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SUMMARY
Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recog-
nized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface
of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein
complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapa-
mycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits
phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance
mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore,
G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heteroto-
pia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of
lysosomal TSC-mTORC1 signaling.
INTRODUCTION

The tuberous sclerosis complex (TSC) complex suppresses

mechanistic target of rapamycin complex 1 (mTORC1) (Kim

and Guan, 2019; Liu and Sabatini, 2020; Tee, 2018), a central

driver of anabolism (Hoxhaj and Manning, 2019; Mossmann

et al., 2018). mTORC1 hyperactivity causes diseases related to
Cell 184, 1–20,
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cellular overgrowth, migration, and neuronal excitability (Condon

and Sabatini, 2019) and often arises from disturbances of the

TSC complex, consisting of TSC complex subunit 1 (TSC1),

TSC2, and TBC1 domain family member 7 (TBC1D7) (Dibble

et al., 2012). In healthy cells, nutritional input such as insulin

(Menon et al., 2014) and amino acids (Carroll et al., 2016; Deme-

triades et al., 2014) inhibits the TSC complex. The TSC complex
February 4, 2021 ª 2021 The Authors. Published by Elsevier Inc. 1
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acts as a GTPase-activating protein (GAP) that inhibits the small

GTPase RHEB (Ras homolog-mTORC1 binding) (Garami et al.,

2003; Inoki et al., 2003; Tee et al., 2003; Zhang et al., 2003),

required for mTORC1 activation (Avruch et al., 2006; Long

et al., 2005). Suppression of mTORC1 by the TSC complex takes

place at mTORC1’s central signaling platform, the lysosomes

(Demetriades et al., 2014; Menon et al., 2014). The molecular

mechanisms anchoring RHEB and mTORC1 at lysosomes are

understood in detail (Condon and Sabatini, 2019; Kim and

Guan, 2019; Rabanal-Ruiz and Korolchuk, 2018). However, it is

not yet clear how the TSC complex is recruited to lysosomes

(Kim and Guan, 2019). We report that Ras GTPase-activating

protein-binding proteins (G3BPs) act as a lysosomal tether of

the TSC complex under nutrient sufficiency and starvation.

G3BP1 and G3BP2 are primarily recognized as RNA-binding

proteins that constitute core components of stress granules

(SGs) (Alam and Kennedy, 2019; Reineke and Neilson, 2019;

Riggs et al., 2020), and only a few SG-independent functions

have been reported (Alam and Kennedy, 2019; Omer

et al., 2020).

RESULTS

G3BP1 inhibits mTORC1 in cells without SGs
In an MTOR interactome (Schwarz et al., 2015), we observed

enrichment of G3BP1 (Figures 1A and S1A). Co-immunoprecipi-

tation (CoIP) in MCF-7 breast cancer cells corroborated that

G3BP1 associates withMTOR, alongwith its interactors regulato-

ry associated protein of MTOR complex 1 (RPTOR) and RPTOR

independent companion of MTOR complex 2 (RICTOR) (Figures

1B and S1B). Inhibitors of mTORC1 and its upstream activator

AKT1 (Kim and Guan, 2019; Liu and Sabatini, 2020; Tee, 2018)
2 Cell 184, 1–20, February 4, 2021
did not alter this association (Figures S1C and S1D). SGs inhibit

mTORC1 (Thedieck et al., 2013; Wippich et al., 2013), and we

tested involvement of the SG nucleator G3BP1 in this process.

Arsenite, a frequently used inducer of SGs (Anderson et al.,

2015), elicited a cytoplasmic punctate pattern of G3BP1 and eu-

karyotic translation initiation factor 3 subunit A (EIF3A) (Kedersha

and Anderson, 2007; Figure S1E) and increased phosphorylation

of the eukaryotic translation initiation factor 2 alpha (EIF2S1) at

S51 (Figure 1C), a marker for conditions that induce SGs (Ander-

son and Kedersha, 2002). As reported earlier (Heberle et al., 2019;

Thedieck et al., 2013; Wang and Proud, 1997), arsenite enhanced

phosphorylation of the mTORC1 substrate ribosomal protein S6

kinase B1 (RPS6KB1) (Holz and Blenis, 2005) at T389

(RPS6KB1-pT389) (Figures 1C and 1E). G3BP1 knockdown did

not alter RPS6KB1-pT389 levels (Figures 1C–1E and S1F–S1K;

Table S1), indicating that, in cells with SGs, G3BP1 does not

affect mTORC1 activity.

We tested whether G3BP1 influences mTORC1 activity under

conditions not associated with SG formation. Insulin and amino

acids activate metabolic signaling through mTORC1 (Menon

et al., 2014; Shen et al., 2019; Wyant et al., 2017), and they

enhanced phosphorylation of RPS6KB1-T389 and of its substrate

ribosomal protein S6 (RPS6-pS235/236) 10 and 15min after stim-

ulation (Pende et al., 2004; Figures 1F, 1H, 1I, S1L, S1N, and

S1O). G3BP1 knockdown by two different short hairpin RNA

(shRNA) sequences (Table S1) further increased RPS6KB1-

pT389 and RPS6-pS235/236 (Figures 1F–1I and S1L–S1O). In

triple-negative MDA-MB-231 breast cancer cells, shG3BP1

knockdown also enhanced RPS6KB1-pT389 and RPS6-pS235/

236 (Figures 1J–1M and S1P–S1S). Similar results were obtained

when targeting G3BP1 by two different CRISPR-Cas9 single

guide sequences (Table S1) in MCF-7 and HEK293T cells,
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respectively (Figures 1N–1Q and S1T–S1V), and by small inter-

fering RNA (siRNA) knockdown in MCF-7 cells (Figures S2A–

S2D). G3BP1 deficiency also increased RPS6KB1-T389

phosphorylation at later time points after stimulation (Figures

S2E–S2G) and at steady state; i.e., in full (Figures 1R, 1S, and

S2H–S2M) and in starvation medium (Figures S2N–S2P). Thus,

RPS6KB1-T389 phosphorylation is enhanced in G3BP1-deficient

cells. The mTORC1 inhibitor rapamycin prevented RPS6KB1-

T389 hyperphosphorylation in G3BP1-deficient cells (Figures

1T–1V), showing it to be mediated by mTORC1. Re-expression

of G3BP1 (Figures 1W and 1X) reversed RPS6KB1-T389 hyper-

phosphorylation in G3BP1 KO cells. We tested whether SGs

were present in metabolically starved or stimulated cells (Figures

S2Q andS2R). Arsenite served as a positive control. As expected,

arsenite and amino acids + insulin enhanced mTORC1 activity

(Figures S2S–S2X). Although arsenite induced SGs, no EIF3A

puncta were visible in metabolically starved or stimulated cells

(Figures S2Q and S2R). Thus, mTORC1 inhibition by G3BP1 un-

der nutrient starvation and sufficiency occurs in the absence

of SGs.

G3BP1 and G3BP2 suppress mTORC1 in a non-
redundant manner
G3BP2 is highly similar toG3BP1 (Figures S3A and S3B; Kennedy

et al., 2001) and can substitute for G3BP1 in SGassembly (Keder-

sha et al., 2016; Matsuki et al., 2013). Thus, we wanted to find out

whether G3BP2 also compensates for G3BP1 in mTORC1

signaling. G3BP2 knockdown enhanced RPS6KB1-pT389 and

RPS6-pS235/236 (Figures 2A–2D). In agreement with prior data

(Kedersha et al., 2016), G3BP2 expression was enhanced

�3-fold in G3BP1 knockout (KO) cells (Figures 2E and 2F) but

less so upon G3BP1 knockdown (Figures 2G and 2H). If G3BP1

and G3BP2 were redundant, then an increase in G3BP2 levels
Figure 1. G3BP1 suppresses mTORC1 activation by insulin and nutrien

(A) Re-analysis of the MTOR interactome (Schwarz et al., 2015). Shown are mea

(B) IP against MTOR or mock (rat immunoglobulin G [IgG]). n = 6.

(C) Arsenite-treated shG3BP1 #1 cells. n = 4.

(D) Quantitation of G3BP1 in (C). Shown are data points and mean ± SEM.

(E) Quantitation of RPS6KB1-pT389 in (C). Data are shown as in (D).

(F) Insulin and amino acid (insulin/aa)-stimulated shG3BP1 #1 cells. n = 7.

(G) Quantitation of G3BP1 in (F). Shown are data points and mean ± SEM.

(H) Quantitation of RPS6KB1-pT389 in (F). Data are shown as in (G).

(I) Quantitation of RPS6-pS235/236 in (F). Data are shown as in (G).

(J) Insulin/aa-stimulated shG3BP1 #1 cells. n = 5.

(K) Quantitation of G3BP1 in (J). Shown are data points and mean ± SEM.

(L) Quantitation of RPS6KB1-pT389 in (J). Data are shown as in (K).

(M) Quantitation of RPS6-pS235/236 in (J). Data are shown as in (K).

(N) Insulin/aa-stimulated G3BP1 KO cells. n = 3.

(O) Quantitation of G3BP1 in (N). Shown are data points and mean ± SEM.

(P) Quantitation of RPS6KB1-pT389 in (N). Data are shown as in (O).

(Q) Quantitation of RPS6-pS235/236 in (N). Data are shown as in (O).

(R) Full-medium-cultured G3BP1 KO cells. n = 5.

(S) Quantitation of RPS6KB1-pT389 in (R). Shown are data points and mean ± S

(T) Rapamycin treatment of insulin/aa-stimulated shG3BP1 #1 cells. n = 4.

(U) Quantitation of G3BP1 in (T). Shown are data points and mean ± SEM.

(V) Quantitation of RPS6KB1-pT389 in (T). Data are shown as in (U).

(W) Insulin/aa-stimulated G3BP1 KO cells transfected with MYC-FLAG-G3BP1 (

(X) Quantitation of RPS6KB1-pT389 in (W). Shown are data points and mean ± S

See also Figures S1 and S2 and Table S1.

4 Cell 184, 1–20, February 4, 2021
would suppress the effect of G3BP1 KO. Contrary to this hypoth-

esis, we observed a similar increase in RPS6KB1-pT389 in

G3BP1 KO and knockdown cells (Figures 1P and 1H), in which

the levels of G3BP2 differ substantially (Figures 2E–2H). To further

test the redundancy, we performed a rescue experiment (Figures

2I and 2J). Only G3BP1, but not G3BP2, suppressed RPS6KB1-

T389 hyperphosphorylation in G3BP1 KO cells. Thus, G3BP2

cannot compensate for G3BP1 loss. CoIP (Figure 2K) and bimo-

lecular fluorescence complementation (BiFC) (Figures 2L and 2M)

showed that G3BP1 and G3BP2 bind to each other. BiFC detects

protein-protein interactions at a maximum distance of 10 nm (Hu

et al., 2002; Figure S3C) and is indicative of close, likely direct

contact. We conclude that G3BPs form a heterocomplex,

which is in agreement with their non-redundancy in mTORC1

suppression.

G3BPs reside at the lysosomal surface
To identify the subcellular compartment where G3BP1 and 2 act

to inhibit mTORC1,we separated endosomal fractions of starved

cells by sucrose density gradient centrifugation (Figures 3A and

3B). In line with earlier biochemical and immunofluorescence (IF)

studies (Carroll et al., 2016; Demetriades et al., 2014; Menon

et al., 2014), TSC1, TSC2, and TBC1D7 resided in the lysosomal

fractions. In the absence of SGs, G3BP1 exhibits a ubiquitous

cytoplasmic localization (Figure S2Q; Irvine et al., 2004), but so

far no specific subcellular enrichment has been identified. We

found that G3BP1 and G3BP2 reside in the same fractions as

the TSC complex (Figures 3A and 3B), predominantly distributing

to fractions containing lysosomal markers. Golgi apparatus,

endoplasmic reticulum (ER), and cytoplasmic markers partially

localized into the same fractions, suggesting that G3BPs reside

at different subcellular locations. We further assessed their

lysosomal localization by lysosome preparations (lyso-preps)
ts

n log10 ratios of proteins in MTOR versus mock IP.

EM.

48 h). n = 3.

EM.



Figure 2. G3BP1 and G3BP2 suppress mTORC1 in a non-redundant manner and form a heterocomplex

(A) Insulin/aa-stimulated siG3BP2 cells. n = 4.

(B) Quantitation of G3BP2 in (A). Shown are data points and mean ± SEM.

(C) Quantitation of RPS6KB1-pT389 in (A). Data are shown as in (B).

(D) Quantitation of RPS6-pS235/236 in (A). Data are shown as in (B).

(E) Serum/aa-starved G3BP1 KO cells. n = 4.

(F) Quantitation of G3BP2 in (E). Shown are data points and mean ± SEM.

(G) Serum/aa-starved siG3BP1 cells. n = 3.

(H) Quantitation of G3BP2 in (G). Shown are data points and mean ± SEM.

(I) Insulin/aa-stimulated G3BP1 KO cells transfected with MYC-FLAG-G3BP1 or MYC-FLAG-G3BP2 (48 h). n = 3.

(J) Quantitation of RPS6KB1-pT389 in (I). Shown are data points and mean ± SEM.

(K) IP against G3BP2 or mock (rabbit IgG). n = 2.

(L) BiFC. Protein+C-terminal mLumin is indicated first; protein+N-terminal mLumin is indicated second. TL, transmitted light. Scale bar, 100 mm. n = 3.

(M) Quantitation of data in (L). Shown are data points and mean ± SEM.

See also Figure S3.
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(Figure 3C). Their purity was confirmed by enrichment of lyso-

somal and late endosomal markers and depletion of early endo-

somes and other organelles compared with the post-nuclear

supernatant. We detected the G3BPs along with the TSC com-

plex in the lyso-prep, indicative of their localization at late endo-

somes and/or lysosomes. In conjunction with sucrose density

gradient fractionation (in which late endosomes segregate from
lysosomes, the TSC complex and G3BP1/2) (Figures 3A and

3B), the lyso-prep allowed us to conclude that G3BPs localize

to lysosomes. Proximity ligation assays (PLAs) (Figures 3D and

3E) confirmed in situ that G3BP1 resides close to the lysosomal

protein lysosomal associated membrane protein 1 (LAMP1), at a

distance of less than 40 nm (Debaize et al., 2017). Trypsin prote-

ase treatment of the lyso-preps (Figure 3F) showed that the TSC
Cell 184, 1–20, February 4, 2021 5
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complex and the G3BPs were degraded, whereas the luminal

protein cathepsin D (CTSD) and LAMP1, whose largest portion

is luminal with a short cytoplasmic stretch (Eskelinen, 2006),

were protected. Thus, G3BPs reside at the lysosomal surface

along with the TSC complex.

G3BP1 tethers the TSC complex to lysosomes and
phenocopies lysosomal TSC functions
Like TSC1 and TBC1D7, G3BPs co-immunoprecipitated with

TSC2 (Figure 3G). Thus, the TSC complex physically interacts

with G3BPs. PLAs supported the association of G3BP1 with

TSC2 in situ (Figures 3H, 3I, S4A, and S4B). G3BP1 was neces-

sary for the TSC complex to act on MTOR as G3BP1 deficiency

reduced the remaining TSC2-MTOR association (Figures 3J–3L)

in nutrient-stimulated cells (Huang et al., 2008; Yang et al.,

2020b). As a likely scenario, G3BP1 may inhibit mTORC1 by

mediating the lysosomal localization of the TSC complex. We

tested this in IPs of TSC2, which co-immunoprecipitated

LAMP1 and LAMP2 (Figures 3M and 3N). Indeed, G3BP1 defi-

ciency reduced TSC2-LAMP1 interaction (Figures 3N–3Q). We

next wanted to find out whether G3BP1 is required for lysosomal

re-localization of the TSC complex in nutrient-starved versus

-stimulated cells (Carroll et al., 2016; Demetriades et al., 2014,

2016; Menon et al., 2014). Endosomal sucrose gradient fraction-

ation was not suitable for this purpose because the nutrient-

induced shift of the TSC complex away from lysosomes was

not detectable (Figures S4C and S4D). PLAs showed that

TSC2-LAMP2 association was highest in starved cells and

decreased upon stimulation with amino acids and insulin (Figures

4A and 4B). In starved cells, G3BP1 knockdown reduced TSC2-

LAMP2 association to a similar level as observed upon insulin

and amino acid stimulation. In agreement, G3BP1 KO reduced

TSC2-LAMP1 co-localization in starved cells to the same extent

as metabolic stimulation (Figures 4C and 4D). We propose that,

in G3BP1-deficient cells, impaired lysosomal recruitment of the

TSC complex under starvation enhancesmTORC1 activity, which

results in faster mTORC1 phosphorylation dynamics upon meta-

bolic stimuli and higher overall activity at steady state. We also

observed increased TSC2 phosphorylation at the AKT target

site T1462 (Figures S4E and S4F), known to be involved in its
Figure 3. G3BP1 and G3BP2 reside at lysosomes

(A) Quantitation of data in (B). G3BP1, green area. Mean ± SEM.

(B) Sucrose density gradient separation of serum/aa-starved MCF-7 cells. n = 3.

(C) Lyso-prep with ferromagnetic nanoparticles. PNS, postnuclear supernatant.

(D) PLA of G3BP1-LAMP1 in serum/aa-starved G3BP1 KO cells. PLA puncta, wh

(E) Quantitation of data in (D). Shown are data points and mean ± SEM. n = 8 tec

(F) Trypsin digest of lyso-preps prepared as in (C). n = 3 except for TSC2 (n = 2)

(G) IP against TSC2 (TSC2 #1) or mock (mouse IgG). n = 3.

(H) PLA of G3BP1-TSC2 in serum/aa-starved G3BP1 KO cells. PLA puncta, whit

(I) Quantitation of data in (H). Shown are data points and mean ± SEM. n = 8 tec

(J) IP against MTOR or mock (rat IgG); insulin/aa-stimulated shG3BP1 #1 cells (1

(K) Quantitation of G3BP1 in (J). Shown are data points and mean ± SEM.

(L) Quantitation of TSC2 in (J). Data are shown as in (K).

(M) IP against TSC2 (TSC2 #2 or #3) or mock (rabbit IgG). n = 3.

(N) IP against TSC2 (TSC2 #2) or mock (rabbit IgG); insulin/aa-stimulated shG3B

(O) Quantitation of TSC1 in (N). Shown are data points and mean ± SEM.

(P) Quantitation of G3BP1 in (N). Data are shown as in (O).

(Q) Quantitation of LAMP1 in (N). Data are shown as in (O).

See also Figure S4.
dissociation from the lysosome (Menon et al., 2014). As phos-

phorylation of AKT1 itself was not altered by G3BP1 deficiency

(Figure S4G), lysosomal detachment may render the TSC com-

plex more accessible to phosphorylation by AKT.

