
Journal of Experimental Psychology: Learning,
Memory, and Cognition
Strategy and Processing Speed Eclipse Individual Differences in Control
Ability in Conflict Tasks
Craig Hedge, Georgina Powell, Aline Bompas, and Petroc Sumner
Online First Publication, September 30, 2021. http://dx.doi.org/10.1037/xlm0001028

CITATION
Hedge, C., Powell, G., Bompas, A., & Sumner, P. (2021, September 30). Strategy and Processing Speed Eclipse Individual
Differences in Control Ability in Conflict Tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition.
Advance online publication. http://dx.doi.org/10.1037/xlm0001028



Strategy and Processing Speed Eclipse Individual Differences in Control
Ability in Conflict Tasks

Craig Hedge, Georgina Powell, Aline Bompas, and Petroc Sumner
School of Psychology, Cardiff University

Response control or inhibition is one of the cornerstones of modern cognitive psychology, featuring promi-
nently in theories of executive functioning and impulsive behavior. However, repeated failures to observe
correlations between commonly applied tasks have led some theorists to question whether common response
conflict processes even exist. A challenge to answering this question is that behavior is multifaceted, with
both conflict and nonconflict processes (e.g., strategy, processing speed) contributing to individual differen-
ces. Here, we use a cognitive model to dissociate these processes; the diffusion model for conflict tasks
(Ulrich et al., 2015). In a meta-analysis of fits to seven empirical datasets containing combinations of the
flanker, Simon, color-word Stroop, and spatial Stroop tasks, we observed weak (r , .05) zero-order correla-
tions between tasks in parameters reflecting conflict processing, seemingly challenging a general control con-
struct. However, our meta-analysis showed consistent positive correlations in parameters representing
processing speed and strategy. We then use model simulations to evaluate whether correlations in behavioral
costs are diagnostic of the presence or absence of common mechanisms of conflict processing. We use the
model to impose known correlations for conflict mechanisms across tasks, and we compare the simulated
behavior to simulations when there is no conflict correlation across tasks. We find that correlations in strategy
and processing speed can produce behavioral correlations equal to, or larger than, those produced by corre-
lated conflict mechanisms. We conclude that correlations between conflict tasks are only weakly informative
about common conflict mechanisms if researchers do not control for strategy and processing speed.

Keywords: attention control, diffusion model for conflict tasks, individual differences, inhibition,
response control
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Controlling our responses in the presence of conflicting infor-
mation is a core facet of executive function (Miyake et al.,

2000). Response control (sometimes called response inhibition
or attentional control) is typically measured in commonly used
paradigms such as the Stroop (Stroop, 1935), the Eriksen flanker
(Eriksen & Eriksen, 1974), Simon (Simon & Rudell, 1967), and
the antisaccade (Hallett, 1978) and stop-signal (Logan, 1994)
tasks. Individual differences in response control have been
linked to several neuropsychological disorders, including sub-
stance abuse, attention deficit hyperactivity disorder (ADHD),
schizophrenia, and Parkinson’s disease (Chambers et al., 2009;
Gauggel et al., 2004; Lansbergen et al., 2007; Moeller et al.,
2002; Verdejo-Garcia et al., 2007). Therefore, understanding the
source(s) of variation in response control is key to understanding
cognition in both healthy and clinical populations.

In both theoretical and applied work, it is common to assume ei-
ther a common underlying response control trait, or some degree of
overlap in response control mechanisms underlying different tasks
(for reviews, see Bari & Robbins, 2013; von Bastian et al., 2020).
However, the assumption of common mechanisms has received
inconsistent support from correlational studies, with performance in
different control tasks showing inconsistent or absent correlations
with each other (Aichert et al., 2012; Friedman & Miyake, 2004;
Hamilton et al., 2015; Hedge et al., 2018b; Ivanov et al., 2011;
Stahl et al., 2014; Wager et al., 2005). This has led some theorists
to question the value of inhibition as a psychometric construct
(Rey-Mermet et al., 2018), which has serious implications for both

Craig Hedge https://orcid.org/0000-0001-6145-3319

Georgina Powell https://orcid.org/0000-0001-6793-0446

Aline Bompas https://orcid.org/0000-0002-6957-2694

Petroc Sumner https://orcid.org/0000-0002-0536-0510
This work was supported by the Economic and Social Research Council

(ES/K002325/1) and by the Wellcome Trust (104943/Z/14/Z). We thank
Peter Whitehead and Chris Blais for making their data available and
assisting us in understanding them.
The raw data and analysis code are available on the Open Science

Framework for datasets one to four (https://osf.io/4c3we/). The three datasets
fromWhitehead et al. (2019) are also available online (https://osf.io/t9c6z/).
This article has been published under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/3
.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited. Copyright
for this article is retained by the author(s). Author(s) grant(s) the American
Psychological Association the exclusive right to publish the article and
identify itself as the original publisher.
Correspondence concerning this article should be addressed to Craig

Hedge, who is now at School of Psychology, Aston University, Birmingham B4
7ET, United Kingdom. Email: c.hedge@aston.ac.uk

1

Journal of Experimental Psychology:
Learning, Memory, and Cognition

© 2021 The Author(s)
ISSN: 0278-7393 https://doi.org/10.1037/xlm0001028

https://doi.org/10.1037/xlm0001028.supp
https://orcid.org/0000-0001-6145-3319
https://orcid.org/0000-0001-6793-0446
https://orcid.org/0000-0002-6957-2694
https://orcid.org/0000-0002-0536-0510
https://osf.io/4c3we/
https://osf.io/t9c6z/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:c.hedge@aston.ac.uk
https://doi.org/10.1037/xlm0001028


theoretical work and for the applications of the construct to clinical
domains.
Evaluating whether a common and useful inhibition construct

exists is obstructed by a key challenge: the way performance is
typically measured may be suboptimal for examining individual
differences even if the trait does exist (Draheim et al., 2016;
Hedge et al., 2018b; Rouder & Haaf, 2019). There is a habit in
psychology to use performance in key tasks as proxies for underly-
ing mechanisms, such as memory, attention or control (cf. Ver-
bruggen et al., 2014). But the ingredients to performance are
multifaceted, and individual variation does not necessarily come
from the same source as the well-studied within-subject effects
(Boy & Sumner, 2014). For example, although the main cause of
the Stroop effect is conflict, individual differences in the size of
the Stroop effect could come from differences in strategy, lan-
guage processing or even visual acuity (e.g., not wearing your
glasses), rather than ability to control conflict.

Strategy and General Processing Speed Contaminate
Measures of Inhibitory Ability

We recently conducted a meta-analysis that illustrated the prob-
lem of measuring individual differences in inhibitory ability,
which are normally captured through congruency effects, because
it is generally assumed that subtracting conditions to produce a
cost removes speed-accuracy strategy effects. However, some
tasks use reaction time (RT) costs and some use error costs and
across a wide range of tasks, RT costs and error costs taken from
the same task show little correlation (r = .17; Hedge et al., 2018).
In other words, if we were to rank individuals from best to worse
in inhibitory ability based on their Stroop cost in RTs, we would
come to a very different ordering than if we used the Stroop cost
in errors.
To some extent, low correlations between RT costs and error costs

are to be expected because subtractions lower reliability, which attenu-
ates correlations (Enkavi et al., 2019; Hedge et al., 2018b; Miller &
Ulrich, 2013; Paap & Sawi, 2016). However, this does not fully
account for the low and inconsistent pattern, with significant negative
correlations sometimes observed between the two purported measures
of the same ability. We explain this in the framework of evidence
accumulation models (for example, Brown & Heathcote, 2008; Ratcl-
iff, 1978). We assume that individuals differ in at least two dimen-
sions. The first is their ability to select the correct response based on
the information. Individuals who are ‘better’ at inhibiting conflicting
information should show both smaller RT costs and error costs, lead-
ing to a positive correlation. The second is their strategy, reflecting
how much information they wait for before they make a decision. Indi-
viduals who are more cautious produce larger RT costs and smaller
error costs, leading to negative correlations. Critically, the traditional
approach of subtracting conditions does not remove strategy effects,
which can mask individual differences in inhibitory ability (Hedge et
al., 2018).
In addition to strategy differences, general processing speed can

also confound the measurement of response control (Miller &
Ulrich, 2013). Using a psychometric model of mean RTs, Miller
& Ulrich show that correlation between behaviorally measured RT
costs taken from two tasks can be weak despite there being strong
underlying correlation in the ability of interest (for example, inhi-
bition). This is because factors such as general speed can be

expected to contaminate measured RT costs. Reanalysis of several
factor analytic studies observed that individual differences in con-
flict tasks can be accounted for by a general processing speed fac-
tor, without need for a separate inhibition factor (Jewsbury et al.,
2016; see also Friedman & Miyake, 2017; Karr et al., 2018; Rey-
Mermet, Gade, Souza, et al., 2019). In an evidence accumulation
framework, greater efficiency in general information processing
produces smaller RT costs and errors costs, thus manifesting in the
same way as greater inhibitory ability (Hedge et al., 2018a).

Taken together, the literature paints a challenging picture for
assessing whether common mechanisms of inhibition or conflict
processing exist. The size of an individual’s RT and/or error cost
in a given task reflects some unknown combination of their ability
to overcome conflict, their strategy, and other processing abilities.
The relative contribution of these processes to behavior will differ
between tasks, or between different implementations of a given
task (Hedge et al., 2018; Unsworth et al., 2004). To reframe the
question, if common mechanisms of inhibition or conflict process-
ing did exist, would we know?

To address this question, we take a cognitive modeling
approach to separate out and quantify conflict, strategy and general
speed parameters, examine where (if at all) they correlate between
tasks when we fit empirical data, and evaluate how each parameter
manifests in observable behavior by using simulations.

Overview of the Study

Our main aim in the first part of this article is to apply a cogni-
tive model (the diffusion model for conflict tasks [DMC]; Ulrich
et al., 2015) to multiple empirical datasets to decompose behavior
into constituent processes. This allows us to examine correlations
in parameters that represent conflict mechanisms separately from
parameters that do not directly represent conflict mechanisms.
We focus on datasets containing the flanker, Simon, Stroop, and
spatial Stroop tasks, and adopt a meta-analytic approach to maxi-
mize power and integrate across datasets. To preempt the main
findings, we observe no correlation in the model parameters rep-
resenting conflict processes. We do observe consistent correla-
tions in model parameters representing nonconflict processes
(for example, strategy, general processing speed), providing con-
verging evidence for previous claims (for example, Jewsbury
et al., 2016).

