
*For correspondence:

ingmatteomancini@gmail.com

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 13

Received: 28 July 2020

Accepted: 20 October 2020

Published: 21 October 2020

Reviewing editor: Saad Jbabdi,

University of Oxford, United

Kingdom

Copyright Mancini et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

An interactive meta-analysis of MRI
biomarkers of myelin
Matteo Mancini1,2,3*, Agah Karakuzu2, Julien Cohen-Adad2,4, Mara Cercignani1,5,
Thomas E Nichols6,7†, Nikola Stikov2,8†

1Department of Neuroscience, Brighton and Sussex Medical School, University of
Sussex, Brighton, United Kingdom; 2NeuroPoly Lab, Polytechnique Montreal,
Montreal, Canada; 3CUBRIC, Cardiff University, Cardiff, United Kingdom;
4Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal,
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Abstract Several MRI measures have been proposed as in vivo biomarkers of myelin, each with

applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive

modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI

measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a

systematic review of published quantitative validation studies to clarify how different these

measures are when compared to the underlying histology. We analyzed the results from 43 studies

applying meta-analysis tools, controlling for study sample size and using interactive visualization

(https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the

prediction intervals for the coefficient of determination and find that MT and relaxometry-based

measures exhibit the highest correlations with myelin content. We also show which measures are,

and which measures are not statistically different regarding their relationship with histology.

Introduction
Myelin is a key component of the central nervous system. The myelin sheaths insulate axons with a

triple effect: allowing fast electrical conduction, protecting the axon, and providing trophic support

(Nave and Werner, 2014). The conduction velocity regulation has become an important research

topic, with evidence of activity-dependent myelination as an additional mechanism of plasticity

(Fields, 2015; Sampaio-Baptista and Johansen-Berg, 2017). Myelin is also relevant from a clinical

perspective, given that demyelination is often observed in several neurological diseases such as mul-

tiple sclerosis (Höftberger and Lassmann, 2018).

Given this important role in pathology and plasticity, measuring myelin in vivo has been an ambi-

tious goal for magnetic resonance imaging (MRI) for more than two decades (MacKay et al., 1994;

Rooney et al., 2007; Stanisz et al., 1999). Even though the thickness of the myelin sheath is in the

order of micrometres, well beyond the MRI spatial resolution, its presence influences several physical

properties that can be probed with MRI, from longitudinal and transversal relaxation phenomena to

water molecule diffusion processes.

However, being sensitive to myelin is not enough: to study how and why myelin content changes,

it is necessary to define a specific biomarker. Interestingly, the quest for measuring myelin has

evolved in parallel with an important paradigm shift in MRI research, where MRI data are no longer

treated as just ‘pictures’, but as actual 3D distributions of quantitative measures. This perspective
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has breathed new life into an important field of research, quantitative MRI (qMRI), that encompasses

the study of how to measure the relevant electromagnetic properties that influence magnetic reso-

nance phenomena in biological tissues (Cercignani et al., 2018; Cohen-Adad and Wheeler-King-

shott, 2014). From the very definition of qMRI, it is clear that its framework applies to any approach

for non-invasive myelin quantification.

Similarly to other qMRI biomarkers, MRI-based myelin measurements are indirect, and might be

affected by other microstructural features, making the relationship between these indices and myeli-

nation noisy. Assessing the accuracy of such measurements, and their sensitivity to change, is essen-

tial for their translation into clinical applications. Validation is therefore a fundamental aspect of their

development (Cohen-Adad, 2018). The most common approach is based on acquiring MR data

from in vivo or ex vivo tissue and then comparing those data with the related samples analyzed using

histological techniques. Despite being the most realistic approach, this comparison involves several

methodological choices, from the specific technique used as a reference to the quantitative measure

used to describe the relationship between MRI and histology. So far, a long list of studies have

looked at MRI-histology comparisons (Cohen-Adad, 2018; Laule and Moore, 2018; MacKay and

Laule, 2016; Petiet et al., 2019), each of them focusing on a specific pathology and a few MRI

measures.

Despite these numerous studies, there is still an ongoing debate on what MRI measure should be

used to quantify myelin and as a consequence there is a constant methodological effort to propose

new measures. This debate would benefit from a quantitative analysis of all the findings published

so far, specifically addressing inter-study variations and prospects for future studies, something that

is currently missing from the literature.

In this study, we systematically reviewed quantitative MRI-histology comparisons and we used

meta-analysis tools to address the following question: how different are the modalities for myelin

quantification in terms of their relationship with the underlying histology?

Results

Literature survey
The screening process is summarized in the flowcharts in Figure 1 and Appendix 1—figure 1. The

keywords as reported in the appendix returned 688 results on PubMed (last search on 03/06/2020).

These results included 50 review articles. From the 50 review articles, six were selected as relevant

for both the topics of myelin and related MRI-histology comparisons (Cohen-Adad, 2018; Laule and

Moore, 2018; Laule et al., 2007; MacKay and Laule, 2016; Petiet et al., 2019; Turner, 2019).

After the assessment, 58 original research studies were considered eligible, as shown in Appen-

dix 1—table 1 (in the appendix) and Figure S2. All the data collected are available in the supple-

mentary materials (Source data 1).

