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PREDICTION ERROR AND WORD LEARNING

27 Abstract

28 How do we update our linguistic knowledge? In seven experiments, we asked whether error-driven 

29 learning can explain under what circumstances adults and children are more likely to store and retain 

30 a new word meaning. Participants were exposed to novel object labels in the context of more or less 

31 constraining sentences or visual contexts. Both two-to-four-year-olds (Mage = 38 months) and adults 

32 were strongly affected by expectations based on sentence constraint when choosing the referent of a 

33 new label. In addition, adults formed stronger memory traces for novel words that violated a stronger 

34 prior expectation. However, preschoolers’ memory was unaffected by the strength of their prior 

35 expectations. We conclude that the encoding of new word-object associations in memory is affected 

36 by prediction error in adults, but not in preschoolers.

37 Keywords: prediction error; mutual exclusivity; disconfirmed predictions; memory retention; word 

38 learning.
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PREDICTION ERROR AND WORD LEARNING

60 Prediction error boosts retention of novel words in adults but not in children.

61 Children learn new words at a staggering rate (Fenson et al., 1994), demonstrating a 

62 remarkable ability not only to determine what a new word means, but also to retain huge numbers 

63 of form-meaning pairs in memory (Vlach, 2019). This learning extends into adulthood and indeed is 

64 lifelong, as new terms and vocabulary enter our language, and as we move between different 

65 linguistic communities (Ameel, Malt, & Storms, 2008; Borovsky, Kutas, & Elman, 2010; Hulme, 

66 Barsky, & Rodd, 2019). In this work, we investigate what factors affect our ability to retain word 

67 meanings, and whether these are the same in children and adults. In particular, we test how the 

68 retention of novel form-meaning pairs is affected by prediction errors, following theoretical claims 

69 that the computation of prediction errors drives memory encoding (Henson & Gagnepain, 2010). 

70 There is now ample evidence that our interactions with the world are guided by prediction, 

71 from the way we control our movements (Wolpert & Flanagan, 2001) to how we make sense of our 

72 perceptions (Clark, 2013; Friston, 2005; Grush, 2004). Across these different domains, we are able 

73 to generate expectations about the future state of the world and, critically, we compare these 

74 expectations to information about the actual state of the world when it reaches our senses. This 

75 process of comparison between expected and observed states generates prediction error signals, 

76 which are thought not only to drive immediate behavioral responses, but also to affect long-term 

77 encoding of information in memory (Henson & Gagnepain, 2010), and thus our learning (e.g., Den 

78 Ouden, Friston, Daw, McIntosh, & Stephan, 2008; Niv & Schoenbaum, 2008; Rescorla & Wagner, 

79 1972). 

80 Importantly, prediction error is the result of a comparison between expected and observed 

81 states, and thus its magnitude depends on the strength, or precision, of both the information we 

82 receive from the outside world and of our prior expectations (Friston, 2005, 2010). Under the 

83 Predictive Interactive Multiple Memory Systems (PIMMS) framework proposed by Henson and 

84 Gagnepain (2010), larger prediction errors (i.e., greater mismatches between expected and observed 

85 states) lead to the formation of stronger memory traces. Combined with the idea that stronger (i.e., 
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PREDICTION ERROR AND WORD LEARNING

86 more precise) expectations generate larger prediction errors (when disconfirmed), this leads to a key 

87 hypothesis: Stronger expectations that are disconfirmed should benefit memory more than weaker 

88 expectations that are disconfirmed. While this may seem surprising and even counterintuitive (after 

89 all, incorrect expectations are akin to mistakes and making mistakes should impair memory for the 

90 correct answer), it falls out of the way prediction error is defined in these accounts – that is, as the 

91 discrepancy between expectations and input. 

92 For example, Greve and colleagues showed that adults were more likely to remember the 

93 association between a scene and a new face (observed only once) if the scene had previously been 

94 repeatedly paired with another face (i.e., the same face multiple times), compared to several faces 

95 all different from the new face (Greve, Cooper, Kaula, Anderson, & Henson, 2017). Crucially, 

96 although in both instances the new face violated a previously established association (i.e., it 

97 disconfirmed an expectation), the previously-established association supported a stronger 

98 expectation when the scene was paired repeatedly with the same face. Thus, this finding confirms a 

99 key hypothesis derived from accounts of memory based on the computation of prediction error.

100 But does prediction error also affect our memory for word meanings? Surprisingly, despite a 

101 lot of recent interest in adults’ and children’s ability to predict upcoming language (Huettig, 2015; 

102 Kuperberg & Jaeger, 2016; Pickering & Gambi, 2018; Pickering & Garrod, 2013; Rabagliati, 

103 Gambi, & Pickering, 2016), the answer to this question is still unclear. While much evidence 

104 demonstrates that adults and young children are capable of generating expectations at multiple 

105 linguistic levels (Pickering & Gambi, 2018; Rabagliati et al., 2016), including meaning (Altmann & 

106 Kamide, 1999; Borovsky, Elman, & Fernald, 2012; Lindsay, Gambi, & Rabagliati, 2019; Mani, 

107 Daum, & Huettig, 2016; Mani & Huettig, 2012), structure (Gambi, Pickering, & Rabagliati, 2016; 

108 Havron, de Carvalho, Fiévet, & Christophe, 2019; Lukyanenko & Fisher, 2016; Wicha, Moreno, & 

109 Kutas, 2004), and perhaps form (Dikker, Rabagliati, Farmer, & Pylkkänen, 2010; Ylinen et al., 

110 2014; but see Gambi, Gorrie, Pickering, & Rabagliati, 2018), comparatively little work has 

111 examined the consequences of disconfirmed expectations on memory for novel word meanings. 
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112

113 Prediction Error and Language Learning

114 The idea that prediction errors influence language learning is not new, and indeed a number of 

115 historically important models have made the claim that prediction errors play a critical role in 

116 children’s language development. In these models, prediction error typically acts as a guide for 

117 learning; it offers a signal for when the learner should (or should not) revise their linguistic 

118 knowledge. For instance, Elman (1990; see also St. John & McClelland, 1990) introduced the idea 

119 that prediction error-driven learning could help a simple recurrent connectionist network acquire  

120 approximate linguistic representations: The network was trained to predict the next word in a large 

121 corpus of text and, when an encountered word mismatched its prediction, the model’s internal 

122 representations were revised through backpropagation of error (Rumelhart, Hinton, & Williams, 

123 1986). These ideas have also been highly influential for newer models of grammatical development 

124 (e.g., Chang, Dell, & Bock, 2006; Dell & Chang, 2014) and word learning (Plaut and Kello (1999). 

125 In addition, related ideas about error-driven learning can be seen in models that use theories of 

126 reinforcement learning to explain language development. For instance, Ramscar, Yarlett, Dye, 

127 Denny, and Thorpe (2010) argued that a model based on the Rescorla-Wagner learning rule 

128 (Rescorla & Wagner, 1972) can capture how children acquire word meanings under conditions of 

129 referential uncertainty, because the computation of prediction errors allows the child to discriminate 

130 between the situations in which a word can or cannot be used (see also Ramscar, Dye, & McCauley, 

131 2013b). Thus, across all of these models, prediction errors guide children in forming linguistic 

132 representations that can accurately predict the linguistic input that they are likely to encounter.

133 In the PIMMS framework (described above), prediction errors also guide learning, but they 

134 do so by indexing how robustly the learner should encode a piece of encountered information into 

135 memory. Specifically, unexpected information (i.e., information that generates a larger prediction 

136 error) is encoded more strongly and thus can be retrieved more easily in the future. For the task of 

137 learning a word, this framework highlights that prediction errors could influence how learners 
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138 remember and retain word meanings over longer periods of time. While this is not fundamentally 

139 different from the models reviewed above, in those models the focus is on how learners discover the 

140 meanings of words through experience (for examples see Ramscar et al., 2010; Grimmick, 

141 Gureckis, & Kachergis, 2019; Stevens, Gleitman, Trueswell, & Yang, 2017): Prediction errors 

142 generated by current input guide changes in linguistic representations and ensure that the system 

143 can accurately predict future input. The PIMMS framework instead focuses on prediction error’s 

144 influence on retention of novel information in memory, which is the topic we address here, in both 

145 adults and children.

146 At least since Carey and Bartlett (1978), it has been recognised that young children can 

147 accurately retain word meanings in long-term memory, though exactly how much they are able to 

148 retain and under what conditions has been debated (e.g., Horst & Samuelson, 2008; Spiegel & 

149 Halberda, 2011; Vlach & Sandhofer, 2012; see Samuelson & McMurray, 2017, for review). In any 

150 case, to the extent that children do retain word meanings, this long-term retention appears to rely on 

151 domain-general memory mechanisms (Markson & Bloom, 1997, Vlach, 2019; Vlach & DeBrock, 

152 2017). For instance, children’s ability to retain word meanings up to one month is roughly matched 

153 to their ability to retain non-linguistic factual information over the same length of time (Markson & 

154 Bloom, 1997; Vlach & Sandhofer, 2012), and their memory for word meanings is affected by 

155 factors that are known to influence memory for non-linguistic information, such as repetition and 

156 spacing (e.g., Sandhofer & Vlach, 2011) and sleep (e.g., Henderson, Weighall, Brown, & Gaskell, 

157 2012). While adults’ retention rates for novel word meanings can be higher than children’s, they are 

158 similarly matched to their retention rates for novel non-linguistic information (Markson & Bloom, 

159 1997; Sandhofer & Vlach, 2012). 

160 Given these considerations, and the findings that prediction errors influence memory for 

161 non-linguistic information in adults, we might expect prediction error should also affect the 

162 retention of word meanings over time, such that retention accuracy is greater for words that are 
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163 learned in unexpected contexts. However, the prior evidence for this is actually somewhat unclear, 

164 as we review below. 

