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Abstract— We present a framework for planning collision-
free paths online for autonomous underwater vehicles (AUVs) in
unknown environments. It is composed of three main modules
(mapping, planning and mission handler) that incrementally
explore the environment while solving start-to-goal queries. We
use an octree-based representation of the environment and we
extend the optimal rapidly-exploring random tree (RRT*) using
concepts of anytime algorithms and lazy collision evaluation,
thus including the capability to replan paths according to
nearby obstacles perceived during the execution of the mission.
To validate our approach, we plan paths for the SPARUS-
II AUV, a torpedo-shaped vehicle performing autonomous
missions in a 2-dimensional workspace. We demonstrate its
feasibility with the SPARUS-II AUV in both simulation and
real-world in-water trials.

I. INTRODUCTION

Technological developments and trends in sensors, pro-
cessors and actuators for autonomous underwater vehicles
(AUVs) have fostered new potential applications, especially
those devoted to imaging and inspecting different kinds of
structures such as in-water ship hulls [1], complex structures
on the sea floor [2] or confined natural structures (e.g.,
underwater caves) [3]. In these scenarios, AUVs must operate
in unknown, and potentially cluttered and dynamic environ-
ments, and therefore are more exposed to collisions. Further-
more, drift effects on the position estimated by navigation
systems affect AUVs conducting autonomous missions in an
underwater milieu. Dealing with such constraints requires a
path planner with online capabilities that contributes to over-
come global position inaccuracy, especially when navigating
in close proximity to nearby obstacles.

Little research has addressed motion planning for AUVs,
especially for the case of online motion planning in unknown
environments. Petillot ef al. [4] presented an initial approach
for online obstacle avoidance and path planning for underwa-
ter vehicles, by using a real-world dataset of acoustic images
obtained by a remotely operated vehicle (ROV) equipped
with multi-beam forward looking sonar. They demonstrated
the validity of their framework by guiding a simulated
model of a ROV based on dataset information. However,
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Fig. 1: SPARUS-IIL, a torpedo-shaped and non-holonomic
AUV used to validate our approach for planning collision-
free paths online in an unnown environment.

online mapping and planning capacity was not proven. Maki
et al. [5] proposed an online path planning method that
uses landmarks to guide the vehicle, though it does not
permit replanning and results were obtained in a controlled
environment (i.e., in a water tank).

Aiming to cope with the requirements of the aforemen-
tioned scenarios, this paper presents a framework for solving
start-to-goal queries in unknown environments online for
AUVs. The framework is composed of three main modules:
1) a mapping module that incrementally builds an occupancy
map of the environment using on-board perception sensors;
2) a planning module that generates collision-free paths
online; and 3) a mission handler module that works as a high-
level coordinator of the planner and the AUV controllers.

The main contributions of this paper are 1) the combina-
tion of ideas from lazy collision evaluation [6] and anytime
path planning algorithms [7], [8], [9] to extend the RRT*
method [10] for planning collision-free paths online over
an octree-based and incrementally built representation of
the environment, and 2) the experimental evaluation of the
resulting planning framework using the SPARUS-II AUV in
a real-world setting. Results demonstrate the suitability of
our approach for the aforementioned applications.

II. FRAMEWORK FOR PATH PLANNING
ONLINE FOR AUVs

This section details our approach to solve start-to-goal
queries for an AUV in an unknown environment. Figure 2
presents the proposed framework with its three main mod-
ules, and indicates its inputs and outputs.

A. Mission Handler

The mission handler controls the general flow of the
proposed path planning framework. To ensure that the vehicle
is prepared for solving and conducting a task, this module
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Fig. 2: Framework for planning online and its main modules.

communicates with other vehicle’s functional modules and
verifies that navigation data is being received, perception
sensors are providing valid data and vehicle’s controllers
are not conducting any low-level safety maneuver. When the
mission has started, a bidirectional communication with the
planning module is established. The mission handler requests
waypoints, when required, and receives and adapts them for
the vehicle’s low-level controller. Additionally, the planning
module can notify the mission handler to cancel ongoing
waypoint requests.