The TSC complex acts as a GAP on RHEB, and their interac-

tion contributes to the lysosomal localization of the TSC complex

(Carroll et al., 2016; Menon et al., 2014). Are the mechanisms by

which G3BP1 and RHEB target the TSC complex to lysosomes

interdependent? G3BP1 KO and RHEB knockdown reduced

TSC2-LAMP1 co-localization to a similar extent, and they did

not have an additive effect (Figures 4C and 4D), showing that

G3BP1 and RHEB are both necessary for lysosomal recruitment

of the TSC complex. Thus, the association with its GTPase is not

sufficient for lysosomal localization of the TSC complex and it re-

quires G3BP1 as an additional tether.

Like the components of the TSC complex, we propose that

G3BP1 and G3BP2 act non-redundantly on mTORC1. In further

support of this, inhibition of G3BP1 alone was sufficient to phe-

nocopy TSC2 deficiency because the effect sizes of G3BP1 (Fig-

ures 1R and 1S) and TSC2 (Figures 4E–4G) KO on RPS6KB1-

pT389 were similar. Also, knockdowns with similar efficiencies

for G3BP1 (Figure 1F-1H) and G3BP2 (Figures 2A–2C) had

similar effect sizes on RPS6KB1-pT389 as a TSC2 knockdown

(Figures S4H–S4J). Loss of the TSC complex increases cell

size (Figure S4K; Gao and Pan, 2001; Potter et al., 2001; Tapon

et al., 2001). Cells were also enlarged upon G3BP1 KO (Fig-

ure 4H), and the increase was similar to that observed for inter-

ference with TBC1D7 (Dibble et al., 2012) or TSC1 (Potter

et al., 2001; Rosner et al., 2003). G3BP1 KO also phenocopied

the effects of TSC2 deficiency (Demetriades et al., 2014) in that

lysosomal localization of MTOR was enhanced in starved cells

(Figures 4I and 4J). Furthermore, G3BP1-deficient cells exhibited

a more dispersed distribution of LAMP2 foci (Figures S4L and

4J), mimicking the dispersed lysosomal pattern in TSC2-defi-

cient cells (Menon et al., 2014). Hence, G3BP1 inhibition is suffi-

cient to phenocopy loss of the TSC complex.

G3BP1 suppresses mTORC1 via the TSC complex
In an epistasis experiment, we analyzed the effect of G3BP1 in-

hibition on mTORC1 activity in the presence or absence of TSC2
n = 3.

ite dots; nuclei, blue (DAPI). Scale bar, 10 mm. n = 3.

hnical replicates.

.

e dots; nuclei, blue (DAPI). Scale bar, 10 mm. n = 4.

hnical replicates.

5 min). n = 4.

P1 #1 cells (15 min). n = 4.
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(Figures 4K–4N). We had previously stimulated cells with insulin

and amino acids because they both signal through the TSC com-

plex (Carroll et al., 2016; Demetriades et al., 2014, 2016). Amino

acids also signal to mTORC1 via TSC complex-independent

routes (Liu and Sabatini, 2020; Rabanal-Ruiz and Korolchuk,

2018). To exclusively assess mTORC1 inactivation via the TSC

complex, we stimulated cells with insulin only. RPS6KB1-T389

was hyperphosphorylated to a similar extent in serum-starved

or insulin-stimulated TSC2 KO cells because the TSC complex

was absent. G3BP1 inhibition induced RPS6KB1-pT389 in con-

trol cells but not in TSC2 KO cells (Figures 4K and 4N). Thus,

G3BP1 and the TSC complex act in the same pathway to sup-

press mTORC1.

TSC2 mediates formation of the G3BP1-TSC complex
Which TSC complex subunit mediates G3BP1 binding? TSC2 KO

resulted in loss of G3BP1 from the TSC1-TBC1D7 complex (Fig-

ure 5A), indicating thatG3BP1 binds TSC2. AC-terminal fragment

of G3BP1 co-immunoprecipitated with TSC2-GFP to a similar

extent as full-length G3BP1, whereas the middle part (with the

proline-rich domain) and the N-terminal region (with the NTF2-

like [NTF2L] domain) exhibited faint or no interaction (Figure 5B).

Thus, the G3BP1 C terminus harboring the RNA recognition motif

(RRM) and the arginine-glycine rich (RGG) repeats (Tourrière

et al., 2003; Figure S1A) mediates binding to TSC2.

The TSC complex is resistant to high salt (1.5 M NaCl) and

detergent (3.5 mM SDS), indicative of the high affinity between

TSC1, TSC2, and TBC1D7 (Dibble et al., 2012; Nellist et al.,

1999). In contrast, G3BP1was lost at 0.5MNaCl (Figure 5C), sug-

gesting that its binding to the TSC complex requires electrostatic

interactions. The G3BP1 C terminus harbors an intrinsically disor-

dered region (IDR) (Guillén-Boixet et al., 2020; Panas et al., 2019;

Yang et al., 2020a), which, as is typical for IDRs (Forman-Kay and

Mittag, 2013), contains a high density of positively charged argi-

nine residues that mediate electrostatic interactions. G3BP1

binding was stable against denaturation by 3.5 mM SDS, a con-

centration that preferentially disrupts hydrophobic interactions

(Højgaard et al., 2018). Thus, upon exposure to SDS, G3BP1 re-

tains high affinity to the TSC complex, in a range similar to the af-

finity between TSC1 and TSC2 (Dibble et al., 2012). Because the
Figure 4. G3BP1 tethers the TSC complex to lysosomes

(A) PLA of TSC2-LAMP2 in insulin/aa-stimulated siG3BP1 cells (15 min, 1 mM ins

(B) Quantitation of data in (A). Shown are data points and mean ± SEM. Control

(C) IF of LAMP1-TSC2 co-localization in G3BP1 KO cells transfected with siR

localization; green, TSC2; magenta, LAMP1; insert, magnification of the yellow s

(D) Quantitation of data in (C). Shown are data points and mean ± SEM.

(E) TSC2 KO cells in full medium. n = 3.

(F) Quantitation of TSC2 in (E). Shown are data points and mean ± SEM.

(G) Quantitation of RPS6KB1-pT389 in (E). Data are shown as in (F).

(H) Size of G3BP1 KO cells. Mean ± SEM. *p < 0.05. n = 3.

(I) Quantitation of data in (J). Shown are data points and mean ± SEM.

(J) IF of MTOR-LAMP2 co-localization in G3BP1 KO cells. Overlay: white, MTOR-L

the yellow square. Scale bar, 10 mm. n = 3.

(K) Insulin-stimulated TSC2 KO cells transfected with siG3BP1. n = 4.

(L) Quantitation of TSC2 in (K). Shown are data points and mean ± SEM. TSC2 w

(M) Quantitation of G3BP1 in (K). Shown are data points and mean ± SEM. G3BP

(N) Quantitation of RPS6KB1-pT389 in (K). Data are shown as in (M).

See also Figure S4.
TSC complex and G3BP1 form a highly stable complex that re-

quires electrostatic interactions, we deleted the RGG domain,

which encompasses the C-terminal IDR of G3BP1 (Guillén-Boixet

et al., 2020; Yang et al., 2020a). TSC2 lost binding to G3BP1-

DRGG (Figure 5D), demonstrating that the C-terminal IDR/RGG

domain of G3BP1 interacts with TSC2.

G3BPs bridge TSC2 to LAMP proteins
We next assessed the proximity of the G3BP1 association with

TSC2, the LAMP1/2 proteins, and MTOR by BiFC (Figures 5E,

5F, and S5A). Cells that co-expressed G3BP1 with MTOR did

not exhibit a BiFC signal. Thus, their interaction in IPs (Figure 1B)

may not be direct but is possibly mediated by their common as-

sociation with lysosomes. In contrast, BiFC signals for G3BP1

with LAMP1, LAMP2, and TSC2 were indicative of their close

interaction. Similar results were obtained for G3BP2 (Figures

5G–5I and S5B). Because G3BPs are at the lysosomal surface

(Figure 3), whereas LAMPproteins aremainly luminal with a short

transmembrane and cytoplasmic portion, we wondered whether

the latter is sufficient for binding. In line with this, G3BP1 and

G3BP2 interacted with the transmembrane and cytoplasmic do-

mains (LAMP1383–417) but not with the luminal part of LAMP1

(LAMP11–382) (Figures 5J–5M, S5C, and S5D). Loss of its N-ter-

minal NTF2L domain (G3BP1-DNTF2L) prevented G3BP1 from

binding to LAMP2 (Figure 5N). Conversely, the NTF2L domain

was sufficient to co-immunoprecipitate LAMP2 (Figure 5O).

LAMP2 remained bound to a G3BP1 fragment devoid of the

RGG domain (Figure 5N) that mediates TSC2 interaction. Thus,

G3BP1 binds to TSC2 via its C-terminal RGG domain and to

LAMP2 via its N-terminal NTF2L domain, bridging TSC2 to the

LAMP proteins.

The G3BPs co-appeared with the TSC complex during
evolution
In view of the key function of G3BP1/2 in TSC-mTORC1

signaling, we analyzed their phylogenetic distribution (Figure 5P).

While MTOR and RHEB are present in the yeast S. cerevisiae,

G3BPs appeared together with the TSC complex in

D. melanogaster and in the clade of Deuterostomia. G3BP1 or-

thologs have been proposed in S. cerevisiae (Yang et al., 2014)
ulin). PLA puncta, white dots; nuclei, blue (DAPI). Scale bar, 100 mm. n = 4.

(0 min) normalized to 1. n = 12 technical replicates.

HEB; insulin/aa stimulation (1 mM insulin). Overlay: white, LAMP1-TSC2 co-

quare. Scale bar, 10 mm. n = 3.

AMP2 co-localization; green, MTOR;magenta, LAMP2; insert: magnification of

as compared between control and TSC2 KO cells.

1 was compared between siControl and siG3BP1 in control or TSC2 KO cells.
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Figure 5. G3BPs bridge TSC2 to LAMP proteins

(A) IP against TSC1 (TSC1 #1) or mock (rabbit IgG) in TSC2 KO cells. n = 3.

(B) IP against GFP or FLAG; transfection with the indicated plasmids. n = 5.

(C) IP against TSC1 (TSC1 #2) or mock (mouse IgG) incubated with NaCl or SDS. n = 3.

(D) IP against GFP or mock (mouse IgG); transfection with the indicated plasmids. n = 3.

(legend continued on next page)
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and in C. elegans (Jedrusik-Bode et al., 2013). Sequence

analyses (Database: NCBI BLASTP nr database, BLOSUM45

matrix, 19.02.2020) showed that the human protein UNC80

(Genbank: XP_016859383.1) has the highest similarity to the pro-

posed S. cerevisiae G3BP1 ortholog BRE5 (UniProt: P53741).

Although the C. elegans protein GTBP-1 (UniProt: Q21351) has

the highest similarities to human G3BP1/2, they are low (e values

4e�7 and 0.12) and restricted to the NTF2L and RRM domains,

of which they cover 23%, not reaching the threshold for our

phylogenetic analysis. Thus, G3BP1 and G3BP2 orthologs

emerged together with the TSC complex.

G3BP1 suppresses mTORC1-driven migration in breast
cancer cells
Ablation of the TSC1 or TSC2 genes increases cancer cell

motility and metastasis (Astrinidis et al., 2002; Goncharova

et al., 2006). G3BP1 deficiency also enhanced cell motility in a

scratch assay, which was abrogated by rapamycin (Figures 6A

and 6B). In line with prior reports (Alam and Kennedy, 2019;

Dou et al., 2016; Wang et al., 2018; Winslow et al., 2013),

G3BP1 deficiency reduced proliferation (Figures 6C and 6D),

confirming that the enhanced motility did not result from

enhanced proliferation. Also in a Transwell migration assay (Fig-

ures 6E and 6F), G3BP1 KO cells exhibited enhanced migration.

G3BP1 mRNA levels were similar in the four breast cancer sub-

types (Koboldt et al., 2012; Figure 6G). Patients with G3BP1

mRNA or protein levels below the median exhibited shorter

relapse-free survival (RFS) (Figure 6H, I), reminiscent of the

shorter RFS in patients with low TSC1 or TSC2 (Figures 6J and

6K). Thus, G3BP1 and the TSC complex could be subtype-inde-

pendent indicators of mTORC1 activity and cancer cell motility.

G3BP1 deficiency elicits mTORC1-driven neuronal
phenotypes in vivo

Loss of the TSC complex (Switon et al., 2017) and of G3BP1

(Martin et al., 2013; Zekri et al., 2005) elicits neuronal pheno-

types. TSC1 IPs showed that G3BP1 binds the TSC complex

in the rat brain (Figure 7A). We explored a possible similarity of

neurodevelopmental G3BP1 and TSC2 phenotypes in zebrafish,

where lack of Tsc2 elicits aberrant brain morphology, neuronal

hyperexcitability, and seizures (Kedra et al., 2020; Kim et al.,

2011; Scheldeman et al., 2017). The zebrafishG3bp1 and human

G3BP1 orthologs exhibit 67.8% sequence identity (Figure S6A).

g3bp1 inhibition by morpholino oligonucleotides (MO) enhanced

mTORC1 activity, as determined by Rps6-pS235/236 (Figures
(E) BiFC. Protein+C-terminal mLumin is indicated first; protein+N-terminal mLum

(F) Quantitation of data in (E). Shown are data points and mean ± SEM.

(G) IP against MTOR or mock (rat IgG). n = 3.

(H) BiFC. Protein+C-terminal mLumin is indicated first; protein+N-terminal mLum

(I) Quantitation of data in (H). Shown are data points and mean ± SEM.

(J) Quantitation of data in (K). Shown are data points and mean ± SEM.

(K) BiFC. Protein+C-terminal mLumin is indicated first; protein+N-terminal mLum

(L) BiFC. Protein+C-terminal mLumin is indicated first; protein+N-terminal mLum

(M) Quantitation of data in (L). Shown are data points and mean ± SEM.

(N) IP against FLAG or mock (mouse IgG); transfection with the indicated plasmi

(O) IP against FLAG or mock (mouse IgG); transfection with the indicated plasmi

(P) Phylogenetic analysis. Black square, protein present in species.

See also Figure S5.
7B and 7C). We analyzed brain anatomy (Figure S6B) in the pal-

lium (Figure 7D), the equivalent of the human cortex (Friedrich

et al., 2010; Mueller and Wullimann, 2015; Parker et al., 2013),

which is the main region involved in MTOR-related neurodeve-

lopmental pathologies (Marsan and Baulac, 2018; Mühlebner

et al., 2019). In Tsc2-deficient zebrafish, Rps6-pS235/236-posi-

tive cells mislocalize to the white matter (WM) of the pallium (Ke-

dra et al., 2020; Kim et al., 2011). Similarly, g3bp1 morphants

showed increased numbers of Rps6-pS235/236-positive cells

(Figures 7E and 7F), many of which resided in the WM (Figures

7G and 7H). Twice as many neuronal progenitors migrated

from the subventricular zone (SVZ) to outer brain layers (Figures

S6C, S6D, and 7I). Although they exhibited similar velocity (Fig-

ure 7J), movement duration was prolonged (Figure 7K). Thus,

aberrant migration dynamics may underlie neuron mislocaliza-

tion to the WM in g3bp1 morphants. Non-invasive recordings

of local field potentials (LFP) detect aberrant neuronal activity

in epilepsy-related zebrafish models (Baraban et al., 2013; Hu-

nyadi et al., 2017; Siekierska et al., 2019; Sourbron et al., 2016;

Zhang et al., 2015b). LFP recordings from the pallia (Figure 7L,

7M, and S6E) and optic tecta (Figures 7N, 7O, and S6F) revealed

neuronal hyperactivity in g3bp1 morphants, which was sup-

pressed by rapamycin. At the single-cell level, increased

numbers of active cells resided in the pallium (Figure S6B, 7P,

and 7Q; Videos S1 and S2). While the mean neuronal activity in

the subpallium was unchanged (Figure 7R), it was increased

significantly in the WM of the pallium (Figure 7S). At the single-

cell level, rapamycin also suppressed neuronal hyperactivity

(Figure 7T). Neuronal network hyperactivity can result from

imbalanced glutamatergic and GABAergic networks (Bozzi

et al., 2018; Brenet et al., 2019). g3bp1morphants showed a se-

vere reduction of GABAergic neurons and a lesser reduction of

glutamatergic neurons (Figures 7U, 7V, and S6B). Thus, an

imbalance of GABAergic and glutamatergic networks may

contribute to neuronal hyperactivity. In Tsc2-deficient zebrafish,

anatomical changes and neuronal hyperexcitability are associ-

ated with non-motor seizuresmanifesting as decreased locomo-

tor activity (Kedra et al., 2020; Scheldeman et al., 2017; Fig-

ure 7W). g3bp1 morphants recapitulated this behavior

(Figure 7X and S6B), which was rescued by rapamycin (Fig-

ure 7X). Thus, mTORC1 accounts for their reduced locomotor

activity. Similar to Tsc2-deficient zebrafish (Kedra et al., 2020),

the antiepileptic drug ethosuximide reversed hypoactivity of

the g3bp1morphants (Figure 7Y). This is reminiscent of ethosux-

imide suppressing abnormal spike-and-wave discharges inmice
in is indicated second. TL, transmitted light. Scale bar, 100 mm. n = 3.

in is indicated second. TL, transmitted light. Scale bar, 100 mm. n = 4.

in is indicated second. TL, transmitted light. Scale bar, 100 mm. n = 5.

in is indicated second. TL, transmitted light. Scale bar, 100 mm. n = 3.

ds. n = 3.

ds. n = 3.
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Figure 6. G3BP1 suppresses mTORC1-driven migration in breast

cancer cells

(A) Scratch assay with shG3BP1 #1 cells. Scale bar, 150 mm. n = 3.

(B) Quantitation of data in (A). Shown are data points and mean ± SEM.

(C) Real-time cell analysis (RTCA) of proliferation of shG3BP1 #1 MCF-7 cells.

Mean ± SEM. n = 6.

(D) Quantitation of data in (C). Shown are data points and mean ± SEM.

(E) Transwell migration of G3BP1 KO cells (6–8 h). Scale bar, 150 mm. n = 5.

(F) Quantitation of data in (E). Shown are data points and mean ± SEM.

(G)G3BP1mRNAexpression.Expressionvalues fromTheCancerGenomeAtlas

(TCGA) processed and normalized by RNA-Seq by Expectation Maximization

(RSEM) are classified according to PAM50. Data are shown as boxplots, median

with 25th+75th percentiles as boxes, and 5th+95th percentiles as whiskers.

(H) Relapse free survival (RFS) of individuals with breast cancer based on

G3BP1 RNA levels.

(I) RFS of individuals with breast cancer based on G3BP1 protein levels.

