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ABSTRACT 

Computational materials science based on data-driven approach has gained increasing interest in recent 

years. The capability of trained machine learning (ML) models, such as an artificial neural network (ANN), 

to predict the material properties without repetitive calculations is an appealing idea to save computational 

time. Thermal conductivity in single or multilayer structure is a quintessential property that plays a pivotal 

role in electronic applications. In this work, we exemplified a data-driven approach based on ML and 

high-throughput computation (HTC) to investigate the cross-plane thermal transport in multilayer stanene. 

Stanene has attracted considerable attention due to its novel electronic properties such as topological 

insulating features with a wide bandgap, making it an appealing candidate to ferry current in electronic 

devices. Classical molecular dynamics simulations are performed to extract the lattice thermal 

conductivities (kL). The calculated cross-plane kL is orders of magnitude lower than its lateral counterparts. 

Impact factors such as layer number, system temperature, interlayer coupling strength, and 

compressive/tensile strains are explored. It is found that kL of multilayer stanene in the cross-plane 

direction can be diminished by 86.7% with weakened coupling strength, or 66.6% with tensile strains. A 

total of 2700 kL data are generated using HTC, which are fed into 9 different ANN models for training 

and testing. The best prediction performance is given by the 2-layer ANN with 30 neurons in each layer.  
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1. Introduction 

Machine learning (ML) has gained increasing popularity in various fields such as natural language 

processing, image classification, self-driving automobiles and medical diagnosis.[1-4] In recent years, 

with the help of high clock speed central processing unit and acceleration hardware such as graphical 

process unit, the application of ML models in computational materials science has become possible. High-

throughput computations (HTC) combined with numerical approaches such as first-principles and 

molecular dynamics (MD) simulations have enabled the fast generations of training dataset for supervised 

ML models. Artificial neural network (ANN) is an important branch of machine learning and become 

dominant in many fields owing to its capabilities of learning complex correlations in large dataset. Several 

attempts have been made to predict materials properties with ANN. Using a convolutional neural network 

(CNN), the thermal conductivities of composite materials have been successfully predicted with image-

based training data.[5] The interfacial thermal resistance between graphene and hexagonal boron nitride 

has been successful models using a fully connected feed-forward neural network.[6] In a recent study, a 

recurrent neural network (RNN) has been employed to accelerate the simulation clock of Ab initio 

molecular dynamics.[7] Using a machine-learning interatomic potential, Mortazavi et al.[8] calculated the 

lattice thermal conductivity of graphene/borophene heterostructures. The machine-learning interatomic 

potentials (MLIPs) is trained on ab initio molecular dynamics (AIMD) trajectories which preserves the 

accuracy of the first-principles approaches while achieves faster calculations superior than classical 

molecular dynamics (MD) simulations. This MLIPs have also been used to predict other 2D materials 

such as nanoporous C3N4, C3N5 and C3N6 nanosheets.[9-11] Other types of machine learning based 

potentials have also been developed to predict the thermal properties of MnxGey compounds,[12] 

silicon,[13] silicene,[14] WSe2,[15] and MoS2(1-x)Se2x[16]. 
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Stanene, a newly discovered 2D monolayer of Sn atoms arranged in corrugated hexagonal patterns, 

has spurred extensive experimental investigations due to their topological insulating behavior with a very 

large bandgap, as well as near room-temperature quantum Hall effect.[17-20] Recently, the fabrication of 

monolayer stanene has been achieved by using a molecular beam epitaxy method.[21] The successful 

synthesis of stanene further stimulates more experimental and numerical studies of its novel properties. A 

doped stanene film is a good candidate for 2D topological superconductor.[22] When the inter-orbital 

attractive interaction within decorated stanene is escalated over the intra-orbital interaction, topological 

superconductivity can be achieved with the final state in monolayer stanene. Moreover, unprecedented 

high thermoelectricity with a figure of merit (ZT) of 7 is realized in stanene by geometry optimization.[17] 