B. Mapping

The mapping module incrementally builds a representation
of the environment using information received from differ-
ent perception sensors, such as multibeam or mechanically
scanned profiling sonars, echosounders, etc. Such sensors
provide range information about nearby obstacles and, com-
bined with the vehicle navigation (position and orientation),
defines the free and occupied space with respect an inertial
coordinate frame. To process this information, we use an
octree-based representation, named Octomap [11], which is
a framework for modeling volumetric information with three
main characteristics. The first of which is the probabilistic
state representation that not only updates map information
but also protects it from noisy measurements, i.e., a position
state considers previous information and calculates its new
value according to probabilistic functions. The second is
the capacity of representing unexplored areas, which can be
relevant for guiding exploration in unknown environments.
Finally, Octomap offers an efficient way to model volumetric
information, including its ability to enlarge or extend the map
as demanded. For all this, Octomap results in an efficient
method for collision checking purposes in a sampling-based
algorithm, such as our RRT* variant.

C. Planning

The planning module receives a query to be solved, which
is specified as a start and goal vehicle configuration, as well
as additional planning parameters, such as the available com-
puting time, minimum distance to the goal, and boundaries
of the workspace. This module contains a modified version
of the RRT* [10], which, as any other RRT-variant, has
as a main characteristic the rapid and efficient exploration

of the configuration space (C-Space), but also includes the
asymptotic optimality property. Finally, our modified version
of the RRT* incorporates concepts of anytime algorithms and
lazy collision evaluation that, together with its incremental
nature, make it suitable for online (re)planning applications.
as described in the following section.

III. ANYTIME AND LAZY COLLISION
EVALUATION FOR ONLINE PATH PLANNING

Path planning consists in finding a collision-free path from
a start configuration to a goal configuration in the C-Space,
which is the space of possible configurations of the robot.
Sampling-based algorithms [12] have proved effective in
problems involving high-dimensional configuration spaces,
motion constraints and online computation requirements.
This section presents the proposed RRT* variant and two
concepts that have been used to extend it for solving online
path planning tasks.

A. Anytime Approach for Replanning Online

The RRT* is itself an anytime algorithm. Karaman et
al. [9] improved and formalized such extension though. Just
as any other rapidly-exploring random tree (RRT) variant,
our version is mainly composed by two procedures, build
and extend. An additional procedure creates the tree rooted
at the start configuration, and controls the execution accord-
ing to other parameters such as the period of time (7p.;;4) for
each callback of the build procedure and the computation
time ({comyp) that this procedure has for extending the tree.

Algorithm 1 presents the build procedure, which samples
configurations uniformly distributed (line 4) to explore the
C-Space by expanding the tree towards them (line 5, see
Algorithm 2). There are two main differences with respect
to other RRT variants. The first of them is presented in line 2,
where updateTree is called. Before starting sampling, this
procedure traverses the RRT with a Depth-first Search (DFS)
algorithm to verify if any part of the tree (nodes and edges)
is under collision. If a collision is detected in any node,
its corresponding subtree (i.e., the tree rooted at the node
under collision) will be discarded. However, if the root of
the RRT is under collision or this procedure identifies that
moving from current vehicle’s configuration to the root is
not possible, it informs the mission handler to cancel the
current point and starts over the planning from the current
configuration. This occurs because at any moment of the
mission execution, the tree root denotes the configuration
that the vehicle is moving to, as explained below.

The second difference in Algorithm 1 is its behavior in
an anytime fashion. If an expansion of the RRT results in
a new configuration that meets the pre-established minimum
distance to the goal (line 7), it is added to a list of possible
solutions (line 8). After expanding the tree, if the mission
handler has made a request and there exists a solution
(line 10), the planner selects the best stored solution (line 11),
i.e., the one with the minimum associated cost, sends the
child configuration (node) of the root to the mission handler
(line 13), and prunes the RRT by establishing that node as



Algorithm 1: buildRRT(7")

Algorithm 2: extendRRT(7', ¢rand)

Input:

T': configurations tree (RRT).