In terms of specific modalities, the survey shows that the most common MRI approach compared

with histology was diffusion-weighted imaging (used in 28 studies), followed by magnetization trans-

fer (MT, 27 studies), T2 relaxometry (19 studies) and T1 relaxometry (10 studies). Only 20 studies

considered more than one approach: among the others, 20 focused exclusively on diffusion, 12 on

MT, and six on T2 relaxometry.

From these 58 studies, we then focused only on brain studies and we further excluded studies

not reporting either the number of subjects or the number of ROIs per subject. We also excluded

one single-subject study that relied on voxels as distinct samples, whereas the other studies in this

review are based on ROIs (i.e. including more than one voxel). In the end, 43 suitable studies were

identified for the subsequent analyses.

Meta-analysis
To compare the studies of interest, we first organized them according to the MRI measure used. Fig-

ure 2 and Figure 3 (and also Figure S3-S4) show the R2 values for the selected studies across meas-

ures: the highest values (R2 >0.8) are obtained mostly from MT measures, but they are associated

with small sample sizes (with an average of 32 sample points). The studies with largest sample sizes

are associated with R2 values between 0.6 and 0.8 for MT and T2 relaxometry, but with lower values

for T1 relaxometry and other approaches.
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To combine the results for each measure, we then used a mixed-effect model: in this way we

were able to express the overall effect size in terms of a range of R2 values within a confidence inter-

val, but also to assess prediction intervals and inter-study differences. The results are shown as forest

plots in Figure 4 (and also Figure S5).

Apart from MPF and MWF, all the measures showed R2 overall estimates in the range 0.21–0.53.

To investigate the significance of the differences between measures, we conducted a repeated

measures meta-regression on every R2 estimate recorded (98 in total over 43 studies). As shown in

Figure 5 (and also Figure S6), the measures can be roughly subdivided in two groups: MT- and

relaxometry-based measures gave significantly higher R2 estimates compared to diffusion-based

measures. Within the diffusion-based measures, FA shows slightly higher estimates than the others,

with marginal significance over RD and AD or no significance in case of MD.

Within MT- and relaxometry-based measures, the trends follow those in the forest plots (Fig-

ure 4), but most differences are not significant (Figure 5). However, the results in terms of z-score

give a measure of distance between the R2 distributions. From this perspective, MPF has higher R2
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Figure 1. Sankey diagram representing the screening procedure (PRISMA flow chart provided in the appendix). To see the interactive figure: https://

neurolibre.github.io/myelin-meta-analysis/01/selection.html#figure-1.

Table 1. Results from the mixed-effect models: for each measure we reported the number of

studies, the estimate and standard error of the overall R2 distribution, the t2 and the I2.

Measure Number of studies Estimate Standard error Tau2 I2

MTR 16 0.508 0.0691 0.07 96.03%

MPF 10 0.7657 0.0455 0.0128 83.18%

FA 17 0.3766 0.0663 0.0652 87.49%

RD 15 0.3364 0.0679 0.0615 92.30%

MD 12 0.2639 0.0679 0.044 87.35%

T1 8 0.5321 0.0692 0.0328 86.51%

AD 9 0.2095 0.0802 0.048 97.69%

T2 7 0.3938 0.1023 0.0651 84.49%

MWF 4 0.6997 0.0432 0.0041 73.19%
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estimates compared to all the other measures, but it is only marginally higher than MWF (z-

score = 0.77; p-value=1) so we cannot claim that one is superior to the other. Following the same

reasoning, MTR and T1 are not statistically different (z-score = 0.47; p-value=1).

When considering the prediction intervals calculated using t2 (the variance of the effect size

parameters across the population of studies), for most measures the interval spanned from 0.1 to

0.9 (Figure 4 and Figure S5). This implies that future studies relying on such measures can expect,

on the basis of these studies, to obtain any R2 value in this broad interval. The only exceptions were

MPF (0.49–1) and MWF (0.45–0.95), whose intervals were narrower than the alternatives. Finally, I2 (a

measure of how much of the variability in a typical study is due to heterogeneity in the experimental

design) was generally quite high (Table 1). MWF showed the lowest I2 across measures

(I2 = 73.19%), but this may be misleading considering that it was based on only four studies, while

the other measures included around 10 studies. Excluding MWF, MPF also showed a relatively low I2

(I2 = 83.18%). Qualitative comparisons across experimental conditions and methodological choices

highlighted differences across pathology models, targeted tissue types and reference techniques

(Figure 6 and Figure S7). Other factors such as magnetic field, co-registration, specific tissue and

the related conditions (Figure S8) showed comparable distributions.

Discussion

Indirect measures are the most popular (for better or worse)
The literature survey offers an interesting perspective on popular research trends (Figure S2). The

first consideration one can make is that every myelin imaging technique achieves myelin sensitivity

through different means. A clear example is offered by the two most common approaches in this

meta-analysis, DWI and MT: the MT effect is driven by saturation pulses interacting with myelin
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Figure 2. Bubble chart of R2 values between a given MRI measure and histology for each study across MRI measures, with the area proportional to the

number of samples. To see the interactive figure: https://neurolibre.github.io/myelin-meta-analysis/02/closer_look.html#figure-3.
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macromolecules that transfer their magnetization to water, whereas in diffusion experiments myelin

is just not part of the picture. Diffusion acquisitions are blind to direct myelin measurement because

the TEs used are too long (~100 ms) to be influenced by the actual macromolecules – with T2

of ~ 10 us (Stanisz et al., 1999) – or even the water molecules trapped in the myelin sheath – with

T2 of ~ 30 ms (MacKay et al., 1994). To infer myelin content, one needs to rely on the interaction

between intracellular and extracellular water compartments. The majority of diffusion studies

included in this analysis used tensor-based measures (with fractional anisotropy being the most com-

mon), but some also used kurtosis-based analysis. The main issue with this approach is that other

factors affect those measures (Beaulieu, 2002; Beaulieu, 2009), making it difficult to specifically

relate changes in water compartments to changes in myelin.