In practical applications, high thermal conductivity (k) materials such as graphene can be utilized as 

thermal interface materials (TIMs) to facilitate heat dissipations in electronic devices. Aside from 

graphene, several high thermal conductivity materials such as C3N[23] and graphene-based 

heterobilayers[24-27] have been proposed as possible thermal interface materials. On the other hand, the 

ultra-low thermal conductivity may serve as a promising solution to enhance thermoelectric devices figure 

of merit, which is expressed as , where S is the Seebeck coefficient, s is the 

electrical conductivity, T is the absolute temperature, and ,  represent electronic and lattice thermal 

conductivity, respectively. The enhancement of thermoelectric properties requires the improvement of 

conflicting properties. For example, high ZT values require low phonon thermal transport and high 

electrical conductivities.[28] Electronic thermal transport normally has positive correlations with 

electrical conductivity. Understanding the electron and phonon transport properties in stanene is therefore 

highly important to further exploit its potentials in thermoelectric applications. 

Thermal transport in monolayer stanene has been investigated by several numerical studies. By 

solving the phonon Boltzmann equation combined with density functional theory (DFT) calculations, the 

2 / ( )e LZT S Ts k k= +
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in-plane lattice thermal conductivities of stanene along zigzag and armchair directions are calculated as 

10.8 and 9.2 W/m×K, respectively.[29] In a similar study, Peng et al.[30] predicted that the lattice thermal 

conductivity of stanene equals 11.6 W/m×K with dominant contributions from high-group-velocity 

longitudinal acoustic (LA) phonons. Using the equilibrium molecular dynamics (EMD) method, 

Cherukara et al.[31] calculated the thermal conductivity of stanene in the armchair and zigzag directions 

to be 6.5 ± 0.5 and 6.4 ± 0.3 W/m×K at 300 K. They also concluded that the specific heat of stanene reaches 

90% of its classical limit at 100 K, which gives negligible differences between classical and quantum 

phonon populations at temperatures above this value. Therefore, quantum correction is not needed when 

calculating the thermal properties of stanene at temperatures greater than 100 K. Despite the studies on 

the in-plane thermal properties of stanene, its cross-plane thermal conductivity remains unexplored and 

an open topic. 

In this work, a data-driven approach based on machine learning and high-throughput computation 

is used to investigate the lattice thermal conductivity of multilayer stanene (MLS). The effects of layer 

number, system temperature, interlayer coupling strength and external strains on the predicted thermal 

conductivity are evaluated. The phonon properties of stanene are investigated by exploring its phonon 

density of states (PDOS) and phonon spectral energy density (SED). This paper is organized as follows. 

Section 2 details the MD simulation setup and machine learning principles. Section 3 discusses the effects 

of each modulator on the predicted cross-plane thermal conductivity with corresponding discussions, 

followed by the ANN model training and prediction results. The last section summarizes the results 

reported in this work. 

2. Machine Learning Algorithm and Atomic Modeling 
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All MD simulations are performed by the open-source package Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS).[32] Atom configurations of the stacked stanene layers are 

shown in Fig. 1(a). Periodic boundary conditions are used in the in-plane directions and free boundary is 

used in the out-of-plane direction. The initial distance between neighboring stanene layers is set as 4.92 

Å. The steady-state distance after relaxation is 3.81 Å at temperature 300 K. The Tersoff potential is used 

to model the Sn-Sn interactions within stanene monolayer.[31] This potential has been widely applied in 

thermal property calculations of stanene monolayers and heterostructures.[33-36] To further valid the 

empirical potential used in this work, in-plane thermal conductivity of stanene are calculated using non-

equilibrium molecular dynamics (NEMD) simulation and compared to first-principles result. Five 

different system lengths of 20.1, 40.5, 81.3, 162.8 and 325.9 nm are used in the calculations. The system 

width is fixed at 4.7 nm for all cases. Periodic boundary condition is used in the width direction and free 

boundary conditions are used in the heat flux and out-of-plane directions. After 200 ps NVT and 50 ps 

NVE calculations, a heat flux of 1´109 W/m2 is imposed to the system for 4 ns before data collections. 