1 begin

2 updateTree ()

3 while not stop_condition do

4 Qrand <—sampleConf ()

5 result, gnew —extendRRT (T, Grand)
6 if result # TRAPPED then

7 if dist (gnewsgoal) < €goat then
8 addSolution (Qnew)

9 L solution_found < true

10 if solution_found and wp_req then

1 result_path <—getBestSolution ()
12 new_root < result_path[1]

13 sendWaypoint (new_root)

14 pruneTree (new-root)

15 end

the new root (line 14). During the pruning process, nodes
and edges connected to the initial root (excepting the new
root) are discarded.

Algorithm 2 presents the standard procedure of expansion
of an RRT. It receives a random configuration to which
the RRT will attempt to expand to. findInput has been
included explicitly in line 3 to generalize the procedure when
differential constraints are included, if they are not, as in a
geometrical case, the connection between configurations is a
straight line segment. Finally, we include the connection and
reconnection of nodes by comparing nodes costs, as proposed
with the RRT* [10] (lines 7-10). This procedure returns a
confirmation to indicate if expansion was succeeded (line 11)
or not and (line 13), in either case.

B. Lazy Collision Evaluation for Replanning Online

In general, the range of perception sensors is limited
so that the workspace information improves as the vehicle
moves through it. In our framework, with a sampling-based
algorithm such as the RRT variant we present, most of
the configurations used to expand and explore the C-Space
are located in undiscovered regions of the workspace. With
Octomap, we can verify in advance if a configuration is
located in an explored area or not, thus avoiding unnecessary
collision routine callbacks. When a configuration, sampled
or resulting from an expansion, is out of known or explored
area, the planner assumes it as valid. As the vehicle moves
through the workspace and explores the area, such parts of
the tree are verified and discarded if found under collision.
This approach is based on the Lazy Collision Evaluation
concept introduced by Bohlin et al. [6] for sampling-based
planning algorithms.

Input:

T': configurations tree (RRT).

Qrand: state which RRT will be attempted to extend to.
Output:

Result after attempting extension.

Qnew: New configuration if succeeded.

1 begin

2 Qnear < findNearestNeighbor (T, ¢rand)

3 Unear_rand %findIHPUt (Tv near qrand)

4 Qnew, collision <—calcNewConf (Gnear, Unear_rand)
5 if not collision then

6 addNewNode (T, ¢new)

7 Qnear < findNearestNeighbors (T, ¢new)
8 qmin_cost +findMinCost (T, Qneara Qnew)

9 addNGWEdge (Ta dmin_cost Q'new)

10 reconnectNearNeighbors (T, Qnear, Gnew)
11 L return ADVANCED
12 else
13 | return TRAPPED
14 end
IV. RESULTS

To evaluate our path planning framework, we used the
SPARUS-II AUV (see Fig. 1), a torpedo-shaped vehicle with
hovering capabilities, rated for depths up to 200m. The robot
has three thrusters (two horizontal and one vertical) and can
be actuated in surge, heave and yaw degrees of freedom
(DOF). The vehicle is equipped with a navigation sensor
suite including a pressure sensor, a doppler velocity log
(DVL), an inertial measurement unit (IMU) and a GPS to
receive fixes while at surface. To perceive the environment,
a set of five echosounders are located within the vehicle
payload (front) area (see Fig. 3a). Four of them are in the
horizontal plane, three are separated by 45°, with the central
one looking forward and parallel to the vehicle’s direction of
motion, while the fourth one is perpendicular to the central
one (see Fig. 3b).