Despite this issue, the use of diffusion as a proxy for myelin is quite widespread, specifically out-

side the field of quantitative MRI. This is probably a consequence of how popular DWI has become

and how widely available are the related acquisition sequences. MT, the second most popular tech-

nique for quantifying myelin, estimates myelin by acquiring data with and without saturating the

macromolecular proton pool. The simplest MT measure, MT ratio (MTR), incorporates non-myelin

contributions in the final measurement. Recent acquisition variations include computing MTR from

acquisitions with ultra-short echo times (Du et al., 2009; Guglielmetti et al., 2020; Wei et al.,

2018) or relying on inhomogeneous MT (Duhamel et al., 2019; Varma et al., 2015). More complex

experiments, for example quantitative MT, are based on fitting two compartments to the data, the

free water and the macromolecular compartments, or pools. In this way, one is able to assess myelin

through MPF with higher specificity, although still potentially including contributions from other

macromolecules. Additional measures have also been considered (including the T2 of each pool, the

exchange rate between the pools). The drawback of qMT is the requirement for a longer and more

complex acquisition. Recently, there have been alternative techniques to estimate only MPF,

Figure 3. Treemap chart of the studies considered for the meta-analysis, organized by MRI measure. The color of each box represents the reported R2

value while the size box is proportional to the sample size. To see the interactive figure: https://neurolibre.github.io/myelin-meta-analysis/02/closer_

look.html#figure-4.
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Figure 4. Forest plots showing the R2 values reported by the studies and estimated from the mixed-effect model for each measure. The hourglasses

and the dotted lines in the mixed-effect model outcomes represent the prediction intervals. To see the interactive figure: https://neurolibre.github.io/

myelin-meta-analysis/03/meta_analysis.html#figure-5.
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resulting in faster acquisitions with similar results (Khodanovich et al., 2019; Khodanovich et al.,

2017; Yarnykh, 2012). Despite being focused on macromolecular contributions, these approaches

are not strictly specific to myelin (Sled, 2018): in this sense, an important limitation is that MT effects

are sensitive to the pH of the targeted tissue and therefore changes in the pH (caused for example

by inflammation processes) will affect MT-based measures of myelin (Stanisz et al., 2004).

Following diffusion and MT, the most popular approach is T2 relaxometry. Unlike diffusion and

MT, in T2 relaxometry experiments one can directly observe the contribution from the water trapped

between the myelin bilayers, and can therefore estimate the myelin water fraction. A simpler but

less specific approach consists in estimating the transverse relaxation time considering the decay to

be mono-exponential. A historical and practical drawback of these approaches is that they require

longer acquisitions, although faster alternatives have been developed (Does and Gore, 2000;

Prasloski et al., 2012). A more subtle but nevertheless important limitation lies in the multi-com-

partment model used in multi-exponential T2 relaxometry (Does, 2018): this model generally

assumes slow water exchange between compartments, but it has been showed that water exchange

actually contributes to T2 spectra variations (Dula et al., 2010; Harkins et al., 2012).

Finally, other studies used a diverse collection of other measures, including T1 relaxometry,

apparent transversal relaxation rate (R2*), proton density (PD), macromolecular tissue volume (MTV),

relaxation along a fictitious field (RAFF), and quantitative susceptibility mapping (QSM).

After this general overview, it is clear that each modality could be a suitable candidate for a quan-

titative myelin biomarker. To then make a choice informed by the studies here reported, it becomes

necessary to consider not only effect sizes in terms of correlation, but also sample sizes and acquisi-

tion times.

There is no myelin MRI measure true to histology
When looking at the R2 values across the different measures, the first detail that catches one’s eye is

how most measures present a broad range of values (Figure 2 and Figure 3). When taking into

account the sample size, the largest studies show higher correlations for MT and T2 relaxometry

studies than any other approach (Figure S3 and Figure S4). In quantitative terms, the meta-analysis

corroborates this idea, showing that MPF and MWF tend to be more specific to myelin compared to

the other measures (respectively with R2 = 0.7657 and R2 = 0.6997), in line with the underlying
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Figure 6. Experimental conditions and methodological choices influencing the R2 values (top: reference techniques; middle: pathology model; bottom:

tissue types). To see the interactive figure: https://neurolibre.github.io/myelin-meta-analysis/04/other_factors.html#figure-7.
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theory. Notably, diffusion-based measures show the lowest overall estimates (with values between

R2 = 0.3766 for FA and R2 = 0.2095 for AD): this could be due to the fact, as already mentioned,

that DWI does not specifically measure myelin properties, and despite FA and RD being influenced

by the myelin content, they are also influenced by other factors that make them unsuitable as meas-

ures of myelin. The repeated measure meta-regression confirms this overall picture, clearly distin-

guishing MT- and relaxometry-based measures from diffusion-based ones (Figure 5).

