Lesion distribution and substrate of white matter damage in myotonic dystrophy type 1: Comparison with multiple sclerosis

Sara Leddy a,b, Laura Serra c, Davide Esposito a, Camilla Vizzotto a, Giovanni Giuliani c, Gabriella Silvestri d, Antonio Petrucci e, Giovanni Meola f,g, Leonardo Lopiano h, Mara Cercignani a,c, Marco Bozzali a,e,*

a Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom
b Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
c Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
d Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del S. Cuore, Rome, Italy
e UOC Neurologia e Neurofisiopatologia, AO San Camillo Forlanini, Rome, Italy
f Department of Neurorehabilitation Sciences, Casa di Cura Policlinico, Milan, Italy
g Department of Biomedical Science for Health, University of Milan, Milan, Italy
h ‘Rita Levi Montalcini’ Department of Neuroscience, University of Turin, Turin, Italy

1. Introduction

Myotonic dystrophy type 1 (DM1) is an autosomal dominant condition caused by expansion of the CTG triplet repeats within the myotonic dystrophy protein kinase (DMPK) gene. The central nervous system is involved in the disease, with multiple symptoms including cognitive impairment. A typical feature of DM1 is the presence of widespread white matter (WM) lesions, whose total volume is associated with CTG triplet expansion. The aim of this study was to characterize the distribution and pathological substrate of these lesions as well as the normal appearing WM (NAWM) using quantitative magnetization transfer (qMT) MRI, and comparing data from DM1 patients with those from patients with multiple sclerosis (MS). Twenty-eight patients with DM1, 29 patients with relapsing-remitting MS, and 15 healthy controls had an MRI scan, including conventional and qMT imaging. The average pool size ratio (F), a proxy of myelination, was computed within lesions and NAWM for every participant. The lesion masks were warped into MNI space and lesion probability maps were obtained for each patient group. The lesion distribution, total lesion load and the tissue-specific mean F were compared between groups. The supratentorial distribution of lesions was similar in the 2 patient groups, although mean lesion volume was higher in MS than DM1. DM1 presented higher prevalence of anterior temporal lobe lesions, but none in the cerebellum and brainstem. Significantly reduced F values were found within DM1 lesions, suggesting a loss of myelin density. While F was reduced in the NAWM of MS patients, it did not differ between DM1 and controls. Our results provide further evidence for a need to compare histology and imaging using new MRI techniques in DM1 patients, in order to further our understanding of the underlying disease process contributing to WM disease.

Keywords:
DM1
qMT
MS
Lesion
White matter
MRI

ARTICLE INFO

ABSTRACT

Myotonic Dystrophy type 1 (DM1) is an autosomal dominant condition caused by expansion of the CTG triplet repeats within the myotonic dystrophy protein of the kinase (DMPK) gene. The central nervous system is involved in the disease, with multiple symptoms including cognitive impairment. A typical feature of DM1 is the presence of widespread white matter (WM) lesions, whose total volume is associated with CTG triplet expansion. The aim of this study was to characterize the distribution and pathological substrate of these lesions as well as the normal appearing WM (NAWM) using quantitative magnetization transfer (qMT) MRI, and comparing data from DM1 patients with those from patients with multiple sclerosis (MS). Twenty-eight patients with DM1, 29 patients with relapsing-remitting MS, and 15 healthy controls had an MRI scan, including conventional and qMT imaging. The average pool size ratio (F), a proxy of myelination, was computed within lesions and NAWM for every participant. The lesion masks were warped into MNI space and lesion probability maps were obtained for each patient group. The lesion distribution, total lesion load and the tissue-specific mean F were compared between groups. The supratentorial distribution of lesions was similar in the 2 patient groups, although mean lesion volume was higher in MS than DM1. DM1 presented higher prevalence of anterior temporal lobe lesions, but none in the cerebellum and brainstem. Significantly reduced F values were found within DM1 lesions, suggesting a loss of myelin density. While F was reduced in the NAWM of MS patients, it did not differ between DM1 and controls. Our results provide further evidence for a need to compare histology and imaging using new MRI techniques in DM1 patients, in order to further our understanding of the underlying disease process contributing to WM disease.