In order to evaluate the effectiveness of our approach,
we used the harbour of Sant Feliu de Guixols in Catalonia
(Spain) as test scenario. Experiments were conducted in
the external and open area of the harbour, in a breakwater
structure (marked with a red ellipse as per Fig. 4a) that is
composed of a series of concrete blocks of 14.5m long and
12m width, separated by a four-meter gap with an average
depth of Tm.

In this scenario, the SPARUS-II AUV had to move amidst
the concrete blocks without any previous knowledge of their
location. All queries have been defined to conduct missions
with a constant depth, since most of perception sensors
(echosounders) are located to cover the horizontal plane, thus
the motion is restricted to a 2-dimensional (2D) task. We
tested our framework in simulation and in the real world
scenario. Results of these experiments are reported next.
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Fig. 3: Perception sensors configuration. (a) visible payload
area in front of the vehicle. (b) top view, echosounders beams
direction in the horizontal plane.

(b)

Fig. 4: Experiments scenario. (a) harbor of Sant Feliu de
Guixols in Catalonia, Spain, where a breakwater structure
composed of concrete blocks is demarcated. (b) SPARUS-II
AUV submerged and conducting autonomously a start-to-
goal query moving amidst a series of concrete blocks.

A. Simulation Results

SPARUS-II, as well as the other AUVs developed at the
underwater robotics research center (CIRS)!, are controlled
through the component oriented layer-based architecture for
autonomy (COLA?2) [13], a control architecture that is com-
pletely integrated with the robot operating system (ROS).
Besides operating aboard real robots, COLA2 can interact
with the underwater simulator (UWSim) [14], which can
import 3D environment models and simulate the vehicle’s

Thttp://cirs.udg.edu/

sensors and dynamics with high fidelity. We used UWSim
with a model of our target environment to do tests of our
planning approach before conducting real-world in-water
trials. We make use also of the open motion planning library
(OMPL) that offers a convenient framework that can be
adapted to specific planning problems [15].

We defined different start-to-goal queries and solved them
using our framework. In all cases, start and goal were located
on each side of the breakwater structure, in such a way
that the only feasible solution requires to navigate amidst
the obstacles (concrete blocks in the selected scenario). We
defined Tyyu51q = 2s as the period for the main iterative
process. In simulation, we have observed that t.om, = 1.0s
is enough time for the planning module to find at least one
solution, including the worst scenario, when a collision in the
root of the tree is detected, and the framework has to replan
and start over, discarding the existent tree. This means that in
such case, the vehicle will not need more than one complete
period (2s) to find its next waypoint. Figure 5 presents a
simulation of SPARUS-II executing one of such paths.

B. Real-world Results

After the positive results obtained in simulation, we moved
to the real-world environment. Path planning queries were
defined as in simulated scenarios, i.e., start and goal con-
figurations were located in opposite sides of the breakwater
structure. For security reasons, the vehicle is connected to
surface with a wireless access point buoy that allows us to
monitor while conducting the mission and abort it in case of
unexpected behavior is detected. The SPARUS-II performed
different autonomous missions with a constant surge speed
u = 0.5m/s and a maximum turning rate 7,,,, = 0.3rad/s.

In real-world in-water tests there are situations that differ
from the behavior in the simulated environment. Fig. 6
presents the reconstruction of the environment perceived by
the vehicle, where the resulting Octomap has been overlaid
on a real image of the concrete blocks. Albeit Octomaps
use a probabilistic state representation, we observed noisy
acoustic data that was included in the map and remains
over the complete execution of the mission. This is mainly
caused when an echosounder introduces a single noisy data
over an unexplored position on the map, which is marked as
an occupied state. However, when correct information about
such state is repetitively included, it not only corrects it, but
also makes it more immune to future noisy measurements.

