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Abstract In practice, data often display heteroscedasticity, making quantile
regression (QR) a more appropriate methodology. Modeling the data, while
maintaining a flexible nonparametric fitting, requires smoothing over a high-
dimensional space which might not be feasible when the number of the pre-
dictor variables is large. This problem makes necessary the use of dimension
reduction techniques for conditional quantiles, which focus on extracting linear
combinations of the predictor variables without losing any information about
the conditional quantile. However, nonlinear features can achieve greater di-
mension reduction. We, therefore, present the first nonlinear extension of the
linear algorithm for estimating the central quantile subspace (CQS) using ker-
nel data. First, we describe the feature CQS within the framework of repro-
ducing kernel Hilbert space, and second, we illustrate its performance through
simulation examples and real data applications. Specifically, we emphasize on
visualizing various aspects of the data structure using the first two feature
extractors, and we highlight the ability to combine the proposed algorithm
with classification and regression linear algorithms. The results show that the
feature CQS is an effective kernel tool for performing nonlinear dimension
reduction for conditional quantiles.

Keywords Classification - Dimension reduction - Quantile Regression -
Reproducing kernel Hilbert space - Visualization

1 Introduction

In many situations, data exhibit heteroscedasticity, a characteristic of great
scientific importance which is often overlooked. Koenker and Bassett (1978)
introduced quantile regression (QR), an alternative to ordinary least squares
regression, and considered the linear model Q,(Y|x) = a, + 3] x, where YV’
denotes a univariate response, X a p-dimensional set of predictors, @, (Y |x) a
7-th conditional quantile of Y given X =x, 0 <7 < 1, and o, € R, 3, € RP.
Since then, QR has received growing interest and several authors considered
the completely flexible nonparametric estimation of the conditional quantiles;
see, e.g., Truong (1989), Chaudhuri (1991), Yu and Jones (1998), Takeuchi et
al. (2006), Kong et al. (2010), and Guerre and Sabbah (2012).

A fully nonparametric approach for estimating the conditional quantiles
can be very challenging when the set of the predictors is large, thus requir-
ing dimension reduction techniques. Linear dimension reduction techniques
for QR focus on extracting the fewest linear combinations of X that con-
tain all the information about the conditional quantile and have been ex-
tensively researched. Wu et al. (2010), Kong and Xia (2012), and Christou
and Akritas (2016) considered the single-index quantile regression (SIQR)
model, while Kong and Xia (2014) extended to a multi-index quantile re-
gression (MIQR) model. In addition, Luo et al. (2014) introduced a sufficient
dimension reduction with respect to any conditional statistical functional, e.g.,
conditional quantile, while Christou (2020) proposed an alternative algorithm
that achieves substantial performance gain.

Click here to view linked References %
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These linear dimension reduction techniques fail to find important non-
linear features. Therefore, the overall goal of this paper is to find a nonlinear
feature extractor in order to explore conditional quantiles of complex, high-
dimensional data, with nonlinear structures.

To construct a nonlinear extension of a linear algorithm, we use the so-
called ‘kernel trick’. This concept was first introduced by Aizerman et al.
(1964), although the name seems to originate in the influential paper of Scholkopf
et al. (2004). The main idea is to transform the data into a very high-dimensional
feature reproducing kernel Hilbert space (RKHS; Aronszajn 1950), and then
seek for low-dimensional projections by applying a linear algorithm. In an-
other words, linear directions in the feature space correspond to nonlinear
directions in the original data space. In this work, we extend the linear algo-
rithm of Christou (2020) by considering a nonlinear embedding of the data
into an RKHS. We demonstrate the performance of the proposed algorithm
through simulation examples and real data applications. Specifically, we em-
phasize on visualizing various aspects of the data structure using the first
two feature extractors, and we highlight the ability to combine the proposed
algorithm with classification and regression linear algorithms.

The paper is organized as follows. Section 2 gives a brief review of the 7th
central quantile subspace (CQS) and its estimation. Section 3 introduces the
kernel extension of the algorithm by mapping the data into an RKHS using a
kernel function. Section 4 presents results from several simulation examples,
while Section 5 illustrates the performance of the methodology through real
data applications. A brief discussion is given in Section 6.

2 The 7Tth central quantile subspace

A dimension reduction subspace is the column space of any matrix A such that
Y and X are conditionally independent given A TX, and the central subspace
(CS), denoted by Sy|x, is the dimension reduction subspace with the smallest
dimension. However, when the error term is heteroscedastic and the conditional
quantile of the response given the predictors is of interest, the CS cannot be
used as it can be larger and provide more directions than necessary.

Christou (2020) introduced the concept of the 7th central quantile subspace
(7-CQS), a special case of Definition 1 of Luo et al. (2014). Specifically, for a
matrix B, if

Y 1L Q-(YX)B]X, (1)

then the space spanned by the columns of B, is a 7th quantile dimension
reduction subspace for the regression of ¥ on X. The 7-CQS, denoted by
8q,(v|x), is the smallest 7th quantile dimension reduction subspace. For the
rest of the paper, we assume that the CS is spanned by the matrix A, and the
7-CQS is spanned by the matrix B..

For a fixed 7 € (0,1), Christou (2020) showed that the slope vector from
regressing Q. (Y|X) on X is contained in the linear subspace spanned by B...