Despite these considerations on the advantages of MPF and MWF, one should refrain from con-

cluding that they are the ‘true’ MRI measures of myelin. The reason for this caution is given not by

the overall effect sizes observed here, but by the collateral outcomes of the meta-analysis. The first

one is given by the prediction intervals: most measures exhibit large intervals (Figure 4), not sup-

porting the idea of them being robust biomarkers. MPF and MWF seem to be again the most suit-

able choices for future studies, but a range between 0.5 and 1 is still quite large.

The second important aspect to consider is given by the differences across studies: the meta-

analysis showed how such differences strongly limit inter-study comparisons for a given measure

(Figure 6). This result should be expected, given that the studies here examined are inevitably influ-

enced by the specific experimental constraints and methodological choices. Given the limited num-

ber of studies, it is not possible to quantitatively study interactions between MRI measures and the

other factors (e.g. modality used as a reference, tissue types, magnetic field strength). For further

qualitative insights, we invite the reader to explore the interactive figures S7-S8. A first important

factor to consider is the validation modality used as a reference, which will be dictated by the equip-

ment availability and cost. However, such a choice has an impact on the actual comparison: histology

and immunochemistry, despite being specific to myelin, do not offer a volumetric measure of myelin,

but rather a proxy based on the transmittance of the histological sections. So far, the only modality

able to give a volumetric measure would be electron microscopy, which is an expensive and

resource-consuming approach. Also, electron microscopy has several limitations, including tissue

shrinkage, degradation of the myelin sheath structure due to imperfect fixation, imperfect penetra-

tion of the osmium stain, polishing, keeping focus over large imaging regions. All these effects con-

tribute to the lack of precision and accuracy when quantifying myelin content with EM-based

histology (Cohen-Adad, 2018). Another important observation is that none of the studies here

reviewed considered histology reproducibility, which is hard to quantify as a whole given that a sam-

ple can be processed only once: collateral factors affecting tissue processing (e.g. sectioning distor-

tions, mounting and staining issues) constitute an actual limitation for histology-based validation. A

further example of influential factor often dictated by equipment availability is the magnetic field

strength of the MRI scanner: figure S8 shows that most studies were conducted at 7T and 9.4T, with

some pioneering studies at 1.5T and even fewer ones at other field strengths.

In addition to differences in experimental and methodological designs, there are also several con-

siderations that arise out of the lack of shared practices in MRI validation studies. The first evident

one is the use of correlations: despite being a simple measure that serves well the purpose of

roughly characterizing a relationship, Pearson correlation is not the right tool for quantitative bio-

markers, as it does not characterize the actual relationship between histology and MRI. Linear

regression is a step forward but has the disadvantage of assuming a linear relationship. Despite

Pearson correlation and linear regression being the most common measures used in the studies here

reviewed, it is still not clear if the relationship is actually linear. Only one study among the consid-

ered ones computed both Pearson and Spearman correlation values (Tardif et al., 2012), and

reported higher Spearman correlations, pointing out that non-linear relationships should actually be

considered. One last consideration regarding the use of correlation measures for validating quantita-

tive biomarkers is about the intercept in the MRI-histology relationship. Notably, only MWF is

expected to assume a value equal to zero when myelin is absent (West et al., 2018). For the other

measures, it would be necessary to estimate the intercept, which leads to the calibration problem in

the estimate of myelin volume fraction. Notably, calculating Pearson correlation does not provide

any information for such calibration. Another arbitrary practice that would benefit from some harmo-

nization is the choice of ROIs. The studies reported here examined a diverse list of ROIs, in most

cases hand-drawn on each modality, encompassing different types of tissue, and the most common

approach is to report a single, pooled correlation. This is problematic, as different types of tissue

(e.g. grey matter and white matter) will show different values for MRI-based measures but also for

histology-based ones, making linearity assumptions about the two modalities. However, with this
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approach gross differences between tissues drive the observed correlation, without actually showing

if the MRI-based measure under analysis is sensitive to subtle differences and therefore a suitable

quantitative biomarker for myelin. The effect of considering different types of tissues is showed in

Figure 6 and Figure S7, where correlation ranges change when considering different types of tissue.

However, the large correlation range in white matter, the most common tissue studied, suggests

that other factors also affect the correlation.

It should be clear at this point that any debate about a universal MRI-based measure of myelin is

pointless, at least at the moment, as the overall picture provided by previous studies does not point

to any such ideal measure. Nevertheless, is debating about a universal measure helpful for future

studies?

Better biomarkers require more reproducibility studies
We hope this meta-analysis convinces the reader that a holy grail of myelin imaging does not exist,

at least as long as we consider histology to be the ground truth. Given that we all have to pick our

poison, the upside is that measures based on MT and relaxometry are not statistically different, and

therefore, future studies have an actual choice among candidate measures. For further progress,

rather than debating about a perfect measure, we would argue that what is missing at the moment

is a clear picture of what can be achieved with each specific MRI modality. The studies examined

here focus on a large set of different measures, and more than half of them considered at most two

measures, highlighting how the field is mostly focused on formulating new measures. While it is

understood that novel measures can provide new perspectives, it is also fundamentally important to

understand the concrete capabilities and limitations of current measures. From this meta-analysis,

what the literature clearly lacks is reproducibility studies, specifically answering two main questions:

(1) what is the specificity of each measure? We should have a practical validation of our theoretical

understanding of the relevant confounds; (2) what is the ‘parameter sensitivity’ of each measure?