For in-water trials, it was necessary to increase t.opmp Up to
1.5s to guarantee, experimentally, that in case of replanning,
a solution can be found. However, the quality of that first
solution can be inefficient in terms of distance. The t.omyp
increase and the quality decrease of the first result after
replanning was expected due to the greater computational
load (sensors processing) and less computational power of
the vehicle. It was observed that due to a non-zero pitch
motion, together with the echosounder that works as a
single beam sensor, oftentimes it takes longer to detect
obstacles in the vehicle’s direction of motion, which delays
replanning maneuvers (see Fig. 7a, 7b). Despite these delays,
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Fig. 5: (a) SPARUS-II AUV in UWSim [14]. In blue, the
branches of the RRT*. In green, the path followed by the
robot. In red, path with the best known cost (length) to
the goal. (b) the first waypoint sent to vehicle, where the
solution path from start to goal configurations resembles a
straight line when environment is completely unknown. (c)
new waypoint is sent to the controller and the tree is pruned.
(d) a waypoint is invalidated for being under collision. (e) the
vehicle has moved through the gap between the two blocks
and approaches to the last waypoint.
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Fig. 6: Resulting map after conducting a mission. Start and
goal positions are indicated.

vehicle safety remained throughout missions execution. An-
other clearly observed situation was the repetitive replanning
because of resulting paths that did not consider motion
constraints of the vehicle, especially in turning maneuvers.
We present preliminary results to cope with this situation in
next section. Figure 7 shows different situations presented
throughout of the execution of an autonomous mission in
the test scenario.

C. Simulation Results with Differential Constraints

Planning with differential constraints is related to consider
the limits of feasible system maneuvers, which are described
by a set of differential equations. Although some of the
classical grid-based methods have addressed this problem,
their approaches discretize the C-Space by defining a finite
set of possible maneuvers, consequently, limiting the solution
paths [16], [17]. On the other hand, because of their random
nature, sampling-based algorithms have proved to efficiently
explore the C-Space without limiting or discretizing it. This,
together with factors mentioned in Section I, including
applications requirements in underwater settings such as
adaptability for planning on-line, re-planning and precise
maneuvers accounting for vehicle constraints, motivated us
to base our framework on a sampling-based algorithm, as
presented before.

We have simulated start-to-goal queries and solved them
with our framework using an RRT considering the vehicle
differential constraints (see Figs. 8). Figure 8b presents a
simulation of SPARUS-II executing one of such paths in
UWSim. These simulations generate paths that prove to be
collision-free and feasible (i.e., expected maneuvers meet
vehicle motion constraints), which reduces the replanning
procedure callbacks and, consequently, unnecessary maneu-
vers. A next step will be to conduct real-world experiments
with this additional consideration.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we proposed a framework for planning
collision-free paths online for an AUV, using our variant
of the RRT* sampling-based algorithm, which permits re-
planning while moving through an unknown scenario. To
do so, the framework also has an online mapping module
and a mission handler that coordinates the execution of the
task. To validate our approach, we presented the execution of
missions in both simulated and real-world scenarios. In the
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Fig. 7: Results from the real-world experiments. (a) the vehicle approaches to a waypoint that is located inside a concrete
block that has not been mapped completely yet. (b) concrete block has been detected and replanning process has generated
waypoints that maneuver the vehicle to avoid collision. (c) a waypoint has been generated close to a series of occupied
positions (wall of the second block). Such point is later invalidated and a new waypoint is generated by replanning process.
(d) the vehicle has moved through the four-meter gap between the second and third concrete block and approaches to the

last waypoint.

(a) (b)

Fig. 8: (a) resulting paths and all the intermediate states
of the RRT expansion with differential constraints for test
query. (b) simulation over UWSim of SPARUS-II executing
the resulting path (a).

latter, the incidence of noisy measurements was overcome
thanks to the probabilistic mapping framework and the
replanning capacity of our approach.

Results in AUV mapping have shown the capability to
incrementally build maps while planning paths at the same
time. We also presented preliminary results on path planning
while considering differential constraints. Working along this
line, we plan to extend this approach to consider the vehicle
motion constraints. Finally, we will extend our approach to
3D motion by modifying specific parts of the RRT*, avoiding
the need of altering the main structure of the framework.
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