Each lattice thermal conductivity is averaged from three independent simulations with different initial 

conditions. The calculated k is shown in Fig. S1(a) and the inversion correlation between system length 

and thermal conductivity is shown in Fig. S1(b). The calculated thermal conductivity at different lengths 

coincides well with previous MD simulations.[37, 38] The predicted in-plane lattice thermal conductivity 

for single-layer infinite length stanene is 8.3 W/m×K, which is very close to the first-principles predicted 

result of 9.2 W/m×K.[29] This further justifies the usage of the current empirical potential in this work. 

Interactions between the stanene layers are described by the 12-6 Lennard-Jones (LJ) potential 

, (1) 12 6(r) 4 [( ) ( ) ]V
r r
s sce= -
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where s, e and r represent the zero-potential distance, potential well depth and interatomic distance, 

respectively. The interlayer coupling strength is adjusted by a parameter c. The LJ parameters are 

calculated based on the universal force field (UFF),[39] where eSn–Sn = 24.621 meV and sSn–Sn = 3.913 Å. 

The cutoff distance rc equals 3.5 ´ sSn–Sn, which is 13.7 Å.  

The cross-plane thermal conductivity is calculated by the NEMD method, which has been widely 

used in thermal property characterizations.[40-46] At steady state, the atomic velocities should follow the 

Maxwell–Boltzmann (MB) distribution 

, (2) 

where T is system temperature, m represents atomic mass and P is the probability of an atom with velocity 

ν. The MB distribution is used to verify that the MLS system has reached steady state before data 

collections. The velocity distributions before and after the NEMD process are shown in Fig. 1(b). To 

further confirm that the system has reached steady state before data collection, the same system is used 

for heat flux calculations. The heat flux along the heat transfer direction is shown in Fig. S2. It can be 

observed that the heat flux is constant during data collection, which is consistent with the velocity 

distribution results. Time step is 0.5 fs for all calculations. The outermost layers of the system in the z-

direction are selected as the heat source and heat sink respectively. The initial structure is first placed 

under a canonical ensemble (NVT) for 300 ps and then switched to a microcanonical ensemble (NVE) for 

another 200 ps. After thermal equilibrium calculations, a constant heat flux q̇ is imposed on the system 

continuously for 1.5 ns. The temperature distribution at steady-state is shown in Fig. 1(c). Based on the 

Fourier’s law of heat conduction, thermal conductivity  can be calculated from , where 

 is the temperature gradient extracted from linear fitting. For each data point, five independent 
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simulations with different initial velocity configurations are performed and the average value is used as 

the final result. 

To gain further insights into the phonon behaviors, phonon power spectrum analyses are performed 

on monolayer stanene for transverse (TA), longitudinal (LA) and flexural phonons (ZA) respectively. The 

PDOS can be calculated by taking the Fourier transform of the velocity autocorrelation function 

 .  (3) 

The different phonon behaviors of freestanding and supported stanene can be revealed by phonon spectral 

energy density (SED) analyses based on equation[47] 

, (4) 

where m is atomic mass, B is the number of atoms in a unit cell, N is the number of unit cells, t is the 

integration time, a is the integration direction (x, y, z),  is the velocity of atom b in unit cell nx,y,z at time 

step t, and r is the equilibrium position of unit cell nx,y,z.  

Artificial neural network is the state-of-the-art machine learning approach and can be formed into 

advanced architectures that effectively capture complex features given enough data and computation. A 

typical artificial neural network is composed of one input layer, one output layer and one or more hidden 

layers. A schematic of a fully connected feed-forward ANN is shown in Fig. 1(d). The input layer is 

represented by the red circles, where each circle represents a feature value. In this work, impact factors 

such as layer number, system temperature, interlayer coupling strength and external strain are used as 

feature values. The green circles in the hidden layers represent neurons whose bias and weight terms will 

be optimized according to a loss function. The objective of the model training is to minimize the loss 
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function and achieve a global minimum. Since the calculated thermal conductivity values are continuous 

numeric values, the mean square error (MSE) is used as the loss function, which is expressed as: 

, (5) 

where  is the predicted value, y is the target value,  is the L2-regularization term, a is a 

parameter for the regularization and W is the weight matrix. The purpose of the L2 term is to combat 

overfitting by constraining the size of the weights. A high a value could fix the high variance problem by 

enforcing smaller weight values. On the other hand, a small a value loosens the restrictions and leads to 

more complex decision boundaries. A heuristically-determined a value of 0.0001 is used for ANN models 

in this work. The weight matrix is learned using a gradient descent method expressed as 

, (6) 

where i is the learning step and h is the learning rate. A constant learning rate of 0.001 is used in this work. 