In the final part of the article, we use the model to simulate
data from known theoretical positions to ask whether observable
performance would diagnose the difference between the presence
or absence of common conflict processing. Here, we use the
DMC to generate data for two hypothetical tasks with a known
correlation in parameters of conflict processing. We find that any
emergent correlation in performance measures is heavily attenu-
ated by variance in nonconflict processes such as strategy.
Further, we observe correlations in performance of a similar
magnitude when we impose correlations in nonconflict processes
as we do when conflict processes are correlated. The implication
of this is that the degree of behavioral performance correlation is
not diagnostic of shared conflict processing between tasks:
shared mechanisms could be masked, while behavioral correla-
tions could be driven by other common processes (for example, a
shared strategic approach).
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The Diffusion Model for Conflict Tasks

The DMC (Ulrich et al., 2015) is a mathematical model of
choice RT behavior in conflict tasks, and an extension of the drift
diffusion model (DDM; Ratcliff, 1978), a general model of choice
RT behavior. The standard DDM assumes that individuals sample
noisy evidence from their environment over time until a criterion
level of evidence is reached for one of the two response options.
The three main parameters describe the average rate of evidence
accumulation (drift rate), the amount of evidence required (bound-
ary separation), and the duration of motor and perceptual proc-
esses (nondecision time). Differences in difficulty between
conditions are normally captured by differences in drift rate, with
lower drift rates for stimuli that are less discernible.
The standard DDM assumes that the average rate of evidence

accumulation within a trial is constant, albeit subject to random
noise. This makes it unable to capture data patterns characteristic
of conflict tasks, which have automatic response activation that
conflicts with the desired response. First, errors in conflict tasks
are typically fast in the incongruent condition (Gratton et al.,
1988; Ridderinkhof, 2002), interpreted to reflect the automatic
activation of the prepotent response. Second, whereas mean RTs
in incongruent trials are typically slower than mean RTs on con-
gruent trials in conflict tasks, the magnitude of this effect can vary,
decrease, and even reverse when comparing the slower quantiles
of the correct and incorrect RT distributions (especially in the
Simon task; De Jong et al., 1994). This behavior is interpreted to
reflect increasing influence of inhibition over time (or decay;
Hommel, 1994), which acts to diminish and sometimes reverse the
early influence of the automatic activation.
The DMC (Figure 1A–1C) accounts for conflict effects by

assuming that the task-irrelevant feature (for example, the flankers
in a flanker task) is processed via a fast and automatic route that
initially receives a strong activation which is reduced over time.
Concurrently, the task-relevant feature (the central arrow in a
flanker task) is processed via a slower, deliberate decision route.
The controlled route is captured by a drift rate parameter that is
held constant over congruency conditions in the DMC. This
reflects the assumption that the processing of the task relevant
property of the stimulus is equivalent across all conditions. The
drift rate parameter in the DMC can therefore be interpreted as
general processing efficiency. The automatic route is implemented
as a rescaled gamma function, which captures the assumption that
prepotent stimulus features influence the early phase of the deci-
sion processes more than the later phase (Figure 1D).
The DMC takes inspiration from the Activation-Suppression

hypothesis (De Jong et al., 1994; Kornblum, 1994; Ridderinkhof,
2002), which posits that the automatic activation is removed
through active suppression. However, the DMC is agnostic about
what drives the reduction in the influence of automatic activation
and has no explicit parameter to represent inhibitory ability.
Instead, the ability to overcome conflict is implicit in the degree of
susceptibility to prepotent response activation (the amplitude it
reaches), and the speed at which automatic activation peaks and is
removed/decays. The maximum value of the automatic activation
is defined by an amplitude parameter, and the time that the maxi-
mum value is reached is defined by a scale parameter—we here-
after refer to the scale parameter as the time-to-peak (following
Ulrich et al., 2015).1 The gamma function also has a shape

parameter, but following Ulrich et al. (2015; see also White et al.,
2018) we fixed this to a constant value for all individuals. There-
fore, individuals with more efficient inhibition would be expected
to have either a lower amplitude and/or a shorter time to peak as
these are the parameters that should capture individual differences
in conflict processing (Figure 1E and 1F).

We note that our approach here is one of model application,
rather than model validation or comparison (Crüwell et al., 2019).
We adopt an evidence accumulation framework on the basis of
previous demonstrations that they can inform our understanding of
individual differences in cognitive abilities in the context of the
confounds we have mentioned (Hedge et al., 2018; Ratcliff et al.,
2015). Our criteria for selecting an appropriate model were that it
has parameters that represent conflict processing, and that it can
provide a common framework for all our tasks. The DMC meets
these criteria and has previously been applied to both the flanker
and Simon tasks (Servant et al., 2016; Ulrich et al., 2015). Since
we began this work it has also been applied to the color-word
Stroop task (Ambrosi et al., 2019; Hedge et al., 2019). The model
could theoretically also be applied to other tasks that show the
data patterns that are characteristic of conflict tasks, including the
Navon task (fast errors; Hübner, 2014), as well as in the antisac-
cade task (fast errors and negative delta functions; von Bastian et
al., 2020; Wiecki et al., 2016). Alternatives we considered are not
capable of producing negative delta functions (Hübner et al.,
2010; White et al., 2011) and have parameters that represent task
specific processes rather than general conflict processing (for
example, spatial attention; White et al., 2011). An alternative
model might provide a better theoretical account or empirical fit to
certain tasks, although a full comparison is beyond the scope of
this article. For our goal of examining whether parameters that
capture conflict correlate across tasks, we assume that they can be
meaningfully captured within the common framework of the
DMC.

Part I. Are Measures of Conflict Correlated
Across Tasks?

Rationale

The first question is whether model parameters can reveal correla-
tions between conflict tasks—evidence for common mechanisms—
that traditional measures are less able to detect. We answer this ques-
tion by performing a meta-analysis of 12 task pairs taken from seven
datasets including new and previously published data (Hedge et al.,
2018; Hedge et al., 2018b; Hedge et al., 2019; Whitehead et al., 2019).
We fit the DMC to each task and participant separately to extract
model parameters.

Datasets

We selected datasets by updating the available datasets in our
recent systematic review (Hedge et al., 2018) and applying the fol-
lowing criteria: (a) They include some combination of the flanker,
Simon, color Stroop or spatial Stroop tasks, which have analogous

1 Note that the time at which the peak amplitude is reached is only equal
to the scale parameter when the shape parameter is fixed to 2 (Ulrich et al.,
2015), which was our case. It is defined by: tamx = tau3 shape� 1ð Þ
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Figure 1
Schematic of the Diffusion Model for Conflict Tasks (Ulrich et al., 2015)

Note. (A) The decision process is implemented as noisy accumulation of evidence to either the upper (b)
or lower (�b) boundary, here representing the correct and incorrect responses respectively. Nondecision
time (Ter) refers to sensory and motor processes, which occur before and after the decision phase. (B)
The average rate of evidence accumulation is determined by two underlying process. The drift rate of
the controlled process (lc) represents the efficiency of processing the task relevant property of the stimu-
lus (e.g., the central arrow in a flanker task). The amplitude (A) and time-to-peak (tau) describe a
rescaled gamma function, which represents the automatic activation and subsequent removal of auto-
matic activation (e.g., the processing of the flanking arrows). Here the automatic activation is depicted
for incongruent trials (it is reversed for congruent trials). (C) Mean evidence accumulation rates for dif-
ferent values for the amplitude and time-to-peak. The central gray line reflects a controlled drift rate of
.4. Colored lines above and below the gray line reflect congruent and incongruent trials respectively
(combined controlled and automatic processing). Increasing the amplitude leads to a greater deviation
from the central line. Increasing the time-to-peak affects the time at which the maximum deviation is
reached. (D) Automatic activation functions for different values for the amplitude and time-to-peak. The
amplitude parameter rescales the distribution to a specified maximum. Note the maximum value of the
automatic activation may occur later than the typical decision time. (E) Conditional Accuracy functions
(CAFs) corresponding to panel C. CAFs show the accuracy of responses in quantiles of the reaction
time distribution. The black vs. red (dark gray) line shows the effect of increasing the amplitude parame-
ter. This increases the proportion of fast errors made in incongruent trials, reflecting an increase in
response capture. Increasing the time-to-peak leads to errors being more distributed across the RT distri-
bution, reflecting a slower removal (inhibition) of the automatic activation. (F) Delta functions corre-
sponding to panel C. Delta plots show the RT cost at different quantiles of the RT distributions.
Increasing the amplitude parameter leads to increased mean RT costs (higher average values of the delta
functions on the y axis). Increasing the time-to-peak produces more positive going delta slopes, shown
by the blue (light gray) vs. black lines. Note the correspondence between the shape of the delta functions
and the shape of the automatic activation that produce them (Figure 1D). See the online article for the
color version of this figure.
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conflict effects suited to modeling in the DMC framework (cf.
Ulrich et al., 2015); (b) They have trial level data with at least 200
trials per condition to ensure adequate parameter estimation, based
on a parameter recovery simulation using the DMC (White et al.,
2018).
Table 1 summarizes the key information of each dataset, and a

schematic is shown in Figure 2. For full methodological details,
see Supplementary Material A in the online supplemental materi-
als and the original articles. We draw particular attention to Data-
set 3 (Hedge et al., 2018), which consists of two variants of the
Simon task. In one variant, congruent and incongruent trials were
randomly intermixed (as is standard for the Simon task), whereas
in the other congruent and incongruent trials were presented in
separate blocks (a common format for the antisaccade task). Thus,
surface features are matched, and any processing differences
would be introduced by the blocking arrangement. We also note
that the tasks in Dataset 4 (Hedge et al., 2019) consisted of sepa-
rate blocks that instructed participants to emphasize speed, accu-
racy, or both speed and accuracy.
We collected a self-report measure of impulsivity (the UPPS-P;

Lynam et al., 2006) alongside Datasets 1–4, because we were
interested in whether trait impulsivity or cautiousness correlated
with response caution in the DMC. We report the results of this
analysis elsewhere (Hedge, Powell, et al., 2020); briefly, we
observed no evidence for a correlation.

Data Analysis

We applied the same data analysis procedure to all datasets. We
excluded participants who were below 60% accuracy in any task
in each dataset (lenient in order not to limit variance;
Supplementary Material B in the online supplemental materials
shows a more conservative cut-off of 80% does not alter our con-
clusions). We removed RTs that were less than 100 ms and greater
than the median plus three times the median absolute deviation for
each individual in each condition.
See Appendix A for the technical details of our model fitting

approach, which is identical to previously published work (Hedge
et al., 2019) and similar to common approaches to fitting evidence
accumulation models (Vandekerckhove & Tuerlinckx, 2008;
White et al., 2018). Our code is available online (https://osf.io/
4c3we/).

