biomass associated with leaf material conditioned in the 71 

stream channel vs. riparian area; differences will be, mainly related with the presence of water--72 

in the channel providing lotic, lentic and/or moist conditions to the incubating leaves. 73 

 74 

Materials and methods 75 

Study site and procedures 76 

The study was conducted in a low-order intermittent stream and its riparian area located 77 

in Lousã Mountain (central Portugal; 40°03'38.0"N 8°12'26.9"W). The stream watershed is 78 

covered mainly by a mixed deciduous forest dominated by C. sativa and Q. robur . This area is 79 

located in the transitional area between Atlantic and Mediterranean climates, with hot and dry 80 

summers, and mild and rainy winters (European Environmental Agency 2002).  81 

During the study period, temperature in the stream channel and riparian zone was 82 

continuously measured (every hour) using temperature data loggers (Hobo Pendant Datalogger 83 

UA-001-08; Onset Computer Corp., Cape Cod, MA, U.S.A.). Average monthly precipitation 84 
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ranged from 1.3 mm in August 2018 to 286.7 mm in March 2018 (Fig. 1; data from the nearest 85 

meteorological station located in Santo António da Neve, Lousã). Stream flow condition was 86 

checked every two days by a remote-controlled photographic camera (GSM Digital Trail Camera 87 

HC-300M) – water flow was observed during 33 days, isolated pools during 78 days, and no 88 

superficial water was observed in the stream channel for the remaining 254 days of the year (Fig. 89 

1). The riparian area was never flooded.  90 

Leaves of the native species chestnut (C. sativa) and oak (Q. robur) were collected just 91 

after natural abscission, air-dried at room temperature and stored in the dark until use. Leaves of 92 

each species (4 ± 0.15 g) were enclosed in 96 fine mesh bags (10 x 12 cm, 0.5 mm mesh). An 93 

additional group of six samples per leaf species were oven-dried (60 ºC, 48 h), weighed, ashed 94 

(500 ºC, 4 h) and reweighed to estimate initial ash free dry mass (AFDM) in each bag. On the 95 

start of autumn 2017, half of the bags per species was randomly placed in the stream channel, and 96 

the other half was placed in the adjacent riparian zone. After 90, 180, 270 and 360 days of 97 

incubation, corresponding to seasonal periods,12 bags per location and species were randomly 98 

retrieved, placed in individual zip lock bags, and transported to the laboratory in a cooler for 99 

subsequent determinations. In the laboratory, leaf material from each bag was gently rinsed with 100 

distilled water through a 500 µm sieve to remove sediments. Then, five leaf discs were punched 101 

out with a cork borer (10 mm Ø) from six bags for each species, zone and sampling date to 102 

determine fungal biomass (see below). The remaining leaf material was oven-dried (60 ºC, 48 h), 103 

weighed, ashed (500 ºC, 4 h) and reweighed to obtain AFDM remaining (AFDMr).  104 

For fungal biomass determination, punched discs were freeze-dried for 24 h (lyophilizer 105 

CHRIST, ALPHA 1-2 / LD Plus, Osterode am Harz, Germany) and weighed. Ergosterol was 106 

extracted by microwave exposure in methanol, separated by pentane (Canhoto et al. 2013) and 107 

quantified by high performance liquid chromatography (HPLC; Shimadzu Prominence UFLC, 108 

Kyoto, Japan) using a HPLC C18 column (Mediterranea sea18, 250 x 4.6 mm, 5 µm particle size; 109 

Teknokroma). Ergosterol concentration was converted into fungal biomass (5.5 μg ergosterol per 110 

mg fungal dry mass; Gessner and Chauvet 1993). Results were expressed as mg fungal biomass 111 

g-1 AFDMr.  112 
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 113 

Data treatment 114 

Decomposition rates were estimated by the negative exponential model (Mt = M0 × e-kt) 115 

where Mt is the remaining mass in terms of percentage at t time, and k is the decomposition rate. 116 

Degree-days were used rather than time in order to standardize the rates in view of the temperature 117 

differences among zones (Fig. 1). Decomposition rates from stream channel and riparian zone 118 

were compared independently for each leaf species by a one-way ANCOVA (fixed factor: 119 

incubation zone; covariate: degree-days). Differences in fungal biomass were tested also 120 

independently for each species by a two-way ANOVA (fixed factors: zone and sampling date) 121 

followed by Tukey’s test. 122 

Whenever necessary, data were log 10 (x+1) transformed to fulfill requirements for 123 

parametric analyses (normality and homogeneity of variances). Results of statistical analyses 124 

were considered significant when p < 0.05 and were analyzed with R statistical software (version 125 

3.2.5; R Development Core Team 2016). 126 

 127 

Results 128 

After the incubation period, AFDMr of chestnut was 51.3 ± 3.4 % in the stream channel 129 

and 61.8 ± 2.0 % in the riparian zone, and that of oak was 57.1 ± 1.7 % in the channel, and 78.7 130 