The training procedures are shown in Fig. 1(e). The first step is to setup MD simulations with different 

input parameters. Three different layer numbers from 8 to 16, five system temperatures from 100 to 500 

K, six different coupling strength from 0.5 to 3.0, six different strain values from 0 to 5%, and five different 

velocity seeds are used to generate the training and test dataset. A total number of 2700 kL values is 

obtained. Once the feature values have been determined, the training dataset is fed into the ANN 

architecture. 

3. Results and Discussion 

To characterize the cross-plane thermal conductivity, a 16-layer system with lateral dimensions of 

10.0´10.0 (x´y) nm2 is created. Non-linear temperature distributions near the thermal reservoirs are 
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observed and excluded from the linear fitting process.[48-50] From Fig. 1(b), it can be observed that the 

velocities extracted from MD simulations match well with the theoretical Maxwell predictions, which 

indicate the system has reached steady state before NEMD calculation and data collection. The predicted 

thermal conductivity for 16-layer stanene equals 0.16 W/m×K at temperature 300 K, which is an order of 

magnitude lower than its in-plane thermal conductivities.[29] Effect of lateral size on the predicted kL 

value is also investigated. A much larger in-plane dimension of 20.3´20.3 (x´y) nm2 is used and the 

calculated result is only 0.4% different from the previous result. Therefore, it can be concluded that the kL 

values are converged with lateral dimensions and the smaller value 10.0´10.0 (x´y) nm2 is selected to 

save computational cost. 

The SED calculation is performed under the NVE ensemble with an integration time step of 0.1 fs 

for a total simulation time of 100 ps. Snapshots of atom velocities are taken every 200 time steps. The unit 

cell length a is defined as 4.902 Å. The calculated SED results for freestanding and supported stanene in 

a bilayer structure are shown in Figs. 2(a) and (b) respectively. Since lattice thermal conductivity is mainly 

contributed by the lower frequency acoustic phonons, a frequency range of 0-3 THz is selected. The 

blurred phonon SED in Fig. 2(b) indicated stronger phonon scatterings and thermal conductivity reduction 

as compared to the freestanding case. It also can be observed in Fig. 2(b) that the phonon modes at k0 point 

shifted to higher frequencies in the bilayer structure. Similar results have also been observed in h-BN[51], 

graphene[52] and silicene[53]. The variation is mainly attributed to the restricted phase space for phonon-

phonon scattering in the cross-plane direction and the weak van der Waals (vdW) interactions between 

stanene monolayers, which could modify the interatomic force constants. The calculated PDOS for 

stanene is shown in Fig. S3. It can be observed that the active phonon frequency range is from 0-6 THz, 

which is much smaller than that of graphene.[54] On the other hand, the in-plane LA/TA phonons are 

anisotropic from the cross-plane ZA phonons, which is similar to that of graphene.[54] 
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Next, we investigate the dependence of lattice thermal conductivity with layer number. Aside from 

the 16-layers stanene system, other layer numbers of 8, 12, 24, 32 and 64 are used for  predictions. The 

calculated lattice thermal conductivity results with layer number are shown in Fig. 2(c). The uncertainty 

is calculated based on five independent simulations. It can be observed that at small thickness scales, the 

cross-plane  increases sharply with layer number and gradually converges at large values. The 

calculated  increases from 0.08 to 0.43 W/m×K when the layer number increases from 8 to 64. Using 

the EMD method, Ni et al.[55] calculated the interfacial thermal resistance (R) between a few layer 

graphene (FLG). It was proved that R decreases with increasing layer number in FLG, indicating a positive 

correlation between layer number and thermal conductivity, which agrees well with our simulations. With 

an increasing number of stanene layers, the cross-plane phonon couplings are enhanced due to the 

interactions from farther layers, which as a result will facilitate the thermal transport. To extract the bulk 

cross-plane lattice thermal conductivity and phonon mean free path (MFP) of stanene, the calculated 

thermal conductivity results are fitted using a linear function[56] 