* Corresponding author at: ‘Rita Levi Montalcini’ Department of Neuroscience, University of Turin, Via Cherasco, 15, 10126 Turin, Italy.
E-mail address: marco.bozzali@unito.it (M. Bozzali).

https://doi.org/10.1016/j.nicl.2021.102562
Received 7 September 2020; Received in revised form 6 January 2021; Accepted 8 January 2021
Available online 14 January 2021
2213-1582/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
Although adult onset DM1 patients typically present with preserved global cognition at formal testing (Di Costanzo et al., 2002; Minnerop et al., 2011; Serra et al., 2015), when examined more closely, detailed cognitive testing has revealed executive and memory dysfunctions (Meola et al., 2003; Modoni et al., 2004; Weber et al., 2010) as well as dysfunction of social cognition (Serra et al., 2016, 2020), and pathological personality traits (Serra et al., 2014), partially explained by altered functional connectivity (Serra et al., 2014, 2016) and reduced regional cortical thickness (Serra et al., 2020).

Imaging of the brains of those affected by DM1 demonstrates structural damage in both the grey and white matter, but predominantly white matter. Magnetic resonance imaging (MRI) studies described the presence of ventricular dilatation and periventricular hyperintensities (Glantz et al., 1988; Hund et al., 1997; Di Costanzo et al., 2002; Minnerop et al., 2011; Caso et al., 2014), resembling lesions detected in other conditions such as multiple sclerosis (MS) (Damian et al., 1994), Lyme disease (Fernandez et al., 1990), and coeliac disease (Kieslich et al., 2001). Other common findings include cerebral atrophy (Minnerop et al., 2011; Serra et al., 2013), and enlarged Virchow-Robinson spaces (Di Costanzo et al., 2001). Interestingly, the white matter lesion load, regional grey matter volumes, and white matter microstructure were all reported to correlate with patient CTG triplet expansion (Serra et al., 2015; Zanigni et al., 2016; van der Plas, et al., 2019).

Using conventional MRI, white matter T2-hyperintense lesions in the anterotemporal and temporopolar regions have been repeatedly reported by studies as areas of typical change in DM1 patients (Huber et al., 1989; Miaux et al., 1997; Abe et al., 1998; Ogata et al., 1998; Di Costanzo et al., 2001; Zanigni et al., 2016). Anterior temporal lobe lesions differ to other lobar lesions seen in DM1, as they appear to involve the arcuate fibres, a feature not seen in lobar lesions. The MRI pattern of distribution, asymmetry of white matter lesions, involvement and sparing of specific structures is thought to be specific to DM1 (Di Costanzo et al., 2001), although other genetic disorders, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) are characterised by T2-weighted hyperintensities, which, particularly at the onset of the disease, tend to localise to the anterior temporal lobes (Liem et al., 2008; Kim et al., 2018). Whether the origin of this particular class of lesions differs from that of the others in DM1 remains to be determined. In addition to macroscopic lesions, advanced MRI techniques, such as diffusion tensor imaging, provided evidence for subtle white matter changes throughout the DM1 brain (Minnerop et al., 2011; Serra et al., 2015).

The substrate of macroscopic lesions and microscopic damage in DM1 remains unknown, although axonal loss and demyelination have been reported to occur, together with gliosis (Mondelli et al., 1993; Vielhaber et al., 2006). Tackling the origin of the widespread brain damage observed in DM1 and its link with the severity of the genetic load (Serra et al., 2015), is paramount in order to understand the pathogenesis of central nervous system symptoms in DM1 and develop appropriate interventions. Although a detailed answer to these questions can only be achieved with histopathology, quantitative MRI provides a useful tool for investigating lesion characteristics in vivo. The purpose of the current study was thus to compare the lesion distribution, and its substrate (as assessed by quantitative MRI) with another condition characterised by spatially disseminated lesions with mixed pathology, namely relapsing-remitting multiple sclerosis (MS), a chronic inflammatory disorder of the central nervous system characterised by focal lesions, pathologically explained by a variable combination of demyelination, inflammation, axonal damage and gliosis (Filippini et al., 2001; Kutzelnigg et al., 2005; Frischer et al., 2009; Popescu and Lucchietti, 2012; Spanò et al., 2018). Microscopic tissue abnormalities are known to occur outside macroscopic lesions, in the so-called normal-appearing white matter (NAWM) since very early clinical stages (Raz et al., 2010). The rationale for this comparison was to use MS as a pathological model, against which to compare DM1. One of the reasons for choosing MS, is that it has been studied extensively using quantitative MRI techniques, including diffusion MRI and magnetization transfer (MT) MRI. MT imaging exploits the interaction between those protons embedded in macromolecular structures (proteins and lipids) and those in free water to indirectly measure the density of the former protons (Wolff and Balaban, 1989). This allows an indirect quantification of the myelin content, given the assumption that myelin is the predominant macromolecule in the central nervous system (Heath et al., 2018). The most commonly used approach to quantify the MT effects is the so called MTR or MT-ratio, which is computed as a percentage difference between 2 images, one using off-resonance saturation (which sensitizes only macromolecules) and one without (Helms et al., 2008). Pathological changes appear to reduce the density of macromolecules and their exchange of magnetization with the free protons, thus causing a reduction of the MT ratio (Wolff and Balaban, 1989). The MTR, however, is a simplistic approach, highly dependent on the acquisition parameters, and with limited sensitivity. In order to overcome some of these limitations, more complex analytical models have been developed to provide a truly ‘quantitative’ estimation of myelin in the examined image (Henkelman et al., 1993). Quantitative magnetization transfer (qMT) uses multiple off-resonance frequencies and radiofrequency amplitudes to fit an analytical model of the signal, thus enabling the estimation of the pool size ratio, or F. The use of F as a proxy for myelin density has been validated in MS using post-mortem samples (Schmierer et al., 2007) and animal models of demyelination and remyelination (Turati et al., 2015).