± 1.6 % in the riparian zone. The decomposition dynamics of the two species showed a slowing-131 

down during the last phase of the incubation period (coinciding with summer season) in the 132 

riparian zone (Fig. 2). Decomposition rates were higher in the stream channel than in the riparian 133 

zone for both chestnut (F1,67 = 5.31, p = 0.024) and oak (F1,67 = 9.27, p = 0.003; Fig. 2). 134 

Fungal biomass associated with chestnut leaf litter ranged from 27.7 ± 4.0 mg g-1 AFDM 135 

in the riparian zone after 90 days of incubation, to 184.7 ± 14.4 mg g-1 AFDM in the stream 136 

channel after 180 days incubation (Fig. 3). Here, fungal biomass peaked after 180 days incubation 137 

(end of Winter), maintained this value until 270 days (end of Spring), and then decreased 138 

drastically at 360 days (end of summer) incubation. Meanwhile, in the riparian zone, fungal 139 

biomass accrual was slower, peaking clearly after 270 days (end of Spring) incubation; a clear 140 
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decrease in chestnut leaf associated fungal biomass was observed by the end of the summer period 141 

(365 days incubation) (Fig. 3). Overall, fungal biomass was greater in the stream channel than in 142 

the riparian zone (F1,40 = 49.40, p < 0.001), except in the last sampling date (i.e., end of summer), 143 

where the leaf litter material from the two zones presented similar values (Tukey test p = 0.996, 144 

Fig. 3). 145 

The maximum (109.1 ± 17.2 mg g-1 AFDM) and minimum (17.6 ± 4.7 mg g-1 AFDM) 146 

values of fungal biomass associated with oak leaves were registered in the stream channel after 147 

270 and 360 days of incubation, respectively. In both incubation zones, fungal biomass 148 

progressively reached the peak after 270 days, decreasing at the last sampling date (Fig. 3). 149 

Although oak leaf litter from stream channel generally presented a higher fungal biomass than 150 

leaf litter incubated in the riparian zone (F1,40 = 7.60, p = 0.009), values were not different between 151 

incubation zones after 270 and 360 days incubation (Tukey test p = 0.945, and p = 0.999 152 

respectively; Fig. 3). 153 

 154 

Discussion 155 

In this study we compared the dynamics of microbial-mediated decomposition of oak and 156 

chestnut leaf litter, throughout the year, in two zones: channel and riparia. As expected, 157 

environmental conditions were different between zones, inducing more accentuated mass loss in 158 

the channel, particularly evident in the less recalcitrant leaf (i.e. chestnut). Despite the lengthy 159 

(254 days) absence of water observed at the channel surface, differences in hydrological 160 

conditions between zones in the wetter seasons (autumn and winter) seem to cascade and shape 161 

decomposition dynamics for both leaf species across all seasons. The importance of an “hydraulic 162 

imprint” promoted by an even reduced water presence (rather than stream flow) in the stream 163 

channel, was also recognized by (Lohse et al. 2020) when comparing microbial decomposition 164 

rates of oak leaf litter on the channel vs. riparian and upland areas under distinct climatic 165 

conditions.  166 

In our study, leaves incubated in the stream channel were stochastically subjected to 167 

flowing water, pools (originated from the loss of the longitudinal surface-water connectivity) and 168 
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a moist substratum, which seem to have concurred to stimulate fungal biomass accrual and leaf 169 

decomposition. Flow and turbulence are important disruptive physical forces to leaf material in 170 

streams (Ferreira et al. 2006) and drivers of leaf degradation through stimulating effects on aquatic 171 

hyphomycetes’ conidial production, leaf fungal imprint and colonization (Maamri et al. 2001; 172 

Kuehn 2016; Arias-Real et al. 2018). On the other hand, aquatic fungi have been referred to be 173 

able to remain active in lentic and moist organic (i.e. leaf litter) and inorganic (i.e. sediments) 174 

environments (Baldy et al. 2002; Chauvet et al. 2016; Gonçalves et al. 2019). It is also noteworthy 175 

that, along with streambed microhabitats, fine mesh bags, used in our experimental design, may 176 

have facilitated the retention of humidity within the contained leaves – refuge habitats (Romaní 177 

et al. 2017). Such water holding capacity may have favored mycelial viability, a rapid re-178 

activation of the microbial metabolism upon flow resumption, and a potentially elongated 179 

microbial-mediated degradation in emerged leaves. Physical disruption, promoted by wet-dry-180 

rewet cycles (Dieter et al. 2011; Gonçalves et al. 2016; von Schiller et al. 2017), may also promote 181 

leaf mesophyll accessibility and inner protection to decomposers, facilitating their activity beyond 182 