165 Adults. We are not aware of any study that has tested how prediction error affects retention 

166 of newly-learnt word meanings in adults. However, a small number of studies do provide indirect 

167 evidence for a role of prediction error in adult word learning. Fitneva and Christiansen showed that 

168 adults perform better in a learning task when they encounter a greater proportion of word-referent 

169 mappings that are unexpected (Fitneva & Christiansen, 2011, 2017). Using a cross-situational 

170 learning paradigm, where novel words are repeatedly presented under situations of referential 

171 ambiguity (i.e., with multiple potential referents for each word; Yu & Smith, 2007), they exposed 

172 learners to word-referent mappings that were unexpected because they differed from those trained 

173 during an initial familiarization phase. Other mappings were instead expected, as they did not differ 

174 from those established during the familiarization phase. Strikingly, when the proportion of 

175 unexpected to expected mappings was higher, adult learners actually learned more compared to 

176 when the proportion of unexpected mappings was lower. 

177 But while this finding may suggest that prediction error plays a role in adult word learning, 

178 it is unclear whether this interpretation is correct. According to a prediction error account, 

179 participants generated expectations about the words they were going to hear based on the mappings 

180 established during the familiarization phase and, the more often these expectations were then 

181 disconfirmed (because many mappings had changed), the more the resulting error signals benefitted 

182 learning of new word-referent pairings. But if this advantage stems from prediction errors, then it 

183 should be specific to the unexpected mappings – because it is only for these items that the learner 

184 should generate incorrect expectations. In contrast, Fitneva and Christiansen (2011, 2017) found 

185 that both unexpected and expected mappings were learned better when the proportion of unexpected 

186 mappings was higher, suggesting a very different explanation: The larger number of errors may 

187 have prompted participants to allocate more attentional resources to the task, and thus process all 

188 words and referents more deeply. However, since a recent study instead found that learning was 
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189 enhanced specifically for unexpected mappings (Grimmick et al., 2019), it remains possible that 

190 prediction errors do play a role in adult word learning. 

191 Children. More child studies are relevant to our question, but the picture that emerges from 

192 them is also mixed. Two strands of work suggest that, far from driving learning, generating 

193 incorrect expectations may hinder children’s processing of new information, with negative 

194 consequences for their ability to learn this information. First, when Fitneva and Christansen (2017) 

195 asked whether 4-year-olds’ word learning would benefit from encountering high proportions of 

196 unexpected mappings (as in adults), they instead found that 4-year-olds learn better when the 

197 proportion of unexpected mappings is lower. But since it is unclear whether the findings in adults 

198 demonstrate a role for prediction error, it is also unclear whether the findings in children provide 

199 evidence against it, for the same reason: The expectancy-driven effects were not item-specific. 

200 Second, Benitez and colleagues showed that infants (Benitez & Smith, 2012) and 2-year-

201 olds (Benitez & Saffran, 2018) learn novel word-referent associations better when the associations 

202 are demonstrated in predictable contexts, compared to unpredictable contexts. While this seems to 

203 go against the idea that prediction error boosts learning, in this task predictability was manipulated 

204 by having the referents appear in predictable or unpredictable spatial locations, but the association 

205 between the words and their referents were not themselves more or less predictable. Therefore, the 

206 prediction error signal may have enhanced memory, but for the location of the stimuli (which was 

207 not tested), rather than for the word-referent association. 

208 In contrast, other evidence suggests that disconfirmed expectations boost children’s 

209 memory. First, Stahl and Feigenson (2017) showed that 3-to-6-year-olds are more likely to 

210 remember a novel action word if the action it refers to is unexpected due to violations of physical 

211 “core knowledge” (e.g., a bag “magically” changing the color of objects that are put inside it). 

212 However, in the control condition where no expectation was violated (i.e., the object behaved 

213 “normally”), children did not learn the novel word at all (they performed at chance), likely because 

214 in this condition there was no salient action, and the very use of a novel word was thus 

8



PREDICTION ERROR AND WORD LEARNING

215 pragmatically infelicitous. This finding suggests that perhaps the unexpected action did not boost 

216 memory because it violated an expectation, but rather because it created the pragmatic conditions 

217 for use of a novel word. Moreover, actions that violate core knowledge are not just unexpected, but 

218 outright impossible, so this conclusion may not generalize to word learning in the wild.

219 Second, potential evidence that children learn from disconfirmed expectations comes from 

220 Reuter, Borovsky, and Lew-Williams’s (2019) eye-tracking study. Three-to-five-year-olds heard 

221 novel words while observing two potential referents, one of which was a familiar object whose 

222 name was likely known to the child, while the other was a novel (and thus nameless) object. Infants 

223 as young as 16 months (Halberda, 2003; Horst & Samuelson, 2008) reliably map a novel word unto 

224 the novel object at first exposure under these conditions, following the so-called mutual exclusivity 

225 constraint. Crucially, Reuter and colleagues embedded the novel words within sentences, and 

226 manipulated the degree of semantic constraint of such sentences, so that they would provide either a 

227 strong expectation for the name of the familiar object (high constraint) or no strong expectation 

228 (low constraint). For example, a child looking at pictures of a spoon and a novel object should 

229 generate a strong expectation of spoon following Yummy! Let’s eat soup. I’ll stir it with a..., 

230 whereas following Neat! Look over there. Take a look at the…, no strong expectation for either 

231 object should be generated. 

232 The child then heard a novel word (e.g., …cheem) at the end of both high and low constraint 

233 sentences. As a result of the expectation-strength manipulation, the novel word disconfirmed a 

234 stronger prior expectation in the high than in the low constraint condition, thereby generating a 

235 larger prediction error signal in the former than the latter condition. Reuter and colleagues 

236 hypothesized that novel words associated with larger prediction errors should be better learnt, and 

237 used a preferential looking task to test this: They presented children with each novel word and two 

238 novel referents (the target, and a distractor that was the correct referent for a different novel word), 

239 and measured whether the child looked more at the correct referent than the distractor. Surprisingly, 

240 children’s performance was at chance with words encountered after high-constraint sentence 

9



PREDICTION ERROR AND WORD LEARNING

241 contexts (and instead above chance in the low constraint condition). This finding is difficult to 

242 reconcile with prediction error being the driver of children’s memory: If it were, children should 

243 have been more likely to gaze at the correct referent in the high than the low constraint condition, 

244 because novel words disconfirmed a stronger prior expectation in the former than the latter 

245 condition. 

246 Nevertheless, Reuter et al. (2019) suggested that their findings support error-driven accounts 

247 of novel word learning because they also found a positive correlation between each child’s ability to 

248 revise following a disconfirmed prediction and their performance at test. Specifically, they 

249 computed a “predict-and-revise” looking measure, which was larger the more the child looked at 

250 the familiar object before hearing the novel word (i.e., the stronger their prior expectation) and the 

251 more they looked towards the novel object upon hearing the novel word (i.e., the faster they revised 

252 their prior expectation). They argued that a positive correlation between children’s “predict-and-

253 revise” looking pattern during learning and the extent to which they preferentially looked at the 

254 target referent for the novel word at test was evidence that the revision of incorrect expectations 

255 was driving learning. But while this correlation was specific to novel words that were embedded in 

256 high-constraint sentences (i.e., no correlation was present for items that were presented at the end of 

257 low-constraint sentences), this interpretation is at odds with the lack of an overall memory 

258 advantage for words presented in the high-constraint condition.

259 Thus, we suggest an alternative interpretation is more likely: High-constraint sentences may 

260 have hampered memory by shifting attention away from the novel object, and only those children 

261 who were able to recover from this attentional shift would have learned the correct referent for the 

262 novel word. In contrast, low-constraint sentences did not reduce children’s preference for looking at 

263 the novel object, thus supporting memory regardless of individual differences in sentence 

264 processing ability. Importantly, under this interpretation, the relation between individual children’s 

265 learning and their sentence processing ability could be entirely explained by a common underlying 
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266 factor, such as processing speed, rather than being explained by a specific ability to predict-and-

267 revise.

268 In sum, we do not know whether a prediction-error mechanism underlies the formation and 

269 consolidation of novel word-object associations: Theories of memory based on prediction error 

270 predict that adults and children should form stronger memory representations following the 

271 disconfirmation of stronger expectations, but the empirical evidence is inconclusive. There is 

272 evidence that children have weaker memories for novel words when they are encountered in 

273 unexpected contexts (Benitez & Smith, 2012: Benitez & Saffran, 2018), but also some suggestive 

274 evidence that strong but incorrect expectations may in fact be beneficial (Stahl & Feigenson, 2017; 

275 Reuter et al., 2019). In adults, no study has contrasted memory following a stronger than a weaker 

276 disconfirmed expectation. 

277 Thus, our first question is whether adults acquire stronger memories for new word-object 

278 associations, if they are observed in the context of a violation of a stronger linguistic expectation. 

279 Since word learning is a lifelong process, our second question is whether the underlying 

280 mechanisms remain similar across the lifespan or whether they themselves develop, and therefore 

281 we also compare adult performance to that of 2-to-4-year-olds on the same learning task. If we find 

282 evidence that this effect emerges early in development, this would suggest that the computation of 

283 prediction errors plays a role in word learning from the early stages of language acquisition.

284 The current study

285 Using a task similar to Reuter et al. (2019), we asked whether expectation strength affects 

286 the strength of memory representations for the mapping between a novel word and its referent. 