Here, we refer to parameter sensitivity in a broad sense, that includes also experimental conditions

and methodological choices. The results here presented show how certain conditions (e.g. pathol-

ogy) seem to affect the coefficient of determination more than others but given the limited number

of studies for each modality, we refrained from additional analyses to avoid speculation. A warning

message that is evident from these results is the inherent limitation of DWI for estimating myelin

content: this is not by any means a novel result (Beaulieu, 2002; Beaulieu, 2009), but it is neverthe-

less worth reiterating given the outcomes of our analysis. If estimating myelin content is relevant in a

diffusion study, it is important to consider complementing the diffusion measure with one of the

modalities here reviewed; in this way, it would be possible to decouple the influence of myelin con-

tent from the many other factors that come into play when considering diffusion phenomena.

Finally, an important factor to take into account when choosing a biomarker of myelin is the

actual application. For animal research, long acquisitions are not a major issue. However, when con-

sidering biomarkers for potential clinical use, the acquisition time can become a relevant issue. An

example is the well-established multi-echo spin-echo implementation of MWF, that can only be used

for a specific slice in a hypothetical clinical scenario. Faster techniques have been proposed for esti-

mating it with gradient- and spin-echo (GRASE) sequences (Does and Gore, 2000; Feinberg and

Oshio, 1991; Prasloski et al., 2012). Even in this case, the acquisition time still reaches 15 min for

acquiring roughly the whole brain with an isotropic resolution of 2 mm. Complex MT acquisitions

such as qMT suffer from the same problem, although it is possible to use optimized and faster pro-

tocols to focus specifically on MPF (Khodanovich et al., 2019; Khodanovich et al., 2017;

Yarnykh, 2012).

Conclusions
Several MRI measures are sensitive to myelin content and the current literature suggests that most

of them are not statistically different in terms of their relationship with the underlying histology.

Measures highly correlated with histology are also the ones with a higher expected specificity. This

suggests that future studies should try to better address how specific each measure is, for the sake

of clarifying suitable applications.
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Materials and methods

Review methodology
The Medline database (https://pubmed.ncbi.nlm.nih.gov) was used to retrieve the articles. The key-

words used are specified in the appendix. We followed the PRISMA (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses) guidelines for record screening and study selection. The

results were first screened to remove unrelated work. Specifically we discarded: work relying only on

MRI; work relying only on histology or equivalent approaches; work reporting only qualitative com-

parisons. After this first screening, the remaining papers were assessed. At this stage, we discarded:

studies using MRI-based measures in arbitrary units (e.g. T1-weighted or T2-weighted data); studies

using measures of variation in myelin content (defined either as the difference between normal and

abnormal myelin content) either for MRI or for histology; studies using arbitrary assessment scales;

studies comparing MRI-based absolute measures of myelin with histology-based relative measures

(e.g. g-ratio); studies reporting other quantitative measures than correlation or R2 values; studies

comparing histology from one dataset and MRI from a different one. As an additional source for

potential candidate studies, we screened the review articles in the initial results, and we selected the

relevant studies that were not already present in the studies already selected.

From the final papers, we collected first the following details: the DOI; which approach was used

(diffusion, MT, T1 relaxometry, T2 relaxometry, or other); which specific MRI measures were com-

pared to histology or equivalent techniques; the magnetic field; the technique used as a reference

(histology, immunochemistry, microscopy, electron microscopy); the focus of the study in terms of

brain, spinal cord or peripheral nerve; if the subjects were humans or animals, and if the latter which

animal; if the tissue under exam was in vivo, in situ or ex vivo, and in the latter case if the tissue was

fixed or not; if the tissue was healthy or pathological, and if the latter which pathology; the specific

structures examined for correlation purposes; which comparison technique was used (e.g. Pearson

correlation, Spearman correlation, linear regression); the number of subjects; the number of ROIs

per subject; the male/female ratio; if registration procedures were performed to align MRI and his-

tology; in case of pathological tissue, if control tissue was considered as well; other relevant notes. If

before calculating the correlations the data were averaged across subjects, the number of subjects

was considered to be one. The same consideration was made for averaging across ROIs. This is

because the numbers of subjects and ROIs were used to take into account how many sample points

were used when computing the correlation. We set each of those numbers to one for all the studies

where the data were averaged respectively across subjects and across ROIs. Finally, in those cases

where the number of ROIs or the number of subjects were given as a range rather than specific val-

ues, we used the most conservative value and added the related details to the notes.

We then proceeded to collect the quantitative results reported for each measure and for each

study in the form of R2. Given that different studies may rely on a different strategy when reporting

correlations, we adopted the following reasoning to limit discrepancies across studies while still

objectively representing each of them. In case of multiple correlation values reported, for our analy-

sis we selected the ones referring to the whole dataset and the entire brain if available, and consid-

ering each ROI in a given subject as a sample if possible; if only correlation values for specific ROIs

were reported, the one for the most common reported structure would be chosen. In the case of

multiple subjects, if data were provided separately for each group, the correlation for the control

group was used. When different comparison methods were reported (e.g. both Pearson and Spear-

man correlation) or if the MRI data was compared with multiple references (e.g. both histology and

immunohistochemistry), the correlations used were chosen on the basis of the following priority

orders (from the most preferable to the least): for multiple comparison methods, linear regression,

Spearman correlation, Pearson correlation; for multiple reference techniques, electron microscopy,

immunohistochemistry, histology. Finally, in any other case where more than one correlation value

was available, the most conservative value was used. Any other additional value was in any case

mentioned in the notes of the respective study.