O Joy b WN

If the dimension of the 7-CQS, denoted by dq_(y|x), is one, then the slope
vector will be exhaustive. However, if dg_(y|x) > 1, then the slope vector will
be inconsistent and a different method is necessary to produce more vectors
in the linear subspace spanned by B; see part (b) of Theorem 1.

Theorem 1 (Christou 2020). For a given T € (0,1), assume that Y L
Q. (Y |X)|B,] X. If the conditional expectation E(b] X|B] X) is linear in B] X
for every b, € RP (linearity condition), then

(a) B; € Sq, (vx), where

(o, Br) = al"g(mlgl E{Q.(YIATX) —a, —bTx}
(b) E{Q-(Y|U;)X} € Sq. (v|x), where U, is a measurable function of BI X,
provided that Q. (Y|U,)X is integrable.

Theorem 1 (b) suggests that if dg (y|x) > 1, then we can create more
vectors by setting 8.9 = 8% and 3, ; = E[Q-{Y|u-( TJ 1 X)}X], for j =
1,2,...,p — 1; the author used u.(t) = t.

The above procedure suggests the following estimation method. First, use a
standard dimension reduction technique to estimate A by A and form the new
predictor vector AT X. Next, use the independent and identically distributed
(iid) observations {Y;, X;}_; to estimate 3 by

(@r.B;) = arg. min, Z{QT YIATX;) - a- —b] X;}?,

where @T(YL& X;) is a nonparametric estimate of QT(Y|./1TX1-). Specifically,
take Q, (Y|ATX,) = 4,(X;), where

(ar(xi)v/s\T(X )) = arg Il’lln) Zp‘r{Yk —qr —S; AT(Xk - X )}

TSt

XK{KT(XZ_Xi)}7 @

for pr(u) = {7 —I(u < 0)}u a loss function, K(-) a kernel function, and h > 0
a bandwidth. R
Following, if dg (y|x) = 1, then stop and report 3; as the estimated basis

vector for SQ (V]X)- Otherwise, set Er,o = BT and form the vectors 3” =

ntY " 1QT(Y|ﬁTj 1 X)X, for j =1,...,p— 1, where QT(Y|ﬂT] 1X;) is
the local linear conditional quantile estimate of QT(Y|ﬁTj 1X,), ie. , Q.Y
BI]_lX ;) = ¢-(X;) from (2) but A is replaced with ,BTJ 1. Finally, form the
p x p matrix V. = (Br0,... ,BT,p_l) and choose the eigenvectors v, i, k =
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L,...,dq, (v|x), corresponding to the dg (y|x) largest eigenvalues of \AfT\AfTT
Then,

~

Br=(Mr1, 0 Virdo vix) (3)

is an estimated basis matrix for Sg_(y|x)-

3 The feature Tth central quantile subspace
3.1 Population level

As the data cloud of independent variables cannot always be characterized by
projections into a low-dimensional linear subspace, nonlinear components are
necessary. A nonlinear generalization of (1) is to replace the linear function
B! X with the nonlinear one 1, (X), and assume that

Y L Q- (Y[X)[9hr(X). (4)

Nonlinear dimension reduction can potentially achieve greater dimension re-
duction if the data are concentrated on a nonlinear low-dimensional space.

To construct a nonlinear extension of the algorithm presented in Section
2, we need to map the original data into a feature space induced by a ker-
nel function. Then, a linear algorithm in the feature space corresponds to a
nonlinear algorithm in the original space; this is called the ‘kernel-trick’.

The ‘kernel-trick’ has been considered by several authors as a method for
nonlinear generalization of existing linear algorithms. Generalizations include
kernel principal component analysis (Scholkopf et al. 1998, 1999), kernel inde-
pendent component analysis (Bach and Jordan 2002), kernel Fisher’s discrimi-
nant analysis (Mika et al. 1999; Baudat and Annouar 2000; Roth and Steinhage
2000), kernel canonical correlation analysis (Lai and Fyfe 2000; Akaho 2001;
Fukumizu et al. 2007), kernel sliced inverse regression (Wu 2008; Yeh et al.
2009; Wu et al. 2013), and kernel principal support vector machine (Li et al.
2011). However, to the best of our knowledge, there is no kernel extension
of any linear algorithm for performing dimension reduction for conditional
quantiles.

Following the ideas from Wu (2008) and Yeh et al. (2009), we map the
input space X C RP to an isometric isomorphic space Hg via the transfor-
mation I" given by X — I'(X) := K(X,+). Hk is known as the reproducing
kernel Hilbert space (RKHS) generated by K and, for a given positive-definite
kernel K, it consists of all finite kernel mixtures ZZ;I MK (X, Uy) and their
limits, where m € N, U, € RP, and A\, € R, are arbitrary. According to Yeh et
al. (2009), the reproducing kernels are assumed to be (1) symmetric and mea-
surable, (2) of trace type, and (3) for X # U, K(X,-) # K(U,) in La(X, u)
sense for Lebesgue measure p. For the purpose of this paper, we will be writ-
ing Hg,- to indicate that the constants A\, can depend on the quantile level 7.
Therefore, A, are specific to the 7th quantile, but we omit the subscript 7 for
notational convenience.
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For 7 € (0,1), let H. = {h1,r,...,hq, -} be a collection of elements in
Hg -, and let H, be the linear subspace spanned by elements in H,. The
analogous of model (1) in the feature space is

YL QT(Y‘X)th,T(X)v LR th,T(X)}7

where hy - (X) = (he,r(-), K(X, )35,k =1,...,d;. Then, H, is called the
feature 7th quantile dimension reduction subspace. The smallest feature 7th
quantile dimension reduction subspace is called the feature 7-CQS. For the re-
maining of this paper, we assume that the feature 7-CQS exists and is spanned
by H,. We call hy, ; the feature 7-CQS directions and hy -(X) the feature 7-
CQS predictors, for k =1,...,d,.