, (7) 

where kL is the thermal conductivity at system length L, l is the effective phonon MFP, and  is the 

thermal conductivity at infinite length. The fitting results for 1/  and 1/L are shown in Fig. 2(d). It can 

be observed that the linear fitting profile soundly matches the calculated results. The predicted bulk lattice 

thermal conductivity at the cross-plane direction of MLS is 0.83 W/m×K, which is still an order of 

magnitude smaller than those in-plane results.[30] When the system size in the heat transfer direction is 

not significantly larger than the phonon mean free path, the size effect arises. This is a results of phonon 

scattering between the heat reservoirs.[56] Once the thermal conductivities of multilayer stanene with 
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different layers calculated, it is possible to estimate the MLS thermal conductivity through an 

extrapolation method. The assumes that the boundary scattering dominates the impeding phonon transport. 

If the linear relationship exists, the effective thermal conductivity for an infinite layer number stanene can 

be extrapolated at 1/N = 0, where N is the layer number of the multilayer graphene. This approach has 

been widely to extract cross-plane thermal conductivity in multilayer structures. For instance, using 

classical MD simulation, Chen et al.[57] reported a similar phenomenon in multilayer graphene at 48 

layers (thickness ~16 nm). Cross-plane thermal conductivities of popular vdW structures are summarized 

in Table 1. 

Based on the previous study, the cross-plane thermal conductivity of multilayer graphene is 11.57 

W/m×K, which is much larger than other 2D materials.[58] The dominant phonon wavelength in a 

multilayer graphene structure is predicted to be 3.45 Å, which is comparable to the thickness of a single-

layer graphene. On the other hand,  of multilayer phosphorene in the cross-plane direction is only 0.42 

W/m×K.[59] This small  could be attributed to the hinge-like structure in phosphorene, which weakens 

the surface contact between phosphorene layers and lead to reduced thermal conductivity. Similar to that 

of phosphorene, the buckled structure of stanene could also lead to low cross-plane thermal conductivities.  

The Joule heating during device operations could place the electronic components under various 

working temperatures and affect their thermophysical properties. One the other hand, surface treatment 

during electronic device fabrications are often used to modify the material interaction strengths at the 

interfaces. Therefore, the effects of temperature and interlayer coupling strength on the cross-plane lattice 

thermal conductivity of MLS are further explored. A temperature range from 100 to 500 K is used. To be 

consistent with previous calculations, a 16-layer MLS with periodic boundary conditions in lateral 

directions is selected. The calculated  with temperature is shown in Fig. 3(a). In general, when the 
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crystal temperature increases, phonon Umklapp scattering becomes stronger and the effective phonon 

MFP is reduced, thus resulting in reduced thermal conductivities. The lattice thermal conductivity of MLS 

decreases by 71% from 0.28 W/m×K to 0.08 W/m×K when temperature increases from 100 to 500 K. The 

decreasing trend of  with temperature is also observed in various heterostructures.[36, 60-62] When 

interlayer coupling strength increases from 0.5 to 3.0, the averaged lattice thermal conductivity is upraised 

from 0.08 to 0.56 W/m×K. The increase of  c enhances the contact pressure, which directly strengthens 

the interlayer phonon coupling and reduces the thermal resistance. On the other hand, the enhanced 

coupling strength can directly heighten the atom interaction of two layers, promoting the lattice synergy 

vibration and energy transmission across the interface. The increase of cross-plane lattice thermal 

conductivity with coupling strength has also been observed in previous studies. We further calculate the 

SED of the bilayer with c = 2 in comparison with pristine bilayer, which as shown in the Fig. S4. It can 

be observed in Fig. S4 (b) that the phonon modes at G point shift to higher frequencies in the bilayer 

structure with c = 2. The phonon relaxation time is obtained by fitting each SED peak to the Lorentzian 

function as[63] 

, (8) 