Meta-analysis
For the quantitative analysis, we restricted our focus on brain studies and only on the ones providing

an indication of both the number of subjects and the number of ROIs. For each study, we computed
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the sample size as the product between the number of subjects and the number of ROIs per subject.

In this way, we were able to compare the reported R2 values across measures taking into account

the related number of points actually used for correlation purposes. We note that correlation or

regression analyses run on multiple ROIs and subjects represents a repeated measures analysis, for

which the degrees of freedom computation can be complex; however, most papers neglected the

repeated measures structure of the data and thus the sample size computation here represents a

very approximate and optimistic view of the precision of each R2 value.

To estimate the variance of each R2 value, we relied on the correlation properties and the delta

method (Lehman, 1999). Let us consider the Pearson’s correlation r of two variables X and Y with

population correlation r. If r is calculated from N random samples, the sampling variance is (1-r2)2/

N. Applying the delta method, we then approximated the variance of R2 as 4 R2(1 R2)2/N, assuming

R2 »r2. As we recognise that some papers computed Spearman correlation, this calculation is again

optimistic and may underestimate the sampling variability of the squared Spearman correlation.

To estimate the overall effect size in terms of R2, we have to choose how to model the distribu-

tion of true effects given by the data collected from the literature. The two most common

approaches are fixed-effects and mixed-effects models. While the underlying mathematical model is

the same as the one used for linear regression (more details in the appendix), the assumptions are

different: fixed-effects models assume that all the studies share a common effect size, while mixed-

effects models assume that the effect size across studies is similar but not identical (Rauden-

bush, 2009). In our case, as the studies have several factors that influence the R2 values (e.g. histol-

ogy/microscopy reference, magnetic field strength, pathology model), we expect a distribution of

effect sizes due to inter-study differences. This is why we proceeded to fit a mixed-effects model to

each measure that was featured in more than two studies. Apart from the effect size distributions,

we reported two additional measures, I2 and t2: the former expresses as a percentage how much of

variability in a typical study is due to heterogeneity (i.e. the variation in study outcomes between

studies) rather than chance (Higgins and Thompson, 2002), while the latter can be used to calculate

the prediction interval (Raudenbush, 2009), which gives the expected range for the measure of

interest in future studies. We used forest plots to represent the outcomes, and both the mixed

effects estimate of the population estimated R2, with both a 95% confidence and a (larger) 95% pre-

diction interval.

For the explicit purpose of comparing the effect sizes between different MRI measures, we con-

ducted a repeated measures meta-regression on every R2 value recorded. We associated each R2

value with three additional details: (i) the related variance, as done in the measure-specific mixed-

effects models; (ii) the related study, used as the random intercept (i.e. random variable) to incorpo-

rate potential inter-study variability; and (iii) the related MRI measure, used as the moderator (i.e.

categorical variable) to estimate the differences between measures. In this way, the meta-regression

leads to R2 intervals for each MRI measure, with the same trend as measure-specific mixed-effects

models but with subtle differences. This is because the meta-regression makes two additional

assumptions: first, R2 estimates within the same study share the same random effects and second,

the between-study variance is the same for all observations. We then used the meta-regression R2

estimates to compute every possible pairwise comparison between MRI measures and to identify

significantly different pairs using Tukey’s test, while controlling the error rate over all the possible

comparisons (Bonferroni correction).

This additional model is necessary, as direct comparisons are not possible with measure-specific

analyses. While the repeated measures meta-regression makes direct comparisons straightforward,

we reported the main R2 estimates based on the measure-specific mixed-effects models, as they

make weaker assumptions.

For visual comparisons, we used the Jupyter notebook provided in the supplementary materials.

For model fitting, we used the Metafor package, version 2.4–0 (Viechtbauer, 2010).
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Appendix 1

Search keywords
(myelin[Title/Abstract] AND ((magnetic[Title/Abstract] AND resonance[Title/Abstract]) OR mr[Title/

Abstract] OR mri[Title/Abstract])) AND (histology[Title/Abstract] OR histopathology[Title/Abstract]

OR microscopy[Title/Abstract] OR immunohistochemistry[Title/Abstract] OR histological[Title/

Abstract] OR histologically[Title/Abstract] OR histologic[Title/Abstract] OR histopathological[Title/

Abstract] OR histopathologically[Title/Abstract] OR histopathologic[Title/Abstract]).

Results obtained from the Medline database: 688 (03/06/2020).

Appendix 1—figure 1. PRISMA flowchart for the meta-analysis.

Fixed- and mixed-effects models

While a traditional linear regression model estimates the error variance from residuals, in a fixed

effects meta-analysis model, each paper’s response and standard errors, as well as the error variance

of the regression model can be directly computed from the supplied response standard deviations.

Specifically, for a (non-meta) regression model we have the i-th response yi modeled with covariate

values xi, yi ¼ xibþ "i, where random error has unknown variance Var "ið Þ ¼ s2. In a fixed-effects

meta-analysis, we are given yi but also si, the standard error of yi, and the regression model has the

same form except the variance is known, Var "ið Þ ¼ s2i , and the weighted least squares regression can

be computed, estimating beta and its standard error. A mixed-effects meta-analysis accounts for

more variance than what can be ascribed to the sampling error of the reported outcome. The

regression model has again the same form, except now the variance is Var "ið Þ ¼ s2i þ t 2, the sum of

the reported squared standard error and the unknown between-study variance t 2. Iterative methods

are used to estimate t 2 and, once estimated, a weighted least squares regression can be computed.