The linearity condition (LD), defined in Theorem 1, can be stated in the
framework of Hg , as follows. For a given 7, the conditional expectation
E{f-(X)|h1,+(X),..., hq. -(X)} is linear in {h1 -(X),...,hq, -(X)}, for any
Jr € Hk -, where [(X) = (f-(), K(X, '))HK,T'

Remark 1 Although the LD in Hg , seems more restrictive than the LD in
the classical setting, this is not the case. In fact, kernel functions are flexible
and can therefore adequately approximate any smooth function. This stems
from Euclidean space linearity being more strict than RKHS linearity; see
Wu (2008), Yeh et al. (2009), and Wu et al. (2013) for comments and further
details.

3.2 Feature data

The feature space K (X, -) and the feature 7-CQS directions hy -, k = 1,...,d;,
are in high- or infinite-dimensional space. For practical simplicity, we will use
a finite basis and revise Theorem 1 accordingly. For data {Y;, X;}7,, we form
the feature data K(X;,-) by considering the finite basis set {K (-, X;)}" ;.
Then, the feature data become {K(X;, X;)}I';,_; and the feature 7-CQS pre-
dictors can be expressed as

hier(X) = 0h  K(X,Xi), af,,...,af8, €R,
i=1
fork=1,...,d,.
Let T = (K(X,X4),...,K(X,X,))" and oy, = (oz}%T7 . ,a};,T)T. The
LD can be restated as:

E{a Tl T,..., 0 T} (5)
is linear in {aITT, ce a;T)TT} for every a; € R™. Then, Theorem 1 becomes:

Theorem 2 For a given 7 € (0,1), assume that Y L Q- (Y|X){e,T,...,
a;ﬁTT}, i.e., the feature T-CQS is spanned by {aITT, .. .,agﬂTT}. If the
LD, stated in (5), holds then
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a) ¢ € span{a] .T,...,a] _T}, where
T 1,7 d,,T

(32:¢) = arg min B{Q(Y|TTT) — ¢, — 2] T)?

and span(T") is the feature CS; see Remark 2.
(b) IfUs is a measurable function of {o] ;'T, ... ey T}, then E{Q,(Y|U,)T}
€ Span{ole,TT7 .. ,adTﬁTT}, provided that Q- (Y|U.)T is integrable.

Proof The proof of Theorem 2 follows directly from Christou (2020). We out-
line here the basic steps.

(a) Let R(cr,z,) = E{QT(Y|FTT) —Cr — ZIT}2 and A, = (ou,r,..., Q4. 1)
the n x d, matrix. Using similar steps as those in Christou (2020), we have

R(cr,2,) = B[E{Q, (YT T) — ¢; — 2 TY?|A] T]]
BE{Q-(YT'T) — ¢, — 2] T|A] T})?
E{Q-(Y|T) — ¢, — z] E(T|A] T)}?
E{Q-(Y|T) — ¢; — 2 P{(Zrr) T T}

= R(CTa P:(ETT)ZT)a

>

where P*(Zpr) = A (Al Spr A, ) A Spp and Sy is the covariance
matrix of T.
(b) Using similar steps as those in Christou (2020), we have

B{Q, (Y|U,)T} = E[E{Q,(Y|U)TIAI T}] = E{Q, (Y|U,) E(T|AIT)}
= E{Q’r(Y‘U’F)P:(ETT)TT} = Pi(ETT)TE{QT(Y|UT)T}

Remark 2 According to Definition 1 of Yeh et al. (2009), if Y 1L X|{h1(X),...,
ha(X)}, where hy(X) = (hg (), K(X, ))xx, K =1,...,d, then the linear sub-
space spanned by {hq,...,hs} is called the feature effective dimension reduc-
tion (e.d.r) subspace of Hg. The smallest feature e.d.r subspace is called the
feature CS. According to Wu (2008) and Yeh et al. (2009), we can estimate
the feature e.d.r predictors hi(X), k = 1,...,d, by applying SIR (Li 1991) on
the feature data. This is called the kernel SIR (KSIR).

Remark 3 The kernel data {K(X;,X;)}}';_; consist of n x n observations,
a dimension that can pose numerical difficulties especially when n is large.
Therefore, a subset {X;}?, of size n’ < n can be used to form the data
{K(X;,X;)}nxn; we will call this the reduced kernel data. For other ways to
deal with numerical instabilities see Yeh et al. (2009) and Wu et al. (2013).

3.3 Sample level

Let {Y;, X;}i, be iid observations. Form the kernel matrix { K (X;, X;)}7,;_,
and define the new predictors T; = (K (X;,X;),...,K(X;,X,,))". Apply the
algorithm of Christou (2020) to the data {Y;, T;}? ;. That is:
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1. Use KSIR to estimate the n x d basis matrix I' of the feature CS, denoted
by T, and form the new feature e.d.r predictors I'"T;, i = 1,...,n. This
will be performed by applying SIR on the data {Y;, T;}7 ;; see Wu (2008)
and Yeh et al. (2009).