,  (9) 

where I is the peak magnitude of the phonon branch, νc means the peak center frequency, γ is the width at 

half-maximum and tp is the phonon relaxation time. The results of phonon relaxation time for bilayer with 

pristine and strong coupling strength are shown in Fig. S5. In general, the phonon relaxation times of 

bilayer with c = 2 are larger than that of bilayer with c = 1. To make an intuitive comparison, the average 

phonon relaxation times of bilayer with c = 1 and c = 2 are calculated, which are equal to 1.721 and 1.732 
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ps, respectively. The larger phonon relaxation time indicates the larger thermal conductivity as the 

coupling strength increases, which is consistent with our MD results of thermal conductivity under 

different coupling strength. To directly address the better energy transmission with stronger coupling 

strength, a bilayer stanene system is constructed with dimensions of 10.0´10.2 (x´y) nm2. The system is 

placed under NVT at temperature 300 K to reach thermal equilibrium, followed by a 100 of NVE 

relaxation. Then a pulsed heat was imposed on the top layer for 50 fs to increase the temperature to around 

600 K. Due to the temperature difference between the top and bottom layers, thermal energy will flow 

from the high temperature region to the lower one. In this isolated system, the only thermal pathway is the 

energy transmission at the interface. Thermal relaxation is performed for another 100 ps and the 

temperatures of the top and bottom stanene layers are plotted in Fig. S6. It can be observed that when the 

coupling strength increases, the time used for temperature convergence decreases, which roughly equals 

40, 20 and 10 ps for c = 2, c = 1 and c = 0.5, respectively. Prasher et al.[64] calculated the thermal contact 

resistance of vdW interfaces using an acoustic mismatch model which indicates the same conclusion that 

thermal conductance increases with bonding strength. Such effects are similar to the pressure-induced 

thermal transport enhancement at the material interface and in polymers.[65] The atom distance is smaller 

when higher pressure is applied which enhances the energy transport efficiency from one to another.  

Surface materials are often deformed to fit in with the substrate’s topological structures to achieve 

optimal performances. Layer distance variations induced by external strains can bring unexpected 

alterations to the material’s electrical and thermal properties. In this work, the effects of tensile and 

compressive strains on the cross-plane thermal conductance of MLS are explored. The definition of strain 

is , where l and l0 stand for strained and initial system lengths respectively. To be consistent 

with previous calculations, the 16-layer MLS is selected with T = 300 K, c = 1.0 and  = 1.6 ́  109 W/m2. 

After thermal equilibrium calculations, external forces in the cross-plane direction are directly exerted on 

0 0( ) /l l ll = -
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the outermost layers of stanene continuously for 500 ps. The corresponding component of force is added 

on each atom in the group while keeping the box size along the in-plane directions unchanged. The effects 

of strains on cross-plane lattice thermal conductance are shown in Fig. 3(b). It can be observed that  

increases monotonically with compressive (negative) strains whereas decreases with tensile (positive) 

strains. When a 5.2% compressive strain is applied, the thermal conductivity can be enhanced by a high 

ratio of 78.2%. While with 5.4% tensile strain,  decreases by 59.5%. The predicted results have similar 

trends with those of coupling strength and coincide well with previous studies of bulk argon systems.[66, 

67] Based on the theorems mentioned above, the SED of the bilayers with tensile and compressive strains 

are evaluated, which are depicted in Fig. S7. It can be observed that applying tensile strain will drop the 

frequency of the phonon mode at the G point, while introducing the compressive strain can lead to the 

higher phonon frequency. This phenomenon is similar to the result of the bilayer with c = 2. The phonon 

relaxation times of bilayer under tensile and compressive strains are shown in Fig. S8. In contrast with the 

pristine bilayer, the phonon relaxation time will be decreased or increased by applying the tensile or 

compressive strains. The corresponding average phonon relaxation times are 1.703 and 1.772 ps, 

respectively, which will reveal the fact that tensile strain can decline the thermal conductivity of bilayer 

while compressive strain is able to elevate the thermal conductivity. The same 10´10.2 (x´y) nm2 bilayer 

system is used to demonstrate the effects of strain on energy transmission at the interface and the results 

are shown in Fig. S9. Similar to the effect of coupling strength, it can be observed that when the system 

is under tensile strains, the time it takes for temperature convergence is longer compared to pristine and 

compress cases. 