The parameter t 2 can be interpreted as the variance of noise-free (hypothetical, zero standard error)
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results from the population of all possible studies. The importance of t 2 can also be gauged by I2,

the proportion of variance due to random inter-study differences (i.e. 1� I2 is the proportion attrib-

utable to random sampling error of each study) (Higgins and Thompson, 2002).

Abbreviations and mathematical symbols

AD – axial diffusivity
AK – axial kurtosis
AWF – axonal water fraction
FA – fraction anisotropy
ihMTR – inhomogeneous magnetization transfer ratio
k_fm – free water-macromolecular exchange rate
k_mf – macromolecular-free water exchange rate
M0m – macromolecular pool magnetization fraction
MD – mean diffusivity
MK – mean kurtosis
MPF – macromolecular pool fraction
MT – magnetization transfer
MTR – magnetization transfer ratio
MTR-UTE – magnetization transfer ratio (using ultra-short echo time)
MTV – macromolecular tissue volume
MVF-MT – myelin volume fraction (estimated from MT)
MVF-T2 – myelin volume fraction (estimated from T2)
MWF – myelin water fraction
PD – proton density
PN – peripheral nerve
PRISMA – Preferred Reporting Items for Systematic Reviews and Meta-Analyses
QSM – quantitative susceptibility mapping
R1f – free water pool longitudinal relaxation rate
R2* – apparent transverse relaxation rate
RAFF – relaxation along a fictitious field
RD – radial diffusivity
RD-DBSI – radial diffusivity (from diffusion basis spectrum imaging)
RDe – extra-cellular compartment radial diffusivity
RK – radial kurtosis
rSPF – relative semi-solid proton fraction
SC – spinal cord
T1 – longitudinal relaxation time
T1p – adiabatic longitudinal relaxation time
T1sat – longitudinal relaxation time under magnetization transfer irradiation
T2 – transverse relaxation time
T2f – free water pool transverse relaxation time
T2int – transverse relaxation intermediate component
T2m – macromolecular pool transverse relaxation rate
T2p – adiabatic transverse relaxation time

Appendix 1—table 1. Selected studies for qualitative analysis.

Study MRI measure(s)
Histology/microscopy
measure Tissue Condition Focus

Schmierer et al.,
2004

T1, MTR Histology - LFB Human Multiple sclerosis Brain

Odrobina et al.,
2005

T1, T2, T2int,
MWF, M0m, MTR

Microscopy - Myelin
fraction

Animal -
Rat

Demyelination - Tellurium PN

Pun et al., 2005 T1, T2int, MWF Microscopy - Myelin
fraction

Animal -
Rat

Demyelination - Tellurium PN

Continued on next page
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Appendix 1—table 1 continued