2. For each i = 1,...,n, use the local linear conditional quantile estimation
method of Guerre and Sabbah (2012) to estimate Q. (Y|T'TT;). Specifi-
cally, take Q\T(Y|fTTi) = ¢ (T;), where ¢, (T;) is given by (2), except we
replace A by T and X, by T;.

3. Take {; to be

(3r,¢r) = arg min Z{QT YIETT) — ¢, — 2] T;)%

crizr) “

4. If d; = 1, stop and report C: as the estimated basis vector for the feature
7-CQS. Otherwise, move to Step 5.
5. Set CT 0 — C'r
Given j, for j =1,. — 1,
(a) form the pl"edlCtOI‘b CT Ty, i« = 1,...,n, and use the local linear
conditional quantile estlmatlon method of Guerre and Sabbah (2012) to
estimate QT(YKt':j_lT ). Specifically, take QT(Y|CT] 1Ty) = - (Ty),

where g, (T;) is given in (2), except that we replace A by ¢ j—1 and

o

X; Ey T;. R
(b) let &y =n"t Y0, Q- (YIC],  To)T,.
7. Let W be the n x n matrix with column vectors a,j, j=0,1,...,n—1,
that is, WT = (CTO, .. .,ET_,n,l), and choose the eigenvectors W, , k =

1,...,d,, corresponding to the d, largest eigenvalues of WT\/A\TI . Then,

~

H, = (w‘r,lw"aw‘r,dr) (6)
is an estimated basis matrix for the feature 7-CQS.

This algorithm gives an estimated basis matrix for the feature 7-CQS. We
can then form the new feature 7-CQS predictors {HTT }7 , and use existing
nonparametric QR techniques to estimate the conditional quantile function.

4 Simulation Studies
4.1 Computational Remarks

In this section, we demonstrate the finite sample performance of the proposed
feature 7-CQS and compare it with that of the 7-CQS of Christou (2020). For
the simulations, several parameters and measurements need to be specified.

Kernel choice. ‘The choice of kernel type is often not crucial as long as the
chosen kernel consistutes suitable building blocks for the underlying functional
class’ (Yeh et al. 2009, p. 1600). In this work, we employ the commonly used
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Gaussian kernel K (x,u) = exp{— ||x — u||*}, where v needs to be specified.
Although the optimal choice of v has been investigated, the parameter is gen-
erally domain-specific (Duan et al. 2003; Keerthi and Lin 2003). Therefore, we
investigate the choice of v for all the simulation examples considered in this
work (see Example 1 for details); a v of 0.01 is concluded as the best choice
for all models considered in this section.

Data structure and kernel data. Training and test sets are generated
for all simulation examples. Specifically, unless otherwise stated, the sample
size for the training set is chosen to be n; = 600. An independent test set
of size nie = 1000 is also generated. The kernel data is formed by applying
the Gaussian kernel with v = 0.01 on the original data. To avoid numerical
instabilities, a random subset of 10% from the training set is chosen and the
reduced kernel data is formed, resulting in n; x n’ for the training set and in
ng. X n' for the test set, where n’ = 0.1n,.

Structural dimension. We assume that the true structural dimensions of
the feature 7-CQS and of the 7-CQS of Christou (2020) are known for Exam-
ples 1-4. However, Example 5 demonstrates the performance of the modified
BIC-type criterion (Zhu et al. 2010) for estimating d, for the feature 7-CQS.
Specifically, d, is estimated by arg maxi<k<n’ Gpn,(k), where

ko N2
Gnt(k):ntz:l/lz)\\_cnt{k(k—"_l)}7 (7)
Y A 2
where /)\\1 > > :\\n/ are the eigenvalues of the matrix V/\\ZTWTT ,and Cp, /ny —
0, Cp, — 00 as ny — 0o.
Evaluation. To evaluate the performance of the feature 7-CQS we use the dis-
tance correlation between H T and 1, (X), denoted by dCor{H| T, (X)},
where H, and 1, (X) are defined in (6) and (4), respectively. This is calculated
using the function dcor in the R package energy. To compare the performance
of the proposed methodology with that of the 7-CQS of Christou (2020)
calculate the distance correlation between BTX and B! X, where B and
B. are defined in (3) and (1), respectively. To avoid overﬁttlng, the distance
correlations are evaluated over the independent test set.
Setting. The choice of the models considered in Section 4.2 follows from Wang
et al. (2018). The quantiles under consideration are 7 = 0.1,0.25,0.5,0.75,0.9,
and the results are based on N = 100 iterations.

4.2 Simulation Results

Example 1. To provide reasoning as to how the behavior of the feature 7-CQS
directions are affected with the scale parameter ~y, we perform an experiment
using «v from 0.01 to 0.91, with increments of 0.1. The data are generated
according to

Model I: 'V = 11(X) +0.2e, 1(X) = X1/{0.5 + (X2 + 1.5)?},
Model IT: Y = 41 (X) + 0.2¢, 91(X) = sin(X;) + sin(Xy),



O Joy b WN

where X = (X1,..., X10)" and the error ¢ are generated according to a stan-
dard normal distribution. Figure 1 demonstrates the mean, over 100 iterations,
distance correlation for the test set for the five different quantile levels. We
observe that the mean distance correlation decreases with increasing -, indi-
cating that a smaller -y yields better performance. Note that, the same pattern
was observed for the rest of the models considered in this section. Therefore,
a «y of 0.01 was used for the remaining of the examples.