(J) RFS of individuals with breast cancer based on TSC1 RNA levels.

(K) RFS of individuals with breast cancer based on TSC2 RNA levels.
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with generalized non-motor absence seizures because of

impaired cortico-striatal excitatory transmission (Miyamoto

et al., 2019), suggesting that the hypoactivity of g3bp1 mor-

phants may be caused by non-motor seizures.

In summary, in vivo G3bp1 inhibition phenocopies the

mTORC1-dependent effects of Tsc2 loss on brain function (Ke-

dra et al., 2020; Scheldeman et al., 2017), highlighting the impor-

tance of this mechanism for nervous system development and

function.

DISCUSSION

G3BP1 was originally identified as a RasGAP-binding protein

(Gallouzi et al., 1998; Kennedy et al., 2001; Parker et al., 1996).

A role in the RAS pathway was proposed but later questioned

(Annibaldi et al., 2011). We demonstrate that G3BP1’s assign-

ment as a GAP-binding protein was correct, although for a

different GAP, because it exerts this role by binding TSC2. It

may be rewarding to revisit whether G3BPs bind to other RAS-

relatedGAPs. In the insulin-mTORC1 axis, G3BP1 exerts its sup-

pressor function through the TSC complex, but other GAPs may

mediate the G3BPs’ roles in RAS (Parker et al., 1996), NFKB1

(Prigent et al., 2000), WNT (Bikkavilli and Malbon, 2011), and

TGFB (Zhang et al., 2015a) signaling. Yet, these pathways cross-

talk with the TSC complex (Ghosh et al., 2006; Inoki et al., 2006;

Ma et al., 2005; Thien et al., 2015), which may also underlie a

common role of the G3BPs in them.

We have shown earlier that, in the presence of G3BP1-con-

taining SGs, the sperm associated antigen 5 (SPAG5)-RPTOR

complex decreases mTORC1 activity (Thedieck et al., 2013).

Here we report that, in the absence of SGs, G3BP1 tethers the

TSC complex to lysosomes. Why does G3BP1 inhibit mTORC1

upon metabolic starvation and sufficiency but not upon SG for-

mation? Upon stress, activating (Heberle et al., 2019; Sfakianos

et al., 2018; Wang and Proud, 1997; White et al., 2007; Wu et al.,

2011) and inhibitory (Thedieck et al., 2013; Wippich et al., 2013)

cues balance mTORC1 activity. Although it is tempting to spec-

ulate that G3BP1, as a SG nucleator, contributes to SG-medi-

ated mTORC1 inhibition (Thedieck et al., 2013; Wippich et al.,

2013), previous studies (Bley et al., 2015; Kedersha et al.,

2016; Matsuki et al., 2013) and our own results (Figures S2Q



(legend on next page)
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and S2R) show that G3BP1 inhibition alone does not prevent SG

formation. SG-inducing agents enhance TSC2 degradation (He-

berle et al., 2019; Thedieck et al., 2013). Without TSC2, G3BP1

cannot bind to the TSC complex (Figure 5A) and, thus, cannot

inhibit mTORC1. To conclude, upon SG formation, the TSC com-

plex is reduced, and SG are not affected by G3BP1 deficiency;

thus, neither mechanism can affect mTORC1 in a G3BP1-

dependent manner.

Can the lysosomal localization of G3BPs be reconciled with

functions in SGs and other subcellular compartments? SGs hitch-

hike on lysosomes (Liao et al., 2019), which may enable G3BPs to

switch between their SG and lysosomal functions. G3BP1’s ubiq-

uitous cytoplasmic distribution (Figure S2Q; Irvine et al., 2004) is

reminiscent of the IF patterns for the TSC complex (Carroll et al.,

2016; Demetriades et al., 2014) and MTOR (Betz and Hall, 2013),

which also localize to multiple subcellular sites (Betz and Hall,

2013; Zhang et al., 2013). Thus, G3BPs may be relevant for TSC

complex and mTORC1 function beyond lysosomes.

What can we conclude regarding the relevance of G3BP1 in

cancer and neuronal disease? Its dual roles in oncogenic

mTORC1 signaling and SG formation argue against G3BP1 as

an anti-tumor drug target, as proposed by others (Alam and Ken-

nedy, 2019; Anisimov et al., 2019; Zhang et al., 2012, 2019).

G3BP1 inhibition is not sufficient to inhibit SG (Figures S2Q
Figure 7. G3BP1 deficiency elicits mTORC1-driven neuronal phenotyp

(A) IP against TSC1 (TSC1 #3) or mock (rabbit IgG). n = 2.

(B) Zebrafish larvae injected with g3bp1 MO. dpf, days post fertilization. n = 4/da

(C) Quantitation of Rps6-pS235/236 in (B), pooled for 2+3 dpf. Shown are data p

(D) Dorsal and lateral view of a zebrafish larva brain. P, pallium; OT, optic tectum; H

Tub, tuberculum; T, tegmentum; HTh, hypothalamus.

(E) IF of Rps6-pS235/236 in g3bp1MO-injected zebrafish larvae. Nuclei, blue (DAP

Rps6-pS235/236-positive cells in the WM. Scale bar, 25 mm. n R 29 larvae/cond

(F) Quantitation of Rps6-pS235/236-positive cells in the pallium in (E). Shown are

(G) Quantitation of cells in the WM in (E). Data are shown as in (F).

(H) Quantitation of Rps6-pS235/236-positive cells in the WM in (E). Data are sho

(I) Quantitation of HuC-positive cells in g3bp1 MO zebrafish larvae (24 hpf [hour

condition.

(J) Movement speed of single HuC-positive cells. Data are shown as in (I).

(K) Track duration of single HuC-positive cells. Data are shown as in (I). Arrow, m

(L) Quantitation of epileptiform events in LFP recordings from the pallia of g3bp1

(M) Representative LFP recordings for (L).

(N) Quantitation of epileptiform events in LFP recordings from optic tecta of g3b

(O) Representative LFP recordings for (N).

(P) Neuronal activity in pallia of Tg(HuC:GCaMP5G) zebrafish larvae injected with

neuronal activity in the WM; yellow/orange, high neuronal activity. Scale bar, 25

(Q) Quantitation of active neuronal cells in (P). Shown are data points and mean

(R) Quantitation of mean neuronal activity in the subpallia of Tg(HuC:GCaMP5G) ze

± SEM. n R 15 larvae/condition.

(S) Quantitation of mean neuronal activity in the WM of Tg(HuC:GCaMP5G) zebra

SEM. n R 14 larvae/condition.

(T) Quantitation of rapamycin-mediated fold reduction in the activity of single ce

(4 dpf). The number of active cells in rapamycin-treated larvae was normalized t

larvae/condition.

(U) Quantitation of GABAergic cells in optic tecta of Tg(dlx5a/dlx6a-EGFP) x Tg(

Shown are data points and mean ± SEM. n R 34 larvae/condition.

(V) Quantitation of glutamatergic cells in optic tecta of Tg(dlx5a/dlx6a-EGFP) x Tg

Data are shown as in (U).

(W) Locomotor activity of tsc2 MO zebrafish larvae (4 dpf). Mean ± SEM. n R 26

(X) Locomotor activity of g3bp1 MO zebrafish larvae (4 dpf). Mean ± SEM. n R 3

(Y) Locomotor activity of g3bp1 MO zebrafish larvae (4 dpf). Mean ± SEM. n = 2

See also Figure S6, Table S2, and Videos S1 and S2.
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and S2R; Kedersha et al., 2016) but results in mTORC1 hyperac-

tivation, known to drive cancer cell growth and motility (Condon

and Sabatini, 2019; Crino, 2016; LiCausi andHartman, 2018; Tee

et al., 2016). G3BP1 may, however, be a promising marker asso-

ciated with mTORC1 hyperactivity, which correlates with tumor

sensitivity to mTORC1 inhibitors (Grabiner et al., 2014; Kwiat-

kowski and Wagle, 2014; Meric-Bernstam et al., 2012; Wagle

et al., 2014). Whether disturbed function of G3BP1/2 in the

TSC-mTORC1 axis contributes to the etiology of neuronal

diseases also deserves evaluation. We scrutinized Genomics

England (GEL) 100,000 Genomes Project data for mutations in

G3BP1/2. 100 individuals had a clinical diagnosis of TSC disease

with no pathogenic TSC1 or TSC2 variant, which is the most

frequent cause of the disease (Borkowska et al., 2011; Curatolo

et al., 2008; Jozwiak et al., 2020; Marcotte and Crino, 2006; Or-

lova and Crino, 2010). However, none of the 100 individuals

showed likely pathogenic changes in G3BP1/2. Extending the

analysis to all variants at the G3BP1 or G3BP2 loci in the GEL

rare disease data (64,185 whole-genome sequences) identified

nine individuals with unexplained, mostly neurological pheno-

types and heterozygous variants in G3BP1 or G3BP2 strongly

predicted to alter protein function (Table S2). A further G3BP1

loss-of-function variant was noted in the Epi4K cohort of individ-

uals with epilepsy (Table S1 in Appenzeller et al., 2014). Six of the
es in vivo

y.

oints and mean ± SEM.

, habenula; Cb, cerebellum; OB, olfactory bulb; SP, subpallium; Th, thalamus;
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variants were apparently unique, being absent from gnomAD

(https://gnomad.broadinstitute.org/), and four were present at

extremely low allele frequencies. We conclude that G3BP1 and

G3BP2 are unlikely to represent further genes determining the

TSC disease phenotype. The numbers of observations in other

neurological diseases were too small to statistically confirm or

refute associations that will need to be addressed in larger and

more specific cohorts. Interestingly, certain mutations of the

TSC2 GAP domain that result in only partial loss of function

and mutations of TBC1D7 also lead to neurological phenotypes

that are clinically distinct to definite TSC disease (Alfaiz et al.,

2014; Capo-Chichi et al., 2013; Hansmann et al., 2020). Muta-

tions of these and further genes resulting in mTORC1 hyperacti-

vation are linked with neuronal phenotypes, collectively referred

to as ‘‘mTORopathies’’ (Crino, 2015; Wong and Crino, 2012).

Future studies will shed light on whether G3BP1 and G3BP2

belong to this family. We advocate in-depth evaluation of the

etiological and therapeutic relevance of G3BPs to cancer and

neuronal disorders.

Another important question concerns the role of the G3BPs in

the lysosomal dissociation of the TSC complex in response to

insulin (Menon et al., 2014) or amino acids (Carroll et al., 2016;

Demetriades et al., 2014). G3BP1 deficiency hyperactivates

mTORC1 upon amino acids and insulin as well as insulin alone.

It will be intriguing to explore whether posttranslational modifica-

tions in TSC2 (Huang and Manning, 2008) or G3BPs (Alam and

Kennedy, 2019) differentially control their binding and regulate

lysosomal TSC complex localization in response to different

agonists.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CALR Cell Signaling Cat# 12238; RRID: AB_2688013

CANX Cell Signaling Cat# 2679; RRID: AB_2228381

CTSD Cell Signaling Cat# 2284; RRID: AB_10694258

EEA1 Cell Signaling Cat# 3288; RRID: AB_2096811

EIF2S1 Cell Signaling Cat# 9722; RRID: AB_2230924

EIF2S1-pS51 Cell Signaling Cat# 9721; RRID: AB_330951

EIF3A Cell Signaling Cat# 3411; RRID: AB_2096523

FLAG Sigma-Aldrich Cat# F3165; RRID: AB_259529

G3BP1 Santa Cruz Cat# sc-365338; RRID: AB_10846950

G3BP1 Santa Cruz Cat# sc-81940; RRID: AB_1123055

G3BP2 Bethyl Cat# A302-040A; RRID: AB_1576545

GAPDH Abcam Cat# ab37187; RRID: AB_732651

GAPDH (zebrafish) Sigma-Aldrich Cat# SAB2701826

GFP Roche Cat# 11814460001; RRID: AB_390913

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary

Antibody, Alexa Fluor 488

Invitrogen Cat# A-11001; RRID: AB_2534069

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary

Antibody, Alexa Fluor 568

Invitrogen Cat# A-11011; RRID: AB_143157

Goat anti-Mouse IgG (H+L) cross-adsorbed secondary,

Alexa Fluor 555

Thermo Fisher Scientific Cat# A-21422; RRID: AB_2535844

Goat anti-Rabbit IgG (H+L) cross-adsorbed secondary,

Alexa Fluor 488

Thermo Fisher Scientific Cat# A-11008; RRID: AB_143165

Goat anti-Mouse IgG (H+L) Secondary Antibody,

HRP-coupled

Thermo Fisher Scientific Cat# 31430; RRID: AB_228307

Goat anti-Rabbit IgG (H+L) Secondary Antibody,

HRP-coupled

Thermo Fisher Scientific Cat# 31460; RRID: AB_228341

Goat anti-Rabbit IgG (H+L) Secondary Antibody,

Dylight 800 (zebrafish)

Thermo Fisher Scientific Cat# SA5-35571; RRID: AB_2556775

Goat anti-Rat IgG (H+L) Secondary Antibody,

HRP-coupled

Thermo Fisher Scientific Cat# 31470; RRID: AB_228356

GOLGA1 Cell Signaling Cat# 13192; RRID: AB_2798144

GOLGA2 Cell Signaling Cat# 12480; RRID: AB_2797933

HA Roche Cat# 11867423001; RRID: AB_390918

Histone H3 (H3C1) Bethyl Cat# A300-822A; RRID: AB_597872

HSP60 (HSPD1) Cell Signaling Cat# 12165; RRID: AB_2636980

HSP90 (CDC37) Cell Signaling Cat# 4877; RRID: AB_2233307

LMNA A/C Cell Signaling Cat# 2032; RRID: AB_2136278

LAMP1 Cell Signaling Cat# 9091; RRID: AB_2687579

LAMP1 Developmental Studies

Hybridoma Bank

Cat# H4A3; RRID: AB_2296838

LAMP2 Cell Signaling Cat# 49067;RRID: AB_2799349

LAMP2 Santa Cruz Cat# sc-18822; RRID: AB_626858

LAMP2 Developmental Studies

Hybridoma Bank

Cat# H4B4; RRID: AB_2134755

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MTOR Cell Signaling Cat# 2983; RRID: AB_2105622

MTOR epitope maps to residues 221 and

261 of human mTOR

Monoclonal Antibody Core Unit.

Helmholtz Center Munich,

Germany

TQREP-3G6

Mock antibody mouse Santa Cruz Cat# sc-2025; RRID: AB_737182

Mock antibody rabbit Bethyl Cat# P120-101; RRID: AB_479829

Sigma-Aldrich Cat# I5006; RRID: AB_1163659

Mock antibody rat Monoclonal Antibody Core Unit.

Helmholtz Center Munich,

Germany

RmC3-7H8

Mouse IgG HRP Linked Whole Ab Merck Cat# GENA931

MYC-tag Cell Signaling Cat# 2276; RRID: AB_331783

Rabbit IgG HRP Linked Whole Ab Merck Cat# GENA934; RRID: AB_2722659

RPS6KB1 Cell Signaling Cat# 2708; RRID: AB_390722

RPS6KB1-pT389 Cell Signaling Cat# 9206; RRID: AB_2285392

RPS6KB1-pT389 Cell Signaling Cat# 9205; RRID: AB_330944

RAB5A Cell Signaling Cat# 3547; RRID: AB_2300649

RAB7A Cell Signaling Cat# 9367; RRID: AB_1904103

RPTOR Cell Signaling Cat# 2280; RRID: AB_561245

RPTOR #1 epitope maps to residues 686 and 704 of

human Raptor

Monoclonal Antibody Core Unit.

Helmholtz Center Munich,

Germany

RAP1-20C4

RPTOR #2 Bethyl Cat# A300-553A; RRID: AB_2130793

RPS6 Cell Signaling Cat# 2317; RRID: AB_2238583

RPS6-pS235/236 Cell Signaling Cat# 4856; RRID: AB_2181037

RPS6-pS235/236 (zebrafish) Cell Signaling Cat# 2211; RRID: AB_331679

RPS6-pS235/236 (zebrafish) Cell Signaling Cat# 4858; RRID: AB_916156

TSC1 Cell Signaling Cat# 4906; RRID: AB_2209790

TSC1 #1 Gift from Michael N. Hall, Basel,

Switzerland (Molle, 2006).

Generated according to

van Slegtenhorst et al. (1998).

N/A

TSC1 #2 Thermo Fisher Scientific

(Invitrogen)

Cat# 37-0400; RRID: AB_2533292

TSC1 #3 Cell Signaling Cat# 6935; RRID: AB_10860420

TSC2 Cell Signaling Cat# 4308; RRID: AB_10547134

TSC2 #1 Thermo Fisher Scientific

(Invitrogen)

Cat# 37-0500; RRID: AB_2533293

TSC2 #2 epitope maps to residues 1535 and 1784 of

human TSC2

Gift from Michael N. Hall, Basel,

Switzerland (Molle, 2006).

Generated according to van

Slegtenhorst et al. (1998).