287 Importantly, we did so both for children (2-to-4-year-olds) and young adults (university students), 

288 so we could directly observe any developmental changes in the mechanisms used for word learning 

289 (unlike Reuter et al., who tested only children). While we disagree with Reuter et al.’s interpretation 

290 of their findings, note that we do not take issue with their design, and in fact we adopt a very similar 

291 design. 
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292 Reuter et al.’s (2019) design has two key strengths. First, it allows for a comparison between 

293 disconfirmed expectations that differ in strength (of the a priori expectation): This is an ideal 

294 comparison for testing the effect of prediction errors on subsequent memory (see Greve et al., 

295 2017). In contrast, most previous studies (Stahl & Feigenson, 2017; Benitez & Smith, 2012; Benitez 

296 & Saffran, 2018) compared confirmed to disconfirmed predictions, which is problematic because 

297 these conditions do not just differ in the magnitude of the prediction error: When a prediction is 

298 disconfirmed, the predicted but not encountered word may linger in memory (Rommers & 

299 Federmeier, 2018), and potentially counteract the benefits of a larger prediction error on memory, if 

300 it interferes with encoding of observed word. Second, expectations strength is manipulated using 

301 sentence contexts (rather than artificially, by changing word-referent mappings mid-way through 

302 the experiment, as in Fitneva & Christiansen, 2011, 2017), thus providing a more ecologically valid 

303 test. We retained both of these aspects of Reuter et al.’s (2019) study, but our procedure did differ 

304 from theirs in some important respects, which we highlight below.

305 Like Reuter et al. (2019), we manipulated contextual constraint in order to vary expectation 

306 strength: Adult and child learners encountered novel words (e.g., cheem) embedded within 

307 sentences that were either more constraining (Now, Peppa will eat the cheem) or less constraining 

308 (Now, Peppa will get the cheem) with respect to the visual context. The visual context always 

309 consisted of two objects: a familiar object that fit the more constraining verb (e.g., an apple for eat) 

310 and an unfamiliar object (e.g., the jelly-like object in Figure 1). Since the younger children we 

311 tested were 2-year-olds (vs. 3-year-olds in Reuter et al., 2019), we took our constraining verbs from 

312 Mani and Huettig (2012), who showed evidence for prediction in 24-month-olds.

313 Based on the vast literature on linguistic prediction in adults and children, we expected 

314 listeners to generate a strong expectation that the familiar object would be mentioned following an 

315 High Constraint context – because Peppa is much more likely to eat the apple than the jelly-like 

316 object in Figure 1 (as we confirmed in a post-test; see Methods below). In contrast, following the 

317 Low Constraint context, listeners could generate only a weaker expectation (or no expectation at 
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318 all), because “Now, Peppa will get the…” is not as strongly predictive of “apple” as “Now, Peppa 

319 will eat the…” is. 

320   In order to disconfirm listeners’ expectations, we relied on the presence of the unfamiliar 

321 object in the display (similarly to Reuter et al., 2019). Since even very young children prefer to map 

322 novel words onto unfamiliar (and thus nameless) objects when the alternative is a familiar object 

323 with a known name (i.e., they follow the mutual exclusivity constraint; Halberda, 2003), both 

324 children and adults should be biased to revise their expectations, and select the unfamiliar object as 

325 the referent of the novel word. This bias may not operate on 100% of trials, so sometimes 

326 participants may select the familiar object as a referent for the novel word. In such cases, it may be 

327 that participants noticed the novel word but chose to interpret it as a novel name for the familiar 

328 object (e.g., the name of a novel variety of apple), or it may be that they failed to notice the novel 

329 word (e.g., because they followed their expectations). 

330 Because it is hard to discriminate between these two options, we conducted analyses that 

331 exclude such cases, and are restricted to instances in which participants selected the unfamiliar 

332 object explicitly, as in these cases we can be certain that they mapped the novel word onto the 

333 unfamiliar object. Crucially, while the occurrence of the novel word should disconfirm participants’ 

334 expectations following both more and less constraining contexts, the magnitude of the resulting 

335 prediction error should be larger following more constraining contexts, where the strength of the 

336 prior expectation was higher. Compare Figures 1a and 1b for a graphical illustration of the 

337 processes at play during high and low constraint learning trials. 

338 To test how memory depends upon processing during learning, we asked participants to 

339 select a referent for each novel word at test to probe retention of the novel mappings. Note that this 

340 task differs from the preferential looking measure used by Reuter et al. (2019), and it is a more 

341 explicit measure of memory. We chose this explicit measure because it is the one used in much 

342 research on the mutual exclusivity constraint. Studies that have tested 2-year-olds on similar tasks 

343 have shown that, even though children correctly map the novel word cheem to the unfamiliar object 
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344 on the fly, they often fail to retain the mapping established via mutual exclusivity in memory when 

345 tested at short (i.e., on the order of 5-10 minutes) retention intervals (e.g., Horst & Samuelson, 

346 2008; see Samuelson & McMurray, 2017 for review; but cf. Spiegel & Halberda, 2011). While this 

347 means we were expecting the youngest children to perform well below ceiling overall in our 

348 explicit memory test, it also provides an additional motivation for our study: If children initially 

349 encode novel words only weakly in memory after a first encounter, is it possible to strengthen such 

350 memory traces by encouraging them to generate linguistic expectations that will be later 

351 disconfirmed? 

352 To summarize, we hypothesize that both adults and young children should be more likely to 

353 remember novel words that violate stronger, as opposed to weaker expectations. We test this 

354 hypothesis in 7 experiments (see Table 1 for an overview). 

355
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369 Table 1. Overview of experiments. Please refer to the text for an explanation of the 

370 differences between experiments.

Experiment Participants Aim Manipulation Testing modality / task 

during break

Context 

repetitions

1 40 adults Power 

calculation

Verb constraint Experimenter present / 

tapping, conversation 

with experimenter

1

2 40 adults Power 

calculation

Verb constraint Online / video + 

comprehension questions

2

3 58 adults Replication of 

Exp. 1-2

Verb constraint Online / video + 

comprehension questions

1

4 58 adults Control 

experiment

Object distractor Online / video + 

comprehension questions

1

5 65 adults Replication of 

Exp. 4

Object distractor Online / video + 

comprehension questions

1

6 80 children Child version 

of Exp. 1-3

Verb constraint Experimenter present / 

tapping

1

7 86 children Child version 

of Exp. 4-5

Object distractor Experimenter present / 

tapping

1

371

372 Experiments 1-3: Verb-constrained prediction errors in adults

373 While the paradigm was designed with children in mind, we first tested it on adult participants to 

374 assess the robustness of the effect. We established this in three experiments, which differed 

375 minimally in procedure. These differences are described below (and summarized in Table 1), but 

376 since findings were consistent across experiments, here we present combined results. All materials, 

377 data, and analyses scripts, including separate analyses and graphs for each experiment are available 
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378 at https://osf.io/zvn6u/?view_only=ce8cc8f5432e41019498a98a2687982b, see Additional analyses 

379 in the analysis_scripts folder, section 1). 

380 Methods.

381 Participants. Experiments 1 and 2 tested 40 adults each; this sample size was a rough estimate, and 

382 it was expected to yield around 80% power only with a large effect size (d=0.8; Westfall, Kenny, & 

383 Judd, 2014). We then used a simulation approach to compute sample size (N) for subsequent 

384 studies. We did this through a bootstrapping approach: we repeatedly (1000 times) randomly 

385 sampled N adult participants, analyzed retention accuracy as reported below (Data Analysis), and 

386 extracted the z statistics associated with the effect of interest (i.e., the effect of sentence constraint). 

387 We defined power as the percentage of samples that yielded z equal to or greater than 1.645 - i.e., 

388 the threshold for significance of a one-tailed test, as our prediction is directional: High Constraint 

389 contexts should lead to better memory than Low Constraint contexts. When this procedure was 

390 applied to data from Experiments 1 and 2, it indicated that 58 participants would achieve 95% 

391 power, so we recruited that many participants for a replication (Experiment 3). In total, 138 

392 University of Edinburgh students (32 male, age range: 17 to 31; 40 participants did not provide age 

393 information) took part across the three experiments, either for course credit or £2; 16 reported to be 

394 native speakers of a language other than English, but since this did not affect the results (see 

395 Additional analyses in the analysis_scripts folder on the OSF, section 4), the analyses below 

396 disregard language status. The study received ethical approval from the University of Edinburgh.

397

398

399

400

401

402
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403 Figure 1. Schematic depiction of the experimental design in Experiments 1-3 and 6, including a 

404 graphical illustration of the processes at play during different types of learning trials: a) High 

405 Constraint trials, b) Low Constraint trials. Note that in (a) we conservatively assume no expectation 

406 that the novel object will be named before the participant hears the novel word – this is because the 

407 novel objects only had a loose fit with the constraining verb (e.g., the spiky red object in the figure 

408 had a jelly-like consistency). We depict only learning trials on which participants choose the novel 

409 object as the referent of the novel word.

410

Experiments 1-3 (Adults) and 6 (Children)

Learning Phase

a) High Constraint

Familiar

Distractor

Novel

Target

Tap the cheem!

Retention Phase

Now, Peppa will eat the…………… cheem. Put your finger on the…… cheem!

Expectation generation Expectation updating Choice

b) Low Constraint 

Now, Peppa will get the…………… cheem. Put your finger on the……. cheem!

Expectation generation Expectation updating Choice

Choice

Target

5 minutes later

411 Materials and Procedure. The experiments consisted of two phases (see Figure 1). In the learning 

412 phase (top), participants completed 14 trials: Following two practice trials, 8 experimental trials 

413 were randomly interspersed with 4 filler trials. All learning trials had the same structure. 

414 Participants saw a picture of the cartoon character Peppa Pig centered on the top half of the screen. 

415 On the bottom half of the screen, they saw photographs of a familiar and an unfamiliar object. 

416 Participants began a trial by clicking or tapping on the picture of Peppa Pig, which triggered 

417 a pre-recorded sentence. To test whether repetition helps participants revise a disconfirmed 

418 expectation, in Experiment 2 adults heard two sentences, so the target word was always presented at 
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419 least twice. However, adults’ performance in Experiment 2 did not differ from Experiment 1, where 

420 only one sentence was used. Thus, Experiment 3 and all other experiments reported here used only 

421 one sentence. Participants could listen to the sentence as many times as they wished by tapping on 

422 the top picture again.

423 Filler sentences were always high constraint and mentioned the predictable, familiar object 

424 (e.g., Now, Peppa will rock the baby) in order to encourage participants to predict familiar words. 