immersion periods (Bruder et al. 2011; Arroita et al. 2018). 183 

Fungal biomass dynamics and concentration differed among the stream channel and 184 

riparian area; such differences were particularly evident in the case of chestnut. This may be the 185 

result of the friability and high nutritious quality of this leaf species,  that facilitates its processing 186 

by fungi, namely aquatic hyphomycetes (Lecerf and Chauvet 2008; Bastias et al. 2018; Jabiol et 187 

al. 2019). Oak recalcitrance, namely its higher toughness – expression of leaf structural 188 

polysaccharides concentration and cuticular layer –, likely limited the chemical (i.e. leaching) and 189 

mechanical effects of flow on leaf integrity. While affecting microbial conditioning, this also 190 

concurred to closer (although distinct, p < 0.05) patterns of biomass accrual (and thereby mass 191 

loss) between zones, until spring.  192 

It is noteworthy that fungal biomass associated with both leaf species peaked or 193 

maintained maximum levels on spring, in both environments. Along with lingering hydrological 194 

effects from the wet/colder seasons, mild temperatures in both zones (around 12 ºC) may have 195 

contributed to the stimulation of mycelial growth of mixed aquatic and terrestrial fungal 196 
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assemblages (LeRoy et al. 2011), and leaf degradation, under dryer springtime conditions. In fact, 197 

previous studies point to optimal enzymatic activity around 10 ºC, for aquatic (Ferreira and 198 

Chauvet 2011; Gonçalves et al. 2015), and between 10-25 ºC for terrestrial (Graça and Ferreira 199 

1995; Razavi et al. 2017) fungi. In addition, we cannot rule out the possibility that a stimulation 200 

of algal biomass production due to increased light in both areas, may have had a priming effect 201 

on leaf-associated fungi (Franken et al. 2005; Kuehn et al. 2014). Globally, results suggest that, 202 

for both litter species, annual decomposition in either the channel or the riparian area will result 203 

in different litter residual quality, endowed with a similar fungal biomass concentration. 204 

Changes in fungal community composition are known to occur concomitantly with leaf 205 

degradation/changes in quality (Moorhead and Sinsabaugh 2006; Bhatnagar et al. 2018; 206 

Gionchetta et al. 2020; Mora-Gómez et al. 2020) or as a response to variations in environmental 207 

conditions (Kohl et al. 2020). Such changes in fungal assemblages may result in higher biomass 208 

evaluations due to species-specific ergosterol concentrations (proxy of fungal biomass; (Gessner 209 

and Chauvet 1993; Cornut et al. 2015) and/or species physiological alterations, involving 210 

ergosterol accumulation, as a response to desiccation in the warmer seasons (Dupont et al. 2012). 211 

This plausible difference in fungal assemblages’ composition could contribute not only to higher 212 

(chestnut)/highest (oak) Spring biomass values, but also to marked differences in mass loss, 213 

among zones, during summer. During this season, a sharp converging decrease in fungal biomass 214 

observed in both leaf species was translated into a stabilization of leaves’ mass loss in the 215 

terrestrial zone while accentuating, particularly on oak leaves, the mass loss in the channel. It 216 

seems likely that the remaining leaf material, particularly oak (remaining mass ~60%), may have 217 

suffered an increasing degradative effect promoted by photodegradation and photopriming 218 

(Brandt et al. 2010; Pieristè et al. 2019). No information was gathered in our study on bacteria or 219 

prokaryotic microorganisms, but both groups may also profit from less severe competition with 220 

aquatic fungi under non-flowing conditions and higher temperature, contributing to leaf litter 221 

decomposition (Romaní et al. 2017).  222 

The present study elucidates that, despite zonal differences between the decomposition 223 

dynamics of each of the two used leaf species, the capacity of intermittent streams’ channel to 224 
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catabolize dead organic matter exceeds that of its riparian area. Differences may even occur when 225 

the former acquires terrestrial-like features as a consequence of surface water absence during an 226 

elongated period of the year (~70%). Considering the present results, and the importance of the 227 

“hydrological imprint” for the leaves degradation process, particularly in the channel, long term 228 

studies seem to be advisable over short-term approaches to a better understanding of the 229 

functioning of and management intermittent streams. 230 
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Fig. 1 Daily temperature, monthly precipitation and distribution of dry surface, pool or flow 

conditions in the stream channel (SC) and riparian zone (RZ) along the incubation period. 
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Fig. 2 Percentage of remaining ash free dry mass (%AFDMr) in relation to degree-days of 

decomposing leaves (mean ± SE) and decomposition rate (k) of chestnut and oak in the stream 

channel and riparian zone.  
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Fig. 3 Fungal biomass (mean ± SE) along the decomposition process on chestnut and oak in the 

stream channel and riparian zone. 