N/A

TSC2 #3 Abcam Cat# ab52936; RRID: AB_883283

TUBA1B Abcam Cat# ab108629; RRID: AB_10866252

VDAC Cell Signaling Cat# 4661; RRID: AB_10557420

For antibody dilutions, see Table S3

Bacterial and Virus Strains

DB3.1 Thermo Fisher Scientific Cat# 11782018 (discontinued)

DH5-alpha New England Biolabs Cat# C2987H

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

AEBSF (4-(2-Aminoethyl)benzenesulfonyl fluoride

hydrochloride)

Sigma-Aldrich Cat# A8456

Aprotinin Sigma-Aldrich Cat# A1153

Benzamidine Sigma-Aldrich Cat# B6506

Beta-Mercaptoethanol GIBCO Cat# 21-985-023

Bromophenol Blue Sigma-Aldrich Cat# B5525

BSA (bovine serum albumin) Carl Roth Cat# 8076.5

Calcein AM Fluorescent Dye Corning Cat# 354216

CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-1-

propanesulfonate hydrate)

Sigma-Aldrich Cat# 3023

CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-1-

propanesulfonate hydrate)

(for IPs in rat brain tissue)

Roth Cat# 1479.3

Complete Protease Inhibitor Cocktail Sigma-Aldrich Cat# D27802

DABCO (1,4-diazabicyclo[2.2.2]octane) Merck Cat# 11836153001

DexoMAG� Liquids Research N/A

DMEM (Dulbecco’s Modified Eagle’s Medium) w: 4.5 g/L

Glucose, w/o: L-Glutamine, w: Sodium pyruvate,

w: 3.7 g/L NaHCO3

PAN Cat# P04-03600

DMEM (Dulbecco’s Modified Eagle’s Medium) used

for PLA experiments in Figure 4A

Thermo Fisher Scientific Cat# 41965-039

DMEM (Dulbecco’s Modified Eagle’s Medium)

used for lysosomal isolations and trypsin digests

Thermo Fisher Scientific Cat# 41965-062

DMSO (dimethyl sulfoxide) Sigma-Aldrich Cat# D2650

Doxycycline Sigma-Aldrich Cat# D3447

Duolink In Situ Mounting Medium with DAPI Sigma-Aldrich Cat# DUO82040

Dynabeads Protein G for Immunoprecipitation Thermo Fisher Scientific Cat# 10009D

E64 Sigma-Aldrich Cat# E3132

Ethosuximide Sigma-Aldrich Cat# 1001096708

FBS (fetal bovine serum) GIBCO Cat# 10270106

FBS (fetal bovine serum) Sigma-Aldrich Cat# F9665

Glycerol Sigma-Aldrich Cat# G5516

Glycine Sigma-Aldrich Cat# G7126

HEPES ((4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) Life technologies Cat# 15630080

HEPES ((4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) Life technologies Cat# 15630106

HBSS (Hank’s Balanced Salt Solution) w/o: Phenol red,

w: Ca and Mg, w: 0.35 g/L NaHCO3

PAN Cat# P04-32505

Hoechst 33342 (dilution in IF: 1:100,000) Invitrogen Cat# H3570

Insulin Sigma-Aldrich Cat# I1882

IGEPAL CA-630 (NP40) Sigma-Aldrich Cat# I8896

Imidazole Sigma-Aldrich Cat# I0250

KCl (potassium chloride) Sigma-Aldrich Cat# P9541

Leupeptin Sigma-Aldrich Cat# 103476-89-7

L-glutamine GIBCO Cat# 25030024

L-glutamine GIBCO Cat# 25030081

Methanol Klinipath Cat# 4063-9005

MgCl2 (magnesium chloride) Sigma-Aldrich Cat# M2670

MK2206 Axon Medchem Cat# 1684

Mowiol 4-88 Carl Roth Cat# 07131

NaCl (sodium chloride) Sigma-Aldrich Cat# S7653
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NPG (n-propyl-gallate) VWR Cat# EM8.20599.0500

PBS (phosphate-buffered saline) PAN Cat# P04-36500

PBS (phosphate-buffered saline) for non-sterile washing Biochrom Cat# L182-50

Penicillin/Streptomycin GIBCO Cat# 15140122

Pepstatin A Sigma-Aldrich Cat# 26305-03-3

PhosSTOP for IPs in brain tissue Merck Cat# 4906837001

Phosphatase Inhibitor Cocktail 2 Sigma-Aldrich Cat# P5726

Phosphatase Inhibitor Cocktail 3 Sigma-Aldrich Cat# P0044

Phusion HF DNA Polymerase Roche Cat# M0530S

Pierce 16% Formaldehyde (w/v), Methanol-free Thermo Fisher Scientific Cat# 28908

Polyacrylamide Bio-Rad Cat# 161-0159

Polybrene Sigma-Aldrich Cat# H9268

Prolong Gold antifade reagent with 40,6-Diamidin-2-

phenylindol (DAPI)

Thermo Fisher Scientific Cat# P36935

Protein G Sepharose beads GE Cat# 17061801

Puromycin Sigma-Aldrich Cat# P8833

PVDF (polyvinylidene difluoride) membrane Millipore Cat# IPVH00010

Rapamycin Calbiochem Cat# 553210

SDS (sodium dodecyl sulfate) Sigma-Aldrich Cat# 71725

Sodium deoxycholate Sigma-Aldrich Cat# 30970

Sodium fluoride Sigma-Aldrich Cat# 7681-49-4

Sodium glycerophosphate Sigma-Aldrich Cat# G9322

Sodium orthovanadate Sigma-Aldrich Cat# 13721-39-6

Sodium pyrophosphate Sigma-Aldrich Cat# 13472-36-1

Sucrose Sigma-Aldrich Cat# S2395

T4 DNA Ligase New England Biolabs Cat# M0202S

Torin1 Axon Medchem Cat# 1833

Transfectin Biorad Cat# 1703350

Tricaine (MS-222) Sigma-Aldrich Cat# E10521

TRIS base (tris(hydroxymethyl)aminomethane) VWR Cat# A1086.5000

Triton X-100 Sigma-Aldrich Cat# 93443

Trypan Blue GIBCO Cat# 15250061

Trypsin GIBCO Cat# 15400054

Tween-20 MP Biomedicals Cat# 11TWEEN201

Critical Commercial Assays

Bio-Rad Protein Assay Dye Reagent Concentrate Bio-Rad Cat# 500-0006

Duolink In Situ Red Starter Kit Mouse/Rabbit Sigma-Aldrich Cat# DUO92008

Duolink� In Situ PLA� Probe Anti-Rabbit PLUS Affinity

purified Donkey anti-Rabbit IgG (H+L)

Sigma-Aldrich Cat# DUO92002; RRID: AB281940

Duolink� In Situ PLA� Probe Anti-Mouse MINUS Affinity

purified Donkey anti-Mouse IgG (H+L)

Sigma-Aldrich Cat# DUO92004; RRID: AB_2713942

JetPEI Poly-Plus Cat# 101-40N

Lipofectamine 3000 Transfection Reagent Thermo Fisher Scientific Cat# L3000015

Lipofectamine RNAiMAX Transfection Reagent Thermo Fisher Scientific Cat# 13778150

MidiPrepKit NUCLEOBOND XTRA MIDI Macherey-Nagel Cat# 740410.50

NuPage MES SDS running buffer Thermo Fisher Scientific Cat# NP0002

NuPage Novex 10% Bis-Tris gel Thermo Fisher Scientific Cat# NP0302BOX

Odyssey blocking buffer Li-Cor Cat# 927-40000

Pierce BCA protein assay kit Thermo Fisher Scientific Cat# 23225
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Pierce ECL Western Blotting Substrate Thermo Fisher Scientific Cat# 32209

RIPA buffer (zebrafish lysis) Merck Cat# R0278

SuperSignal West FEMTO Maximum Sensitivity

Substrate

Thermo Fisher Scientific Cat# 34095

Trans-Lentiviral shRNA Packaging Mix Dharmacon Cat# TLP5912

Deposited Data

Invasive breast cancer (The Cancer Genome

Atlas, TCGA, provisional)

http://www.cbioportal.org RRID: SCR_014555

TSC1 RNA expression data http://www.kmplot.com probeID: 209390_at

TSC2 RNA expression data http://www.kmplot.com probeID: 215735_s_at

G3BP1 RNA expression data http://www.kmplot.com probeID: 225007_at

G3BP1 protein expression data http://www.kmplot.com probeID: Q13283

Experimental Models: Cell Lines

HEK293T Thien et al. (2015) N/A

HEK293T Control This paper N/A

HEK293T G3BP1 KO This paper N/A

HEK293-b2AR Lavoie et al. (2002) N/A

HeLa alpha Kyoto Thedieck et al. (2007) N/A

HeLa S3 ATCC Cat# CCL-2.2; RRID: CVCL_0058

MCF-7 ACC115 DSMZ Cat# ACC115; RRID: CVCL_0031

MCF-7 Control (for G3BP1) This paper N/A

MCF-7 Control (for TSC2) This paper N/A

MCF-7 G3BP1 KO This paper N/A

MCF-7 GFP-LC3 Gift from Joern Dengjel,

Fribourg, Switzerland

N/A

MCF-7 shControl This paper N/A

MCF-7 shG3BP1 #1 This paper N/A

MCF-7 shG3BP1 #2 This paper N/A

MCF-7 TSC2 KO This paper N/A

MDA-MB-231 ATCC Cat# HTB-26; RRID: CVCL_0062

MDA-MB-231 TSC Control This paper N/A

MDA-MB-231 TSC2 KO This paper N/A

MDA-MB-231 shControl This paper N/A

MDA-MB-231 shG3BP1 #1 This paper N/A

MDA-MB-231 shG3BP1 #2 This paper N/A

Experimental Models: Organisms/Strains

AB Danio rerio Zebrafish International

Resource Center

Cat# ZL1; RRID: ZIRC_ZL1

Tg(dlx5a/dlx6a-EGFP) x Tg(vglut2a:loxP-RFP-loxP-GFP) Noble et al. (2015)

Tg(dlx5a/dlx6a-EGFP);

Satou et al. (2012)

Tg(vglut2a:loxP-RFP-loxP-GFP)

N/A

Tg(HuC:GCaMP5G) Ahrens et al. (2013) N/A

Wistar Cmd:(WI)WU rats Mossakowski Medical

Research Centre Polish

Academy of Sciences

N/A

Oligonucleotides

control MO: 50-CCTCTTACCTCAGTTACAATTTATA-30 GeneTools N/A

g3bp1 MO: 50-TAACAAAGGGCAAGTCACCTGTGCA-30 GeneTools N/A

tsc2 MO: 50-CTGTGTGTTTTCTTACTGGACCATA-30 GeneTools N/A
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For primers, see Table S4 N/A

For RNA, see Table S5 N/A

Recombinant DNA

bFos-MYC-LC151 Gift from Qingming Luo,

Wuhan, China (Chu et al., 2009)

N/A

bJun-HA-LN151 Gift from Qingming Luo,

Wuhan, China (Chu et al., 2009)

N/A

lentiGuide-Puro Sanjana et al. (2014) RRID: Addgene_52963

pCMV6-AN-MYC-DDK (MYC-FLAG-empty) Origene Cat# PS100016

MYC-FLAG-G3BP1 This paper N/A

MYC-FLAG-G3BP1-DRGG (aa 410-466) This paper N/A

MYC-FLAG-G3BP1-DNTF2L (aa 1-139) This paper N/A

MYC-FLAG-G3BP1-NTF2L 1-139 This paper N/A

MYC-FLAG-G3BP2 This paper N/A

pCW-Cas9-Blast Sanjana et al. (2014) RRID: Addgene_83481

pGW-MYC-LC151 Stefan Pusch (Weiler et al., 2014) N/A

pGW-HA-LN151 Stefan Pusch (Weiler et al., 2014) N/A

pGW-HA-LN151-G3BP1 This paper N/A

pGW-MYC-LC151-G3BP1 This paper N/A

pGW-MYC-LC151-G3BP1 1-182 This paper N/A

pGW-MYC-LC151-G3BP1 183-332 This paper N/A

pGW-MYC-LC151-G3BP1 333-466 This paper N/A

pGW-HA-LN151-G3BP2 This paper N/A

pGW-MYC-LC151-G3BP2 This paper N/A

pGW-HA-LN151-LAMP1 This paper N/A

pGW-MYC-LC151-LAMP1 This paper N/A

pGW-MYC-LC151-LAMP1 1-382 This paper N/A

pGW-MYC-LC151-LAMP1 383-417 This paper N/A

pGW-HA-LN151-LAMP2 This paper N/A

pGW-HA-LN151-mTOR This paper N/A

pGW-HA-LN151-TSC2 This paper N/A

pEGFP-C-LAMP2 This paper N/A

pEGFP-C-TSC2 This paper N/A

pEGFP-C (derivate of pDEST with a C-terminal

EGFP tag)

Stefan Pusch N/A

pDEST Stefan Pusch; Clone

repository of

the DKFZ Genomics and

Proteomics Core Facility (GPCF)

N/A

pDONR201-tGFP This paper N/A

pDONR201-tGFP-LAMP1 383-417 This paper N/A

pENTR221-G3BP1 Clone repository of

the DKFZ Genomics and

Proteomics Core Facility (GPCF)

CloneId: 182373397

pENTR223-G3BP2 Clone repository of

the DKFZ Genomics and

Proteomics Core Facility (GPCF)

CloneId: 192451551

pENTR221-LAMP1 Clone repository of

the DKFZ Genomics and

Proteomics Core Facility (GPCF)

CloneId: 193137117
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pENTR221-LAMP2 Clone repository of

the DKFZ Genomics and

Proteomics Core Facility (GPCF)

CloneId: 115072391

pSpCas9(BB)-2A-Puro (PX459) V2.0 Addgene RRID: Addgene_62988

psPAX2 Shalem et al. (2014) RRID: Addgene_12260

pMD2.G Shalem et al. (2014) RRID: Addgene_12259

R777-E138 Hs.MTOR-nostop Gift from Dominic Esposito,

Addgene

Cat# 70422; RRID: Addgene_70422

R777-E356 Hs.TSC2-nostop Gift from Dominic Esposito,

Addgene

Cat# 70640; RRID: Addgene_70640

Software and Algorithms

Adobe Photoshop version CS5.1 Adobe Systems Incorporated RRID: SCR_014199;

https://www.adobe.com/de/

products/photoshop.html#

Bash script to identify the single nucleotide

variants (SNV) within G3BP1 and G3BP2

This paper Document S3

Cell Profiler version 3.1.5 McQuin et al. (2018) RRID: SCR_007358;

https://www.cellprofiler.org/

CGDS-R package version 1.2.6 Gao et al. (2013) https://github.com/cBioPortal/cgdsr

Dell Statistica version 13 Dell Inc. https://statistica.software.informer.

com/13.0/

EMBOSS Needle (Protein sequence analysis) Madeira et al. (2019) https://www.ebi.ac.uk/Tools/psa/

emboss_needle/

Fiji version 1.49v, 1.52p, 1.53c Schindelin et al. (2012) RRID: SCR_002285;

https://imagej.net/

Fiji.html#Downloads

GraphPad Prism version 7.04 and 8.0 GraphPad Software RRID: SCR_002798;

https://www.graphpad.com/

scientific-software/prism/

ImageJ version 1.50b, 1.51r Schneider et al. (2012) RRID: SCR_003070;

https://imagej.

nih.gov/ij/

Image Lab version 5.2.1 and 6.0.1 Bio-Rad RRID: SCR_014210;

http://www.bio-rad.com/en-us/

product/image-lab-software?ID=

KRE6P5E8Z

ImageQuant TL version 8.1 Cytiva RRID: SCR_014246;

https://us.vwr.com/store/product/

25990402/imagequant-tl-8-1-cytiva-

formerly-ge-healthcare-life-sciences

Image Studio Lite Version 5.2 Li-Cor RRID: SCR_013715;

https://www.licor.com/bio/image-

studio-lite/download

Imaris 9.1 Bitplane AG RRID: SCR_00730;

https://imaris.oxinst.com/packages

NIS Elements version 4.13.04 Nikon RRID: SCR_014329;

https://www.microscope.healthcare.

nikon.com/de_EU/products/software/

nis-elements

Phylogenetic analysis Bockwoldt et al. (2019) https://github.com/

MolecularBioinformatics/

Phylogenetic-analysis
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RStudio RStudio RRID: SCR_000432;

https://rstudio.com/products/

rstudio/download/

Tecan i-control software version 1.10.4.0 Tecan https://lifesciences.tecan.de/plate_

readers/infinite_200_pro?p=tab-3

TrackMate Tinevez et al. (2017) https://github.com/fiji/TrackMate/

releases

TScratch Gebäck et al. (2009) RRID: SCR_014282;

https://github.com/cselab/TScratch

ZEN2012 blue edition Zeiss https://www.zeiss.de/mikroskopie/

produkte/mikroskopsoftware/zen.

html#downloads

Other

24 well plates TPP Cat# 92424

6 cm cell culture dish Greiner bio-one Cat# 628160

10 cm cell culture dish TPP Cat# 93100

15 cm cell culture dish TPP Cat# 93150

70 Ti Rotor for ultracentrifuge Beckman Coulter Cat# 337922

AxioObserver Z1 Zeiss N/A

Beckman Optima L-70K Ultracentrifuge Beckman Coulter Cat# 8043-30-1187

ChemiDoc XRS+ Bio Rad Cat# 1708265

Cover Glass VWR international Cat# 631-0130

E-plate 16 for RTCA ACEA Biosciences, Inc. Cat# 05469813001

Falcon� 24-well TC-treated Cell Polystyrene

Permeable Support Companion Plate, with Lid

Corning Cat# 353504

FluoroBlok 24-well Plate Permeable Support

with 8.0 mm Colored PET Membrane

Corning Cat# 351152

FUSION FX7 with the DarQ-9 camera Vilber N/A

ibidi culture-insert 2 well ibidi Cat# 80209

iBlot gel transfer stacks nitrocellulose membrane Thermo Fisher Scientific Cat# IB301002

LAS-4000 mini camera system GE Healthcare N/A

LAS-4000 camera system GE Healthcare N/A

Lightsheet Z.1 Zeiss N/A

LS Column Miltenyi Biotec Cat# 130-042-401

LSM 780 confocal microscope Zeiss N/A

Microscope slides Thermo Fisher Scientific Cat# 4951PLUS4

Mini-PROTEAN� Tetra Vertical Electrophoresis

Cell system

Bio Rad Cat# 1658029FC

Nikon ECLIPSE Ti-E/B Nikon N/A

Odyssey 2.1 imaging system Li-Cor, USA N/A

QuadroMACS Separator Miltenyi Biotec Cat# 130-090-976

RTCA Control Unit with RTCA Software ACEA Biosciences, Inc. Cat# 05454417001

RTCA DP Analyzer ACEA Biosciences, Inc. Cat# 05469759001

Tecan Infinite 200 PRO plate reader Tecan N/A

ZebraboxTM ViewPoint N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead contact, Kathrin

Thedieck (kathrin.thedieck@uibk.ac.at).
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Materials availability
All unique materials and reagents generated in this study are available from the Lead contact with a completed material transfer

agreement.

Data and code availability
The custom Python scripts for the phylogenetic analysis are accessible via https://github.com/MolecularBioinformatics/

Phylogenetic-analysis and were manually curated as described earlier (Bockwoldt et al., 2019).

The bash script to identify the single nucleotide variants (SNV) within G3BP1 and G3BP2 is provided in Document S3. The script

was adapted from the ‘extract_variants_by_coordinate.sh’ script for germline variants (https://research-help.genomicsengland.co.

uk/display/GERE/Extract+variants+by+coordinate) and was run on the command line within the Genomics England Research envi-

ronment using bcftools (https://samtools.github.io/bcftools/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Experiments were performed in HeLa alpha Kyoto cells (Thedieck et al., 2007), MCF-7 cells (ACC115), MCF-7 cells expressing GFP-

LC3 (MCF-7-LC3), MDA-MB-231, HEK293T, and HEK293-b2AR cells. All cells, except for HEK293-b2AR (Lavoie et al., 2002), were

cultivated in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g / L glucose, supplemented with 10% fetal bovine serum (FBS)

and 3 mM L-glutamine (termed full medium) if not indicated otherwise. HEK293-b2AR were cultured in DMEM with 4.5 g / L glucose

and 0.584mML-glutamine, supplementedwith 10%FBS and 1%penicillin and streptomycin. All cell lines weremaintained at 37�C in

a 5% CO2 incubator and regularly tested for mycoplasma infection.