Meta-Analysis of Correlations

We calculated Spearman’s rho correlations for each model pa-
rameter for each pair of tasks (e.g., the correlation between the am-
plitude parameter from the flanker task in Dataset 1 with the
amplitude parameter from the Simon task in Dataset 1). This pro-
duced 13 correlations for each parameter (15 for boundary separa-
tion, as we calculated separate boundary values and correlations
for each of the three instruction conditions in the Dataset 4). These
correlations were then metaanalysed using a multilevel random
effects meta-analysis, implemented in the metafor package in R (R
Core Development Team, 2017; Viechtbauer, 2010). The multile-
vel approach allows us to account for the possibility that correla-
tions taken from the same dataset (as with Datasets 4 to 7) may be
more similar to each other than correlations taken from independ-
ent datasets. In Supplementary Material B in the online supple-
mental materials, we also account for the possibility that the
correlation in certain task pairs (e.g., spatial Stroop and Stroop) is
higher than in other pairs (e.g., flanker and Stroop). This does not
alter our conclusions, and we report the simpler analysis here due
to the limited number of data points.

We also calculated the I2 statistic for each parameter (cf. Viechtba-
uer, 2019), which is interpreted to represent the heterogeneity of the
observed effects. An I2 of 0% would indicate that all the variability
in the observed effect size estimates is due to sampling error, rather
than real differences between datasets and task pairs. We interpret I2

values of 25%, 50%, and 75% as low, moderate, and high levels of
heterogeneity, respectively (Higgins et al., 2003).

Given that the literature does not find consistent correlations
between tasks (Rey-Mermet et al., 2018), it is likely that if a correla-
tion between conflict parameters exists then the effect size would be
small. We conducted a sensitivity power analysis to ascertain the
strength of correlation that our meta-analysis is able to detect (Pigott,
2012), based on our number of observed effect sizes and average
sample size. Assuming either low, moderate, or high levels of hetero-
geneity, we have 80% power to detect average correlations of r = .07,
r = .09, and r = .12, respectively. In other words, we are sensitive to
most effect sizes traditionally considered small (r = .1, Cohen, 1988).

Results and Discussion

Meta-Analysis of Model Parameters

Our main question concerns the correlations between tasks for
the model parameters (see Figure 3). We report the results of this

Table 1
Summary of Datasets That Were Used for Modelling

Dataset Source Tasks
Neutral
condition N

Trials per
condition

1 New data Flanker Simon Yes 50 336
2 Hedge et al. (2018) Flanker Color-word Stroop Yes 103 480
3 Hedge et al. (2018) Simon (blocked trials) Simon (intermixed trials) No 102 288
4 Hedge et al. (2019) Flanker Color-word Stroop Yes 43 576
5 Whitehead et al. (2019) Flanker Color-word Stroop Spatial Stroopa No 187 512
6 Whitehead et al. (2019) Flanker Color-word Stroop Spatial Stroopa No 203 256 Congruent 768 Incongruent
7 Whitehead et al. (2019) Flanker Color-word Stroop Spatial Stroopa No 213 360

Note. N refers to the number of participants retained after exclusions.
a The authors refer to this as a Simon task, noting that it can also be thought of as a spatial Stroop. We refer to it as a spatial Stroop to distinguish it from
the format of the Simon task in Datasets 1 and 3. See Supplementary Material A in the online supplemental materials for details.
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analysis first, before considering factors that might moderate our
conclusions, such as the reliability of the data and model fits. If we
assume that factors such as general processing speed and strategy
confound behavioral measures of inhibition, then separating these
out using a cognitive model may reveal correlations in the parame-
ters representing conflict processing—the amplitude and time-to-
peak of automatic activation. Figure 3 shows the weighted average
correlation for each parameter, along with the individual correla-
tions for each pair of tasks.
We observed a very small and nonsignificant positive corre-

lation for both the amplitude parameter (r = .04, 95% CI
[�.01, .10], p = .13, I2 = 18.5%) and the time-to-peak parame-
ter (r = .04, 95% CI [�.01, .08], p = .14, I2 = 20.5%). Note
from the I2 values that the estimated heterogeneity is low
(,25%), which is also reflected in the narrow range of r values
in Figure 3. These correlations correspond to less than 1% of
common variance on average, providing no support for the hy-
pothesis of a common mechanism of conflict processing
between tasks. The low I2 values suggest this to be the case
consistently across all datasets. We again draw particular atten-
tion to Dataset 3, which did not deviate from the trend of low
correlations in amplitude (r = .04) and time-to-peak (r = �.07)
despite consisting of the same Simon task performed with
intermixed and blocked trials.
In contrast to the weak correlations observed for the conflict pa-

rameters, estimates for the nonconflict parameters were consistently
positive and statistically significant. In particular, we observed mod-
erate to strong correlations in drift rate (r = .32, 95% CI [.26, .38],
p , .001, I2 = 33.6%) and boundary separation (r = .54, 95% CI
[.49, .60], p , .001, I2 = 50%). These parameters represent the effi-
ciency of processing (i.e., general processing speed) and response

caution, respectively. Finally, we also observed significant positive
correlations in the mean (r = .56, 95% CI [.45, .67], p , .001, I2 =
85.6%) and variability of nondecision time (r = .28, 95% CI [.21,
.35], p , .001, I2 = 57.1%), as well as in start point variability (r =
.17, 95% CI [.08, .26], p , .001, I2 = 72.9%). The model parameter
correlations therefore provide good evidence for commonality in the
mechanisms underlying general performance in conflict tasks, but
not for the conflict and inhibition processes themselves.

Behavioral Performance

For completeness, we applied the same meta-analytic approach
to the traditional behavioral indicators of conflict processing: the
RT costs (r = .14, 95% CI [.04, .24], p = .004, I2 = 64.4%) and
error costs (r = .13, 95% CI [�.00, .27], p = .056, I2 = 83.1%).
These are plotted at the bottom of Figure 3. It is notable that both
showed positive correlations of a similar magnitude, with the RT
cost reaching significance, though the effect sizes are small and
heterogenous.

In all tasks, we observed the expected pattern of increased error
rates and slower RTs in incongruent trials relative to congruent tri-
als (Supplementary Material C in the online supplemental
materials).

Reliability and Parameter Recovery

Weak correlations in model’s conflict parameters could reflect insta-
bility in the parameter estimates. This is plausible, for two reasons: (a)
conflict parameters are essentially derived from differences between
conditions, and differences are typically less reliable than their compo-
nents (Cronbach & Furby, 1970); (b) cognitive tasks developed ini-
tially for within-subject analyses have to some degree been naturally
selected for low between-subjects variance in the mechanisms of

Figure 2
Schematic of Tasks

Note. In the flanker task (Datasets 1, 2, and 4), participants respond to the central arrow and
ignore the flankers. In the Simon task (Datasets 1 and 3), participants respond to the color of
the stimulus and ignore the location. In the Stroop task (Dataset 2 and 4), participants
respond to the color of the font and ignore the written word. In the spatial Stroop task
(Datasets 5–7, referred to as a Simon task by Whitehead et al., 2019), participants respond
to the meaning of the written word and ignore its location. Whitehead et al. did not include
neutral conditions, so we do not illustrate one for the spatial Stroop. The flanker task in
Datasets 5–7 consisted of horizontally distributed letters (e.g., DDDDD, FFKFF) instead of
arrows. The flanker and Simon tasks in Datasets 1–4 were two-choice tasks, and all others
were four-choice. See the online article for the color version of this figure.
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interest, which causes reliability to be lower in correlational research
(Hedge, Bompas et al., 2020; Hedge et al., 2018b; Miller & Ulrich,
2013).
We evaluated the parameter recovery of the model for our em-

pirical fits (see Appendix B), as well as the split-half reliability of
our behavioral measures (for full details, see Supplementary
Material C in the online supplemental materials). Across all tasks
and datasets, we observed sufficient recovery of the amplitude pa-
rameter (median r = .84) and the main nonconflict parameters:
drift rate (median r = .93) and boundary separation (median r =
.94). Our ability to detect correlations in the time-to-peak parame-
ter is likely to be limited by its poor recovery outside of the Simon
and spatial Stroop tasks (median r = .48).
We have also previously examined the four week test–retest

reliability of the DMC parameters in Dataset 4 (Hedge et al.,
2019). Consistent with our parameter recovery exercise here,
the amplitude parameter showed moderate reliability (ICC =
.55 and .47 in the flanker and Stroop task, respectively), and the
reliability of the time-to-peak parameter was poor (ICC = �.04
and .19). For comparison, these fall within the ranges seen for
the reliabilities of the RT costs (ICCs ranging from .38 to 66)
and error costs (ICCs from .09 to .53) in these tasks. Drift rate
(ICC = .77 and .48) and boundary separation (ICCs ranging
from .39 to .71) tended to show similar or better reliability than
the conflict parameters. Note that we had a total of six separate
behavioral costs and boundary estimates in this study, corre-
sponding to the three speed–accuracy trade-off instruction con-
ditions in each task.

Model Fits and Sanity Checks

We report the means and standard deviations for the model pa-
rameters in Appendix C. For the two-choice tasks in Datasets 1–4,
parameters were similar to those reported using comparable tasks
(Ulrich et al., 2015). We observed slower RTs in the four-choice
tasks (Stroop, Datasets 5–7), which corresponded to increases in
average boundary separation and nondecision time, and a decrease
in drift rate and the amplitude of automatic activation. The time-
to-peak of automatic activation values were similar for different
variants of commonly named tasks (e.g., the two-choice flanker
and the four-choice flanker) and followed the expected pattern of
being shortest for the Simon tasks and longest for the Stroop.

If the DMC is an appropriate model for these tasks, then the best
fitting parameters should reproduce both individual differences in the
data and capture key data patterns. We evaluated the model fits by
calculating Pearson correlations for accuracy and RT quantiles (25th,
50th, 75th) of the observed data against data simulated using the best
fitting model parameters for each participant (Voss et al., 2015). RTs
for correct and incorrect responses were evaluated separately. We
illustrate this with incongruent trials from two tasks in Figure 4,
which are representative of the range of fits we observed. In addition,
we evaluated the extent to which the fits could qualitatively repro-
duce the conditional accuracy functions and delta plots in the
observed data. We report the correlations and figures in Appendix C
and Supplementary Material F respectively and focus here on the
implications for our interpretations of the model parameters.