Study MRI measure(s)
Histology/microscopy
measure Tissue Condition Focus

Laule et al., 2006 MWF Histology - LFB Human Multiple sclerosis Brain

Schmierer et al.,
2007a

T1, MTR, MPF,
T2m

Histology - LFB Human Multiple sclerosis Brain

Schmierer et al.,
2007b

FA, MD Histology - LFB Human Multiple sclerosis Brain

Jito et al., 2008 FA Microscopy - Myelin
sheath area

Animal -
Mouse

Healthy Brain

Kozlowski et al.,
2008

MWF, FA, AD,
RD, MD

Immunohistochemistry -
MBP

Animal -
Rat

Injury - Dorsal columnar
transection

SC

Laule et al., 2008 MWF Histology - LFB Human Multiple sclerosis Brain

Schmierer et al.,
2008

T1, T2, MTR,
MPF,
MD, FA, AD, RD

Histology - LFB Human Multiple sclerosis Brain

Wu et al., 2008 T2 Histology - LFB Animal -
Mouse

Demyelination - Cuprizone Brain

Zaaraoui et al.,
2008

MTR Immunohistochemistry -
MBP

Animal -
Mouse

Demyelination - Cuprizone Brain

Takagi et al., 2009 FA, AD EM - Myelin thickness Animal -
Rat

Degeneration - Contusive
injury

PN

Wang et al., 2009 FA, RD Histology - LFB Animal -
Rat

Ischemia - Induced
hypoxia

Brain

Zhang et al., 2009 RD Histology - LFB Animal -
Rat

Injury - Dorsal columnar
transection

SC

Schmierer et al.,
2010

MTR, T2 Histology - LFB Human Multiple sclerosis Brain

Fatemi et al., 2011 MTR Immunohistochemistry -
MBP

Animal -
Mouse

Ischemia - Induced
hypoxia

Brain

Laule et al., 2011 MWF Immunohistochemistry -
MBP

Human Multiple sclerosis Brain

Underhill et al.,
2011

MPF Histology - LFB Animal -
Mouse

Healthy Brain

Chandran et al.,
2012

FA, RD Immunohistochemistry -
MBP

Animal -
Mouse

Demyelination - Cuprizone Brain

Tardif et al., 2012 T1, T2, MTR, PD Immunohistochemistry -
MBP

Human Multiple sclerosis Brain

Fjær et al., 2013 MTR Immunohistochemistry -
PLP

Animal -
Mouse

Demyelination - Cuprizone Brain

Harkins et al., 2013 MWF, MPF Microscopy - Myelin
fraction

Animal -
Rat

Edema - Hexaclorophene SC

Janve et al., 2013 MPF, R1a, k_ba,
FA, RD, MD, AD

Histology - LFB Animal -
Rat

Demyelination -
Lipopolysaccharide

Brain

Thiessen et al.,
2013

MPF, R1f, k_fm,
k_mf,
T2f, T2m, MD,
RD,
AD, FA, T1, T2

EM - Myelin thickness Animal -
Mouse

Demyelination - Cuprizone Brain

Kozlowski et al.,
2014

MWF Immunohistochemistry -
MBP

Animal -
Rat

Injury - Dorsal
columnar transection

SC

Wang et al., 2014 RD, RD-DBSI Immunohistochemistry -
MBP

Animal -
Mouse

Demyelination -
Autoimmune
encephalomyelitis

SC

Continued on next page
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Appendix 1—table 1 continued

Study MRI measure(s)
Histology/microscopy
measure Tissue Condition Focus

Fjær et al., 2015 MTR Immunohistochemistry -
PLP

Animal -
Mouse

Demyelination -
Autoimmune
encephalomyelitis

Brain

Seehaus et al., 2015 FA, RD, MD Histology - Silver Human Healthy Brain

Turati et al., 2015 MPF Immunohistochemistry -
MBP

Animal -
Mouse

Demyelination - Cuprizone Brain

Wang et al., 2015 RD-DBSI Histology - LFB Human Multiple sclerosis SC

Aojula et al., 2016 FA, AD, RD, MD Immunohistochemistry -
MBP

Animal -
Rat

Hydrocephalus Brain

Hakkarainen et al.,
2016

T1, T2, MTR, T1p,
T2p, RAFF

Histology - Gold
chloride

Animal -
Rat

Healthy Brain

Jelescu et al., 2016 RD, RK, AWF,
Rde, T2, MTR

EM - Myelin fraction Animal -
Mouse

Demyelination - Cuprizone Brain

Kelm et al., 2016 MD, RD, MK,
RK, AWF

EM - Myelin fraction Animal -
Mouse

Demyelination - Knockout Brain

Reeves et al., 2016 T1, T2 Immunohistochemistry -
MBP

Human Epilepsy Brain

Tu et al., 2016 FA, AD, RD, MD,
MTR

Immunohistochemistry -
MBP

Animal -
Rat

Traumatic brain injury Brain

Chang et al., 2017 FA, AD, RD, MD Immunohistochemistry -
MBP

Animal -
Mouse

Healthy Brain

Chen et al., 2017 MWF EM - Myelin fraction Animal -
Rat

Injury - Dorsal columnar
transection

SC

Khodanovich et al.,
2017

MPF Histology - LFB Animal -
Mouse

Demyelination - Cuprizone Brain

Lehto et al., 2017a RAFF, MTR,
T1sat,
FA, MD, AD, RD

Histology - Gold
chloride

Animal -
Rat

Demyelination -
Lipopolysaccharide

Brain

Lehto et al., 2017b MTR Histology - Gold
chloride

Animal -
Rat

Traumatic brain injury Brain

van Tilborg et al.,
2018

FA Immunohistochemistry -
MBP

Animal -
Rat

White matter injury Brain

Beckmann et al.,
2018

MTR Histology - LFB Animal -
Mouse

Demyelination - Cuprizone Brain

Berman et al., 2018 MTV EM - Myelin fraction Animal -
Mouse

Demyelination - Knockout Brain

Hametner et al.,
2018

R2*, T1, QSM Histology - LFB Human Vascular diseases Brain

Praet et al., 2018 MK, RK, AK, FA,
MD, RD, AD

Immunohistochemistry -
MBP

Animal -
Mouse

Amyloidosis Brain

Wendel et al., 2018 FA, AD, RD, MD Immunohistochemistry -
MBP

Animal -
Mouse

Traumatic brain injury Brain

West et al., 2018 MPF, MWF,
MVF-T2,
MVF-MT

EM - Myelin fraction Animal -
Mouse

Demyelination - Knockout Brain

Yano et al., 2018 FA, RD, MD Immunohistochemistry -
PLP

Animal -
Mouse

Demyelination - Cuprizone Brain

Abe et al., 2019 FA, RD, AD Microscopy - Myelin
thickness

Animal -
Mouse

Optogenetic stimulation Brain

Duhamel et al.,
2019

ihMTR, MTR Microscopy -
Fluorescence

Animal -
Mouse

Healthy Brain

Continued on next page
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Appendix 1—table 1 continued

Study MRI measure(s)
Histology/microscopy
measure Tissue Condition Focus

Khodanovich et al.,
2019

MPF Immunohistochemistry -
MBP

Animal -
Mouse

Demyelination - Cuprizone Brain

Mollink et al., 2019 FA Immunohistochemistry -
MBP

Human Amyotrophic lateral
sclerosis

Brain

Peters et al., 2019 FA, MD Histology - LFB Human Tuberous sclerosis
complex

Brain

Pol et al., 2019 QSM, FA, MD Histology - Solochrome Animal -
Mouse

Healthy Brain

Soustelle et al.,
2019

MPF, RD, MWF,
rSPF

Immunohistochemistry -
MBP

Animal -
Mouse

Demyelination - Cuprizone Brain

Guglielmetti et al.,
2020

MTR, MTR-UTE Immunohistochemistry -
MBP

Animal -
Mouse

Healthy Brain
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