RNA knockdown experiments
siRNA knockdown of G3BP1, G3BP2 and RHEB was induced for two days using ON-TARGET plus SMARTpool siRNA at a final

concentration of 40 nM. siRNA knockdown of TSC2 was induced for two days using ON-TARGET plus SMARTpool siRNA at a final

concentration of 5 nM. As a negative control, a non-targeting scrambled siRNA pool (siControl) was used at the same concentration.

siRNA transfection was performed using Lipofectamine 3000 or RNAiMAX transfection reagents according to the manufacturer’s

protocols. The medium containing the transfection mix was replaced 6 hours after transfection. For PLA analysis in Figure 4A, siRNA

knockdown of G3BP1 was induced for five days using siGENOME SMARTpool siRNA at a final concentration of 15 nM. Here siRNA

against Renilla luciferase (Control) was used as a control.

Doxycyclin-inducible shRNA knockdown cell lines for G3BP1 were generated using the pTRIPZ system with the Trans-Lentiviral

shRNA Packaging Mix (Horizon Discovery). Viral particles were produced using shRNA constructs targeting G3BP1 (shG3BP1 #1 or

shG3BP1 #2) or a non-targeting scrambled control sequence (shControl) according to the manufacturer’s protocol. MCF-7-LC3 and

MDA-MB-231 cells were transduced in three rounds. The cells were incubated with the viral supernatant containing 8 mg / mL poly-

brene for 16 hours, followed by 6 hours of fresh full medium. Antibiotic selection was carried out 48 hours post-transduction with 2 mg

/ mL puromycin for 7 days. Expression of the shRNAwas induced with 2 mg / mL doxycycline for 4 days. Monoclonal cell populations

were obtained by limiting dilutions. Knockdown efficiency was tested at protein level by immunoblotting.

Knockout cell lines
CRISPR/Cas9 knockout MCF-7 and MDA-MB-231 cell lines for G3BP1 and TSC2 were generated using a two-vector system as

previously described (Sanjana et al., 2014). First, doxycyclin-inducible Cas9 expressing MDA-MB-231 and MCF-7 cell lines were

generated by lentiviral transduction using the pCW-Cas9-Blast vector (Addgene plasmid # 83481) and thereafter selected with

5 mg / mL blasticidin for 48 hours, as described previously (Shalem et al., 2014). Next, the Cas9 expressing cells were transduced

with the lentiGuide-Puro vector (Addgene plasmid # 52963) containing either no sgRNA (control), or sgRNA (sgRNA #1) targeting

G3BP1 (G3BP1 KO) or TSC2 (TSC2 KO). These cells were selected with 2 mg / mL puromycin for 48 hours. Monoclonal cell popu-

lations were obtained by limiting dilutions. Cas9 expression was inducedwith 2 mg /mL doxycycline for 48 hours. Knockout efficiency

was tested at protein level by immunoblotting.

Using a second independent sgRNA (sgRNA #2) G3BP1 was knocked out by CRISPR/Cas9 in HEK293T cells (Figures S1T–S1V)

with the pSpCas9(BB)-2A-Puro (PX459) V2.0 vector (Addgene plasmid # 62988). The sgRNA #2 was cloned as previously described

(Ran et al., 2013). The cells were transfected using Lipofectamine 3000 according to the manufacturer’s protocols and selected with

2 mg / mL puromycin for 48 hours. Monoclonal cell populations were obtained by limiting dilutions. Knockout efficiency was tested at

protein level by immunoblotting.

If not indicated otherwise, G3BP1 knockout was performed using sgRNA #1. All different siRNA, shRNA and sgRNA sequences

targeting G3BP1 are shown in Table S1. Table S5 lists all commercially available siRNAs and shRNAs used in this study.

Rat model
Adult Wistar Cmd:(WI)WU rats were obtained from the Mossakowski Medical Research Center of the Polish Academy of Sciences

(Breeder no: 004) and kept in standard housing conditions with ad libitum access to food and water. To obtain brain tissue for
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immunoprecipitation, the rats were sacrificed according to protocol, which complied with the Republic of Poland Act of 15 December

2015 on the protection of animals used for scientific or educational purposes and the European Community Council Directive 2010/

63/EU.

Zebrafish maintenance and breeding
Adult zebrafish of the AB (Zebrafish International Resource Center), Tg(dlx5a/dlx6a-EGFP) (Noble et al., 2015) x Tg(vglut2a:loxP-RFP-

loxP-GFP) (Satou et al., 2012) and Tg(HuC:GCaMP5G) (Ahrens et al., 2013) strain were maintained under standard aquaculture con-

ditions in UV-sterilized water at 28.5�C on a 14 hour light / 10 hour dark cycle.

Fertilized eggs were collected via natural spawning. Embryos and larvae were raised in embryo medium, containing 1.5 mM

HEPES, pH 7.6, 17.4 mM NaCl, 0.21 mM KCl, 0.12 mM MgSO4 and 0.18 mM Ca(NO3)2 in an incubator on a 14 hour light / 10

hour dark cycle at 28.5�C. For all experiments described, larvae at 0-4 days post fertilization (dpf) were used. All experiments per-

formed at the University of Leuven were approved by the Ethics Committee of the University of Leuven (Ethische Commissie van de

KU Leuven, approval number 150/2015) and by the Belgian Federal Department of Public Health, Food Safety and Environment (Fed-

erale Overheidsdienst Volksgezondheid, Veiligheid van de Voedselketen en Leefmilieu, approval number LA1210199). All experi-

ments performed at the International Institute of Molecular and Cellular Biology in which zebrafish embryos and larvae were used

were conducted in accordance with the Act of 15 January 2015 on the protection of animals used for scientific and educational pur-

poses, Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used

for scientific purposes and were approved by Institutional Animal Welfare Advisory Team at the International Institute of Molecular

and Cellular Biology in Poland.

Antisense morpholino knockdown
To achieve knockdown of g3bp1 in zebrafish embryos, we used morpholino antisense oligonucleotides designed to target the Exon

2 – Intron 2 boundary of the g3bp1 mRNA (g3bp1 MO). The morpholino sequence, as synthesized by GeneTools was: 50-TAACA
AAGGGCAAGTCACCTGTGCA-30. A fluoresceinated standard control (50-CCTCTTACCTCAGTTACAATTTATA-30) with a 30 fluores-
cein group was used as a negative control (control MO). Embryos were microinjected at the one- or two-cell stage with 1 nL of either

g3bp1 or control MO, corresponding to 8 ng of morpholino per injection. For the knockdown of tsc2 the morpholino sequence

50-CTGTGTGTTTTCTTACTGGACCATA-30 was used targeting the Exon 1 – Intron 1 boundary of the tsc2mRNA (tsc2MO). Embryos

were microinjected at the one- or two-cell stage with 2.5 ng of tsc2 splice MO per injection. The same amount of control MO was

used. The morpholino concentration used was defined by titration as the highest at which the larvae displayed no morphological ab-

normalities. At 3-4 hours after injections, staging was performed to assure the same age of the eggs in all groups.

METHOD DETAILS

Cell treatments
SG formation was induced with arsenite at a final concentration of 500 mM for the indicated time periods. Prior to arsenite stress, cells

were washed with phosphate-buffered saline (PBS) and serum-starved for 16 hours.

Metabolic stimulation experiments: for serum and amino acid starvation, cells were washed in PBS and cultured for 16 hours in

Hank’s balanced salt solution (HBSS). For stimulation with insulin and amino acids (insulin / aa), the medium was exchanged to

DMEM supplemented with 3 mM L-glutamine and 100 nM insulin. 1 mM insulin was used for stimulation in Figures 4A and 4C.

For serum starvation, cells were washed in PBS and cultured for 16 hours in DMEMwith 4.5 g / L glucose, supplemented with 3mM

L-glutamine. For stimulation with insulin alone (Figure 4K), insulin was directly added to the serum-free media for the time periods

indicated.

Lyophilized rapamycin was dissolved in methanol to a concentration of 1 nmol / mL and aliquoted to 5 mL per tube. 5 mL aliquots

were dried with open lids under a sterile cell culture hood and deep frozen at –80�C. Aliquots were thawed immediately before an

experiment andmethanol-dried rapamycin was directly dissolved in HBSS or DMEM to a final concentration of 20 or 100 nM, as indi-

cated. Hence, no carrier was used in experiments with rapamycin. Rapamycin pretreatments in Figures 1T and S1C started 30 min

prior to stimulation or lysis, respectively.

Torin1 and MK2206 were dissolved in dimethyl sulfoxide (DMSO) and added to full DMEM medium to a final concentration of

250 nM and 10 nM, respectively. Torin1 or MK2206 were added 30 min prior to lysis (Figure S1D).

G3BP1 or G3BP2 re-expression in G3BP1 KO cells
450,000 MCF-7 control and 650,000 G3BP1 KO cells were seeded in 60 mm dishes 24 hours prior to transfection. Cells were tran-

siently transfected with 4 mg of either a MYC-FLAG-empty vector, MYC-FLAG-G3BP1 or MYC-FLAG-G3BP2 using JetPEI following

themanufacturer’s protocol. On the next day, the cells were washed once with PBS and cultured for 16 hours in HBSS. For metabolic

stimulation, the medium was exchanged to DMEM supplemented with 3 mM L-glutamine and 100 nM insulin for 15 min.
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Cell size measurements
Cell size was measured and analyzed with a Casy electronic cell counter, following the manufacturer’s protocol. In short, 2.5 3 105

cells were seeded in 6-well plates. After 24 hours of culture, cells were trypsinized and taken up in full DMEM. Each cell line was

measured twice; each measurement comprised three cycles of cell counts with intervals of 0.05 mm ranging from 0 to 50 mm. The

sum of counts of viable cells in the range of 12 to 30 mm was plotted and quantified. Three biological replicates were performed

per MDA-MB-231 cell line (KO and corresponding Control). Control and corresponding KO were compared with multiple unpaired

t tests. p values are presented as stars above the corresponding bar graphs. *, p < 0.05.

Cloning
The coding sequences (CDS) of G3BP1, G3BP2, LAMP1 and LAMP2were obtained from the clone repository of the DKFZGenomics

and Proteomics Core Facility (GPCF) as Gateway� compatible clones in pENTR221 or pENTR223. The CDS of MTOR and TSC2

were gifts from Dominic Esposito (Addgene plasmids # 70422 and # 70640) and obtained as Gateway� compatible clones in

pDonor-255. All CDS were generated with and without STOP-codon in the Gateway-frame. If only one CDS cloning was successful

in first instance, the cloning of the second was performed on the successful one and pDONR223 was used as ENTRY clone to reduce

background by changing E.coli resistance from kanamycin to spectinomycin. After sequence verification, the CDS without STOP-

codon were cloned into the BiFC destination vectors pGW-MYC-LC151 for G3BP1, G3BP2, and LAMP1, and pGW-HA-LN151 for

G3BP1, G3BP2, LAMP1, LAMP2, MTOR and TSC2 by Gateway�-specific LR-reaction following the manufacturer’s protocol (Invi-

trogen). Previously, the vectors bFos-MYC-LC151 and bJun-HA-LN151 (Chu et al., 2009) were adapted for Gateway cloning. MYC-

LC151 and HA-LN151 PCR-fragments were generated and cloned into modified pDEST26 vectors resulting in pGW-MYC-LC151

and pGW-HA-LN151, as previously described (Weiler et al., 2014). Using the Gateway�-specific LR reaction, TSC2 and LAMP2

were also cloned into pEGFP-C (TSC2-GFP and LAMP2-GFP). Three G3BP1 truncation constructs in pGW-MYC-LC151were gener-

ated with primers placed at the end or start positions of each construct, respectively: G3BP11-182-MYC, G3BP1183-332-MYC and

G3BP1333-466-MYC. AttB sites were added to the CDS by a two-step PCR. The first PCR was performed with hybrid primers, con-

sisting of half of the AttB sites and the other half being gene specific. The second PCR was done with primers covering the complete

AttB sites (see Table S4 for primer details). Following the same principle also a LAMP11-382 lysosomal truncation construct was

generated resulting in pGW-MYC-LC151-LAMP11-382. Since the cytoplasmic domain of LAMP1 is very small, we fused it to turboGFP

(tGFP). We therefore added the restriction sites for BamHl and Xhol in pDONR201-tGFP. LAMP1383-417 was amplified with primers

adding the restriction sites of BglII and SalI, and subsequently cloned into pDONR201-tGFP via one tube ligation. After sequence

verification tGFP-LAMP1383-417 was cloned into the BiFC destination vector resulting in pGW-MYC-LC151-LAMP1383-417 by

Gateway�-specific LR-reaction. The respective primers can be found in Table S4.

G3BP1 was amplified by PCR using cDNA from HeLa S3 cells as template, and inserted into pCMV6-AN-MYC-DDK (MYC-FLAG-

empty) by restriction cloning using AsiSI and MluI. MYC-FLAG-G3BP1-DRGG (lacking amino acids 410-466), MYC-FLAG-G3BP1-

DNTF2L (lacking amino acids 1-139) and MYC-FLAG-G3BP1-NTF2L (amino acids 1-139) constructs were generated by

Site-Directed Mutagenesis using Phusion HF DNA Polymerase and the vector pCMV6-AN-MYC-DDK containing G3BP1 (MYC-

FLAG-G3BP1) as template. G3BP2 was amplified by PCR using pGW-MYC-LC151-G3BP2 (see above) as template, and inserted

into pCMV6-AN-Myc-DDK (MYC-FLAG-G3BP2) by restriction cloning using AsiSI and MluI.

All plasmids were verified with restriction digest and Sanger sequencing.

Cell lysis and immunoblotting
For lysis, cells were washed with PBS and lysed with radio immunoprecipitation assay (RIPA) buffer (1% IGEPAL CA-630, 0.1%SDS,

and 0.5% sodium deoxycholate in PBS) supplemented with Complete Protease Inhibitor Cocktail, Phosphatase Inhibitor Cocktail 2

and Cocktail 3. The protein concentration was measured using Protein Assay Dye Reagent Concentrate and adjusted to the lowest

value. Cell lysates weremixed with sample buffer (10% glycerol, 1%beta-mercaptoethanol, 1.7%SDS, 62.5mMTRIS base [pH 6.8],

and bromophenol blue), and heated for 5 min at 95�C. Cell lysates were then loaded on SDS polyacrylamide gel electrophoresis

(PAGE) gels with a concentration of 8%, 10%, 12% or 14% polyacrylamide. Polyacrylamide gels were prepared consisting of two

distinct layers: a stacking and a separation gel. For the lower separation gel, polyacrylamide was diluted to the respective percentage

with 375 mM TRIS base [pH 8.8]. For the upper stacking gel, polyacrylamide was mixed with 0.125 M TRIS base [pH 6.8] to a final

concentration of 13%. Electrophoresis was carried out with a Mini-PROTEAN Tetra Vertical Electrophoresis Cell system that was

filled with electrophoresis buffer (0.2 M glycine, 25 mM TRIS base, and 0.1% SDS), and an applied voltage of 90 to 150 V. Subse-

quently, proteins were transferred to polyvinylidene difluoride (PVDF) membranes using a Mini-PROTEAN Tetra Vertical Electropho-

resis Cell system filled with blotting buffer (0.1M glycine, 50mMTRIS base, 0.01%SDS, [pH 8.3], and 10%methanol) and an applied

voltage of 45 V for 2 hours. Afterward, membranes were blocked in 5% bovine serum albumin (BSA) – TRIS-buffered saline tween

(TBST) buffer (0.15 M NaCl, 60 mM TRIS base, 3 mMKCl, and 0.1% Tween-20, [pH 7.4]). Membranes were incubated overnight with

primary antibodies at 4�C, following the manufacturer’s instructions for the respective antibodies (antibody dilutions can be found in

Table S3). The next day, membranes were washed in TBST buffer and incubated for at least one hour with the corresponding

horseradish peroxidase (HRP) coupled secondary antibodies. For detection, Pierce ECL western blotting substrate or SuperSignal

West FEMTO were used to detect chemiluminescence using a LAS-4000 camera system, a ChemiDoc XRS+ camera or a Fusion Fx

camera. For graphical presentation, raw images taken with the LAS-4000 or Fusion camera were exported as RGB color TIFF files
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using ImageJ version 1.50b (Schneider et al., 2012), and further processed with Adobe Photoshop version CS5.1. Raw images taken

with a ChemiDoc XRS+ camera were processed with Image Lab version 5.2.1 and exported for publication as TIFF files with 600 dpi

resolution. Numbers on the right of each single immunoblot indicate the kilodalton (kDa) size of the nearest protein ladder signal.

Re-analysis of the MTOR interactome
Re-analysis of the MTOR interactome data reported by Schwarz et al. (2015) (Figure 1A). Volcano plot showing the mean log10 ratios

of proteins detected by tandemmass spectrometry in MTOR versusmock immunoprecipitation (IP) experiments. Proteins quantified

in at least two out of three biological replicates were plotted against the negative log10 p value (Student0s t test). Proteins with a mean

ratio > 5 and a p value < 0.01 (sector highlighted in dark gray) were considered significantly enriched. G3BP1 is marked in green, the

mTORC1 core components MTOR and RPTOR are marked in blue.

Immunoprecipitation (IP)
For IP experiments, cells were washed three times in ice-cold PBS and then harvested in CHAPS based IP lysis buffer (40 mM

HEPES, 120 mM NaCl, [pH 7.5] and 0.3% CHAPS) supplemented with Complete Protease Inhibitor Cocktail, Phosphatase Inhibitor

Cocktail 2 andCocktail 3. The lysate volumewas adjusted to 1 - 2.5mL per 15 cmcell culture plate, depending on the cell density. The

lysate was incubated under gentle agitation for 20 min at 4�C, centrifuged for 3 min at 600 g at 4�C, the pellet was discarded and the

supernatant was transferred to fresh tubes. In case of multiple samples, the protein concentration wasmeasured using Protein Assay

Dye Reagent Concentrate and all samples were adjusted to the lowest value. The lysates were pre-incubated with 10 mL pre-washed

Protein G covered Dynabeads per mL of lysate for 30 min at 4�C under gentle agitation. A fraction of each lysate was mixed with 5 x

sample buffer, referred to as ‘lysate’ input in the figure panels. For IP, the pre-cleaned lysates were subdivided, and specific anti-

bodies or isotype control IgG antibodies (mock condition) were added using 7.5 mg antibody per mL of pre-cleaned lysate. Isotype

control IgG antibodies (mock antibodies) were used in the same concentration as the protein-specific antibodies. After 30 min at 4�C
under gentle agitation, 37.5 mL pre-washed Protein G covered Dynabeads / mL lysate were added, and the incubation was continued

for 90 min at 4�C under gentle agitation. Finally, beads were washed with CHAPS lysis buffer three times shortly and three times for

10 min at 4�C under gentle agitation, and taken up in 1 x sample buffer. Samples were heated for 5 min at 95�C and separated by

SDS-PAGE. For IP experiments with TSC2 and respective mock antibodies, the samples were heated for 10 min at 70�C.
For TSC1-IPs with NaCl and SDS washes (Figure 5C), the IP was performed as detailed above but with a CHAPS-based IP lysis

buffer without NaCl (40 mMHEPES, [pH 7.5] and 0.3%CHAPS). Before the final washing steps, the TSC1-IP was subdivided into six

tubes. Each IP waswashed with CHAPS-based lysis buffer supplemented with the indicated NaCl or SDS concentrations three times

shortly and three times for 10 min at 4�C under gentle agitation, and taken up in 1 x sample buffer. Samples were heated for 10 min at

70�C and separated by SDS-PAGE. The TSC1 antibody (TSC1 #1) was a gift from Michael N. Hall and generated as previously

described (Molle, 2006; van Slegtenhorst et al., 1998).