Focusing first on individual differences, the model fits generally
captured accuracy well. The minimum correlation between

Figure 3
Meta-Analytic (Black Diamonds) and Observed (Circles) Zero-Order Correlations
Between Tasks in Parameters of the Diffusion Model for Conflict Tasks (DMC)

Note. We also plot the traditional behavioral metrics of reaction time (RT) costs and error
costs. Error bars show 95% confidence intervals. Because we used zero-order correlations,
and some datasets had multiple tasks (5–7) or speed/accuracy conditions (4), these datasets
contribute multiple circles of the same color to the plot. A multilevel random effects meta-
analysis was performed on Spearman’s rho correlations calculated for each pair of tasks,
allowing for clustering where multiple correlations were taken from the same dataset. The
Amplitude and time to peak parameters are associated with conflict processing. See the
online article for the color version of this figure.
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observed and simulated accuracy for any task/dataset were r = .73
and r = .86 for congruent and incongruent trials, respectively. Cor-
rect RTs were also captured well across all RT quantiles for con-
gruent (minimum r = .85) and incongruent trials (minimum r =
.91). The reproduction of RT for error trials showed more variabil-
ity, ranging from .61 to .96 for incongruent trials. This is to be
expected as error RTs are based on fewer trials, so the estimates
are noisier. Notably, the model tended to systematically underesti-
mate RTs for tasks that had slower RTs overall, particularly for
errors (Stroop, Datasets 5–7; see Figure 4).
A consequence of the underestimation of slow incongruent RTs

was the underestimation of the RT cost in tasks with slower

(correct) RTs. We elaborate on this behavior in Supplementary
Material D in the online supplemental materials and consider the
theoretical implications of these patterns in the discussion. A con-
sequence for our meta-analysis is that the DMC parameters may
be poorly estimated for these tasks where the data are less-well
captured. This could contribute to the small correlations seen in
the conflict parameters in Figure 3. We opted to include all the
datasets in our meta-analysis despite this observation. We rea-
soned that the pattern of fast errors in most tasks was reflected in
the model fits, which indicates that they are capturing the timing
and strength of conflict effects to some degree. Further, the strong
positive correlations in accuracy and RT quantiles indicate that

Figure 4
Scatter Plots Showing Fits for Incongruent Trials in the Flanker Task in Dataset
1 (Two-Choice, Left Column) and 7 (Four-Choice, Right Column)

Note. We chose these for illustration because Dataset 1 shows a good fit whereas Dataset 7
shows a clear underestimation of the speed of slow RTs. We calculated Pearson correlations
for accuracy (top row) and RT quantiles (25th, 50th, 75th; second, third, and fourth row
respectively) of the observed data against data simulated using the best fitting model param-
eters for each participant. For RTs, black circles represent correct responses, red crosses rep-
resent errors. A good fit is indicated by a strong positive correlation and a tight clustering of
the points around the diagonal identity line. Note that in the right column, the red crosses
cluster below the identity line, indicating that errors produced by the model fits tend to have
lower RTs in a more restricted range than is observed in the data. Despite this underestima-
tion, the correlations between observed and simulated data are reasonably strong. See the
online article for the color version of this figure.
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individual differences are being captured by the model. The con-
sistency of the conflict parameter correlations observed in our
meta-analysis, indicated by the low I2 values, suggests that our
conclusions are not dependent on the inclusion of particular
datasets.

Representativeness of Datasets

The datasets included in our modeling were selected to have
larger trial numbers than is normally seen in the literature. We
might question whether this criterion or the limited number of
sources (two labs, including our own) affects the representative-
ness of correlations seen in these datasets. A recent analysis by
von Bastian et al. (2020) surveyed between-task correlations for
“attention control” tasks, including the conflict tasks we examine
here, and others such as n-back and working memory updating.
The median correlation between all task pairs was r = .16 (n corre-
lations = 2114), and correlations were typically lower when pairs
included at least one of the flanker, Simon or Stroop tasks. This
overall value is similar to the averages we observe in our meta-
analysis of RT costs (r = .14) and error costs (r = .13). von Bas-
tian et al. further note that most correlations did not exceed r = .3.
Similarly, most of our behavioral correlations fell between r = 0
and r = .3, with a few exceeding this (min r = �.27, max r = .50;
see Figure 3). Thus, the correlations in our datasets appear to be
representative of those seen in the broader literature.

Summary of Empirical Data

Overall, we observe weak or no correlation between tasks in
DMC parameters representing conflict processing. However, we
do observe consistent correlations in model parameters reflecting
nonconflict decision processes. We see small but significant corre-
lations in RT costs, although these could also be driven by com-
mon variance in strategy and processing speed across tasks. A
critical step toward interpreting these effects is to understand the
source(s) of individual differences in these measures.

Part II. Could Performance Measures Diagnose
Shared Conflict Mechanisms?

We might interpret the weak correlations between parameters of
conflict processing in our datasets as an indication of independent
mechanisms underlying each task. However, a domain-specific
account of conflict control is difficult to apply to Dataset 3, where
the intermixed and blocked variants of the Simon task share sur-
face characteristics. Although we expect trial arrangement and
proportions to affect the processing demands of a task (Unsworth
et al., 2004), there ought to be at least some degree of common
conflict processing for the incongruent trials in blocked or random
arrangement. But we observed no better correlation than for other
task pairings, suggesting that it is difficult to isolate individual dif-
ferences in conflict processing among other processes that contrib-
ute to behavior.
Despite the absence of correlations in conflict model parame-

ters, we did observe a small but significant positive correlation in
RT costs, as well as a similar correlation in error costs. Can these
correlations provide evidence of common conflict-processing
mechanisms? We know they are not perfect evidence, as perform-
ance costs do not isolate ability in a specific cognitive domain

(Hedge et al., 2018; Hedge et al., 2018a; see also Draheim et al.,
2016; Miller & Ulrich, 2013). However, this is not to say that they
carry no information. In Part II, we evaluate this through
simulation.

First, we ask whether detectable correlation in task performance
is a necessary consequence of underlying common conflict-proc-
essing mechanisms. In other words, when we impose a correlation
in conflict parameters in the model, how does this manifest in be-
havioral correlations in RT costs and/or error costs (when partici-
pants vary randomly in other ways)?

Second, we ask whether correlation in performance measures is
sufficient evidence of common conflict-processing mechanisms. In
other words, are correlations in RT costs and error costs driven
just as well by shared nonconflict processes?

We conducted a set of simulation studies to assess these ques-
tions. We imposed correlations in conflict model parameters (am-
plitude and/or time-to-peak) between two tasks to represent a
common mechanism for conflict. We then compared this with an
alternative, in which there are no correlations in conflict parame-
ters, but the nonconflict decision parameters (drift rate and bound-
ary separation) were correlated instead. We tested how these
underlying structures would emerge in RT costs and error costs.
Our simulations have the additional benefit that we are not limited
by measurement noise attributable to low trial numbers or reliabil-
ity, so this approach provides a theoretical upper limit for the
effect sizes we could expect to see in real data.

Method

We based our parameter ranges on a previous parameter recov-
ery study (White et al., 2018), which themselves were based on
previous studies that had applied the DMC (Servant et al., 2016;
Ulrich et al., 2015). White et al. observed high correlations
between simulated and recovered parameters (r . .93 for all pa-
rameters when shape is held constant), so we can be confident that
these ranges produce discriminable variation in behavior.

We simulated multiple scenarios that varied on three dimen-
sions. The first dimension reflected different hypothetical tasks.
We simulated hypothetical Simon, flanker, and Stroop tasks by
varying the average value of the time-to-peak parameter to match
what we observed in our model fits. We did this because this pa-
rameter has previously accounted for differences in behavioral
patterns between tasks (Ulrich et al., 2015), and we reasoned that
these different dynamics may affect the correlations observed in
RT cost and error costs. For simplicity, and to maintain the
approach of testing the upper limit of correlations we would
expect in real data, we used the same means and standard devia-
tions for the parameters in both simulated tasks within each sce-
nario (i.e., we test for correlation between two versions of the
same task). We also used the same mean and variance for the
other parameters across all tasks to aid comparisons (see Table 2).
We report correlations across different simulated tasks in
Supplementary Material E in the online supplemental materials.
As expected, these were generally smaller than those we report
here, but they followed the same patterns.

The second dimension that we varied across scenarios was
which mechanisms had correlations imposed across tasks in the
underlying model. We imposed a common conflict-processing
mechanism in three ways: a correlation in the amplitude parameter
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only, the time-to-peak parameter only, and both the amplitude and
the time-to-peak parameters. In the fourth scenario, the conflict pa-
rameters were uncorrelated, and we imposed correlation in drift
rate and boundary separation. We assumed no correlation (r = 0)
for all parameters other than those named in each scenario.
The third dimension that we varied was the magnitude of the

correlation that we imposed (r = .3, .5, and .7). We did this to eval-
uate whether RT costs and error costs were sensitive to changes in
correlation in the underlying mechanisms.
For each scenario and effect size, we simulated datasets for

2,000 participants comprising 5,000 congruent and 5,000 incon-
gruent trials each. This is more trials than would typically be run
in an empirical study, but it allows us to minimize the impact of
noise on our estimates. We expect behavioral correlations with
lower trial numbers would be smaller. Parameters were generated
from a multivariate normal distribution using Matlab’s mvnrnd
function. This allows for the generation of two variables with
specified means, standard deviation, and covariance (correlation).
We derived the standard deviations by dividing the range of the
uniform distributions used by White et al. (2018) by six, to obtain
a similar range. In other words, the upper limit of the uniform dis-
tribution used by White et al. corresponds to three standard devia-
tions above the mean of the normal distribution used in our
simulation. For simplicity we did not include variability in nonde-
cision time, and we fixed the shape parameter for automatic activa-
tion to 2, as in our empirical fits and Ulrich et al. (2015).

Results and Discussion

Performance Correlations Are Not Necessary Evidence
for CommonMechanisms of Conflict Processing

Spearman’s rho correlations between performance measures
calculated from the two simulated tasks are shown in Figure 5.
First, we evaluated whether correlations in performance are a nec-
essary outcome of introducing correlations in the model conflict
parameters. The white/pale sections in the first three scenarios (see
Figure 5) illustrate that this condition is not met. It was possible to
observe no correlation in both RT costs and error costs in the pres-
ence of very strong (r = .7) correlations in the time-to-peak
parameter.

The correlation in RT costs generally increased as the underly-
ing correlation in the amplitude parameter increased and were
largest in the scenarios where correlations were imposed in both
the amplitude and time-to-peak parameters. However, the behav-
ioral correlations were heavily attenuated in some cases, and to
different degrees in different tasks. For example, whereas a corre-
lation of (r = .52) was observed in RT costs in the Simon task
when the correlation in both amplitude and time-to-peak was very
strong (r = .7), the corresponding correlation in the Stroop sce-
nario was small (r = .21). This occurs because independent var-
iance in the nonconflict parameters masks the effect of the conflict

Table 2
Parameters Used for Model Simulations

Parameter M SD

Amplitude of activation (A) 27.5 4.17
Time-to peak of activation (tau) 72 16.67

135
505

Upper boundary (b) 62.5 5.83
Nondecision time (Ter) 335 21.67
Drift rate (lc) 0.5 0.1
Starting point shape (a) 2.5 0.167
Nondecision time variability (TerSD) 0 0

Note. M and SD refer to the population values used to generate parameters
for simulations, based on the ranges reported in Table A1 (Appendix A)
and White et al. (2018). The three M time-to-peak values correspond to
separate simulations designed to represent the Simon, flanker, and Stroop
tasks.