To help analyze the calculated results, the interlayer interaction strength is derived from the second 

derivative of LJ potential with respect to layer distance as shown in Fig. 3(c). The interaction strength 

decreases monotonically with increasing strains, which concurs with the thermal conductivity variations. 

Lk
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It is worth noting that compressive strain has a steeper slope of -5.21 compared to -2.69 from tensile 

strain, indicating that the former has a much larger impact on the calculated thermal conductivity. Phonon 

power spectra analyses are also performed to further understand the results. Figure S2 shows the computed 

phonon spectra of the MLS at thermal equilibrium. From the kinetic theory, the thermal conductivity  

can be expressed as , where the subscript i denotes the ith phonon mode, Ci is the specific 

heat, vi is group velocity and Li is phonon MFP. It can be observed from Fig. S10(a) that an apparent 

redshift of the major peaks occurred when the tensile strain was applied. The redshift of the higher 

frequency peaks reduces the phonon group velocities and results in reduced thermal conductivity 

according to the classical lattice thermal transport theory.[68] The reduced vi renders less contribution 

from the phonon couplings to the interfacial heat flux, leading to higher thermal contact resistance between 

stanene layers, and lower lattice thermal conductivity. The compressive strain can enhance force constant 

between interlayer LJ interaction, and causing the blue shift of the major peaks in the PDOS as shown in 

Fig. S10 (a). To quantitatively prove this point, the phonon power spectra of two neighboring stanene 

layers with zero, compressive and tensile strains are calculated and presented separately in Figs. S2 (b), 

(c) and (d).  

Based on the above discussions, it is clearly shown that all impact factors could affect the 

calculated thermal conductivity. In order to obtain an kL value for new combinations of layer number, 

system temperature, interlayer coupling strength and external strain, new MD simulations need to be 

performed from scratch. To address this issue, a data-driven approach can be applied to directly describe 

the correlations between different impact factors and the predicted thermal conductivity. There are various 

hyperparameters in an ANN that can affect its performance, e.g. activation function, regularization type, 

learning rate, depth and width of the neural network. While it is impossible to explore all combinations of 
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hyperparameters, emphases could be given to parameters that play dominant roles, such as the number of 

layers and neurons in the neural network. In this work, 9 different ANN structures from 1 to 3 layers and 

10 to 30 neurons per layer are explored. High-throughout computations are performed to generate the 

training and test dataset. A total number of 2700 cases are calculated, of which 75% is used for model 

training and 25% for testing. For ANN, a highly skewed feature space could lead to slow convergence and 

deteriorated training result. Therefore, before feeding the data into the neural network, all feature values 

are normalized between 0 and 1. To be consistent, the same normalization is applied to the target value. 

To preserve the most important feature, Pearson’s correlation among all values is explored and the results 

are shown in Fig. 4. It can be observed that the interlayer coupling strength plays a dominant role compared 

to other factors with a coefficient value of 0.53. Stratified splitting is used to separate the training and 

testing dataset based on coupling strength. 

The predicted thermal conductivity value from different ANN structures are shown in Fig. 5. The 

rectified linear unit activation function is used in all hidden layers. The limited-memory Broyden–

Fletcher–Goldfarb–Shanno algorithm is used for all model optimizations. The best prediction results are 

given by the 2-layer ANN with 30 neurons in each layer. The calculated MSE for each model is listed in 

Table 2. It can be observed that for the same number of layers, the model performance increases with the 

growing number of neurons. However, the performance could decrease when the neural network becomes 

deeper. This is caused by the relatively simple correlations among the input features and the target value. 