425 Crucially, on half the experimental trials participants listened to a High Constraint sentence (e.g., 

426 Now, Peppa will eat the, when the familiar object was an apple), but on the other half they listened 

427 to a Low Constraint sentence (e.g., Now, Peppa will get the). This way we manipulated the degree 

428 to which participants expected to hear the name of the familiar object. Constraint was manipulated 

429 within participants and items, counterbalanced across two lists. 

430 While filler sentences always ended with the name of the familiar object, experimental 

431 sentences ended with one of 8 novel pseudowords (cheem, dite, doop, fode, foo, pabe, roke and 

432 yok), mostly drawn from Horst and Samuelson (2008). After the sentence, learners heard an 

433 instruction (e.g., Put your finger on the cheem!) asking them to select the object corresponding to 

434 the final word in the sentence. Unfamiliar objects were selected from Horst and Hout’s (2016) 

435 NOUN database; familiarity and nameability were kept as low as possible, but such that the novel 

436 objects would always match the constraint of the verb in High Constraint sentences (e.g., the object 

437 paired with eat had to look edible). A post-test with 20 adults (7 males, 22 to 61 years of age) 

438 recruited from the online platform CloudFlower confirmed that novel objects were a better fit for 

439 the constraining verbs they were paired with (M = 3.08 on a 1-to-7 Likert scale), than for another 

440 (randomly selected) constraining verb (M = 2.19,  t(19) = 4.12, p<.001). The same post-test showed 

441 that, unsurprisingly, familiar objects were a better fit for the constraining verbs (M = 6.10) 

442 compared to the unfamiliar objects (M = 3.08) they were paired with (t(19) = 7.85, p < .001). We 

443 return to this issue below as it was part of the motivation for conducting Experiments 4 and 5.
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444 Following completion of the learning phase, participants took a short (approximately 5-

445 minute-long) break. What happened during the break depended on whether the experiment was 

446 conducted in the lab or online. Participants in Experiment 1 were tested in the lab and, during the 

447 break, they first tapped on a series of cartoon characters (this task was designed for children, and is 

448 described in more detail below, as it was also used in Experiments 6 and 7); since they completed 

449 this task quite quickly, for the remaining time they engaged in a conversation with the experimenter 

450 about their studies. Participants in Experiments 2 and 3 completed the study online and, during the 

451 break, they were asked to watch a short video from an episode of Peppa Pig and answer four 

452 comprehension questions (to ensure they were paying attention). 

453 Immediately after the break, all participants completed 8 trials in the retention phase (bottom 

454 of Figure 1). On each retention trial, they again tapped on the picture of the cartoon character Peppa 

455 Pig (top of the screen) and then heard an instruction to select the object corresponding to one of the 

456 novel words (e.g., Tap the cheem!), while they observed three randomly-ordered pictures at the 

457 bottom of the screen: the unfamiliar target object (the one that had appeared on the learning trial the 

458 novel word was used on) and two other unfamiliar objects, which served as distractors. Of these, 

459 one was a target object from a different trial, while the other had been also encountered by 

460 participants in the learning phase, but on a filler trial, and had therefore not been named (see 

461 Additional analyses in the analysis_scripts folder on the OSF, section 5, for a breakdown of 

462 participants’ errors by distractor type). Across retention trials, each unfamiliar target object 

463 appeared twice (once as target, once as distractor) and each unfamiliar filler object also appeared 

464 twice (always as a distractor, but paired with two different target words). Participants never 

465 received any feedback about the accuracy of their choices. When pairing target objects with 

466 distractors, we made sure that the average pairwise dissimilarity of the three objects was 

467 comparable across trials (Mean = 0.8173, SD = 0.098, range [0.6490, 0.9624]; ratings from Horst 

468 and Hout, 2016). 
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469 All spoken instructions were recorded by a female native speaker of Scottish English with 

470 child-directed prosody. Target words were recorded separately and combined with the spoken 

471 contexts online, so that we could fully randomize object-word pairings for each participant. Trial 

472 order was also randomized separately for each participant and each phase of the experiment. 

473 Participants first completed the learning phase for all items and then completed the retention phase 

474 (i.e., learning and retention were fully blocked, with no interleaving) The task was custom-coded in 

475 HTML and Javascript. An OSF link to the code is available upon request: Since some of the visual 

476 stimuli are protected by copyright, we are unfortunately unable to make all materials publicly 

477 available.

478 Data Analysis and Results.

479 Data analysis. We analyzed participants’ choices on learning trials (i.e., choosing the novel vs. 

480 familiar object) and their accuracy on retention trials as a function of Constraint. For the retention 

481 trials, accuracy was coded in terms of whether participants were able to retain the pairing of the 

482 novel label with the novel object, regardless of whether they had chosen the novel object or the 

483 familiar distractor during the learning phase. Additional analyses of retention accuracy controlled 

484 for the choice made on the corresponding learning trial (Choice-at-learning) and were followed up 

485 with separate analyses of retention trials for which the novel object had been chosen (Novel) on the 

486 corresponding learning trial, and retention trials for which the familiar object had been chosen 

487 during learning (Familiar) to check how previous referential choices affected retention. Fixed 

488 effects were contrast coded and centered.

489 Since we combined data for three experiments, Experiment was added as an additional 

490 factor with three levels and contrast coded; the first contrast compared performance in Experiment 

491 1, which took place in the lab, to performance in the two online experiments (2 and 3), while the 

492 second contrast compared performance in Experiment 2 to Experiment 3. The models included 

493 interactions between these two contrasts and the fixed effect of interest (Constraint); for analyses of 

494 retention accuracy, we initially also included interactions between the Experiment contrasts and 
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495 Choice-at-learning, but these more complex models did not converge. All analyses used generalized 

496 linear mixed effects models with a logistic link function (function glmer from the lme4 package; 

497 Bates, Maechler, Bolker, & Walker, 2015) in R (R, Version 3.5.1). Random effects structure was 

498 kept maximal, unless (1) correlations between random effects and/or (2) higher-order random 

499 slopes had to be dropped to aid convergence (full model specifications available in the Analysis 

500 Summary within the analysis_scripts folder, section 1, at the OSF link). Instead of p values, we 

501 report 95% confidence intervals for model estimates from the confint function (method=“Wald”). 

502 Results. To maximize power, we report a combined analysis of data from all three adult 

503 experiments, but findings were highly consistent across all experiments (see Additional analyses in 

504 the analysis_scripts folder, section 1, on the OSF for separate analyses for Experiments 1, 2 and 3), 

505 and there were no significant differences between Experiments (either as main effects or 

506 interactions with Constraint) in any of the analyses reported below (see Analysis Summary in the 

507 analysis_scripts folder, section 1, on the OSF). Importantly, the planned replication (Experiment 3) 

508 was successful (z = 1.65). Descriptive statistics for these and subsequent experiments are provided 

509 in Table 2.

510 Accuracy on filler trials was 100%. During learning, adults were more likely to (correctly) 

511 select the novel object on low constraint (92%) than high constraint trials (81%); this difference was 

512 significant: log-odds B = -1.59, SE = 0.26, z = -6.23, CI = [-2.53,-1.09]. Conversely, on retention 

513 trials, adults were more accurate for novel word-object pairs they had encountered on High 

514 Constraint trials during the learning phase (76%) than on those they had encountered on Low 

515 Constraint trials (69%); log-odds B = 0.39, SE = 0.15, z = 2.65, CI = [0.10,0.67]; see Figure 2, top 

516 left. This pattern was qualified by an interaction between Constraint and Choice-at-learning (log-

517 odds B = 1.38, SE = 0.49, z = 2.81, CI = [0.42, 2.33]), which indicated that it was driven by novel 

518 (i.e., “correct”) learning trials; log-odds B = 0.66, SE = 0.17, z = 3.98, CI = [0.34,0.98]. In contrast, 

519 retention of familiar (i.e., “inaccurate”) learning trials tended to be worse for High Constraint items, 

520 but this pattern was not reliable; CI = [-1.68,0.07].
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521 Figure 2. Retention accuracy (%) as a function of Verb Constraint (left) or type of Object Distractor 

522 (right) and of the referent chosen during learning (Familiar vs. Novel). The top panels report data 

523 from the adult experiments (Verb Constraint: Experiments 1-3; Object Distractor: Experiments 4-

524 5), while the bottom panels report the child data (Verb Constraint: Experiment 6; Object Distractor: 

525 Experiment 7). Conditions where weaker expectations were violated are represented by a filled 

526 circle, while conditions where stronger expectations were violated are represented by an empty 

527 circle. The error bars represent 95% bootstrap CI’s (1000 samples) over subjects. The dashed 

528 horizontal lines represent chance performance (33%).

529

530

531

532

533

534

535

536

537
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538

539 Table 2. Descriptive statistics for all experiments.

Experiment 1-3 4-5 6 7

% Filler accuracy 

(learning phase)

100 >99 >99 96

High Constraint/ Plausible 

Distractor trials

81 86 66 63% Novel object choices 

(learning phase)

Low Constraint/Implausible 

Distractor trials

92 96 77 69

High Constraint/ Plausible 

Distractor trials

80 79 57 50% Retention accuracy 

(novel trials)

Low Constraint/Implausible 

Distractor trials

69 68 52 49

High Constraint/ Plausible 

Distractor trials

61 73 30 25% Retention accuracy 

(familiar trials)

Low Constraint/Implausible 

Distractor trials

78 48 35 20

540

541

542 Discussion. 

543 In accord with prediction error-based theories of memory (Henson & Gagnepain, 2010), 

544 adults were more likely to retain a newly formed association between a word and its referent when 

545 that association disconfirmed a stronger expectation compared to a weaker one. Importantly, this is 

546 not merely a novelty effect: Pseudowords and unfamiliar objects were equally novel for participants 

547 across High and Low Constraint contexts. Critically, what changed was the strength of the prior 

548 expectations generated by the verbs. 
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549 However, adults were also much more likely to disregard mutual exclusivity when the 

550 constraint was High rather than Low (e.g., picking a picture of an apple as the referent for cheem

551 more often after eat than get). This may suggest that, when contextual support is strong, adult word 

552 learners may be more likely to infer that a novel word is a synonym for a highly expected familiar 

553 word (e.g., cheem is a synonym for apple, or perhaps a type of apple). While this finding is 

554 interesting in itself, and in line with previous evidence about adults’ learning of novel word 

555 meanings from context (Borovsky et al., 2010), it also means that we may have underestimated the 

556 benefit of disconfirming strong expectations: Since familiar target objects were a much better fit 

557 than unfamiliar objects after High Constraint contexts, adult learners may have found it more 

558 difficult to revise their expectations following such contexts. Thus, we devised a second version of 

559 the task where new unfamiliar objects were selected to better fit the High Constraint verbs. 