Figure 5
Spearman’s Rho Correlations Between Performance Costs
Calculated From Two Simulated Datasets Using the Diffusion
Model for Conflict Tasks

Note. The strength of the between-task correlation in the model parameter
(s) is given in the “Simulated effect size” column. The columns to the
right of this show the between-task correlations in the simulated error and
RT costs, respectively. The correlation between other model parameters
(boundary separation, drift rate, and nondecision time) was set to 0 in the
first three scenarios. In the fourth scenario, the correlation in conflict pa-
rameters was set to zero, and the nonconflict parameter correlations were
varied. We used the same parameter ranges for both tasks within each
scenario. For example, the Simon column shows the correlations between
two versions of a Simon task. Note that the size of the correlations in the
fourth scenario are comparable to, and in some cases exceed, those
observed in the first three scenarios. See the online article for the color
version of this figure.

10 HEDGE, POWELL, BOMPAS, AND SUMNER



parameters and does so to different degrees depending on the tem-
poral dynamics of the conflict process in each task. This pattern
could lead researchers to incorrect conclusions about shared mech-
anisms across different types of task; correlations can be smaller
simply because of slower activation of the conflict process, not
necessarily because of more independence. Note that most correla-
tions in RT and error costs predicted in the first three scenarios are
below what is traditionally considered moderate (.3), except when
the correlation in amplitude is very large (.7), or both the ampli-
tude and time to peak parameters show strong (..5) correlations.
Based on our empirical fits, where the largest correlation we saw
in conflict parameters in any dataset was r = .19, we do not expect
underlying correlations in currently used tasks to be strong.

Performance Correlations Are Not Sufficient Evidence
for CommonMechanisms of Conflict Processing

Next, we evaluated whether it is possible to observe correlations
in RT costs and error costs in the absence of common mechanisms
of conflict processing. In the fourth scenario (see Figure 5), the
mechanisms underlying conflict processing are independent (r =
0), but we imposed correlations in parameters representing strat-
egy and general processing efficiency. The key observation here is
that the correlations can be similar to, and even exceed, those we
see in the first three scenarios. This illustrates that nonconflict
processes (e.g., strategy, processing speed) can create correlations
in measures of inhibition when the mechanisms of conflict proc-
essing are in fact independent.
The magnitude of the correlations we observe in the fourth sce-

nario may surprise some readers, although they are in line with
previous simulations (Hedge et al., 2018; Hedge et al., 2018a).
The reason is that both RT costs and error costs are correlated with
drift rate and boundary separation, and we impose a correlation on
both these parameters simultaneously here, so they have a strong
impact on behavior. We show the correlations between the behav-
ioral measures and parameters in Supplementary Material E in the
online supplemental materials.

Caveats and Considerations

A key inference from our simulations is that individual differen-
ces in nonconflict decision processes could mask individual differ-
ences in conflict processing in performance measures. In our first
three scenarios, our simulated individuals varied in boundary sepa-
ration and drift rate, but this variation was uncorrelated between
tasks, and therefore adds noise to the performance measures. The
extent of noise is dependent on the standard deviations used to
generate the parameters (see Table 2). Smaller standard deviations
for nonconflict parameters would allow stronger correlations in
performance measures to emerge as a function of the conflict pa-
rameters. The standard deviations we chose were based on previ-
ous simulations (White et al., 2018) and empirical observations
(Ulrich et al., 2015). Are they too large? In fact, we observed
greater variance, not less, in several parameters in the fits to our
data (see Appendix C). To check the robustness of our conclu-
sions, we conducted an additional simulation in which we generate
parameter sets using the means and standard deviations we
observed in the DMC fits to our flanker, Simon and color-word
Stroop data (Supplementary Material E in the online supplemental
materials). The resulting between-task correlations in simulated

performance measures did not exceed those reported for the analo-
gous scenarios in Figure 5. Thus, our interpretation that shared
conflict processing would have a relatively small effect on behav-
ior is not specific to the source of simulated parameter ranges.

A second consideration is that we simulated the scenarios of
shared conflict or nonconflict mechanisms in isolation. When we
assumed that the amplitude and time-to-peak parameters were cor-
related, we assumed that drift rate and boundary separation were
uncorrelated and vice-versa. In reality these are not mutually
exclusive—it is possible that both conflict and nonconflict proc-
esses are correlated in some scenarios, both of which contribute to
positive correlations in performance costs. However, the challenge
faced by researchers remains the same: The magnitude of correla-
tions in RT costs or error costs cannot be interpreted as the degree
of shared conflict processing or inhibition.

We reiterate that our simulations represent scenarios where the
underlying variance is not restricted (because the parameters can
be recovered well; White et al., 2018), where the variance is simi-
lar between the two tasks, and where there is minimal noise in the
behavioral measures due to the large number of simulated trials.
Thus, if the model is an appropriate one, the results represent the
upper limit of what would be expected in real data. For example,
in Figure 5, we see that large correlations in nonconflict processes
lead to moderate correlations in error costs. However, despite our
empirical meta-analysis showing that moderate to large correla-
tions are present in strategy and processing speed in real data, the
corresponding average correlation in error costs is small. Error
rates are often low in empirical data, making them difficult to mea-
sure reliably. As we and others have previously noted, poor reli-
ability and low trial numbers can make it difficult to draw
conclusions from small correlations (Hedge et al., 2018b; Miller &
Ulrich, 2013; Rouder et al., 2019).

Summary of Simulations

Correlations in conflict parameters do not always translate into
behavioral congruency effects. On the other hand, correlations in
nonconflict parameters can produce large correlations in behav-
ioral congruency effects. Taken together, correlations in perform-
ance costs are neither necessary nor sufficient to infer there are
common underlying conflict-processing mechanisms.

General Discussion

The overarching questions we address here are: is there a com-
mon mechanism of conflict processing underlying performance
across ‘inhibition’ tasks and, if there were, would we be able to
detect it from RT and error costs? Our data and simulations sug-
gest the presence or absence of correlations across conflict tasks is
only weakly informative as to whether common conflict control
mechanisms underlie performance.

The meta-analysis of model parameters fit to multiple empirical
datasets, parameters associated with conflict processing correlated
weakly or not at all. This pattern persists even when we examine
two variants of the same task, which we assume share more com-
mon elements than tasks from different conflict domains.

Our simulations indicate that it might be difficult to detect be-
havioral correlations even if shared conflict mechanisms exist, and
that the degree of behavioral correlation cannot be specifically
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attributed to the degree of shared conflict processing. Parameters
reflecting response caution and general processing efficiency con-
tribute substantially to performance measures. In the presence of
correlated conflict parameters, these nonconflict parameters add
noise if they are uncorrelated between tasks, potentially leading us
to conclude that conflict processing mechanisms are relatively in-
dependent. Alternatively, if these general processes are correlated
between tasks—as they seem to be in the datasets presented above
—they drive correlations in performance measures and could mis-
lead researchers searching for common conflict mechanisms.

ShouldWe Stop Thinking About Individual Differences
in Inhibition?

The construct of response control or response inhibition has
been a core component of cognitive theorizing for at least several
decades (Logan et al., 1984; Miyake et al., 2000) and one that has
been heavily implicated in neuropsychological disorders and brain
dysfunction (Bari & Robbins, 2013; Chambers et al., 2009). Rey-
Mermet et al. (2018) pose the question of whether inhibition is a
useful psychometric construct, citing low and inconsistent correla-
tions reported in the literature and their own data. Instead, they
suggest that the ability to resolve interference is task specific, chal-
lenging the often-made assumption that performance on any given
response control task can be interpreted in a broader context. Our
findings are consistent with this position but highlight that it is
very difficult to draw any conclusions about inhibition constructs
from the degree of behavioral correlations.
One clear finding from our meta-analysis was that we consis-

tently observed little correlation in conflict-related model parame-
ters. We could interpret this as evidence for modality-specific
mechanisms; however, we still could not detect correlation
between conflict parameters in our intermixed and blocked ver-
sions of the Simon task (Dataset 3). One explanation for this is
that our blocking manipulation changed the way the stimuli were
processed (Gehring et al., 1992; Hedge et al., 2018; Unsworth et
al., 2004), to the point where automatic process are engaged differ-
ently by individuals in each context. We do not assume to have
equated the way the stimuli are processed by changing only the
blocking format, and we treat them as independent tasks in our fit-
ting. Our assumption is that if there is a common inhibitory ability
that manifests across tasks that differ in their blocking format as
well as their stimulus features and response format, then a dataset
with fewer differences is a low hanging fruit for observing correla-
tions (for a similar approach, see Snyder et al., 2019). That we do
not observe a correlation when using two versions of (nominally)
the same task has implications for studies that attempt to correlate
different tasks that typically use blocked trials (e.g., the antisac-
cade) with tasks that typically intermix them (e.g., flanker, Simon,
Stroop).
The absence of correlations between two variants of the Simon

task also raises the consideration of how perhaps seemingly neu-
tral differences in task implementation can change what our tasks
are measuring. Factor analytic studies of inhibition often include
multiple versions of a flanker task (e.g., using letters or arrows;
Kane et al., 2016; Rey-Mermet et al., 2018; Rey-Mermet, Gade,
Souza, et al., 2019) or Stroop-like tasks (e.g., color-word, number,
spatial; Chuderski et al., 2012; Kane et al., 2016; Pettigrew &
Martin, 2014; Rey-Mermet et al., 2018; Rey-Mermet, Gade,

Souza, et al., 2019; Salthouse & Meinz, 1995; Shilling et al.,
2002). However, there is limited evidence for higher correlations
between these commonly named tasks than between differently-
named inhibition tasks in young adults (for a discussion of the
Stroop, see Rey-Mermet et al., 2020). There has been recent inter-
est in how design (e.g., trial numbers) and analysis choices impact
the reliability of a measure (Hedge et al., 2018b; Parsons, 2020;
Parsons et al., 2019; Rouder & Haaf, 2019; von Bastian et al.,
2020), and a similar approach to validity would improve our abil-
ity to construct a task in a way that maximally captures the process
(es) that we are interested in. This could be done by systematically
varying features of the task design (cf. Baribault et al., 2018), in
combination with modeling how these affect the relative contribu-
tion of different underlying processes.

Alternatively, we could conclude that it is simply too difficult to
recover meaningful information about conflict from correlating
tasks (Rouder et al., 2019). We believe that models are a useful
tool for individual difference research, but that they are not a pana-
cea (Hedge, Bompas et al., 2020). We have shown here that corre-
lations in nonconflict processes can confound the correlations we
observe in behavior, so there is a benefit to separating these out
from conflict processes. Further, although we cannot expect to
simply sidestep the reliability problems associated with difference
scores (Hedge et al., 2018b; Miller & Ulrich, 2013) by replacing
them with model parameters that account for those same differen-
ces, there is a potential for improvement by utilizing more infor-
mation from the data we collect, including the simultaneous
modeling of both accuracy and the shape of RT distributions.
However, cognitive models should not be expected to create reli-
able individual differences in tasks that are not suited to eliciting
them (Hedge et al., 2018b). If common mechanisms of inhibition
do exist, they appear to be too fragile to detect in the context of
individual differences in other mechanisms in our current tasks,
such as those related to caution and processing speed.