For FLAG-IP experiments (Figures 5N and 5O), 2 3 106 HEK293T cells per dish were seeded in 10 cm dishes (2 dishes per con-

dition). 24 hours after seeding, the cells were co-transfected with 2 mg LAMP2-GFP (full length) and 1 mg pCMV6-MYC-FLAG-G3BP1

constructs (full-length or truncated versions) using Lipofectamine 3000 following the manufacturer’s protocol. After 24 hours, the

cells were lysed and IP was performed as described above adjusting the samples to 1 – 1.5 mL per 10 cm cell culture plate, depend-

ing on the cell density. Protein G covered Dynabeads were used for the IP and samples were heated for 5 min at 95�C and separated

by SDS-PAGE.

For GFP-IP experiments in HEK293T cells (Figure 5D), 1.73 106 cells per 10 cm dish were seeded (1 dish per condition). 24 hours

after seeding, the cells were co-transfected with 2 mg TSC2-GFP (full length) and 1 mg pCMV6-MYC-FLAG-G3BP1 constructs (full-

length or truncated versions) using Lipofectamine 3000 following themanufacturer’s protocol. After 48 hours of transient overexpres-

sion, the cells were lysed and IP was performed as described above adjusting the samples to 1 – 1.5 mL per 10 cm cell culture plate,

depending on the cell density. Protein G covered Dynabeads were used for the IP and samples were heated for 10 min at 95�C and

separated by SDS-PAGE.

For GFP-IP experiments in HEK293-b2AR cells (Figure 5B), 1.7 3 106 cells per dish were seeded in 10 cm dishes (2 dishes per

condition). 24 hours after seeding, the cells were co-transfected with 2 mg TSC2-GFP (full length) and 1 mg G3BP1-myc constructs

(full-length or truncated versions) using Transfectin (ratio 2:1) in FBS-free DMEM, following the manufacturer’s protocol. After

48 hours of transient overexpression, cells were washed once in ice-cold PBS and pooled into one tube per condition. Cells were

centrifuged at 16,000 g for 1 minute at room temperature and resuspended in 1 mL of CHAPS-based IP lysis buffer, supplemented

with protease inhibitors (100 mM Leupeptin, 100 mM Aprotinin, 1 mg / mL Pepstatin A) and phosphatase inhibitors (1 mM Sodium

orthovanadate, 1 mM Sodium pyrophosphate, 1 mM Sodium fluoride). The cells were disrupted and the DNA was sheared through

the repeated use of a syringe with a 21G x 0.80 mm needle. Afterward, the lysate was incubated on ice for 15 min at 4�C, centrifuged
for 45 min at 16,000 g at 4�C, the pellet was discarded and the supernatant was transferred to fresh tubes. In case of viscous super-

natants, the DNA shearingwas repeated. Otherwise, the lysates were pre-incubated with 12 mL Protein G Sepharose beads permL of

lysate for 60 min at 4�C under gentle agitation. A fraction of each lysate was mixed with 5 x sample buffer (25 mM Tris-HCl [pH 6.8];

4% (w/v) SDS; 3% (w/v) DTT; 0.02% (v/v) bromophenol blue), referred to as ‘lysate’ in the figure panels. For IP, the pre-cleared lysates

were subdivided, and 1 mg/mL of anti-GFP antibody or anti-Flag antibody were added. After 3 hours at 4�C under gentle agitation,

12 mL Protein G Sepharose beads per mL lysate were added, and the incubation was continued for 60 min at 4�C under gentle
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agitation. Finally, beads were washed with CHAPS-based lysis buffer five times shortly and once for 5 min at 4�C under gentle agita-

tion. In between the samples were centrifuged for 1 minute at 9,600 g to remove the supernatant. Finally, the IP samples were dis-

solved in 30 mL 1 x sample buffer. Samples were heated for 5 min at 95�C and separated by SDS-PAGE.

TheWistar Cmd:(WI)WU rats that were used to obtain brain tissue for IP of endogenous TSC1 (Figure 7A) were sacrificed according

to protocol, which complied with European Community Council Directive 2010/63/EU. The cerebral cortex from one hemisphere of a

rat brain was homogenized in 4 mL lysis buffer (40 mM Tris-HCl [pH 7.5], 120mMNaCl) containing 0.3%CHAPS, supplemented with

protease and phosphatase inhibitors, using a glass teflon homogenizer. The homogenate was diluted 1:1 with lysis buffer containing

0.1% CHAPS and incubated under gentle agitation for 90 min at room temperature. The brain lysate was centrifuged at 1,000 g, 4�C
for 10 min, the pellet was discarded and the supernatant was transferred to fresh tubes. A fraction of each lysate was mixed with 4 x

sample buffer, referred to as ‘lysate’ input in the figure panels. 30 mL of Protein G covered Dynabeads were pre-conjugated in lysis

buffer containing 0.1%CHAPSwith 4 mg of TSC1 antibody or isotype control rabbit IgG (mock condition) for 2 hours at 4�C. For IP, the
pre-conjugated beads were incubated with the lysate at 4�C overnight under gentle agitation. Finally, beads were washed with lysis

buffer containing 0.1% CHAPS four times for 3 min at 4�C under gentle agitation, and taken up in 1 x sample buffer. Samples were

heated for 10 min at 95�C and separated by SDS-PAGE.

Sucrose gradients
Cells were lysed in homogenization buffer (50 mM Tris-HCl [pH 7.4], 250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 3 mM imidazole),

supplemented with Complete Protease Inhibitor Cocktail and Phosphatase Inhibitor Cocktail 2 and Cocktail 3 on a rocking platform

for 30 min at 4�C. Subsequently, cells were scraped and centrifuged at 12,000 g for 10 min at 4�C. The pellet was discarded, the

supernatant was transferred to a fresh tube and the absolute protein concentration was determined with Protein Assay Dye Reagent

Concentrate by calculating a BSA adjustment curve ranging from 0.5mg /mL to 7.5mg /mLBSA. 1.5mg protein was loaded on 4mL

of a continuous sucrose gradient (10% to 40% sucrose) and centrifuged 194,000 x g for 16 hours. Each sample was divided into 26

fractions and 5 x sample buffer was added to a final concentration of 1 x. Every second fraction was analyzed by immunoblot. Quan-

titation of pixel intensities was performed as described below. Normalization was carried out against the average value of all lanes,

and normalized values of each lane were plotted for n = 3 independent experiments. Quantitations in Figure 3A and S4D show pixel

intensities of immunoblot detections for each fraction as % of the overall signal of all fractions.

Lysosome preparation (lyso-prep) with dextran coated nanoparticles
Lysosomes were loaded with ferromagnetic nanoparticles (DexoMAG) by incubating MCF-7 cells for 12 hours in DMEM with 10%

FBS, 10% DexoMAG solution and 10 mM HEPES. Afterward, cells were washed twice with wash buffer (0.25 M sucrose, 10 mM

triethanolamine, 10mM acetic acid, [pH 7.8]), then scraped and pelleted by centrifugation at 150 g for 5 min. Cells were resuspended

in homogenization buffer (wash buffer supplemented with 1 mMEDTA, and protease (5 mM benzaminidine, 5 mME64, 1 mMAEBSF,

1 mMaprotinin, 1 mM leupeptin, 100 mMpepstatin A) and phosphatase (1 mMSodium orthovanadate, 50mMSodium fluoride, 10mM

Sodium pyrophosphate, 10 mMSodium glycerophosphate) inhibitors. Cells were homogenized by 10 strokes with a dounce homog-

enizer and nuclei were pelleted by centrifugation at 200 g for 10 min. An LS MACS column was attached to a QuadroMACS magnet,

equilibrated with 1mLPBS and 0.5%BSA, and thenwashedwith 1mL PBS. The postnuclear supernatant (PNS) was loaded onto the

equilibrated column. The column was washed twice with 600 mL column wash buffer (PBS, 0.1 mM sucrose, and protease and phos-

phatase inhibitors). Finally, lysosomes (lyso-prep) were eluted by detaching the column from the magnet and plunging with 400 mL

elution buffer (PBS, 0.5 mM sucrose, and protease and phosphatase inhibitors). All isolation steps were performed at 4�C. Protein
amounts were calculated using a BCA assay and equal protein amounts of PNS and lyso-prep were separated by SDS-PAGE

and analyzed by immunoblotting as detailed above, with nitrocellulose membranes and chemiluminescence detection using a

ChemiDoc XRS+ camera.

Trypsin treatment of lyso-preps
10 mg of freshly isolated lyso-prep were incubated with 0, 2.5 mg, 5 mg or 10 mg trypsin, respectively at 37�C for 5 min and subse-

quently separated by SDS-PAGE and analyzed by immunoblotting with nitrocellulosemembranes and chemiluminescence detection

using a ChemiDoc XRS+ camera.

Immunofluorescence (IF)
In order to analyze SG assembly, cells were grown on coverslips and treated as indicated in the respective figures. Cells were washed

withPBSandfixedwith ice-coldmethanol for 5minon ice.After fixation, cellswerewashed three timeswithPBS,andpermeabilizedwith

0.1% Triton X-100 in PBS for 60 s. Cells were washed with PBS and blocked with 3% FBS in PBS for 30 min at room temperature, and

incubated with primary antibodies against G3BP1 and EIF3A at 4�C overnight. The cells were washed three times with PBS and incu-

bated with Alexa Fluor 568 and Alexa Fluor 488 labeled secondary antibodies and Hoechst 33342 at room temperature for 30 min in

the dark. Afterward, cells were washed three times with PBS and twice in deionized water. The cells were mounted with Mowiol 4-88,

including DABCO (1,4-diazabicyclo[2.2.2]octane) and supplemented with 10%NPG (n-propyl-gallate). Cells were analyzed by fluores-

cencemicroscopy. Imageswere taken using awide-field AxioObserver Z1microscope equippedwith anApotome, a 63x / 1.4 oil objec-

tive, and an AxioCamMRm CCD camera. For each experimental setup, the magnification and exposure times were adjusted to the
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condition with the brightest signal, and the settings were retained throughout for all conditions. For presentation in figures, regions of

interest (ROI) were selected and maintained for all channels, and single layers of Z stacks were exported as TIFF with no compression

using Zen2012blue edition software, and brightness and contrastwere adjusted for better visibility. For single channel images, channels

were pseudo-colored white, for merge images, the Alexa 488 channel was left green and the Alexa 568 channel was left magenta. Pic-

turesare representativeofn=3 independentexperiments,except the0minarsenitecondition in theshG3BP1#1cells (n=2;FigureS2Q).

The number of EIF3A positive puncta / cell was analyzed on unprocessed image raw files without any adjustment using Fiji software

version 1.49v (Schindelin et al., 2012), creatingmaximum intensity projections of all Z stacks.We used a background subtraction of 1,

threshold adjustment with the intermodes function, and the ‘Analyze Particles’ function with a particle size from 0.2-infinity and a

circularity from 0.5-1. SG were counted using the EIF3A channel. The number of EIF3A positive puncta / image was then normalized

to the number of cells by counting the nuclei in the Hoechst channel and analyzed using a one-way ANOVA followed by a Sidak’s

multiple comparisons test across n = 9 pictures from n = 3 independent experiments, except the 0 min arsenite condition in the

shG3BP1 #1 cells for which only 6 pictures from n = 2 experiments were analyzed.

For analysis of lysosomal foci, LAMP2 was stained as described previously (Demetriades et al., 2016). Cells were grown on cov-

erslips and treated as indicated. Themediumwas removed and cells were fixedwith 4%paraformaldehyde in PBS for 10min at room

temperature. After fixation, cells were permeabilized twice with 0.1% Tween-20 in PBS for 10 min. Cells were blocked with 0.1%

Tween-20 and 0.1% BSA in PBS for 45 min at room temperature, and incubated with primary antibodies against LAMP2 diluted

in 0.1% Tween-20 and 0.1% BSA in PBS at 4�C for 2 hours. Afterward, cells were washed four times for 15 min with 0.1%

Tween-20 and 0.1% BSA in PBS and incubated with TRITC labeled secondary antibodies and Hoechst 33342 at room temperature

for 1 hour in the dark. Afterward, cells were washed twice in 0.1% Tween-20 in PBS for 15 min and twice in deionized water and

mounted with Mowiol 4-88, supplemented with DABCO and NPG, and analyzed by fluorescence microscopy. Images were taken

using a wide-field AxioObserver Z1 microscope equipped with an Apotome, a 63x / 1.4 oil objective, and an AxioCamMRm CCD

camera. For each experimental setup, the magnification and exposure times were adjusted to the condition with the brightest signal,

and the settingswere retained for all conditions. For presentation in figures, regions of interest (ROI) were selected andmaintained for

all channels, and single layers of Z stacks were exported as TIFF with no compression using Zen2012 blue edition software, and

brightness and contrast were adjusted for better visibility. The TRITC channel of the LAMP2 staining was pseudo-colored white. Pic-

tures are representative of n = 12 fields of view from n = 3 independent experiments.

TSC2-LAMP1 co-staining was performed as described previously (Carroll et al., 2016). Briefly, cells were grown on coverslips and

treated as indicated in Figure 4C. The medium was removed and cells were fixed with 4% formaldehyde in PBS for 10 min at room

temperature. After fixation, cells were permeabilized with 0.5% Triton X-100 in PBS for 10 min at room temperature. Cells were

blocked with 5% normal goat serum in PBS and 0.05% Tween-20 for 1 hour at room temperature, and incubated with primary an-

tibodies against TSC2 and LAMP1 at 4�C overnight. The following day, cells were washed and incubated with the appropriate sec-

ondary antibodies for 1 hour at room temperature. Afterward, the cells were washed and coverslips were mounted on slides with

Prolong Gold antifade reagent with 40,6-Diamidin-2-phenylindol (DAPI). Cells were analyzed by fluorescence microscopy. Z stack

images were taken using a Leica SP8 microscope, a 63x objective, 1.5x digital zoom and filters suitable for the used fluorophores.

Identical settings were used to capture images across five to six separate fields (20 to 40 cells) of view. For presentation in figures,

pictures were opened in Fiji (version 1.52p) and Z stacks were projected (max). Channels were split and brightness and contrast were

adjusted for better visibility. Afterward channels were converted to RGB color. Regions of interest (ROI) were selected and coordi-

nates were copied to maintain the same ROI in the different channels. For single channel images, channels were pseudo-colored

white, for merge images, the Alexa 488 channel was left green and the Alexa 555 channel was pseudo-colored magenta. All images

were exported as TIFF with no compression.

For TSC2-LAMP1 co-staining, the Manders’ coefficient was calculated using the Coloc2 plug-in of the ImageJ software (v1.51r).

Prior to running the plug-in, amask wasmade of the DAPI channel and subtracted from the other channels. A constant threshold was

applied to all the images in the Z stack, and for every image within each experiment and the Manders’ colocalization coefficient was

calculated. Differences in the tested conditions were analyzed using a one-way ANOVA followed by a Sidak’s multiple comparisons

test across n = 5-6 fields of view from one dataset representative of at least n = 3 independent experiments.

ForMTOR-LAMP2 co-staining cells were grown on coverslips and treated as indicated in Figure 4J. Themediumwas removed and

cells were fixed with 4%paraformaldehyde in PBS for 10min at room temperature. After fixation, cells were permeabilized with 0.5%

Triton X-100 in PBS for 10 min at room temperature. Cells were blocked with 3% FBS in PBS for 30 min at room temperature, and

incubated with primary antibodies against MTOR and LAMP2 at 4�C overnight. The following day, cells were washed and incubated

with the appropriate secondary antibodies for 1 hour at room temperature. Afterward, the cells were washed and coverslips were

mounted on slides with Prolong Gold antifade reagent with DAPI.

Images were taken using a wide-field AxioObserver Z1 microscope equipped with an Apotome, a 40x / 1.4 oil objective, and an

AxioCamMRm CCD camera. For each experimental setup, the magnification and exposure times were adjusted to the condition

with the brightest signal, and the settings were retained for all conditions. For presentation in figures, single layers of Z stacks

were exported as TIFF with no compression using Zen2012 blue edition software, and brightness and contrast were adjusted for

better visibility. For presentation in figures, regions of interest (ROI) were selected. For single channel images, channels were

pseudo-colored white, for merge images, the Alexa 488 channel was left green and the Alexa 555 channel was pseudo-colored

magenta. All images were exported as TIFF with no compression.
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For MTOR-LAMP2 co-staining, the Manders’ coefficient was calculated using the Coloc2 plug-in of the ImageJ software (v1.51r).

Prior to running the plug-in, a mask wasmade of the DAPI channel and subtracted from the other channels. A constant threshold was

applied to all the images in the Z stack, and for every image within each experiment and the Manders’ colocalization coefficient was

calculated. Differences in the tested conditions were analyzed using a one-way ANOVA followed by a Sidak’s multiple comparisons

test across n = 10-15 fields of view from one dataset representative of n = 3 independent experiments. In total n = 36 distinct fields of

view were analyzed.