560 Importantly, the new version also addressed a potential confound. Given that High and Low 

561 Constraint conditions used different verbs, and that constraining verbs tend to be semantically 

562 richer, it is possible that adult learners performed better in the High Constraint condition simply 

563 because they could build richer and more distinctive representations for the word meanings, 

564 providing more cues for retrieving information from memory. In the new version we therefore kept 

565 sentential contexts constant and manipulated expectations by varying the plausibility of the familiar 

566 object distractor instead. 

567

568

569

570

571

572

573

574
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575

576 Figure 3. Schematic depiction of the experimental design and graphical illustration of the processes 

577 at play during different types of learning trials in Experiments 4-5 and 7; a) Plausible Distractor 

578 trials, b) Implausible Distractor trials. Note that in (a) the strength of the expectation is larger for the 

579 plausible familiar distractor (apple) than the novel object (exotic fruit), but there is some 

580 expectation for the latter to be named – this reflects the findings from our post-test: The novel 

581 objects used in Experiments 4-5 and 7 were less of a good fit for the constraining verbs compared to 

582 the familiar objects, but they were also a better fit compared to the novel objects used in 

583 Experiments 1-3 and 6 (cf. Figure 1). In (b) the expectation updating step confirms the expectation 

584 generated initially (i.e., that the novel object will be named). We depict only learning trials on 

585 which participants choose the novel object as the referent of the novel word.

586

Experiments 4-5 (Adults) and 7 (Children)

Learning Phase

Retention Phase

a) Plausible Distractor

Plausible 

Familiar

Distractor

Novel

Target

Tap the cheem!

Now, Peppa will eat the…………… cheem. Put your finger on the…… cheem!

Expectation generation Expectation updating Choice

b) Implausible Distractor 

Now, Peppa will eat the…………… cheem. Put your finger on the……. cheem!

Expectation generation Expectation updating Choice

Novel

Target

Implausible 

Familiar

Distractor

Choice

Target

5 minutes later

587 Experiments 4 and 5: Generating prediction errors using plausible distractor objects in adults

588 These experiments were closely modelled on Experiments 1-3 but with two key 

589 modifications. First, we replaced all unfamiliar objects with objects that, while still unfamiliar, 
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590 would better fit constraining verbs. For example, the target for eat was now an exotic fruit (see 

591 Figure 3; a full list of materials is available in the materials&lists folder on the OSF). An additional 

592 20 adults (6 male, 19 to 57 years of age), who participated in a similar post-test to the one 

593 mentioned above, rated the new unfamiliar objects as more likely to undergo the actions referred to 

594 by the constraining verbs (M=4.91), compared to the unfamiliar objects used in Experiments 1-3 (M 

595 = 3.08, t(34.72) = 5.40, p < .001). 

596 Secondly, learners were exposed only to semantically rich verbs (the constraining verbs 

597 from Experiments 1-3). Rather than manipulating expectations by varying the verb, we instead 

598 paired the same constraining verb (e.g., eat) either with a familiar object that fit its constraint (e.g., 

599 apple, as in Experiments 1-3) or with a different familiar object (e.g., car), which was implausible 

600 given the verb (see Figure 3b). Thus, if semantic richness was responsible for the memory boost we 

601 observed previously, we should now find no difference in retention accuracy using this design. 

602 However, if the memory boost was driven by disconfirmed expectations, then we should find better 

603 retention accuracy for trials with plausible than implausible familiar object distractors. 

604 Implausible distractors should facilitate mapping of the novel word onto the correct, 

605 unfamiliar target, even before the novel word is heard, so they should make it less likely that 

606 participants will have their expectations disconfirmed (see Figure 3b); in other words, on 

607 implausible distractor trials both the sentence context and the mutual exclusivity constraint should 

608 bias participants to map the novel word onto the unfamiliar object. In contrast, on plausible 

609 distractor trials, participants should still generate a strong expectation that the plausible familiar 

610 distractors will be named (just as on high constraint trials in Experiments 1-3); in addition, they 

611 may generate a weaker expectation that the unfamiliar object will be named (as this also fits the 

612 constraint of the verb, though not as well as the familiar object). In any case, the occurrence of the 

613 novel word should disconfirm the stronger expectation for the familiar distractor to be named, 

614 generating prediction error (see Figure 3a).

615 Participants.
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616 One hundred and twenty-three adult participants took part online. Fifty-eight of these were students 

617 from the University of Edinburgh (14 male, age range: 18 to 22, one participant did not provide age 

618 information), who took part in Experiment 4. The remaining 65 participants were students from 

619 Cardiff University (11 male, age range: 19 to 22, two participants did not provide age information) 

620 and they took part in Experiment 5; two participants only completed the learning phase, so analyses 

621 of retention accuracy are based on a sample size of 63 participants. Across the two experiments, 

622 eleven participants were native speakers of a language other than English (6 in Experiment 4, 5 in 

623 Experiment 5). 

624 Methods.

625 The procedure was identical to Experiment 3. The design and materials were similar except for the 

626 modifications described above: New unfamiliar target objects were chosen that provided a better fit 

627 to the constraining verbs, and only sentences with constraining verbs were used, as we instead 

628 varied the identity of the familiar distractor object, which could either be a good fit for the verb 

629 (e.g., apple for eat; Plausible Distractor) or not (e.g., car for eat; Implausible Distractor).

630 Experiment 4 and 5 were almost identical replications of each other, with only a minor 

631 variation in the assignment of items to conditions across the two experimental lists. We used two 

632 lists in order to counterbalance the assignment of items to conditions (Plausible vs. Implausible 

633 Distractor). While analyzing Experiment 4 data, we noticed that for a subset of the items, adults 

634 were particularly likely to select the incorrect (familiar) distractor as the referent for the novel word 

635 in the Plausible Distractor condition (but not in the Implausible Distractor condition), and these 

636 items happened to cluster together in the counterbalancing (i.e., they all appeared in the Plausible 

637 Distractor condition in the same list). As a result, one list led to fewer novel object selections during 

638 the learning phase on Plausible Distractor than Implausible Distractor trials (88% vs. 99% Novel 

639 choices), while the other did not (98% vs. 96% Novel choices). Since we were concerned this may 

640 affect the results, we re-distributed item versions across lists before running Experiment 5. Lists for 

641 both experiments are available in the materials&lists folder on the OSF.
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642 Results and Discussion.

643 Since the two experiments yielded comparable findings, here we report combined analyses to 

644 maximize power. Again, Experiment (contrast coded) and its interactions with the predictors of 

645 interest (Distractor and Choice-at-Learning) were added to all models, and again there were no 

646 significant differences between experiments, and there were no interactions modulating any of the 

647 effects reported below. For separate analyses for each experiment, see Additional analyses in the 

648 analysis_scripts folder, section 2, on the OSF. Accuracy on filler trials was higher than 99%. 

649 During learning, adults were more likely to (correctly) select the target when the familiar distractor 

650 was implausible (96%) compared to when it was a good fit (86%), though this difference was only 

651 marginal; log-odds B = -1.84, SE = 1.10, z = -1.68, CI = [-3.99,0.31].

652 Most importantly, adult learners performed better at retention when their expectations had 

653 been disconfirmed during learning (78%) than when they had not (67%); log-odds B = 0.61, SE = 

654 0.19, z = 3.43, CI = [0.26,0.96] (and this pattern did not depend on their choice during learning; CI 

655 = [-2.22,0.49]); see Figure 2, top right. Thus, disconfirmed expectations can enhance memory for 

656 novel words, and it is unlikely that the findings from Experiments 1-3 were only due to differences 

657 in semantic richness between verbs.

658 Experiments 6-7: Children

659 Having established that adults’ memory for novel word-object associations is boosted by larger 

660 prediction errors, we tested whether children would show similar effects using both the original 

661 design (i.e., manipulating verb constraint as in Experiments 1-3) and the modified design (i.e., 

662 manipulating the distractor object as in Experiments 4-5). 

663 Methods.

664 Participants. A refined power calculation based on data from Experiment 1-3 (total N = 138) 

665 suggested that we may have overestimated the size of the effect in adults. This refined power 

666 analysis indicated that a sample size of N=80 would achieve 83% power, so we aimed to recruit at 

28



PREDICTION ERROR AND WORD LEARNING

667 least 80 children per experiment. The final sample sizes were 80 in Experiment 6 and 86 in 

668 Experiment 7.

669 We had originally planned to test 2- and 3-year-olds because this age range sits at the 

670 intersection between research on mutual exclusivity (e.g., Horst & Samuelson, 2008) and on 

671 linguistic prediction (Borovsky et al., 2012; Mani & Huettig, 2012), but a few 4-year-olds were 

672 included (10 in Experiment 6, 13 in Experiment 7) due to recruitment constraints; additional 

673 analyses including the child’s age in months did not reveal any age-related differences (see 

674 Additional analyses in the analysis-scripts folder, section 3, on the OSF), so below we report 

675 analyses that collapse across all ages. Children in Experiment 6 (Mage = 38 months, range = 25-56 

676 months; 45 males, 35 females) were recruited from nurseries in the Edinburgh area, Edinburgh Zoo, 

677 a local library, and from a database of families interested in research; children in Experiment 7 

678 (Mage = 38 months, range = 24-59 months; 43 males, 43 females) were recruited from nurseries in 

679 and around Cardiff, Techniquest (a science museum in Cardiff), from a database of families 

680 interested in research, or through personal contacts. Written informed consent was obtained from all 

681 caregivers and verbal assent from all children. All participants were exposed to English as one of 

682 their home languages or at nursery, and some were exposed to at least one additional language (15 

683 in Experiment 6, 16 in Experiment 7). Children who grow up bilingual may follow the mutual 

684 exclusivity principle to a lesser extent than monolingual children (Byers‐Heinlein & Werker, 2009), 

685 so we added language background as a covariate in preliminary analyses. Since no differences were 

686 found in these preliminary analyses, below we report analyses collapsing across number of 

687 languages; note that in Byers-Heinlein and Werker (2009) the largest differences were observed 

688 between monolingual and trilingual children and there were only two trilingual children in our 

689 sample.