The answer to the question of whether we should stop thinking
about inhibition as a general construct likely depends on why the
researcher is interested in it. Researchers who are interested in
answering theoretical questions about the structure of executive
functions (e.g., Friedman & Miyake, 2004) often administer multi-
ple conflict tasks, use latent variable approaches to account for
measurement error, and small but nonzero correlations can be the-
oretically meaningful. Research in this area is likely to continue,
seeking improvements to task design and measurement (Draheim
et al., 2020; Rey-Mermet, Gade, Souza, et al., 2019; Rouder et al.,
2019; von Bastian et al., 2020). In contrast, some researchers use
inhibition tasks as one of many tools to understanding individual
differences in outcomes such as cognitive development (Carver et
al., 2001; Dahlin, 2011), neuropsychological conditions (Hutton &
Ettinger, 2006), or impulsivity (Skippen et al., 2019). Researchers
in these contexts may use a single task, implicitly assuming it rep-
resents inhibition measures in general. For this assumption, large
correlations between tasks are a prerequisite for interpreting any
one task as a measure of general inhibitory ability. Our data, and
the literature more widely, do not support such a generalization.
Instead, researchers in these areas might be better served by focus-
ing on tasks that are sensitive to the domain of interest (cf. Hutton
& Ettinger, 2006; Rey-Mermet & Gade, 2018).

12 HEDGE, POWELL, BOMPAS, AND SUMNER



Common Nonconflict Processes in Conflict Tasks

Our meta-analysis revealed consistent evidence for moderate to
strong correlations in drift rate and boundary separation, which
represent the efficiency of task-relevant processing and strategy/
caution respectively. These parameters are notable because our
simulations show that these nonconflict processes contribute sub-
stantially to individual differences in RT costs and error costs (see
also Hedge et al., 2018; Hedge et al., 2018a; Miller & Ulrich,
2013). These findings also converge with evidence from factor
analytic studies that performance in inhibition tasks can be (at least
partly) accounted for by processing speed (Jewsbury et al., 2016;
Rey-Mermet, Gade, Souza, et al., 2019) or goal maintenance and
implementation (Friedman & Miyake, 2017; Kane & Engle,
2003). Overall, it appears that there are common mechanisms
underlying performance in inhibition tasks, though they are not
unique to conflict processing.
Our findings and approach contribute to the discussion in

several ways. First, multiple studies have assumed that strategy
may confound the measurement of individual differences and
take steps to control for it (e.g., Draheim et al., 2016; Rey-Mer-
met, Gade, Souza, et al., 2019). However, they do not measure
response caution and examine whether it correlates across tasks
as we do here. Second, the finding that general processing
speed is sufficient to account for individual differences in inhi-
bition tasks in factor analytic studies is partly based on a failure
to derive a unique inhibition factor (Karr et al., 2018; Rey-Mer-
met, Gade, Souza, et al., 2019). By using a model to dissociate
and quantify the efficiency of controlled processing, captured
by the drift rate parameter, we can provide positive evidence
for common mechanisms.
Finally, although we draw parallels between the drift rate pa-

rameter and latent perceptual/processing speed factors identi-
fied in factor analytic studies (Hedden & Yoon, 2006; Jewsbury
et al., 2016), it is not a given that they refer to the same under-
lying ability. A perceptual speed task might involve comparing
the size of two letter strings to determine which is longest, with
performance measured by the number completed in a fixed time
limit (Hedden & Yoon, 2006). A latent variable—which might
be called perceptual speed—is then derived from behavior
across multiple tasks assumed to measure the same construct.
In contrast, a cognitive model attempts to dissociate latent proc-
esses that contribute to behavior within a task. From an evi-
dence accumulation model perspective, individual differences
in this ‘perceptual speed’ factor could be driven by some com-
bination of drift rate, boundary separation, and nondecision
time. These two approaches to capturing latent psychological
processes are not mutually exclusive, and some studies have
used diffusion model parameters in a factor analysis in place of
behavioral measures (e.g., Schmiedek et al., 2007). Such an
integration may a useful approach to overcome the impurity of
behavioral measures that we evidence here.

Alternative Models

Our approach is only useful if the model employed is relevant
to the way human brains process these tasks. All models make
assumptions; we do not know the true model and the DMC may
be a mischaracterization of the mechanisms of response control.

We chose the framework of evidence accumulation models
because they have previously offered valuable insights into indi-
vidual differences in choice RT behavior (e.g., Hedge et al., 2018;
Ratcliff et al., 2015). Further, we chose the DMC specifically
because we needed a common framework for all tasks, whereas
some alternative models invoke task specific mechanisms (White
et al., 2011). Would we have reached different conclusions had we
used a different evidence accumulation model, or a different fam-
ily of models altogether?

It is common for evidence accumulation models to show a high
degree of mimicry. Different models can often reproduce the same
data patterns even though they make different assumptions (Don-
kin et al., 2011; Teodorescu & Usher, 2013). There are alternative
sequential sampling models that have been applied to response
control tasks, which involve extensions from standard diffusion or
accumulator models (Bompas & Sumner, 2011; 2020; Bompas et
al., 2017, Dillon et al., 2015; Hübner et al., 2010; Noorani & Car-
penter, 2013; Weigard et al., 2019; White et al., 2011). Many of
these extensions are designed to capture the observation that errors
to incongruent stimuli are typically fast in tasks such as the
flanker. They do this by assuming that there is a nonlinearity in the
evidence accumulation process; information from the prepotent
stimulus feature contributes more to the early period of the deci-
sion than it does to the late period. If we were to examine the evi-
dence for common mechanisms in a different model, then we
would inevitably look at correlations in the parameters responsible
for this nonlinearity. We expect that this would lead to similar con-
clusions as we reach here because the challenge remains that these
mechanisms contribute only in part to individual differences in
behavior. In no commonly used accumulation model would behav-
ioral congruency effects be unaffected by parameters representing
strategy or overall processing speed (Hedge et al., 2018; Hedge et
al., 2018a). Neither is this general point specific to evidence accu-
mulation models (Miller & Ulrich, 2013; Pachella, 1974).

Outside of the accumulation model framework, different model-
ing approaches have been applied to conflict tasks. Perhaps most
notable is the Stroop task, for which there are models based in a
connectionist framework (e.g., Cohen et al., 1990), reinforcement
learning (Verguts & Notebaert, 2009), and others (for a review,
see Chuderski & Smolen, 2016). These models do not necessarily
conflict with an evidence accumulation model account, and they
sometimes share similar assumptions (Hübner et al., 2010; van
Maanen & van Rijn, 2007). Here, we started with the working
assumption that all tasks could be explained using a common
framework. Instead, there may be value in using different models
that are tailored to the assumptions underlying each task and
examining correlations in conceptually related parameters across
different models. For our current purposes, alternative models
would still need to deal with the difficulty in distinguishing indi-
vidual differences in conflict processing among the other processes
that contribute to behavior.

An alternative model could possibly provide better quantitative
fits to some of our data than the DMC does here. Indeed, our fits
reveal some data patterns that may challenge the assumptions of
the DMC (see Supplementary Material E in the online supplemen-
tal materials). In particular, in our implementation, the time-to-
peak parameter couples the speed at which automatic activation
peaks with the speed at which it is removed. This led to our fits
erroneously predicting negative delta functions in data that had
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fast errors and slow RTs. It could be argued that this is an unfair
test of the DMC, because it is designed as a model of two-choice
behavior, and the data patterns that produced poorer fits were from
four-choice tasks. The DMC reproduced the data patterns from our
two-choice tasks well and was able to capture individual differen-
ces in all datasets to a degree. However, we are not the first to
observe an underestimation of the conflict effect in slower RTs
with the DMC (Hübner & Töbel, 2019). Notably, Hübner and
Töbel also observed negative going delta functions in the flanker
task when the onset of the flankers preceded the onset of the target.
This suggests transient activation elicited by the conflicting stimu-
lus feature is a plausible account of both the flanker and Simon
tasks, though additional flexibility may be required to model it
within a common framework.
We reiterate that our approach here is one of model application

(Crüwell et al., 2019), and we are not testing the validity of the
DMC. The primary motivation for developing the DMC was to
demonstrate that positive and negative going delta functions can
be understood within a common framework (Ulrich et al., 2015).
The ability to capture individual differences is not a central
assumption of the model, nor does the model assume that parame-
ters should correlate across tasks.

Alternative Perspectives on Response Control

To some theoretical perspectives, it may not be surprising that
parameters derived from different tasks and modalities show weak
correlations. Starting with Friedman and Miyake’s (2004; see also
Miyake et al., 2000) influential work, many studies have used fac-
tor analysis to distinguish different subtypes of response control
tasks (though earlier work had made conceptual distinctions (for
example, Nigg, 2000). The three factors identified were inhibition
of prepotent responses (antisaccade, Stroop, and stop-signal tasks),
resistance to distractor interference (flanker, word naming, shape
matching) and resistance to proactive interference (Brown-Peter-
son, AB-AC-AD, cued recall). It could be suggested that low cor-
relations between some of our task pairs (for example, flanker,
Simon) occur because they span different subfactors of this frame-
work. However, this interpretation would not account for the low
correlations we observe between more closely related task (Stroop,
spatial Stroop), or the blocked and intermixed Simon task variants
in Dataset 3.
We did not base our task selection on these previous taxonomies

as they do not consistently replicate (Karr et al., 2018; Rey-Mer-
met et al., 2018). In recent revisions of their model of executive
functioning, Friedman & Miyake (2017) have suggested that per-
formance in inhibition tasks may be best explained by a more gen-
eral construct, such as the ability to maintain and implement task
goals. Recently, a large survey of the literature found that intertask
correlations were not substantially larger within theoretical sub-
groups of tasks compared with between-subgroup pairs (von Bas-
tian et al., 2020), so we do not expect to have observed different
results had we used different tasks.
Beyond the individual differences context, Egner and colleagues

(Egner, 2008; Egner et al., 2007) have suggested a dissociation
between conflict arising from mismatched stimulus features (for
example, the font color and the written word in the Stroop), and
conflict arising through response mapping incompatibility (for
example, stimulus location and response hand in the Simon).

Egner et al. (2007) found in an fMRI study that stimulus-based
and response-based conflict modulated activity in parietal and pre-
motor cortex respectively. Thus, processing bottlenecks may occur
at different stages of the complex brain pathways dealing with
each task, but the overarching principles of conflict control may
still be similar. Differences in stimulus properties, task relevance,
and response modality may all modulate the weighted engagement
of different underlying mechanisms (Bompas & Sumner, 2011;
Bompas et al., 2017). Using models such as the DMC to decom-
pose performance into underlying components might reveal com-
mon principles across tasks without necessitating common neural
mechanisms.