Bimolecular fluorescence complementation (BiFC)
For BiFC analysis, we made use of the red fluorophore mLumin (Chu et al., 2009; Weiler et al., 2014). For analysis of interaction be-

tween the G3BPs and TSC2, LAMP1, LAMP2 as well asmTOR, HEK293T cells were seeded in a 24well plate at 100,000 cells / well in

full medium 24 hours prior to transfection. The cells were transiently transfected with Lipofectamine 3000 following the manufac-

turer’s protocol in the following combinations: pGW-MYC-LC151-G3BP1 (G3BP1 fused to a C-terminal mLumin fragment) with

empty pGW-HA-LN151 as a negative control (an N-terminal mLumin fragment only), and pGW-MYC-LC151-G3BP1 with either

pGW-HA-LN151-LAMP1, pGW-HA-LN151-LAMP2, pGW-HA-LN151-MTOR, or pGW-HA-LN151-TSC2, respectively (an N-terminal

mLumin fragment fused to LAMP1, LAMP2, MTOR or TSC2, respectively) (Figure 5E). For G3BP2, cells were transfected with pGW-

MYC-LC151-G3BP2 and either empty pGW-HA-LN151 as a negative control, or pGW-HA-LN151-LAMP1, pGW-HA-LN151-LAMP2,

pGW-HA-LN151-MTOR, pGW-HA-LN151-TSC2, respectively (Figure 5H). In order to achieve equal expression of all plasmids, 3

times the amount of DNA was used for the MTOR, TSC2 and empty control plasmids in comparison to the G3BP1, G3BP2,

LAMP1, and LAMP2 plasmids. Cells were analyzed 48 hours after transfection using a wide-field AxioObserver Z1, equipped with

a 10x / 0.3 Plan-NEO objective, an AxioCamMRm CCD camera and an mPlum (64 HE) filter. mLumin fluorescence was analyzed

with Fiji version 1.49 using a background subtraction of 50, threshold adjustment from 20-max, a Gaussian Blur filter of 1 and the

‘Analyze Particles’ function with a particle size from 20-infinity. The mLumin fluorophore signal was measured in percent / image

and compared between the different combinations by a one-way ANOVA followed by a Sidak’s multiple comparisons test across

at least 3 independent fields of view from at least three independent datasets, respectively. In total at least 22 independent fields

of view for G3BP1 and 15 independent fields of view for G3BP2 were analyzed. All pictures were taken from regions with a compa-

rable cell density.

For analysis of G3BP1 and G3BP2 homo- and heterodimers, MCF-7 cells were seeded in a 24 well plate at a density of 100,000

cells / well in full medium. 24 hours after seeding, cells were transiently transfected with Lipofectamine 3000 following the manufac-

turer’s protocol in the following combinations: pGW-MYC-LC151-G3BP1 with empty pGW-HA-LN151 as a negative control, or

pGW-MYC-LC151-G3BP1 with either pGW-HA-LN151-G3BP1 or pGW-HA-LN151-G3BP2, respectively. In addition, cells were

also transfected with pGW-MYC-LC151-G3BP2 together with empty pGW-HA-LN151, or pGW-HA-LN151-G3BP1, or pGW-HA-

LN151-G3BP2, respectively. Cells were also transfected with the respective BiFC constructs in the other orientation, namely empty

pGW-MYC-LC151 with pGW-HA-LN151-G3BP1, as well as empty pGW-MYC-LC151 with pGW-HA-LN151-G3BP2 (Figure 2L).

Cells were analyzed 48 hours after transfection using a wide-field AxioObserver Z1, equipped with a 10x / 0.3 Plan-NEO objective,

an AxioCamMRm CCD camera and an mPlum (64 HE) filter. mLumin fluorescence was analyzed with Fiji version 1.49 using a back-

ground subtraction of 50, threshold adjustment from 40-max, a Gaussian Blur filter of 1 and the ‘Analyze Particles’ function with a

particle size from 10-infinity. The mLumin fluorophore signal was measured in percent / image and compared between the different

combinations by a one-way ANOVA followed by a Sidak’s multiple comparisons test across in total at least 14 independent fields of

view from at least three independent datasets. All pictures were taken from regions with a comparable cell density.

For analysis of the interaction between theG3BPs and the cytoplasmic or luminal LAMP1protein domains,MCF-7 cellswere seeded

in a 24 well plate at a density of 100,000 cells / well in full medium. 24 hours after seeding, cells were transiently transfected with

Lipofectamine 3000 following the manufacturer’s protocol in the following combinations: pGW-HA-LN151-G3BP1 with either empty

pGW-MYC-LC151, with pGW-myc-LC151-LAMP1, with pGW-myc-LC151-LAMP11-382, or with pGW-myc-LC151-LAMP1383-417,

respectively (Figure 5K). Following the same principle, also pGW-HA-LN151-G3BP2 was transfected together with either empty

pGW-MYC-LC151, pGW-myc-LC151-LAMP1, pGW-myc-LC151-LAMP11-382, or pGW-myc-LC151-LAMP1383-417, respectively

(Figure 5L). Cells were analyzed 48 hours after transfection using a wide-field AxioObserver Z1, equipped with a 10x / 0.3 Plan-NEO

objective, an AxioCamMRmCCD camera and an mPlum (64 HE) filter. mLumin fluorescence was analyzed with Fiji version 1.49 using

a background subtraction of 50, threshold adjustment from20-max, aGaussianBlur filter of 1 and the ‘AnalyzeParticles’ functionwith a

particle size from 20-infinity. The mLumin fluorophore signal was measured in percent / image and compared between the different

combinations by a one-way ANOVA followed by a Sidak’s multiple comparisons test across in total at least 45 independent fields of

view from five independent datasets for G3BP1, and at least 27 independent fields of view from three independent datasets for

G3BP2. All pictures were taken from regions with a comparable cell density.

In all BiFC experiments shown, the protein fused to the C-terminal mLumin fragment is indicated first, and the protein fused to the

N-terminal mLumin fragment is indicated second.

Proximity Ligation Assay (PLA)
For TSC2-LAMP2 PLAs (Figure 4A), MCF-7 cells were trypsinized and seeded in a 16-well chamber slide at a density of 4x104 cells

per well 72 h after siRNA transfection with siG3BP1 or siRenilla luciferase. The following day, cells were washed twice with HBSS,
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starved in HBSS for 16 hours, and then stimulated for 15 min with high-glucose DMEM containing 4 mM glutamine and 1 mM insulin.

Afterward, cells were washed once with PBS, fixed with 4% formaldehyde for 15 min and permeabilized with 0.1% Tween-20 in PBS

for 5 min. The PLA was performed using the Duolink In Situ Red Starter Kit Mouse/ Rabbit according to the manufacturer’s instruc-

tions. Briefly, after permeabilization, the samples were blocked, and then incubated overnight with antibodies against LAMP2 and

TSC2. The following day, the samples were incubated with the MINUS and PLUS PLA probes corresponding to the primary anti-

bodies used, followed by ligation and rolling-circle amplification in the presence of Texas-Red labeled oligos to generate the PLA

signal. Finally, the samples were mounted with DAPI-containing mounting medium. All incubations were performed in a humidity

chamber using a volume of 40 mL per well. The experiment was imaged with a confocal microscope (SP8, Leica); twelve stacks

(7-8 mm thick with 0.3 mm spacing between consecutive layers) per condition were acquired.

For G3BP1-TSC2 and G3BP1-LAMP1 PLAs, MCF-7 CRISPR control and G3BP1 KO cells were seeded in a 16-well chamber slide

at a density of 2x104 cells per well. The following day, cells were washed twice with PBS, and incubated with HBSS for 16 hours.

Afterward, cells were washed once with PBS and fixed with 4% formaldehyde for 5 min and permeabilized with 0.1% Triton

X-100 in PBS for 5 min. The PLA was performed as described above with antibodies against G3BP1 and TSC2 or LAMP1. The slides

were analyzed using an AxioObserver Z1 compoundmicroscope equipped with an Apotome (6 pictures per slide), 63x objective, and

Axiocam 702mono and Axiocam 298 color cameras. Six stacks (0.5 mm thick) per condition were acquired.

For quantitation of all PLAs, the number of PLA puncta was counted across maximum intensity projections of raw files of each

stack using CellProfiler (McQuin et al., 2018) and then normalized to the number of DAPI-positive nuclei in that field of view. The

mean of the respective control condition was set to 1. In Figure 4A themean of theControl at 0min insulin / aa stimulationwas normal-

ized to 1. For presentation in figures, maximum intensity projections were exported as TIFF, and brightness or contrast were adjusted

for better visibility.

Migration assays
For analysis of cell migration into a cell-free space (scratch assays) (Figure 6A), 2-well ibidi culture-inserts were placed into

24-well plates, generating a cell-free gap of 500 mM. After knockdown induction for 4 days, 15,000 cells / well were seeded in

100 mL full DMEMmedium. 4 replicates were seeded per condition and cell line (MCF-7 shControl and shG3BP1 #1) in the presence

of 2 mg /mL doxycycline to induce shRNA expression.Where indicated, rapamycin was added during seeding to a final concentration

of 20 nM (24 hours prior to the 0 h time point). After 24 hours, ibidi culture-inserts were removed and the medium was replaced with

1 mL full DMEMmedium, supplemented with 20 nM rapamycin where indicated. Pictures were taken after 0, 24, and 48 hours with a

Nikon ECLIPSE Ti-E/B invertedmicroscope, equipped with a 4x objective, using the NIS Elements version 4.13.04 software (settings:

optimal frame size 1280 3 1024, no binning, 12 bit). Pictures were taken from two different regions in an automated manner by se-

lecting the x- and y-coordinates of the 24-well plate, assuring that the same region of the scratchwasmonitored across all conditions.

Pictures were exported as TIFF files converting the 12 bit to 16 bit and analyzed using the TScratch software (Gebäck et al., 2009) and

a consistent threshold of 250. For quantitation, thewidth of the openwound area of the 48 hour time point was normalized to the initial

scratch size at the 0 h time point and expressed as the percentage of wound closure. Data was compared using a one-way ANOVA

followed by a Sidak’s multiple comparisons test across n = 12 scratches from 3 independent experiments.

For Transwell migration assays (Figure 6E), FluoroBlok cell culture inserts with a polyethylene terephthalate (PET) membranewhich

blocks the transmission of light between 400 and 700 nmwere placed, one insert / well, into 24-well companion plates with 750 mL of

full DMEMmedium containing 10% FBS as chemoattractant. 100,000 MDA-MB-231 Control or G3BP1 KO cells were subsequently

seeded in 500 mL DMEM supplemented with 3 mM L-glutamine and 2% FBS into the top chamber of the inserts. After 6-8 hours,

medium was flipped out of the inserts, and inserts were placed into a second 24-well companion plate with 500 mL / well HBSS me-

dium and a final concentration of 4 mg / mL Calcein fluorescent dye. Living cells were stained with Calcein for 1 hour. Finally, inserts

were placed into a third 24-well plate with 500 mL HBSS / well, and fluorescence of migrated cells was measured with the Tecan

i-control software (v1.10.4.0) and a Tecan Infinite 200 PRO plate reader equipped with 485 / 530 (excitation / emission) filter. Calcein

fluorescence (494 / 517 (ex / em)) was measured from the bottom of the plate so that only those cells that migrated through the light-

blocking PETmembrane weremeasured. Three wells per cell line weremeasured in parallel as technical replicates. The average fluo-

rescence value per well was calculated from nine reads / well (3 3 3) and the average fluorescence value from all three wells was

normalized to 1 for theMDA-MB-231Control cells and the fold change of theG3BP1KOcells was compared using a paired Student’s

t test across n = 5 independent experiments.

Microscope pictures of themigrated cells were takenwith a Nikon ECLIPSE Ti-E/B invertedmicroscope, equippedwith a 4x objec-

tive and a GFP filter, using the NIS Elements version 4.13.04 software (settings: optimal frame size 12803 1024, no binning, 12 bit).

Pictures were exported as TIFF files converting the 12 bit to 16 bit. The representative pictures were exported as TIFF with no

compression and a pseudo-colored white Calcein signal using Zen2012 blue edition software.

Proliferation assays
Cell proliferation was monitored using an xCELLigence real-time cell analysis (RTCA) system, allowing real-time, label free cellular

analysis. After knockdown induction for 4 days, MCF-7 cells (MCF-7 shControl and shG3BP1 #1) were seeded in duplicates at a total

of 2,000 cells per E-plate 16 chamber following the manufacturer’s protocol, in the presence of 2 mg / mL doxycycline. Proliferation

was measured as the relative change in electrical impedance every 30 min for 5 days until the cells reached the stationary growth
e16 Cell 184, 1–20.e1–e19, February 4, 2021



ll
OPEN ACCESS

Please cite this article in press as: Prentzell et al., G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling, Cell (2021),
https://doi.org/10.1016/j.cell.2020.12.024

Article
phase. Proliferation was analyzed using the RTCA software 1.2. For presentation of the growth curves in Figure 6C, the measured

impedance is displayed as relative confluence, normalized to 1 for the maximum value. In Figure 6D RTCA proliferation is shown

as slope/h; shControl (normalized to 1) and shG3BP1 #1 cells were compared using a paired two-tailed Student’s t test across

n = 6 independent experiments.

G3BP1 expression analyses
G3BP1 mRNA expression analysis (Figure 6G). Clinical and RNaseq data of invasive breast cancer (TCGA, provisional) were down-

loaded from cBio Cancer Genomics Portal (http://www.cbioportal.org) using the CGDS-R package (Gao et al., 2013), and classified

according to PAM50. For 522 patients, information on the breast cancer subtype was available, of which 514 had RNaseq V2 data for

G3BP1. A Kruskal-Wallis ANOVA by ranks was applied to evaluate subtype-dependent differences in G3BP1 transcription. n = 231

for luminal A, n = 127 for luminal B, n = 58 for HER2-enriched and n = 97 for basal-like. Data are shown as boxplots, representing the

median with 25th and 75th percentiles as boxes and 5th and 95th percentiles as whiskers. The p value of the Kruskal-Wallis ANOVA by

ranks is shown.

Survival analyses
The Kaplan Meier Plotter database (http://www.kmplot.com; Györffy et al., 2010; Szász et al., 2016) was used for survival analysis.

Relapse free survival (RFS) was assessed in breast cancer patients based on gene expression of G3BP1 (probeID: 225007_at) (Fig-

ure 6H), TSC1 (probeID: 209390_at) (Figure 6J), and TSC2 (probeID: 215735_at) (Figure 6K). Outlier gene arrays were excluded leav-

ing 1764 patients for analysis ofG3BP1 and 3571 patients for analyses of TSC1/TSC2. n = 1224 with highG3BP1mRNA expression;

n = 409 with low G3BP1mRNA expression; n = 2541 with high TSC1mRNA expression; n = 1030 with low TSC1mRNA expression;

n = 1712 with high TSC2 mRNA expression; n = 1859 with low TSC2 mRNA expression.

RFS analysis in relation to G3BP1 protein expression (Figure 6I) also was based on data available in the Kaplan-Meier Plotter data-

base, which included 126 patients. n = 57 with high G3BP1 protein expression; n = 67 with low G3BP1 protein expression.

For all calculations, patients were split based on the best performing expression threshold and log-rank p values were calculated.

Zebrafish treatments
For pharmacological assessment, 3 dpf larvae were individually placed into the wells of a 24-well or 96-well-plate, with each well

containing 400 mL or 100 mL, respectively, of a freshly prepared 10 mM rapamycin or 25 mMethosuximide solution in embryo medium.

The untreated larvae were treated similarly with 400 mL or 100 mL of embryo medium. Larvae were incubated for 24 hours, and non-

invasive local field potential recordings, locomotor tracking and in vivo imaging experiments were carried out as described below.

Zebrafish larvae lysis and immunoblotting
For Rps6-pS235/236 analysis 10 zebrafish larvae (2-3 dpf) were pooled per condition and independent experiment (n = 4) and ho-

mogenized in RIPA buffer supplemented with Complete Mini Protease Inhibitor cocktail. A Pierce BCA protein assay kit was used to

determine the protein concentration of the lysates. 40 mg of protein were separated on a NuPage Novex 10%Bis-Tris gel, using SDS-

PAGE with NuPage MES SDS running buffer, followed by dry transfer to an iBlot gel transfer stacks nitrocellulose membrane with an

iBlot Dry Blotting System,whichwas then blocked for 1 hour at room temperature in Odyssey blocking buffer. Overnight incubation at

4�Cwith a primary antibody against RPS6-pS235/236 was followed by incubation with Dylight secondary goat antibody to rabbit IgG

for 1 hour at room temperature. A rabbit antibody against GAPDH was used as a loading control. For detection, fluorescence signal

was detected using an Odyssey 2.1 imaging system (Li-Cor, USA). For graphical presentation, raw images were further processed

with Adobe Photoshop version CS5.1.

IF analysis of the zebrafish pallium
For IF analysis of the zebrafish pallium, 4 dpf zebrafish larvae were fixed with 4% paraformaldehyde and 0.1 M sodium fluoride for

whole-mount immunostaining with DAPI and an antibody against RPS6-pS235/236. The whole front brains were imaged using a Z.1

Light sheet microscope, equipped with a 40x objective (NA 1.0). Images were analyzed in Fiji.

In vivo imaging of migrating neuronal progenitors from the subventricular zone (SVZ)
For analysis of cell migration in vivo, we utilized the Tg(HuC:GCaMP5G) stable transgenic zebrafish line in themitfa�/�;royorbisson�/�

genetic background (Ahrens et al., 2013) to follow the migration of newly-born HuC-positive neuronal progenitors (Kim et al., 1996)

from the subventricular zone (SVZ) toward the outer layers. Tg(HuC:GCaMP5G) zebrafish larvaewere injectedwith g3bp1MOor con-

trol MO. 24 hours post fertilization (hpf), embryos were anesthetized with 0.02% tricaine (MS-222) and embedded in 2% agarose for

imaging. The front brains were imaged using a Z.1 Light sheet microscope, equipped with a 40x objective (NA 1.0). Images were

taken with 0.8 zoom in a time-lapse mode every 5 min for 2 hours in 32 degrees (approximately 2.5 hours of zebrafish development).

Images were processed and analyzed in Fiji (version 1.53c). Each hemisphere was analyzed separately. Briefly, spatial drift was

corrected across time points, then 3D projections were generated for quantification of the number of HuC-positive cells migrating

from the SVZ to the telencephalon. The single cell tracking of movement dynamics was performed with TrackMate (Tinevez

et al., 2017).
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Non-invasive local field potential (LFP) recordings
Brain activity of 4 dpf zebrafish larvae was assessed by performing non-invasive local field potential (LFP) recordings, reading the

electrical signal from the skin of the larvae’s head (Zdebik et al., 2013). g3bp1MOor control MO injected zebrafish larvaewere treated

on 3 dpf for 24 hours with rapamycin or left untreated. A glass pipet (containing the recording electrode), filled with artificial cerebro-

spinal fluid (124 mM NaCl, 2 mM KCl, 2 mM MgSO4, 2 mM CaCl2, 1.25 mM KH2PO4, 26 mM NaHCO3 and 10 mM glucose), was

positioned on the skin above the optic tectum or the pallium using a stereomicroscope. The differential signal between the recording

electrode and the reference electrode was amplified 10,000 times by DAGAN 2400 amplifier (Minnesota, USA), band pass filtered at

0.3-300 Hz and digitized at 2 kHz via a PCI-6251 interface (National Instruments, UK) with WinEDR (John Dempster, University of

Strathclyde, UK). Recordings lasted for 10 min and were analyzed with Clampfit 10.2 software (Molecular Devices Corporation,

USA). A polyspiking discharge was scored positive when its amplitude exceeded three times the amplitude of the baseline and it

had a duration of at least 50 ms. At least n = 34 larvae for LFPs of zebrafish pallia (Figure 7L) and at least n = 20 larvae for LFPs

of zebrafish optic tecta (Figure 7N) were analyzed.