Model T Model 1T

0.7
0.9

0.6

0.7
Il
%
4

0.5
7

Distance Correlation
0.4 0.5
| |
/",
o o
Distance Correlation
0.6
| |
7
/
7
o
S

“
S
/s

0.2
0.2

Fig. 1 Mean distance correlation against the scale parameter ~ for 7 =
0.1,0.25,0.5,0.75,0.9, for Example 1. A Gaussian kernel is used

Example 2. We now investigate the performance of the proposed algorithm,
described in Section 3.3, for different choices of n; and p. The data are gen-
erated according to Model II, where X = (X3, ... ,Xp)T and the error € are
generated according to a standard normal distribution. The sample size for
the training set is given by n; = 200,400, or 600, and the number of predic-
tors is p = 10, 20, or 40. Table 1 reports the mean and standard deviation of
the distance correlation for the test set. First, as expected, we observe that
the performance of the proposed method is robust to the specific quantile 7.
Moreover, we note that the distance correlation decreases with p and increases
with n. However, the relationship between distance correlation and n is not
always clear. The reason is that the kernel data has dimension n; x n’, where
n’ = 0.1n;, and therefore, the number of columns of the feature data changes
with the sample size.

Example 3. This example demonstrates the performance of the proposed
algorithm for different number of feature 7-CQS directions used. The data are
generated according to the heteroscedastic model

Model IIT: 'Y = o1 (X) + ¢2(X)e,
wl(X) = exp(X1 =+ XQ) — 105, ¢2(X) = exp(Xg)/5,
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Table 1 Mean (and standard deviation)
0.1,0.25,0.5,0.75,0.9, for Example 2. A Gaussian kernel with v = 0.01 is used.

of the distance correlation for = =

ne  p | 0.1 0.25 0.5 0.75 0.9
200 10 | 0.876 (0.026) 0.886 (0.024) 0.889 (0.021) 0.885 (0.025)  0.875 (0.030)
20 | 0.789 (0.070)  0.798 (0.067)  0.803 (0.066) 0.796 (0.064)  0.786 (0.064)
40 | 0.472 (0.119) 0.488 (0.116)  0.496 (0.112)  0.489 (0.119)  0.468 (0.129)
400 10 | 0.855 (0.027) 0.865 (0.023)  0.869 (0.022) 0.865 (0.025) 0.853 (0.030)
20 | 0.854 (0.031) 0.866 (0.026)  0.870 (0.023) 0.864 (0.025) 0.847 (0.031)
40 | 0.721 (0.053)  0.733 (0.051)  0.738 (0.046)  0.731 (0.050)  0.721 (0.053)
600 10 | 0.836 (0.028) 0.850 (0.026) 0.852 (0.023)  0.848 (0.025) 0.835 (0.025)
20 | 0.835 (0.024)  0.851(0.021)  0.856 (0.019)  0.850 (0.023)  0.835 (0.033)
40 | 0.799 (0.031) 0.813 (0.029) 0.819 (0.029) 0.811 (0.032) 0.794 (0.038)
where X = (X1,..., X10)" and the error ¢ are generated according to a stan-

dard normal distribution. Figure 2 demonstrates the mean distance correlation
for the test set and suggests that there are two feature 7-CQS directions. This
observation agrees with the model.

Distance Correlation
0.65 0.70 0.75
Il Il

0.60
Il

0.55
|

—— 0.1

- 075

0.25

09

S
oy,
RGN
o e
~ o
‘0:\‘0
o
T T T T T
2 4 6 8 10

Number of feature CQS directions

Fig. 2 Mean distance correlation against the dimensionality from one to ten for v =

0.1,0.25,0.5,0.75, 0.9, for Example 3. A Gaussian kernel with v = 0.01 is used

Example 4. We compare the performance of the feature 7-CQS with that of
the 7-CQS of Christou (2020). The data are generated according to Models
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II, III, and the heteroscedastic Models IV and V as follows:

Model IV: Y = ¢1(X) + 92(X)e, 1(X) = X7 + X3, 1(X) =sin(X2)/2,
Model V: Y =1 (X)e, 11(X) = (X1 + X2)?,

where X = (X1,..., X10)" and the error ¢ are generated according to a stan-
dard normal distribution. Table 2 reports the mean and standard deviation of
the distance correlation for the test set of the feature 7-CQS and the 7-CQS
of Christou (2020). We observe that the feature 7-CQS reports higher mean
distance correlations, demonstrating that the proposed methodology is able to
better capture the nonlinear data structure.

For illustration purposes, we also include an example where the subspace
spanned by the feature 7-CQS is identical to that spanned by the 7-CQS of
Christou (2020). The data are generated according to

Model VI: Y:1/11(X)+€7 ¢1(X):3X1 <|>AX27

where the setup for X and ¢ follows as before. The results are also included in
Table 2, where we observe that, as expected, both methods have comparable
performance with 7-CQS of Christou (2020) perform better by a small margin.

Table 2 Mean (and standard deviation) of the distance correlation for the feature 7-CQS
and for the 7-CQS of Christou (2020) for 7 = 0.1,0.25,0.5,0.75,0.9, for Example 4. A
Gaussian kernel with v = 0.01 is used.