Mechanisms of control go beyond reactively coping with con-
flict within a trial. For example, individuals adjust their behavior
for following trials after experiencing conflict or errors (for exam-
ple, Braem et al., 2014; Egner, 2008; Whitehead et al., 2019).
Whitehead et al. (2019) found that the size of error-related slowing
(Rabbitt, 1966) correlated across the flanker, Simon, and Stroop
tasks, whereas the sequential congruency or Gratton effect (Grat-
ton et al., 1992) did not. Further, the sequential congruency effect
appears not to generally transfer from one type of conflict (for
example, a Stroop stimulus) to another (for example, a flanker
stimulus) when these different sources of conflict are intermixed
(for reviews, see Braem et al., 2014; Egner, 2008; though there are
exceptions, for example, Freitas et al., 2007). This represents con-
verging evidence that there are task-specific mechanisms that pro-
cess conflict, rather than shared.

Summary and Conclusions

In Part I of this article, a meta-analysis showed no evidence for
correlated conflict mechanisms, and robust evidence for correla-
tions in strategy and processing speed across tasks. In Part II, our
simulations show that correlations in traditional behavioral meas-
ures (RT costs and error costs) are not diagnostic of the source of
common variance. Individual differences in strategy and process-
ing speed can create or mask correlations in behavior depending
on whether or not they are correlated themselves. Taken together,
these findings show that drawing conclusions from individual dif-
ferences in response control tasks, and, conversely, attempting to
directly measure inhibition ability is a difficult task. This difficulty
is an obstacle both to theory development, and to the study of neu-
ropsychiatric disorders and socially problematic behaviors. We
urge researchers to take into account individual differences in
strategy and processing speed where possible, either at the task or
analysis level.
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Appendix A

Model Fitting Details

To fit the DMC to experimental data, we adapted the
approach of White et al. (2018). We estimated seven param-
eters of the DMC separately for each participant in each
task. The parameters representing conflict processing were
the amplitude of automatic activation (A for congruent tri-
als, �A for incongruent trials), and the time to peak auto-
matic activation (tau). The nonconflict decision parameters
are boundary separation (b), drift rate of the controlled pro-
cess (mc), and the shape parameter of the beta distribution
used to represent starting points of the accumulation process
(a). Finally, nondecision time is implemented as a Gaussian
distribution with parameters for the mean (Ter) and variabil-
ity (TerSD). In Datasets 3 and 4, we estimated additional
boundary separation parameters to capture the experimental
manipulations. In Dataset 4, we estimated three separate
boundary separation values to capture strategic differences
between blocks in which we emphasized either speed, accu-
racy, or both speed and accuracy. We calculated the
between-task correlation in boundary separation under each
instruction condition and entered all three into our meta-
analysis. In Dataset 3 (intermixed versus blocked Simon
task), we derived separate boundary separation estimates
for congruent-only and incongruent-only blocks. As our
mixed-trial Simon variant produced a single boundary sepa-
ration estimate, we averaged the two values from the
blocked variant to obtain a single correlation for this
parameter.

For Datasets 1, 2, and 4, we also had data from a neutral
condition, which we included in the fitting with the amplitude
of the automatic activation fixed to zero. For each participant
within each task only the amplitude parameter provides the

difference between congruent, neutral, and incongruent trials;
all other parameters were constrained to be equal across condi-
tions. As with Ulrich et al. (2015), the diffusion constant/
within-trial noise (r) was fixed to 4. We fixed the shape param-
eter of the automatic activation function to 2 for all tasks, fol-
lowing Ulrich et al. (2015).

We accuracy-coded our data, so that the upper and lower
response boundaries correspond to thresholds for correct and
incorrect responses, respectively. Note that the DMC is a
model of a two-choice task, whereas some of our datasets con-
tained four-choice tasks. Multichoice tasks can be accommo-
dated by accuracy coding, which, although not ideal, allowed
us to interpret all the datasets within a common framework.
Correct and incorrect RTs from congruent, neutral (where
available), and incongruent conditions were separately binned
into quantiles. Correct RTs were binned into five quantiles (.1,
.3, .5, .7, .9) for each condition separately. The same approach
was applied for incorrect RTs in each condition when the total
number of errors in that condition $ 10. When between five
and 10 errors were made, three quantiles were used (.3, .5, .9)
for incorrect RTs. If fewer than five errors were made, we fit
the median RT of the errors. We calculated the deviance (�2
log-likelihood) between observed and simulated quantiles,
which was minimized with a Nelder-Mead simplex (Nelder &
Mead, 1965) implemented in the fminbnd function in Matlab.
We constrained the search such that all free parameters were
positive, and the shape of the starting point distribution was
greater than one.

We first fit the data using 5000 parameter sets generated
from a uniform distribution within the minimum and maximum
values given in Table A1 (based on White et al., 2018), with
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simulations consisting of 5,000 trials per condition. We then
took the 15 best parameter sets resulting from this initial
search, and submitted each of those to the simplex algorithm,
in which we simulated 10,000 trials per condition at each itera-
tion. The simplex was reinitialized 3 times to avoid local min-
ima. After the process was completed, we took the single best
fitting parameter set for each individual. This process took

approximately 30–40 hr per individual per task and was per-
formed on Cardiff University Brain Research Imaging Centre’s
(CUBRIC) high performance computer cluster.

At the time of fitting, we were the first to apply the DMC to
a Stroop task (though see Ambrosi et al., 2019 for a recent anal-
ysis with child data), and we noticed during preliminary exami-
nation of our data that our fitting routine would typically
converge to values outside our initial search space for the non-
decision time, time-to-peak, and shape of the starting distribu-
tion parameters. Unlike the flanker and Simon tasks,
participants did not make fast errors in our Stroop task (see
Appendix C; see also Figure 3 in Vandenbossche et al., 2012,
for a similar pattern of errors in the Stroop task.). To aid param-
eter optimization, we refit the Stroop data using a higher range
of starting parameters, noted in Table A1. It is plausible that in-
terference in the Stroop task has a later time course compared
with the flanker task or Simon task, since semantic word proc-
essing is expected to be slower than processing of location or
simple visual symbols. This is supported by evidence from
event-related potentials (ERPs). In a study that combined
flanker and Stroop stimuli, ERPs for congruent and incongru-
ent stimuli diverged earlier for flanker conflict than for Stroop
conflict (Rey-Mermet, Gade, & Steinhauser, 2019; see also
Kałamała et al., 2018; Liotti et al., 2000). We also used the
higher range of nondecision time when fitting Datasets 5 to 7,
as these datasets typically had slower RTs.

Appendix B

Parameter Recovery

A parameter recovery exercise tells us whether the model
and our fitting procedure can consistently identify different lev-
els of a parameter in data. For example, if data are generated
with a relatively high amplitude of automatic activation then
we want our fitting to return a relatively high value. We simu-
lated data from the best fitting parameters for each task and
individual in a dataset, with the number of trials corresponding
to what was originally administered in the task. We then fit the
simulated data using the same procedure that we used on the
empirical data and correlated the best fitting parameters with
those used to generate the data. These correlations (Pearson’s
r) are shown in Table B1.

The amplitude parameter was recovered well for most tasks
and datasets (median r = .84, range .56 to .95). Recovery of the
time-to-peak parameter was relatively poor (median r = .48,
range �.08 to .86). Recovery of the drift rate, boundary separa-
tion, mean nondecision time, and nondecision time variability
parameters was good (median r $ .90 for all). Starting point
variability could also be recovered to a lesser extent (median
r = .62). The poor recovery for the time-to-peak parameter con-
trasts to the good recovery reported by White et al. (2018),
using a similar approach. We suspect that the reason for this is
that the time-to-peak values produced in our empirical fits of

exceeded the maximum of the ranges used by White et al.
(20–120), particularly in the flanker and Stroop tasks (see
Appendix C). For example, the mean time-to-peak values
range across datasets from 99 to 135 for the flanker tasks and
495 to 634 for the Stroop tasks. It is possible that the time-to-
peak parameter is not uniquely identifiable in tasks/ranges that
do not produce negative going delta functions.

In the main text, we reported the results of a sensitivity power
analysis that showed that our meta-analysis had 80% power to
detect an average correlation of r = .07 in the presence of low
heterogeneity (which we observe in the conflict parameters).
These parameter recovery simulations do not change the size
of correlation that we can detect in the data. However, if we
assume that this observable correlation is attenuated due to
less-than-perfect parameter recovery, in the same way than
unreliability attenuates correlations, then we can calculate the
corresponding true correlation using Spearman’s (1904) dia-
ttenuation formula below. For illustration, we apply this for-
mula assuming a worst-case scenario for the amplitude
parameter, where we assume all tasks in all datasets had recov-
ery equal to the worst that we observed for any task (r = .56).
Note that for most tasks and datasets it was much higher.

Table A1
Parameter Values Used in Model Fitting and Simulations, Based
on White et al. (2018)

Parameter Minimum Maximum

Amplitude of activation (A) 15 40
Time-to peak of activation (tau) 20 (100) 120 (600)
Upper boundary (b) 45 80
Nondecision time (Ter) 270 400 (500)
Drift rate (lc) 0.2 0.8
Starting point shape (a) 1 3 (10)
Nondecision time variability (TerSD) 20 50

Note. Minimum and maximum refer to the edges of a uniform distribu-
tion used to generate parameters for our initial fitting. The same ranges
were used for all datasets except where values given in parentheses were
used instead (for the four-choice and Stroop tasks). White et al. report the
boundary separation (upper boundary 3 2). We fix the shape parameters
of the automatic activation to two. The diffusion constant (within-trial
noise) was fixed to four.
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True r x; yð Þ ¼
Observed r x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Reliability xð Þ � Reliability yð Þ
q ¼ 0:13

¼ 0:07ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:56:0:56

p

The demonstrates that a correlation of r = .07 in the data cor-
responds to an estimated true correlation of r = .13, which is on
the lower end of what is traditionally considered to be a small
effect size (r = .1; Cohen, 1988). In other words, our parameter re-
covery is sufficiently sensitive for our current purposes.

Appendix C

Descriptive Statistics for Model Parameters and Model Fits

Here we report the means and standard deviations for the
best fitting model parameters in our empirical fits (Table
C1). As an indication of model fits, we also report the
Pearson correlations between the empirical data and data
simulated from the best fitting parameters (Tables C2–C4).
Scatter plots for these fits are shown in Supplementary
Material F, along with empirical and simulated conditional
accuracy and delta functions.

The high positive correlations show that the model fits cap-
ture the rank order of participants in all task/datasets.
Correlations are lower for incorrect reaction times (Table C4),
which are based on fewer data points. However, note from the
plots in Supplementary Material F that model fits tended to
underestimate the speed of slower reaction times in some tasks
and datasets (Datasets 5 to 7; also see Figure 4 in the main
text). link tables, figures and Supplementary Material F.