Three representative 10 minute LFP recordings are shown for control and g3bp1 MO without and with rapamycin, respectively in

Figure 7M (pallia) and Figure 7O (optic tecta).

In vivo imaging of pan-neuronal activity
The Tg(HuC:GCaMP5G) (Ahrens et al., 2013) stable zebrafish line in the mitfa�/�;royorbisson�/� genetic background was used for

pan-neuronal activity imaging. g3bp1MO or control MO injected zebrafish larvae were treated on 3 dpf for 24 hours with rapamycin

or left untreated. 4 dpf zebrafish larvae were embedded in 2% agarose for imaging and the tails were cleared of agarose to allow

movement. The front brains were imaged using lightsheet microscopy (Z.1 Lightsheet microscope, Zeiss) and 40x objective (NA

1.0) at zoom 0.8x. Images were taken in a time-lapse mode every 7 s for 3 min. Images were processed and analyzed in Fiji2 similarly

to Kedra et al. (2020). Each hemisphere was analyzed separately. Briefly, spatial drift was corrected across time points, then changes

in the fluorescence intensity were calculated using the measurement tool in Fiji and Rstudio (rstudio.com) in a semi-automated

manner. The linear model was fitted to empirical data using the LOESS regression and smoothing function in RStudio (least-squares

regression in localized subsets).

In vivo imaging of glutamatergic and GABAergic networks
Tg(dlx5a/dlx6a-EGFP) x Tg(vglut2a:loxP-RFP-loxP-GFP) zebrafish (Noble et al., 2015; Satou et al., 2012) larvae, injected with control

or g3bp1MO, were anesthetized at 4 dpf with tricaine (MS-222), immobilized in 2% low melting point agarose on a cover glass. For

imaging of the glutamatergic and GABAergic networks in the optic tectum a two-photon LSM 780 confocal microscope equipped

with an LD LCI Plan Apo 25x/0.8 objective was used. The EGFP and RFP markers were respectively excited at 488 nm and

561 nm and emission was recorded at 493 / 548 nm and 593 / 656 nm, respectively. All stacks were visualized and analyzed using

Imaris 9.1. GABAergic and glutamatergic cells were counted as 5.5 mmand 3.5 mmdiameter spheres respectively, and sorted by their

fluorescence. The threshold was adapted in order to count all cells.

Locomotor activity recordings
The locomotor behavior of 4 dpf zebrafish larvae was evaluated bymeans of an automated tracking device (ZebraboxTM). tsc2MOor

g3bp1MO and their respective control MO injected larvae were treated on 3 dpf for 24 hours with rapamycin (Figures 7W and 7X) or

ethosuximide (Figure 7Y) or left untreated. Zebrafish larvae were arrayed individually into a 24-well plate that contained 400 mL of

embryo medium per well. After an adaptation phase of 5 min in the Zebrabox, the locomotor activity was tracked for 15 min in

the dark. The total movement was expressed in ‘‘actinteg’’ units, which are defined as the sum of all image pixel changes detected

during the time of the tracking experiment.

Human Genomic Analysis
The 100,000 Genomes Project data (GEL, The National Genomics Research and Healthcare Knowledgebase v5, Genomics England.

https://doi.org/10.6084/m9.figshare.4530893.v5. 2019.) was accessed and analyzed through the Genomics England Research Envi-

ronment via https://re.extge.co.uk/ovd/. A bash script (Document S3) waswritten to identify all single nucleotide variants (SNV) within

G3BP1 at chr5:151771954-151812785 (GRCh38/hg38, Genbank: NM_198395) and G3BP2 at chr4:75642769-75673483 (GRCh38/

hg38, Genbank: NM_203505). Genomes of 64,185 participants with rare diseases andmatched family members were analyzed. Var-

iants were filtered for protein altering SNVs. Depth of coverage at variant loci was determined in probands and their available rela-

tives. Minor allele frequencies (MAFs) were assessed using GnomAD (https://gnomad.broadinstitute.org/). In silico prediction scores

predicting pathogenicity were determined using SIFT, PolyPhen, CADD and exomiser.

QUANTIFICATION AND STATISTICAL ANALYSIS

Immunoblot quantitation
Quantitation of raw images taken with a LAS-4000 camera system or FUSION FX7 with DarQ-9 camera was performed using Image-

Quant TL Version 8.1. Background subtraction was performed using the rolling ball methodwith a defined radius of 200 for all images.
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Quantitation of raw images taken with a ChemiDoc XRS+ camera system was performed using Image Lab version 5.2.1. For all

images, pixel values of a single lane were normalized to the average value of all lanes, and then normalized to the loading control

indicated in the respective immunoblot figure. Quantitation of raw images taken with an Odyssey 2.1 imaging system (Li-Cor) was

performed using Image Studio Lite Version 5.2. For images from immunoblot analysis of zebrafish samples (Figure 7B), pixel values

of a single lane were normalized to the single value of the loading control GAPDH and then to the Control MOwithin each experiment.

Protein sequence analysis
To analyze the sequence similarities between human G3BP1 (UniProt: Q13283) and human G3BP2 (UniProt: Q9UN86) and their do-

mains, or between human and zebrafish G3BP1 (UniProt: Q6P124) EMBOSS Needle (Madeira et al., 2019) with the Blosum62 matrix

was used. Visualization of sequence alignments was done using Texshade based on a ClustalW alignment of the whole protein se-

quences. The domains indicated for G3BP1 were based on Reineke and Lloyd (2015).

Phylogenetic analysis
To identify possible orthologs in other species, the human proteins G3BP1 (UniProt: Q13283), G3BP2 (UniProt: Q9UN86), TSC1 (Uni-

Prot: Q92574), TSC2 (UniProt: P49815), TBC1D7 (UniProt: Q9P0N9), RHEB (UniProt: Q15382), and MTOR (UniProt: P42345) were

used as query proteins for a blastp+ search (Camacho et al., 2009) against the NCBI non-redundant protein sequence database

(nr; version 2017-11). The e value cut-off for identified proteins was 1e-30 with a maximum of 20,000 target sequences, disabled

low-complexity filtering, using the BLOSUM62matrix, a word size of 6 and gap opening and extension costs of 11 and 1, respectively.

The results were parsed and filtered using custom Python scripts (https://github.com/MolecularBioinformatics/

Phylogenetic-analysis) and manually curated as described earlier (Bockwoldt et al., 2019).

Statistical analysis
GraphPad Prism version 7.04 or 8.03 was used for statistical analysis and statistical presentation of quantitations. p values are pre-

sented in the figures above or below the compared conditions.

Where two conditions were compared, either a paired two-tailed Student’s t test (Figures 1S, 2F, 2H, 3E, 3I, 3K, 3L, 3O–3Q, 4F, 4G,

6D, 6F, 7C, S2I, S2J, S2L, S2M, S2O, S2P, and S4B) or unpaired two-tailed Student’s t test (Figures 7F, 7I, 7Q–7S, 7U, and 7V), or an

unpaired two-tailed Mann-Whitney test (Figures 7G, 7H, 7J, 7K, and 7T) was performed. Cell size was compared using multiple un-

paired t tests (Figures 4H and S4K).

If more than two conditions were compared, a one-way ANOVA followed by a Sidak’s multiple comparisons test was applied (Fig-

ures 1D, 1E, 1G–1I, 1K–1M, 1O–1Q, 1U–1X, 2B–2D, 2J, 2M, 4B, 4D, 4I, 4L–4N, 5F, 5I, 5J, 5M, 6B, 7L, 7N, 7W–7Y, S1M–S1O, S1Q–

S1S, S1U, S1V, S2B–S2D, S2R, S2T, S2U, S2W, S2X, S4F, S4G, S4I, and S4J). In the case of immunoblot time courses more than

two conditions were compared using a two-way ANOVA (Figures S1G, S1H, S1J, S1K, S2E, and S2F).

For G3BP1 expression analysis (Figure 6G) a Kruskal-Wallis ANOVA by ranks was performed using Dell Statistica version 13. For

the analysis of relapse-free survival (Figures 6H–6K) the Kaplan-Meier Plotter was used and a log-rank test was applied.

For each experiment, the number of replicates is indicated in the figure legend with ‘‘n’’ designating the number of biological rep-

licates if not indicated otherwise. For bar graphs, the corresponding dot plots were overlaid.

For each experiment the appropriate controls were used as described above: Control KO cells for G3BP1 KO; Control KO cells for

TSC2 KO; shControl cells for shG3BP1 #1 and shG3BP1 #2; siControl transfected cells for siG3BP1, siG3BP2, siRHEB and siTSC2;

siRenilla transfected cells (Control) for siG3BP1 (Figure 4A); control MO injected zebrafish larvae for g3bp1MO; control MO injected

zebrafish larvae for tsc2 MO.
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Figure S1. G3BP1 does not alter mTORC1 activity upon arsenite stress but upon stimulation with insulin and nutrients, related to Figure 1

(A) Amino acid sequence of G3BP1. Protein domains indicated according to Reineke and Lloyd (2015) and highlighted in blue, green, brown, yellow and pink.

G3BP1 peptides identified in MTOR IPs by mass spectrometry (Schwarz et al., 2015) shown in red. In total, 20 unique peptides were identified with a sequence

coverage of 58.4%.

(B) IP against RPTOR (RPTOR#1 or #2) or mock (rat IgG). n = 3.

(C) IP against MTOR or mock (rat IgG) from rapamycin-treated cells. n = 3.

(D) IP against MTOR or mock (rat IgG) from Torin1 or MK2206treated cells. n = 3.

(E) IF analysis of G3BP1 and EIF3A in arsenite exposed cells. Scale bar, 10 mm. n = 3.

(F) Time course analysis of shG3BP1 #1 cells exposed to arsenite for up to 60 min. n = 3.

(G) Quantitation of G3BP1 in (F). Mean ± SEM.

(H) Quantitation of RPS6KB1-pT389 in (F). Data shown as in (G).

(I) Time course analysis of siG3BP1 cells exposed to arsenite for up to 60 min. n = 3.

(J) Quantitation of G3BP1 in (I). Mean ± SEM.

(K) Quantitation of RPS6KB1-pST389 in (I). Data shown as in (J).

(L) Insulin and amino acid (insulin/aa)-stimulated G3BP1 knockdown cells harboring a second shRNA sequence (shG3BP1 #2) targeting another exon than

shG3BP1 #1 (Table S1). n = 5.

(M) Quantitation of G3BP1 in (L). Shown are data points and mean ± SEM.

(N) Quantitation of RPS6KB1-pT389 in (L). Data shown as in (M).

(O) Quantitation of RPS6-pS235/236 in (L). Data shown as in (M).

(P) Insulin/aa-stimulated shG3BP1 #2. n = 4.

(Q) Quantitation of G3BP1 in (P). Shown are data points and mean ± SEM.

(R) Quantitation of RPS6KB1-pT389 in (P). Data shown as in (Q).

(S) Quantitation of RPS6-pS235/236 in (P). Data shown as in (Q).

(T) Insulin/aa-stimulated G3BP1 KO cells generatedwith a second independent guide RNA against G3BP1 (sgRNA # 2, Table S1). Dashed line indicates cutting of

immunoblot images to match the time points in (U) and (V). All time points were run on one gel. n = 3.

(U) Quantitation of G3BP1 in (T). Shown are data points and mean ± SEM.

(V) Quantitation of RPS6KB1-pT389 in (T). Data shown as in (U).
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Figure S2. G3BP1 inhibits mTORC1 in cells without SGs, related to Figure 1

(A) Insulin/aa-stimulated siG3BP1 cells. n = 6.

(B) Quantitation of G3BP1 in (A). Shown are data points and mean ± SEM.

(C) Quantitation of RPS6KB1-pT389 in (A). Data shown as in (B).

(D) Quantitation of RPS6-pS235/236 in (A). Data shown as in (B).

(E) Quantitation of G3BP1 in (G). Mean ± SEM.

(F) Quantitation of RPS6KB1-pT389 in (G). Data shown as in (E).

(G) Time course analysis of shG3BP1 #1 cells, insulin/aa-stimulated for up to 30 min. n = 3.

(H) shG3BP1 #1 cells cultured in full medium. n = 7.

(I) Quantitation of G3BP1 in (H). Shown are data points and mean ± SEM.

(J) Quantitation of RPS6KB1-pT389 in (H). Data shown as in (I).

(K) shG3BP1 #2 cells cultured in full medium. n = 4.

(L) Quantitation of G3BP1 in (K). Shown are data points and mean ± SEM.

(M) Quantitation of RPS6KB1-pT389 in (K). Data shown as in (L).

(N) Serum/aa-starved shG3BP1 #1 cells. Arrow, RPS6KB1-pT389 signal. n = 8, including re-analysis of improved contrast detections for data shown in Figures

1F–1H.

(O) Quantitation of G3BP1 in (N). Shown are data points and mean ± SEM. n = 8, including re-analysis of data shown in Figures 1F–1H.

(P) Quantitation of RPS6KB1-pT389 in (N). Data shown as in (O). n = 8, including re-analysis of improved contrast detections for data shown in Figures 1F–1H.

(Q) IF of shG3BP1 #1 cells. Cells were either serum/aa-starved and stimulated with insulin/aa for 15 min; or serum-starved and treated with arsenite for 30 min.

Overlay: white, EIF3A and G3BP1 co-localization; magenta, EIF3A; green, G3BP1; inserts, magnifications of yellow square. Scale bar, 10 mm. n = 3, except

shG3BP1 #1, arsenite [0 min], n = 2.

(R) Quantitation of data shown in (Q). Shown are data points and mean ± SEM.

(S) Immunoblot performed in parallel to IF data in (Q). Insulin/aa-stimulated shG3BP1 #1 cells. n = 3.

(T) Quantitation of G3BP1 in (S). Shown are data points and mean ± SEM.

(U) Quantitation of RPS6KB1-pT389 in (S). Data shown as in (T).

(V) Immunoblot performed in parallel to IF data in (Q). Arsenite-exposed shG3BP1 #1 cells. n = 3.

(W) Quantitation of G3BP1 in (V). Shown are data points and mean ± SEM.

(X) Quantitation of RPS6KB1-pT389 in (V). Data shown as in (W).
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Figure S3. Sequence similarity between G3BP1 and G3BP2, related to Figure 2

(A) Sequence alignment of human G3BP1 (UniProt: Q13283) and G3BP2 (UniProt: Q9UN86). Protein domains are indicated according to Reineke and Lloyd

(2015). Blue, identical residues.

(B) Sequence similarities of human G3BP1 and G3BP2. Sequence alignments done based on the domain regions defined for G3BP1 in Reineke and Lloyd (2015).

Colors correspond to the domains marked in Figure S1A.

(C) Scheme of plasmids used for BiFC.

ll
OPEN ACCESSArticle



Figure S4. G3BP1 phenocopies lysosomal TSC functions, related to Figures 3 and 4

(A) PLA of G3BP1-TSC2 in serum/aa-starved siG3BP1 cells. PLA puncta, white dots; nuclei, blue (DAPI). Scale bar, 10 mm. n = 3.

(B) Quantitation of data in (A). Shown are data points and mean ± SEM. n = 5 technical replicates.

(C) Sucrose density gradient of serum/aa-starved or insulin/aa-stimulated MCF-7 cells. n = 3.

(D) Quantitation of data in (C). Area under the curve highlighted in green (G3BP1), orange (TSC2), and gray (LAMP2), starved condition; dashed lines, stimulated

condition. Mean ± SEM.

(E) Insulin/aa-stimulated shG3BP1 #1 cells. n = 5.

(F) Quantitation of TSC2-pT1462 in (E). Shown are data points and mean ± SEM.

(G) Quantitation of AKT1-pS473 in (E). Data shown as in (F).

(H) Insulin/aa-stimulated siTSC2 cells. n = 6.

(I) Quantitation of TSC2 in (H). Shown are data points and mean ± SEM.

(J) Quantitation of RPS6KB1-pT389 in (H). Data shown as in (I).

(K) Cell size of TSC2 KO cells. Mean ± SEM. *p < 0.05. n = 3.

(L) IF of LAMP2 positioning in serum/aa-starved siG3BP1 cells. White, LAMP2; blue (Hoechst), nuclei. Scale bar, 10 mm. n = 3.
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Figure S5. Expression of BiFC constructs, related to Figure 5

(A) Expression of BiFC fusion proteins used in Figures 5E and 5F. Cells transfected with the indicated plasmids. n = 3.

(B) Expression of BiFC fusion proteins used in Figures 5H and 5I. Cells transfected with the indicated plasmids. n = 3.

(C) Expression of BiFC fusion proteins used in Figures 5J and 5K. Cells transfected with the indicated plasmids. n = 3.

(D) Expression of BiFC fusion proteins used in Figures 5L and 5M. Cells transfected with the indicated plasmids. n = 3.
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Figure S6. Background information for the zebrafish experiments, related to Figure 7

(A) Sequence alignment of human (Hs) G3BP1 (UniProt: Q13283) and zebrafish (Dr) G3bp1 (UniProt: Q6P124). Protein domains indicated according to Reineke

and Lloyd (2015). Blue, identical residues. The sequences share 67.8% identity and 77.4% similarity.

(B) Treatment scheme of the g3bp1 MO and control MO injected zebrafish larvae for the analyses at 4 dpf (96 hpf): IF analysis, non-invasive local field potential

(LFP) recordings, cell activity measurements, GABAergic and glutamatergic network analysis, locomotor tracking; treatment with rapamycin or ethosuximide at 3

dpf (72 hpf).

(C) Treatment scheme for the neuronal migration experiments with the Tg(HuC:GCaMP5G) transgenic line. Migration of HuC positive cells from the subventricular

zone (SVZ) toward outer layers was analyzed at 24 hpf.

(D) Schematic frontal view of the zebrafish front brain at 24 hpf. Green, HuC expressing cells. Magenta arrows, direction of migration from the SVZ to outer layers.

V, ventricle; OP, olfactory placodes.

(E) LFPs from larval pallia. Representative 10min recordings of non-invasive LFPs from g3bp1MOor control MO injected zebrafish larvae. Treatment as indicated

in (B). Magnification of a polyspiking event is shown for each condition. n > 34 larvae per condition.

(F) LFPs from larval optic tecta. Representative 10 min recordings of non-invasive LFPs from g3bp1 MO or control MO injected zebrafish larvae. Treatment as

indicated in (B). Magnification of a polyspiking event is shown for each condition. n > 20 larvae per condition.
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