690 Procedure. The procedure was as similar as possible to the adult one. Children completed the task 

691 on a touch-screen tablet. Although they were allowed to pace the task for themselves, the 

692 experimenter monitored them closely to make sure they were paying attention to the spoken 
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693 instructions and, in case they appeared distracted, encouraged them to listen to the instructions 

694 again. During the break between the learning phase and the retention phase of the experiment, 

695 children completed a series of three tapping games involving known cartoon characters (as in 

696 Experiment 1); in each game, their task was to find the character named by the experimenter and 

697 “turn it” into a green tick mark by tapping on it with their finger. Experiment 6 used the same lists 

698 as Experiments 1-3 and Experiment 7 used the same lists as Experiment 4. 

699 Results.

700 Children’s accuracy on filler trials was high (Exp. 6: >99%, Exp. 7: 96%). Like adults, 

701 children were more likely to (correctly) select the novel object on Low Constraint than High 

702 Constraint trials; Exp. 6: 77% vs. 66%); log-odds B = -0.59, SE = 0.25, z = -2.33, CI = [-1.08,-

703 0.09]. Numerically, they were also more likely to select the novel object when the familiar 

704 distractor was implausible; Exp. 7: 69% vs. 63%), but this difference was not reliable; CI = [-

705 0.67,0.10]. 

706 In contrast to the adult findings, children’s retention of the novel word-object mappings was 

707 unaffected by the expectations they had generated during learning (see Figure 2, bottom panels). In 

708 Experiment 6, they were as accurate for pairs they had encountered on High (48%) or Low 

709 Constraint (48%) trials; CI = [-0.35,0.30]. In Experiment 7, they were similarly accurate regardless 

710 of whether the familiar distractor fit the verb well (41%) or was implausible (40%); CI = [-

711 0.26,0.36]. These findings held even when we restricted the analysis to items for which children had 

712 chosen the novel referent during the learning phase (Experiment 6: CI = [-0.18,0.60], Experiment 7: 

713 CI = [-0.32,0.45]).

714 Retention accuracy was much higher when children had (correctly) selected the novel object 

715 during learning, than when they had not (Exp. 6: 55% vs. 32%; Exp. 7: 50% vs. 23%); Experiment 

716 6: log-odds B = 1.10, SE = 0.27, z = 4.01, CI = [0.56,1.63]; Experiment 7: log-odds B = 1.33, SE = 

717 0.21, z = 6.44, CI = [0.92,1.73]. However, choice at learning did not interact with our 

718 manipulations.

30



PREDICTION ERROR AND WORD LEARNING

719 While we set our sample size for each study using power analyses, these were based on adult 

720 data, which are likely less variable than children’s. However, combined analyses of data from both 

721 Experiment 6 and 7 found no evidence for an effect of expectation strength on retention accuracy 

722 (log-odds B = 0.10, SE =  0.13, z =  0.79, CI = [-0.15,0.35]), despite their increased power. There 

723 was also no indication that performance improved within the age range tested (log-odds B = -0.001, 

724 SE =  0.007, z = -0.09, CI = [-0,015,0.014]), nor that the size of the expectation strength effect was 

725 larger for older children (log-odds B = 0.01, SE = 0.02, z = 0.99, CI =[-0.01,0.04]; see Additional 

726 analyses in the analysis_scripts folder, section 3, on the OSF). 

727 Follow-up analyses combining data from all 7 experiments showed that, overall, adults’ 

728 choices at learning were affected by the strength prior expectations more than children’s (log-odds 

729 B = -0.94, SE =0.23, z = -4.04, CI = [-1.40,-0.48]). Importantly, these analyses also confirmed that 

730 adults’ retention performance was affected by the strength prior expectations more than children’s 

731 (log-odds B = 0.39, SE = 0.18, z = 2.18, CI = [0.04,0.75]). 

732

733 Discussion

734 Unlike for adults, prediction errors did not enhance children’s memory for word-referent 

735 associations. This was despite clear evidence that children can generate expectations based on the 

736 constraint of verbs even at age 2 (Mani & Huettig, 2012; recall that all of our constraining verbs 

737 were English translations of stimuli in Mani and Huettig’s German study). Moreover, children 

738 clearly demonstrated sensitivity to the constraint manipulation in Experiment 6: Like adults, they 

739 were much more likely to disregard mutual exclusivity when constraint was High (i.e., picking the 

740 apple as the referent more often after eat than get), though their choices at learning were less 

741 sensitive than adults’ to the strength of prior expectations. Finally, although children’s memory 

742 performance was (unsurprisingly) lower than adults’, it was still above chance, which suggests that, 

743 although the task was difficult, children still encoded significant amounts of information during the 
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744 learning phase. Thus, our results cannot be explained by a floor effect. They suggest that prediction 

745 errors play a surprisingly small role in how children encode word meanings.

746 Moreover, as we discuss below, other aspects of these data may be informative for models 

747 of children’s word learning. Children were strongly affected by their choices during learning: In 

748 fact, while their retention was above chance-level (33% in this task) for words they had (correctly) 

749 mapped onto the novel referent during learning, it was at chance for words they had instead mapped 

750 onto the familiar referent. This suggests that children had only tracked one potential word-referent 

751 mapping during this task (Stevens et al., 2017; Trueswell, Medina, Hafri, & Gleitman, 2013). We 

752 return to this point in the General Discussion. Finally, while Horst and Samuelson (2008) found no 

753 evidence for retention in 24-month-olds, we showed that children aged between 2 and 4 years were 

754 able to retain the new word-referent mappings at above-chance levels over at least a 5-minute 

755 period. This could suggest that children’s retention abilities improve dramatically during the second 

756 year of life, but note another important difference between our design and Horst and Samuelson’s: 

757 We presented the novel words in informationally rich, high constraint sentential contexts (e.g. ...eat 

758 the cheem), which may have facilitated more robust encoding of the word-referent mappings, 

759 whereas they used only low constraint contexts (e.g., get the cheem!).

760

761 General Discussion

762 Can a prediction-error mechanism explain how adults and children encode associations 

763 between novel word forms and their meanings? The evidence around this important question is 

764 surprisingly mixed and, despite considerable evidence that both adults and children can process 

765 language predictively, the role of prediction in the creation of new linguistic representations 

766 remains poorly understood. In the introduction, we argued that a key hypothesis of error-driven 

767 accounts of memory formation is that the disconfirmation of expectations should enhance memory 

768 for the unexpected information and, importantly, the more so the stronger the initial expectation. In 

769 this study, we tested this prediction in both 2-to-4-year-olds (2 experiments, combined N = 166) 
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770 and young adults (5 experiments, combined N = 259). Below, we summarize our findings and then 

771 discuss their implications for our understanding of the mechanisms that support word learning and 

772 their development.

773 There are two key findings. First, young adults are more likely to remember a novel word-

774 object association that has disconfirmed a stronger, compared to a weaker, expectation. We 

775 established this finding (Experiments 1 and 2), directly replicated it (Experiment 3), and showed 

776 that it still held when we modulated expectation strength through visual rather than linguistic 

777 context (Experiments 4 and 5). Second, and in contrast to the adult findings, 2-to-4-year-olds’ 

778 memory was not enhanced by violations of stronger, compared to weaker expectations 

779 (Experiments 6 and 7). This was despite the fact that children clearly generated linguistic 

780 expectations: These expectations were strong enough to affect their referential choices (i.e., 

781 choosing the familiar object more often when it was more expected). Moreover, these expectations 

782 also had an indirect effect on memory: When children failed to revise during the learning phrase, 

783 they retained nothing about the novel objects and associated labels for the test phase. But when 

784 words were mapped to novel objects during learning, expectation strength did not affect children’s 

785 retention. 

786

787 Prediction error shapes the encoding of linguistic information in adult memory: Implications 

788 for models of word learning.

789 Our adult findings clearly show that linguistic expectations shape the encoding of the link 

790 between novel words and their meanings in memory, and can thus be viewed as an extension of the 

791 PIMMS framework for memory (Henson & Gagnepain, 2010; Greve et al., 2017) to linguistic

792 representations. Importantly, these findings also have far-reaching consequences for computational 

793 models of word learning. Such models have implemented a variety of different mechanisms, from 

794 associative (i.e., Hebbian) learning (e.g., Kachergis, Yu, & Shiffrin, 2012; McMurray, Horst, & 

795 Samuelson, 2012; Yu, Smith, Klein, & Shiffrin, 2007) to Bayesian inference (e.g., Xu & 
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796 Tenenbaum, 2007; Frank, Goodman, & Tenenbaum, 2009), from hypothesis testing (e.g., Stevens et 

797 al., 2017; Trueswell et al., 2013; Yu et al., 2007) to the application to semantic-interpretation rules 

798 (e.g., Siskind, 1996). However, with a few exceptions (Plaut & Kello, 1999; Ramscar et al. 2010; 

799 Grimmick et al., 2019; Stevens et al., 2017), such mechanisms have not included error-driven 

800 learning. 