Table B1
Parameter Recovery Correlations (Pearson’s r) for the Diffusion Model for Conflict Tasks

Dataset Task Amplitude Time-to-peak
Drift
rate

Boundary
separation

Nondecision
time

Starting point
variability

Nondecision
variability

1 Flanker 0.90 0.48 0.92 0.94 0.99 0.81 0.88
Simon 0.86 0.86 0.96 0.94 0.98 0.78 0.94

2 Flanker 0.93 0.53 0.91 0.96 0.98 0.69 0.96
Stroop 0.84 0.01 0.94 0.94 0.97 0.62 0.98

3 Simon intermixed 0.79 0.86 0.93 0.92 0.92 0.64 0.84
Simon blocked (cong.) 0.70 0.42 0.81 0.62 0.91 0.66 0.88
Simon blocked (incong.) 0.88

4 Flanker (Standard) 0.88 0.48 0.86 0.97 0.98 0.70 0.98
Flanker (Speed) 0.97
Flanker (Accuracy) 0.94
Stroop (Standard) 0.59 0.17 0.95 0.99 0.95 0.37 0.97
Stroop (Speed) 0.98
Stroop (Accuracy) 0.98

5 Flanker 0.58 0.55 0.93 0.95 0.98 0.62 0.90
Spatial Stroop 0.93 0.81 0.96 0.93 0.99 0.63 0.92
Stroop 0.85 0.33 0.90 0.90 0.94 0.46 0.83

6 Flanker 0.67 0.11 0.95 0.94 0.88 0.58 0.87
Spatial Stroop 0.95 0.67 0.97 0.96 0.96 0.53 0.90
Stroop 0.80 0.20 0.91 0.92 0.92 0.47 0.94

7 Flanker 0.56 0.38 0.87 0.91 0.89 0.43 0.89
Spatial Stroop 0.95 0.84 0.95 0.94 0.98 0.58 0.92
Stroop 0.84 �0.08 0.81 0.81 0.95 0.67 0.94
Median 0.84 0.48 0.93 0.94 0.96 0.62 0.92
Minimum 0.56 �0.08 0.81 0.62 0.88 0.37 0.83
Maximum 0.95 0.86 0.97 0.99 0.99 0.81 0.98

Note. Data were simulated from the best fitting parameters to our empirical datasets, and simulated data were subsequently fit using the same pipeline as
our main analysis (see Appendix A).
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Table C1
Means and Standard Deviations for Best Fitting Model Parameters to Empirical Datasets

Dataset Task Boundary Nondecision Amplitude
Drift
rate

Time to
peak

Start
shape

Nondecision
variability

1 Flanker 55.6 (10) 334 (27) 31.5 (9) .76 (.13) 113 (23) 2.1 (0.8) 34 (8)
Simon 51.2 (12) 302 (23) 18.4 (4.9) .60 (.13) 72 (36) 2.4 (0.8) 38 (9)

2 Flanker 53.5 (10.2) 343 (31) 23.8 (8) .65 (.15) 135 (24) 1.9 (0.8) 46 (15)
Stroop 71.7 (11.5) 435 (63) 19.3 (9.4) .33 (.07) 501 (192) 6.5 (2.9) 92 (38)

3 Simon Mix 59.2 (11.8) 310 (22) 14 (5.7) .50 (.12) 69 (42) 2.1 (0.9) 42 (12)
Simon Cong. 48.3 (9.4) 264 (19) 22.9 (8.5) .87 (.21) 108 (31) 2 (0.7) 40 (9)
Simon Incong. 60.4 (13.8)

4 Flanker Spd. 28.7 (10.7)
Flanker Std. 45.5 (12.4) 312 (22) 24 (7.3) .68 (.13) 129 (40) 1.8 (0.7) 49 (8)
Flanker Acc. 59.5 (11.5)
Stroop Spd. 27.3 (13.9)
Stroop Std. 58.7 (13.8) 384 (29) 21 (7.6) .28 (.06) 634 (227) 8.3 (4.3) 82 (18)
Stroop Acc. 67.4 (13.7)

5 Flanker 85.5 (24.1) 461 (85) 10.8 (5.8) .42 (.13) 100 (56) 2.8 (0.8) 72 (37)
Spatial Stroop 78 (12.5) 413 (51) 26.1 (8) .50 (.13) 87 (27) 2.6 (0.6) 58 (18)
Stroop 84.1 (16.5) 446 (76) 18 (10.1) .29 (.07) 538 (207) 6 (3) 83 (50)

6 Flanker 84.3 (22) 468 (48) 7.4 (4.7) .40 (.12) 99 (50) 3.1 (0.9) 74 (36)
Spatial Stroop 78.2 (13.8) 427 (33) 20.7 (7.3) .48 (.14) 105 (29) 2.8 (0.5) 52 (15)
Stroop 87 (17.7) 427 (59) 16.1 (8.4) .28 (.07) 548 (194) 6.5 (3.2) 85 (50)

7 Flanker 95.2 (28.8) 474 (70) 12.2 (5.8) .41 (.11) 101 (48) 2.7 (0.7) 81 (59)
Spatial Stroop 84.1 (13.6) 416 (35) 32.2 (9.8) .48 (.11) 122 (33) 2.7 (0.6) 51 (17)
Stroop 94.3 (17.4) 447 (92) 22.8 (10.1) .30 (.08) 495 (200) 5.2 (2.7) 93 (75)

Note. Multiple boundary separation values are given for tasks in which the parameter could vary between conditions. All other parameters were con-
strained across conditions.

Table C2
Pearson Correlations Between Observed Accuracy and Accuracy in Data Simulated From Best
Fitting Model Parameters for Each Individual

Dataset Task Congruent Neutral Incongruent

1 Flanker 0.94 0.87 0.97
Simon 0.95 0.96 0.98

2 Flanker 0.96 0.95 0.96
Color word Stroop 0.93 0.94 0.94

3 Simon blocked 0.82 0.95
Simon intermixed 0.92 0.95

4 Flanker Speed 0.94 0.91 0.88
Flanker Accuracy 0.87 0.73 0.91
Flanker Standard 0.96 0.91 0.93
Stroop Speed 0.94 0.93 0.95
Stroop Accuracy 1 0.99 0.99
Stroop Standard 0.99 0.99 0.99

5 Spatial Stroop 0.92 0.99
Color word Stroop 0.92 0.92
Flanker 0.84 0.96

6 Spatial Stroop 0.84 0.99
Color word Stroop 0.73 0.9
Flanker 0.85 0.95

7 Spatial Stroop 0.94 0.97
Color word Stroop 0.79 0.87
Flanker 0.78 0.89

Note. Correlations ranged from .73 to 1 (M = .92).
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Table C3
Pearson Correlations Between Percentiles of Correct Reaction Times in Data Simulated From Best Fitting Model Parameters for Each Individual

25th Percentile 50th Percentile 75th Percentile

Dataset Task Congruent Neutral Incongruent Congruent Neutral Incongruent Congruent Neutral Incongruent

1 Flanker 0.98 0.96 0.96 0.99 0.97 0.98 0.98 0.97 0.98
Simon 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.99 0.99

2 Flanker 0.96 0.97 0.96 0.98 0.98 0.97 0.99 0.97 0.98
Color word Stroop 0.96 0.97 0.96 0.97 0.98 0.97 0.98 0.97 0.96

3 Simon blocked 0.95 0.96 0.97 0.98 0.97 0.98
Simon intermixed 0.97 0.96 0.98 0.99 0.98 0.98

4 Flanker Speed 0.97 0.97 0.96 0.96 0.96 0.97 0.96 0.94 0.96
Flanker Accuracy 0.96 0.94 0.95 0.98 0.96 0.99 0.98 0.97 0.99
Flanker Standard 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
Stroop Speed 0.95 0.96 0.94 0.94 0.98 0.96 0.95 0.98 0.96
Stroop Accuracy 0.99 0.99 0.99 0.99 1 0.99 0.99 0.99 0.99
Stroop Standard 0.99 0.99 0.99 0.99 1 1 0.99 0.99 0.99

5 Spatial Stroop 0.99 0.98 1 0.99 0.99 0.99
Color word Stroop 0.97 0.97 0.97 0.97 0.96 0.96
Flanker 0.99 0.99 0.99 0.99 0.99 0.99

6 Spatial Stroop 0.94 0.97 0.95 0.98 0.96 0.99
Color word Stroop 0.85 0.91 0.89 0.96 0.88 0.95
Flanker 0.95 0.98 0.98 0.99 0.97 0.99

7 Spatial Stroop 0.96 0.92 0.99 0.96 0.98 0.98
Color word Stroop 0.95 0.95 0.94 0.95 0.93 0.94
Flanker 0.96 0.97 0.98 0.98 0.98 0.98

Note. Correlations ranged from .85 to 1 (M = .97).

Table C4
Pearson Correlations Between Percentiles of Incorrect Reaction Times in Data Simulated From Best Fitting Model Parameters for
Each Individual

25th Percentile 50th Percentile 75th Percentile

Dataset Task Congruent Neutral Incongruent Congruent Neutral Incongruent Congruent Neutral Incongruent

1 Flanker 0.71 0.72 0.84 0.72 0.74 0.84 0.66 0.75 0.87
Simon 0.71 0.59 0.88 0.83 0.86 0.87 0.78 0.8 0.75

2 Flanker 0.75 0.79 0.89 0.71 0.76 0.91 0.67 0.75 0.9
Color word Stroop 0.81 0.84 0.77 0.83 0.81 0.8 0.79 0.79 0.78

3 Simon blocked 0.55 0.7 0.56 0.73 0.56 0.73
Simon intermixed 0.77 0.83 0.83 0.87 0.81 0.87

4 Flanker Speed 0.82 0.87 0.92 0.83 0.89 0.91 0.86 0.84 0.87
Flanker Accuracy 0.71 0.7 0.81 0.66 0.71 0.89 0.7 0.67 0.89
Flanker Standard 0.83 0.87 0.91 0.82 0.91 0.93 0.78 0.92 0.9
Stroop Speed 0.89 0.91 0.91 0.9 0.91 0.92 0.96 0.95 0.93
Stroop Accuracy 0.96 0.97 0.96 0.94 0.97 0.96 0.91 0.96 0.95
Stroop Standard 0.97 0.97 0.95 0.98 0.96 0.95 0.97 0.96 0.94

5 Spatial Stroop 0.62 0.86 0.67 0.89 0.68 0.87
Color word Stroop 0.73 0.69 0.66 0.68 0.65 0.68
Flanker 0.83 0.82 0.82 0.79 0.79 0.78

6 Spatial Stroop 0.34 0.8 0.42 0.85 0.56 0.79
Color word Stroop 0.62 0.8 0.57 0.71 0.53 0.65
Flanker 0.57 0.81 0.63 0.77 0.7 0.75

7 Spatial Stroop 0.42 0.9 0.51 0.85 0.55 0.76
Color word Stroop 0.56 0.7 0.67 0.65 0.68 0.61
Flanker 0.71 0.7 0.72 0.68 0.72 0.68

Note. Correlations ranged from .34 to .98 (M = .78). Correlations are expected to be lower for incorrect RTs because they are based on fewer data points.
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