Thus, introducing more nonlinearity with extra layers will not further benefit the generalization 

performance. The trained ANN model can be used to make new predictions within a fraction of a second 

and saves enormous computational time. The generalization performance of a ML model depends on the 

data instances fed into the model during training. In this work, batch learning is used instead of on-line 

learning, which suggests that the training dataset and the feature ranges are fixed. The trained model can 
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be used to predict new k values when the input features are within the ranges of those in the training 

dataset. The network could give false results when random feature values are given. On the other hand, 

the ANN model can be trained to predict other 2D materials given corresponding training data. For 

instance, in the work, the thermal conductivity of multi-layer stanene are fed into the ANN for model 

training. Once trained, the model can be used to predict the thermal conductivity of unknown input 

parameters. To predict k of other 2D materials such as graphene, phosphorene or hexagonal boron nitride, 

the ANN models need to re-trained with corresponding training data. It is possible to obtain a 

comprehensive model which can be used on different types of 2D materials. In that case, the material type 

becomes one of the feature values. To obtain such a model, an enormous amount of computations needs 

to be performed. 

4. Conclusions 

A data-driven approach based on machine learning and high-throughput computation is 

exemplified in this work to investigate the thermal conductivity in multilayer stanene. The effects of 

several modulators, such as layer number, system temperature, interlayer coupling strength and tensile 

strain are explored to accurately gauge its potential as novel thermoelectric materials. Nine different ANN 

structures are trained to directly model the correlations between different impact factors and the predicted 

thermal conductivity. The best performance is given by the 2-layer ANN with 30 neurons in each layer. 

The trained model can predict the thermal conductivity for new cases without repetitive calculations. It is 

reported that the calculated  values in the cross-plane direction can be greatly diminished with reduced 

layer number, increased temperature, weakened coupling strength or enlarged tensile strains. The 

maximum reduction of the predicted kL can amount to 80.4%, 73%, 86.7% and 66.6% respectively for the 

abovementioned modulators. The weakened thermal conductance and phonon couplings are observed with 

Lk
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detailed PDOS analyses. An apparent redshift of major peaks occurs when the compressive strains shifted 

to tensile strains. The PDOS overlap area between neighboring stanene layers is also reduced when tensile 

strain is applied. The significant decrease of lattice thermal conductivity suggests that MLS could be a 

promising thermoelectric nanomaterial that can push the upper limit of its ZT values. 
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Table and Figures 

Table 1. Cross-plane thermal conductivity of popular vdW structures at room temperature. 

Group vdW Structure k (W/m×K) 

Wei et al.[58] Graphene 11.57 

Wei et al.[69] MoS2 6.6 

Akıner et al.[70] Hexagonal boron nitride 1.3 

Hong et al. Stanene 0.83 

Zhang et al.[59] Phosphorene 0.42 
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Table 2. Normalized mean square error for different ANN architectures. The column index represents 

the number of neural layers. The row header represents neurons per layer. 

ANN 10 20 30 

1 0.008085 0.007825 0.007710 

2 0.007990 0.007835 0.007335 

3 0.008370 0.008027 0.007498 
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Figure 1. (a) Side view of stacked stanene layers. (b) Velocity distributions of the system before and 

after the NEMD simulation. (c) Temperature distribution along the heat flux direction at steady state. (d) 

Schematic of a typical artificial neural network structure. (e) Workflow of a data-driven approach based 

on high-throughput computation and machine learning. 
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Figure 2. Phonon spectral energy densities of (a) freestanding stanene and (b) supported stanene in a 

bilayer system. (c) Dependence of cross-plane  with layer number. The red dashed line is plotted for 

visual aid. (d) Correlation between 1/  and 1/L. The pink solid line represents the linear fitting result. 
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Figure 3. (a)The bottom x-axis denotes kL dependence with temperature. The top x-axis illustrates the 

effects of LJ coupling strength. (b) Dependence of kL with strain. (c) Variations of force constant with 

compressive and tensile strains. The red solid line is the linear fitting profile for compressive strains, and 

the blue solid line stands for the fitting results for tensile strains. 
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Figure 4. Pearson’s correlation coefficients among different features and target values. The coupling 

strength has the most significant effect on cross-plane thermal conductivity with a coefficient value of 

0.53, followed by layer number as the second-largest coefficient of 0.51. 
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Figure 5. Artificial neural network training results on the cross-plane thermal conductivity k. Two 

hyperparameters, i.e. layer number and neuron per layer are explored. The 2-layer ANN with 30 neurons 

per layer has the best prediction results with an MSE of 0.0073. 