801 An error-driven learning mechanism is one that updates the current state of the model based 

802 on the discrepancy between expected and observed inputs. By doing so, it can account for the role 

803 played by prior expectations in learning: In our study, generating a stronger, but incorrect, prior 

804 expectation led to the creation of a stronger memory trace for the correct word picture-mapping 

805 (once the initial expectation was revised), suggesting that the generation of incorrect expectations 

806 may benefit word learning. It is useful to contrast this with associative (Hebbian) learning: In its 

807 simplest form, an associative word learner tracks the co-occurrences between words and referents, 

808 augmenting the strength of the association between a word and a referent every time they co-occur 

809 (e.g., Yu et al., 2007). More sophisticated associative models include parameters that let the 

810 strength of associations decay over time, and can also model attention – that is, the fact that not all 

811 possible word-referent associations are processed and stored equally (e.g., Kachergis et al., 2012). 

812 However, associative models cannot straightforwardly account for the fact that association 

813 strength depends on prior expectations. Recall that Grimmick et al. (2019) recently showed that 

814 training adults on one set of word-referent mappings in a cross-situational learning paradigm, and 

815 then changing the mappings, led to better memory performance for the items that had been changed 

816 (i.e., initially incorrect items) than for those that had not. We argued that Grimmick et al.’s finding 

817 also supports the hypothesis that prediction error is implicated in adult word learning and, indeed, in 

818 order to reproduce their human data, Grimmick et al. augmented an associative word learning 

819 model (Kachergis et al., 2012) with a prediction-error mechanism; the associative model by itself 

820 could not reproduce their finding. Similarly, our findings suggest that adult word learning makes 

821 use of a prediction-error mechanism. 
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822 Our findings can also be explained in terms of McMurray et al.’s (2012) competition-based 

823 model of word learning. This model assumes that potential referents for a heard word compete with 

824 each other, and that this process of “in-the-moment” competition during linguistic processing can 

825 affect long-term learning (i.e., leading to changes in the weights representing the strength of 

826 associations between words and their referents). In our study, competition levels were likely higher 

827 on high-constraint and plausible distractor trials (compared to low constraint and implausible 

828 distractor trials, respectively), and thus the novel target referent had to reach a higher level of 

829 activation in order to be selected. If this higher activation translates into stronger association 

830 weights, McMurray et al.’s model could explain the higher memory performance displayed by 

831 adults for items encountered on those trials. 

832 Note that other types of models can also be augmented with prediction-error mechanisms. 

833 Recent years have seen the emergence of so-called hypothesis-testing models of word learning 

834 (e.g., Trueswell et al., 2013). In these models, when learners hear a novel word, they generate a 

835 single hypothesis about its referent, rather than tracking all possible associations between the word 

836 and every co-occurring referent. If this hypothesis is confirmed on the next encounter, the 

837 hypothesized word-referent mapping is retained, but if it happens to be disconfirmed, then the 

838 learner needs to start afresh, as they have not retained any information from previous encounters; 

839 see Berens, Horst, and Bird (2018) for evidence supporting this model using fMRI activation 

840 patterns in the hippocampus during cross-situational word learning. 

841 While the original hypothesis-testing model (Trueswell et al., 2013) includes processes of 

842 expectation generation and error computation, it does not incorporate a prediction-error mechanism 

843 because its learning following a disconfirmed expectation is not proportional to the strength of that 

844 expectation. However, a recent modification of the original model, called PURSUIT, augments it 

845 with a prediction-error mechanism where the amount of learning is proportional to expectation 

846 strength (Stevens et al., 2017). We suggest that our findings are more compatible with this 

847 augmented model than with the original hypothesis-testing model. 
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848 While an error-based learning mechanism straightforwardly explains our findings, we note 

849 that they could also be accommodated within a Bayesian framework. Expectation generation would 

850 be akin to positing a prior probability distribution, and expectations would then be updated based on 

851 how surprising the data are given the prior, to derive a posterior probability distribution. On a high 

852 constraint trial, most of the prior probability mass is placed on the expectation that the familiar 

853 object will be mentioned next, while on a low constraint trial, it is distributed more evenly between 

854 the familiar and unfamiliar object (see Figure 1). Thus, the very same data (i.e., the occurrence of 

855 the novel word) will lead to a larger updating on a high constraint than low constraint trials, because 

856 the novel word increases the probability that the unfamiliar object will be mentioned. However, 

857 existing Bayesian models of word learning (Xu & Tenenbaum, 2007; Frank, et al., 2009) do not 

858 include memory parameters, so it is unclear how they would account for the finding that larger 

859 updating leads to enhanced retention. In contrast, this finding highlights the importance of building 

860 models of word learning that account for the nature of memory. 

861 More speculatively, our findings may also help link computational models of word learning 

862 with the cognitive neuroscience of word learning. A large body of evidence implicates the 

863 hippocampus in the initial stages of word learning in adults (Davis & Gaskell, 2009; Tagarelli, 

864 Shattuck, Turkeltaub, & Ullman, 2019; Berens et al., 2018). According to the complementary 

865 systems account of word learning (Lindsay & Gaskell, 2010), the hippocampus supports rapid, 

866 initial acquisition of novel words, whereas the neocortex is responsible for slower consolidation, 

867 typically following periods of sleep (see McClelland, McNaughton, & O'Reilly, 1995 for detailed 

868 theoretical arguments in support of the complementary systems account of learning and memory). 

869 Strong evidence for this account comes from the inability of patients with hippocampal lesions to 

870 learn new words (see Cooper, Greve, & Henson, 2019, for a recent review and discussion). 

871 Interestingly, the hippocampus is sensitive to novelty and unexpected events (e.g., Kumaran 

872 & Maguire, 2006), and it is thought to encode not just episodic memories but also predictions about 

873 future outcomes (e.g., Shohamy & Adcock, 2010). Our finding that prediction errors affect word 
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874 learning in adults, therefore, is consistent with a key role for the hippocampus in this process. Given 

875 we did not find evidence for a role of prediction error in children word learning, an interesting 

876 question for future research is whether there are significant developmental changes in the reliance 

877 of word learning processes on the hippocampus (similarly to what has been shown for other areas of 

878 cognitive development; Qin et al., 2014). It may also be that children only show sensitivity to 

879 prediction error after a period of sleep consolidation (which was not included in our study).

880

881 Do the mechanisms of word learning change across the lifespan?

882 A key contribution of our study is to highlight a potential developmental discontinuity in the 

883 mechanisms of word learning: While adult memory for novel word-referent mappings was affected 

884 by the strength of prior expectations, we found no evidence that 2-to-4-year-olds’ memory was 

885 similarly affected. This raises the possibility that the above-described models of word learning, 

886 which have often been evaluated based on adult data, may not automatically generalize to explain 

887 children’s behavior.

888 Our study is not the first to highlight differences between adults’ and children’s word 

889 learning mechanisms. We have already mentioned Fitneva and Christiansen’s (2017) work, 

890 showing that 4-year-olds learn more when their expectations are confirmed, but adults learn more 

891 when they are exposed to a higher proportion of unexpected word-referent mappings. But while 

892 their findings suggest that children should benefit from generating correct expectations (see also 

893 Benitez & Saffran, 2012, 2018), we found no difference in memory performance between trials on 

894 which generating an incorrect expectation was more likely (high constraint) and those in which it 

895 was less likely (low constraint). 

896 Can Fitneva and Christiansen’s (2017) findings be reconciled with ours? Incorrect 

897 expectations may both hinder selection of the correct novel referent and benefit memory for it, if it 

898 is selected. However, when we excluded all trials on which children (incorrectly) selected the 

899 familiar referent, we still found no evidence for a difference in children’s memory performance 
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900 between strong and weak expectation trials. Thus, it seems more likely that children at this age are 

901 yet to develop the mechanism that makes memory sensitive to expectation strength.

902 Further, our results seem incompatible with Ramscar, Dye, and Klein (2013a), who argued 

903 that children’s word learning is more likely than adults’ to be driven by an error-based mechanism 

904 (rather than less likely, as our findings suggest). They devised a word learning task in which a 

905 learner driven only by prediction error (Rescorla & Wagner, 1972; Ramscar et al., 2010) would 

906 behave differently from one who additionally makes use of explicit inferences (e.g., reasoning by 

907 exclusion). Participants were first exposed to three novel objects and two novel words. Two of the 

908 objects co-occurred with only one of the words each, while the third object co-occurred with both of 

909 the words. When children were presented with a third novel word at test (here, wug), they were less 

910 likely to select this third object as a referent for wug. While none of the objects had co-occurred 

911 with wug during the learning phase, the object that had co-occurred with two other words was the 

912 least predictive of wug, and so it should be the least preferred choice of an error-driven learner 

913 (Ramscar et al., 2010).  In contrast, adults were more likely to select the third object than either of 

914 the other objects, suggesting that they were more likely to explicitly reason by exclusion, choosing 

915 the third object because they had already mapped each of the other two objects onto the word it had 

916 co-occurred with. 

917 While Ramscar et al.’s (2013a) findings suggest that child word learners track co-occurrence 

918 information across multiple encounters, we note that in our study co-occurrence information was 

919 identical across high and low constraint conditions. Instead, what (likely) changed across conditions 

920 was participants’ processing of the novel word and novel target object; for example, by violating a 

921 strong linguistic expectation, we may have prompted deeper processing of the novel word and 

922 object, which in turn would have led to enhanced encoding of the association between word and 

923 object in memory. 

924 We thus suggest that by the age of 4 children may be capable of accumulating information 

925 using an error-driven learning rule to track which words and referents co-occur and which do not 
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926 (in accordance with Ramscar et al., 2013a), and form expectations about future co-occurrences. But 

927 at this age the violation of such prior expectations does not yet lead to deeper processing and 

928 encoding of unexpected information in memory. In sum, different mechanisms, with different 

929 developmental trajectories, may underly our ability to track regularities in the environment (i.e., 

930 statistical learning; Yu & Smith, 2007) and to focus attention and cognitive resources on the 

931 encoding of unexpected events.