M  7-CQS | 0.1 0.25 0.5 0.75 0.9

II  Feature | 0.834 (0.033) 0.844 (0.028) 0.851 (0.024) 0.845 (0.026)  0.834 (0.030)
Linear | 0.727 (0.046)  0.729 (0.049)  0.729 (0.050)  0.730 (0.050)  0.727 (0.043)

I Feature | 0.750 (0.037) 0.748 (0.038) 0.748 (0.041) 0.737 (0.039)  0.717 (0.039)
Linear | 0.719 (0.042)  0.720 (0.038)  0.720 (0.039)  0.718 (0.042)  0.714 (0.050)

IV Feature | 0.778 (0.038) 0.782 (0.031) 0.770 (0.028) 0.752 (0.028) 0.736 (0.033)
Linear | 0.632 (0.079)  0.518 (0.143)  0.465 (0.138)  0.530 (0.137)  0.588 (0.126)

V  Feature | 0.492 (0.167) 0.509 (0.187) 0.446 (0.171) 0.455 (0.152)  0.483 (0.174)
Linear | 0.254 (0.188)  0.249 (0.185)  0.226 (0.172)  0.227 (0.160)  0.237 (0.188)

VI Feature | 0.974 (0.009)  0.980 (0.006)  0.981 (0.006)  0.979 (0.006)  0.974 (0.008)
Linear | 0.998 (0.001) 0.998 (0.001) 0.998 (0.001) 0.998 (0.001)  0.998 (0.001)

To further comment on the performance of the proposed methodology, we
consider methods that estimate the feature CS. For that reason we use KSIR
of Wu (2008) and kernel principal support vector machine (KPSVM) of Li et
al. (2011) as comparison methods. We repeat Models II - VI and calculate the
distance correlation of the feature CS estimated by the two methods. How-
ever, for a more direct and fair comparison between the distance correlations
of the feature 7-CQS and that of the feature CS, we only report the results
for Models IT and VI, which include model situations where the two subspaces
are identical. Table 3 reports the mean and standard deviation of the distance
correlations of the feature CS estimated by KSIR and KPSVM, respectively.
Comparing the numbers with those of Table 2 we observe that KSIR performs
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better than the proposed methodology by a small margin for both models,
while KPSVM performs the best for Model IT and has a comparable perfor-
mance with the proposed methodology for Model VI.

Table 3 Mean (and standard deviation) of the distance correlation for the feature CS
estimated by KSIR of Wu (2008) and KPSVM of Li et al. (2011) for Example 4.

M ‘ KSIR KPSVM

II
VI

0.919 (0.009)  0.942 (0.008)
0.989 (0.002)  0.975 (0.003)

Example 5. In this example we evaluate the performance of the modified
BIC-type criterion, defined in (7). The data are generated according to Model
V, and the error-only models

Model VII: Y =¢1(X)e, 1(X) = (X7 + X3),
Model VIIL: Y = ¢ (X)e, 1(X) = (X; + X3),

where X = (X1,...,X10)" and the error ¢ are generated according to a stan-
dard normal distribution. The unknown structural dimension of the feature
7-CQS, d, is estimated using the modified BIC-type criterion. Table 4 reports
the number of times, over the 100 iterations, the method correctly estimates
the true structural dimension. We can see that all numbers are close to 100,
indicating good performance of the BIC-type criterion.

Table 4 Number of times, over 100 iterations, the modified BIC-type criterion correctly
estimates the true structural dimension d, for 7 = 0.1,0.25,0.5,0.75, 0.9, for Example 5. A
Gaussian kernel with v = 0.01 is used.

Model | 0.1 025 0.5 075 0.9

\% 94 88 93 89 97
VII 92 86 88 91 94
VIII 90 83 95 86 93

Example 6. Finally, we provide some insights on the computational time of
the proposed methodology. We expect that the feature 7-CQS will be compu-
tationally more expensive as it requires the calculation of the kernel data and
it applies the algorithm in the higher-dimensional kernel n x n’ data. For this
example, we follow the same setup as in the previous examples and simulate
data from Models I - VIII. However, to save space, and since the results are
similar, we only report the computation time for Models I - ITI. The time (in
seconds) for calculating the extracted directions over 100 simulation runs is
computed, and the average time is reported in Table 5. We observe that, on
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average, the 7-CQS of Christou (2020) takes between 5 and 7 seconds to run,
while the feature 7-CQS takes between 31 and 37 seconds. The runs were car-
ried out on a Dell Poweredge 820 with 256 GB of memory, Intel(R) Xeon(R)
CPU E5-4620, and running Ubuntu 18.04 and R version 3.6.0.

Table 5 Average computation time (in seconds) for estimating the feature 7-CQS and the
7-CQS of Christou (2020) directions for 7 = 0.1, 0.25,0.5,0.75, 0.9, for Example 6.

Model 7-CQS ‘ 0.1 0.25 0.5 0.75 0.9

1 Feature 34.87 33.32 32.77 31.42 30.64
Linear 6.15 6.57 6.35 5.71 5.47
11 Feature | 36.84 33.88 33.85 33.36 32.30

Linear 6.66 6.89 6.76 5.98 5.69
II1 Feature | 34.42 32.71 32.41  32.55  32.33
Linear 6.48 6.52 6.64 6.55 6.18

5 Real Data Analysis
5.1 Data Sets

We utilize several real-world datasets to apply our proposed methodology by
focusing on data visualization, classification, and regression. Below is a brief
description of each data set considered.