932

933 The effect of linguistic prediction on children’s word learning.

934 Our findings suggest two conclusions about how prediction affects children’s learning. The 

935 first conclusion is that children’s predictions affect what children learn, by guiding their attention, 

936 but the second conclusion is that these predictions do not affect the strength of children’s memory 

937 representations. These two conclusions may seem to contradict one another, but we propose they 

938 can be reconciled with one another, and with findings from previous work (Reuter et al., 2019) by 

939 carefully distinguishing the mechanisms involved. 

940 First, the predictive strength of the sentence contexts affected the inferences that children 

941 made about the likely referent of the novel word: They were more likely to choose the familiar 

942 object (thus disregarding the mutual exclusivity constraint) when the sentence context led them to 

943 expect a reference to this object. In turn, choosing the familiar object as the referent led to chance 

944 performance at test, suggesting that children’s attention was focused on the selected referent, to the 

945 extent that little information about the unselected referent was retained – a finding which, 

946 incidentally, replicates previous studies (Aravind et al., 2018; Woodard, Gleitman, & Trueswell, 

947 2016; but see Yurovsky & Frank, 2015) and is consistent with hypothesis-testing models of word 

948 learning (Trueswell et al., 2013). Importantly, however, during the learning phase children still 

949 selected the novel referent at above-chance rates, even when doing so required them to abandon a 

950 prior expectation, and when they did select the novel referent during learning, they then 

951 demonstrated above-chance retention of the association between the novel word and this novel 
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952 referent during the test phase. Thus, children were capable of revising and updating their 

953 expectations based on the mismatch between those and the auditory input (i.e., when a novel word 

954 occurred instead of the expected familiar one) on the majority of trials. 

955 Second, the predictive strength of the sentence contexts did not affect children’s likelihood 

956 of retaining the association between the novel word and the novel object. Thus, while the ability to 

957 revise disconfirmed expectations may guide children to discover new linguistic information (i.e., 

958 one aspect of learning), we suggest it is not a key driver of retention of this information. This 

959 interpretation allows our data to be reconciled with Reuter et al.’s (2019) finding that children who 

960 show a stronger predict-and-revise looking pattern are also better at word learning. Recall that in 

961 their study children’s performance at test was no greater in the high than the low constraint 

962 condition (in fact, it was greater in the latter than the former), so they also found no evidence that 

963 stronger expectations were associated with enhanced memory, when disconfirmed. What they did 

964 find was that children who engaged less in prediction-and-revision were less likely to remember 

965 high-constraint words, which is actually in line with our findings: When children did not engage in 

966 mutual exclusivity reasoning during learning, then they had poor memory at test. Thus, Reuter et 

967 al.’s findings concur with ours in suggesting that prediction-and-revision skills help reference 

968 resolution in children, but do not affect retention, so long as reference is resolved to the object that 

969 is later tested for retention.

970 There is however one caveat to these conclusions that is worth considering. Children’s 

971 choices during learning were less sensitive to the strength of prior expectations compared to adults’. 

972 This could be in part because children’s choices are often noisier than adults’ (e.g., due to lapses in 

973 attention). But it is also expected because studies that have compared predictive skills between 

974 children and adults have typically found stronger effects of prediction in adults (e.g., Gambi et al., 

975 2016, 2018; Borovsky et al., 2012). Moreover, the strength of prediction effects increases 

976 throughout the pre-school years (Gambi, Jindal, Sharpe, Pickering, & Rabagliati, in press). This 
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977 raises the possibility that prediction did not affect children’s retention because they did not generate 

978 expectations that were strong or consistent enough (unlike adults). 

979 However, we think that this possibility is unlikely, because children clearly generated quite 

980 strong expectations. As noted above, when children did follow their expectations and chose the 

981 familiar referent (which they were more likely to do than adults in the High Constraint/Plausible 

982 Distractor conditions; compare 66% novel referent selections in Experiment 6 and 63% in 

983 Experiment 7 for children with 81% in Experiments 1-3 and 86% in Experiments 4-5 for adults), 

984 this choice had a large impact on their memory performance during the retention phase. Similarly, 

985 there may be a worry that the lack of expectation strength effects on children’s memory is down to 

986 the task being too difficult for children of this age, but as noted above children’s performance was 

987 well above chance when they selected the novel object during learning, which they did on most 

988 trials. 

989 In sum, we argue that, despite the use of different tasks during the learning phase and 

990 different measures of learning (looking-while-listening vs. referent selection), as well as a slightly 

991 different age range (3-to-5 vs. 2-to-4-year-olds), Reuter et al.’s (2019) findings are consistent with 

992 our own: Both studies suggest that children’s predictions affect reference resolution but are unlikely 

993 to drive retention of new word-meaning mappings. Therefore, we disagree with Reuter et al.’s 

994 suggestion that their findings show that children’s memory for novel word-object associations is 

995 supported by a prediction-error mechanism. Instead, we suggest that children who exhibited a 

996 stronger predict-and-revise pattern were better at word learning in their study because they were 

997 faster at processing sentences, and their higher processing speed allowed them to learn following 

998 high-constraint sentences even though these initially biased their attention towards the incorrect 

999 referent. 

1000

1001 Why did disconfirmed expectations not boost memory in young children?
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1002 If pre-school aged children can generate linguistic expectations, and revise such 

1003 expectations “in-the-moment” when they are disconfirmed, then why does prediction error not 

1004 affect encoding of novel linguistic information in young children’s memory? Below we discuss two 

1005 possible answers to this question.

1006 One possibility is that the null effect follows from children’s lack of fluency at completing 

1007 the task, which follows from a recent proposal that violations of expectations only influence 

1008 memory once inhibitory control skills are well-developed (Brod, Breitwieser, Hasselhorn, & Bunge, 

1009 2019). In our task, inhibitory control skills would be important for quickly suppressing the 

1010 generated expectation once a novel word is encountered, allowing fluent mapping to the correct 

1011 referent. Brod and colleagues (2019) have proposed that this use of inhibitory control is still not 

1012 apparent even in late childhood: They found that violating expectations did not enhance memory for 

1013 new declarative knowledge in children aged 9 to 12 years, but that it did enhance memory in adults 

1014 (Brod, Hasselhorn, & Bunge, 2018). 

1015 This could potentially explain children’s difficulty with our task. While our child 

1016 participants were able to inhibit selection of the strongly expected familiar object on the majority of 

1017 trials, it is likely that they took longer than adults to focus attention on the novel object, by which 

1018 time, activation of the novel word in their working memory may have already started to decay, and 

1019 this could have led to a weaker binding of the word-object association. In sum, perhaps children 

1020 were not able to re-direct their attention quickly enough to benefit from the stronger encoding of 

1021 information following a larger prediction error. If this is the case, then our findings indicate that 

1022 children may have already developed an error-based learning mechanism, but their memory for 

1023 novel word-referent mappings does not benefit from this mechanism (at least in our paradigm) 

1024 because of delays in children’s development of attentional skills.

1025 Alternatively, children may show relative insensitivity to disconfirmed expectations because 

1026 doing so is in fact adaptive for their learning. Since children’s linguistic knowledge is so limited, 

1027 their linguistic input is likely to deliver more surprises more frequently (i.e., unexpected words), at 
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1028 least compared to adults. Children may therefore be more likely than adults to “expect the 

1029 unexpected” (i.e., placing a higher likelihood on the eventuality of encountering unexpected words). 

1030 While this means that unexpected words may not leave a particularly strong trace in children’s 

1031 memory, it also allows attentional resources to be distributed more evenly across many mildly 

1032 surprising words. This idea is supported by evidence that children are indeed sensitive to the 

1033 predictability of the environment. For example, the so-called Goldilocks effect shows that infants 

1034 and young children prefer to attend to input that is of intermediate predictability, neither too 

1035 predictable nor too unpredictable given their current knowledge about the environment (Kidd, 

1036 Piantadosi, & Aslin, 2014), and children can also quickly learn to expect the unexpected when they 

1037 have been exposed to a speaker that talks about very unlikely events (Yurovsky, Case, & Frank, 

1038 2017).

1039 We do not know of any research that shows that children’s memory becomes more sensitive 

1040 to unpredictable information as they become more knowledgeable about the environment, but if 

1041 children’s word learning does indeed benefit from encountering unexpected information that 

1042 violates “core knowledge” (Stahl & Feigenson, 2017), this may suggest that children’s memory is 

1043 more sensitive to unpredictable information in domains that the child is more knowledgeable about 

1044 (because core knowledge is acquired very early on). Similarly, children may be more sensitive to 

1045 prediction error when there is a conflict between internally-generated expectations and strong 

1046 external cues (e.g., unambiguous referential cues, such as an adult’s pointing) compared to 

1047 situations where there is a conflict between internally-generated expectations and the child’s 

1048 preferred interpretation of a novel stimulus, as in our task. In the latter case, the error signal may be 

1049 too weak or noisy because it is based on the child’s own developing knowledge of language, 

1050 whereas strong error signals from the environment may play a much more important role in shaping 

1051 children’s error-based learning.

1052

1053 Conclusion
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1054 In sum, we showed that prediction error drives the encoding of novel word-object 

1055 associations in adult memory, as associations were encoded more strongly when they violated a 

1056 stronger compared to a weaker prior expectation. However, we found no effect of disconfirming a 

1057 stronger versus weaker prior expectation on children’s memory. The adult findings represent a clear 

1058 demonstration that at least one of the mechanisms underlying adult word learning is based on the 

1059 computation of prediction errors. Thus, they set an important constraint on models of adult word 

1060 learning. The lack of a comparable effect of prediction error on children memory was not due to 

1061 children’s inability to generate linguistic expectations, nor to an inability to revise them when they 

1062 proved incorrect. Instead, we suggest that children are either too slow to inhibit disconfirmed 

1063 expectations or that they do not prioritize the processing of unexpected information as much as 

1064 adults, because the environment is overall more unpredictable to them. These findings thus 

1065 highlight an important developmental discontinuity in the mechanisms that underlie prediction’s 

1066 role in language learning.
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