The Ionosphere data set consists of 351 observations on 35 variables and
contains information on radar returns collected by the Space Physics Group
of the Johns Hopkins University Applied Physics Laboratory (Sigillito et al.
1989). The dependent variable of interest indicates ‘good’ and ‘bad’ radar
returns, and the other 34 variables describe the 17 discrete values of the real
and imaginary parts of an auto-correlation function. One attribute consisting
of only 0 values was excluded from the data set.

The Waveform data set consists of 5000 observations on 22 variables. The
dependent variable of interest is the class of waves (3 classes) and the other 21
variables are combinations of the waveforms with noise added. Since this data
set will be used for visualization purposes, we follow Wu (2008)’s suggestion
and consider a sample of 600 observations. This will provide a more readable
plot.

The Wine data set consists of 178 observations on 14 variables and is the
result of a chemical analysis of 3 Italian wines from the same region. The
dependent variable of interest is the type of wine (3 classes) and the other
13 variables are different elements of a wine, such as alcohol, flavanoids, color
intensity, etc.

The Breast Cancer data set consists of 682 observations on 10 variables.
The dependent variable of interest indicates either a benign or malignant di-
agnosis and the other 9 variables describe characteristics of the cell.
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The Prostate data set consists of 97 observations on 9 variables. The depen-
dent variable of interest is the seminal vesicle invasion (SVI), which is defined
as the presence of prostate cancer, and the other 8 variables are clinical mea-
sures, such as prostate weight and Gleason score.

The Auto MPG data set consists of 392 observations on 8 variables. The
dependent variable of interest is mpg, the city-cycle fuel consumption in miles
per gallon, and the other 7 variables describe characteristics of the car, such
as horsepower and weight.

The Boston Housing data set consists of 506 observations on 14 variables.
The dependent variable of interest is medv, the median value of owner-occupied
homes in $1000s and the other 13 variables are statistical measurements on the
506 census tracts in suburban Boston from the 1970 census. The Charles River
dummy variable and the index of accessibility to radial highways are excluded
from the analysis. Moreover, based on previous suggestions, e.g., Opsomer
and Ruppert (1998) and Wu et al. (2010), the logarithmic transformation of
TAX and LSTAT is taken. The data were originally published by Harrison and
Rubinfeld (1978).

The Machine CPU data set consists of 209 observations on 8 variables. The
dependent variable of interest is estperf, the estimated performance of com-
puter CPUs, and the other 7 variables are measurements on the machine, e.g.,
the minimum and maximum main memory and the minimum and maximum
number of channels. The data were also considered by previous investigators,
e.g., Takeuchi et al. (2006).

Refer to the UCI Machine Learning Repository (http://archive.ics.uci.edu/
ml/datasets.html) for the Ionosphere, Waveform, Wine, Breast Cancer, and
Auto MPG data sets. The Prostate data set can be found in the lasso2 library
in R, while Boston Housing and Machine CPU data sets can be found in the
MASS library in R.

Tables 6, 7, 8 show a summary of characteristics of the datasets considered
for visualization, classification, and regression, respectively. The R.S. column
reports the proportion of stratified random subset for reduced kernel data,
and the v column reports the choice of the scale parameter for the Gaussian
kernel. The choice of these two quantities is based on previous investigations,
i.e., Wu (2008) and Yeh et al. (2009). According to Yeh et al. (2009), ‘a 10%
reduced set is often enough for median-sized data. For smaller sized data sets,
one may increase the reduction ratio.’

Table 6 Characteristics of the data sets for visualization.

Data Set ‘ Classes  Training Test  Attributes R.S. «

Size Size
Tonosphere 2 234 117 33 0.2 0.05
Waveform 3 200 400 21 0.2 0.05
Wine 3 59 119 13 0.3 0.05
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Table 7 Characteristics of the data sets for classification.

Data Set ‘ Classes  Size  Attributes R.S. ¥
Breast Cancer 2 682 9 0.3 0.05
Prostate 2 97 8 0.3 0.1

Table 8 Characteristics of the data sets for regression.

Data Set ‘ Size  Attributes R.S. o
Auto MPG | 392 7 0.1 0.05
Housing 506 11 0.1 0.05
CPUs 209 7 0.1 0.001

5.2 Data Visualization

The purpose of this application is to show how the main data structure is
captured by a low-dimensional subspace. Specifically, we use a training set to
extract the linear and feature 7-CQS directions and then plot the first two
directions using the test set. Figure 3 shows that the feature 7-CQS has a
superior performance over the 7-CQS of Christou (2020) with respect to dis-
criminative and visualization purposes. Observe that, the plots for Ionosphere
and Wine demonstrate situations where the data are visually separable in the
two-dimensional subspace provided by both methods. However, feature 7-CQS
achieves patterns that are most distinctly separated. This is especially evident
in the Waveform plots, where, although there is a great amount of overlapping
for the 7-CQS of Christou (2020), the data form more distinct clusters for the
feature 7-CQS.

5.3 Classification

When using the proposed methodology for classification purposes we first ex-
tract the linear and feature 7-CQS directions. We then use them to run a
learning algorithm which will be computationally less expensive on the low-
dimensional subspace. We use the training set to extract the linear and fea-
ture 7-CQS and apply the learning algorithm, and the test set to evaluate the
performance using the correct classification accuracy. The learning algorithm
used here is the group lasso for binary classification by Hashem et al. (2016).
Specifically, Hashem et al. (2016) assumed a linear QR model and estimated
the regression coefficients using a Bayesian Gibbs sampling procedure, where
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Y is a binary response variable. Following, as the main interest consists of
predicting Y for a specific set of realizations x, the classification is based on
estimating P(Y = 1|x). The estimation of this probability is performed us-
ing the estimated regression coefficients from the binary QR model above; see
Section 4 from Hashem et al. (2016) for more details. However, Kordas (2006)
suggested estimating P(Y = 1]x) by averaging over different quantile levels.
We follow the suggestion and average over 7 = 0.1,0.25,0.5,0.75, and 0.9. Fi-
nally, for a threshold ¢, a new object x is classified to class 1 if P(Y = 1]x) > t.
We use t = 0.5 for equal misclassification costs (Hashem et al. 2016).

We use a training set to fit a binary linear QR model and obtain the
estimated regression coefficients for the different quantile levels, and a test set
to classify the response. We then calculate the correct classification accuracy.
We use a 10-fold cross validation for the training and test sets and report the
average classification accuracy over the 10 replications of the 10-fold partition.
The number of the linear and feature 7-CQS directions is estimated using the
modified BIC-type criterion defined in (7).

Table 9 reports the mean and standard deviation of the correct classifica-
tion accuracy, over the 10 replications of the 10-fold partition, for the different
data sets. For comparison purposes, we also report the average classification
accuracy of the group lasso binary classification algorithm without performing
dimension reduction, i.e., with the original predictor variables. For the Breast
Cancer data set, we observe that the feature 7-CQS has the higher correct
classification proportion. For the Prostate data set, we observe that the per-
formance of the proposed method is not much different from the others, but
never fall below.

Table 9 Mean (and standard deviation), over 10 replications, of the classification accuracy
for the group lasso binary classification without dimension reduction, and with the feature
7-CQS directions and the 7-CQS directions of Christou (2020).

Data Set No dimension reduction  Linear 7-CQS  Feature 7-CQS
Breast Cancer 0.820 (0.048) 0.856 (0.082) 0.927 (0.043)
Prostate 0.806 (0.147) 0.804 (0.156) 0.807 (0.155)

5.4 Regression

We now evaluate the estimation of the 7th conditional quantile using the
low-dimensional linear and feature 7-CQS directions. Specifically, we use the
training set to extract the linear directions B and the feature directions HT,
and to form the new sufficient predictors B Xirain and H Tqin. Follow-
ing, we fit linear QR models using the sufﬁment predictors (1.e. Q-Y|x) =
Qg + aITETTXtmm and Q,(Y|x) = ao,r + aITIA{TTTtmm) to obtain @y,
and o ,. We then estimate the conditional quantiles on the test set (i.e.
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ao,r + &ITBIXtest and Qo + a{THITm) and evaluate the performance
using

S 0 (Yi — Qo — 61, BT Xpest)
Z?:l Pr (Yz — YO)

where Y is the 7th conditional quantile estimate for the only-intercept model
(Koenker and Machado 1999). Similarly, we calculate R?(7) using @, and

R*(r)=1-

)

&ITITIITteSt. We use a 10-fold cross validation for the training and test sets
and report the average R?(7) over 10 replications. Note that we also estimated
the conditional quantiles using nonparametric techniques, but the degree by
which feature 7-CQS outperforms the 7-CQS of Christou (2020) was the same.
The number of the linear and feature 7-CQS directions is estimated using the
modified BIC-type criterion, defined in (7). We report the results for 7 =
0.1,0.25,0.5,0.75, and 0.9.

Table 10 presents the average R?(7) for the different data sets. The superior
performance of the feature 7-CQS is apparent.

Table 10 R2(7) for feature 7-CQS and 7-CQS of Christou (2020) for the regression data
sets.

Data Set ~ Method | 0.1 0.25 0.5 0.75 0.9

Auto MPG  Feature | 0.587 0.621 0.656 0.646 0.593
Linear 0.493 0.550 0.598 0.597 0.579

Housing Feature | 0.587 0.583 0.622 0.661 0.679
Linear 0.515 0.485 0.472 0.499 0.550

CPUs Feature | 0.690 0.732 0.798 0.867 0.884
Linear 0.423 0.516 0.674 0.793 0.854

6 Discussion

In this work, we presented the first nonlinear extension of a linear algorithm
for performing dimension reduction for conditional quantiles. The method uti-
lized the so-called ‘kernel-trick’ which allows for nonlinear extension of existing
linear algorithms. Simulation results and real data applications demonstrated
the performance of the proposed methodology and showed the ability of non-
linear dimension reduction techniques to better explore conditional quantiles
of complex high-dimensional data. Moreover, the feature 7-CQS demonstrated
data visualization capabilities, promising classification rates, and accurate re-
gression estimates.
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Fig. 3 The first two extracted directions of the Ionosphere, Waveform, and Wine data
sets. For each data set, the first row represents the first two feature T-CQS directions and
the second row represents the first two 7-CQS directions of Christou (2020). The different
colors represent the different classes of the data set