Against this background, we set out to compare the myelin density (by means of F) in the brain of patients with DM1 to healthy controls and to patients with MS as a prototypical disorder of myelin. We first characterised the spatial distribution of lesions, and then quantified the qMT parameters inside and outside macroscopic lesions. Finally, we isolated temporal lobe lesions in patients with DM1, with the aim to test whether their qMT parameters differ from those computed in the lesions detected in the rest of the brain. Based on the existing literature, we expected DM1 patients to have more white matter lesions than healthy controls, with evidence of demyelination (Abe et al., 1994; Mizukami et al., 1999). However, we hypothesised that the extent of demyelination would be lower in DM1 than MS. Finally, while the anterior temporal pole might be involved in progressive forms of MS, we did not expect anterior temporal lesions to be a prominent feature of patients with relapsing remitting MS, included in this study. Therefore, we postulated that anterior temporal lesions would be detected in DM1 only, and would have different characteristics than other lesions.

2. Methods

2.1. Participants

We recruited 28 patients (M/F = 14/14; mean age: 42, standard deviation: 12.1 years) with a molecular diagnosis of DM1 from the Neuromuscular and Neurological Rare Diseases Center at San Camillo Forlanini Hospital (Rome, Italy) and the Institute of Neurology at the Catholic University of Rome (Rome, Italy). A subsample of this cohort also participated in an independent study (Serra et al., 2015) but their qMT data have not been reported elsewhere. The genetic and clinical characteristics of DM1 patients are summarized in Table 1. Twenty-nine patients (M/F = 11/18; mean age: 35, standard deviation: 7.64 years) with a clinically definite diagnosis of relapsing remitting MS, as defined by 2001 McDonald criteria (McDonald et al., 2001) were recruited as the MS control group, from the specialist MS outpatient clinic at IRCCS Santa Lucia Foundation, Rome, Italy. All patients had a diagnosis of relapsing-remitting MS, and those who had any relapse or corticosteroid treatment over the 3 months preceding MR acquisition were excluded. DM1 participants had assessment of CTG expansion size within the DMPK gene, and they were classified according to the International Myotonic Dystrophy Consortium nomenclature (IDMC,
Table 1
Principal clinical and genetic characteristics of DM1 patients.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No (%) of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset</td>
<td></td>
</tr>
<tr>
<td>Childhood (age range 6–17 years)</td>
<td>8 (29)</td>
</tr>
<tr>
<td>Adulthood (age range, 18–60 years)</td>
<td>20 (71)</td>
</tr>
<tr>
<td>No of CTG triplet repeats on DMPK gene, mean (SD) [range]</td>
<td>469.85 (311.6) [54-1200]</td>
</tr>
<tr>
<td>Expansion group</td>
<td></td>
</tr>
<tr>
<td>E1 (50-150)</td>
<td>4 (14%)</td>
</tr>
<tr>
<td>E2 (151-500)</td>
<td>13 (46%)</td>
</tr>
<tr>
<td>E3 (501-1000)</td>
<td>9 (32%)</td>
</tr>
<tr>
<td>E4 (>1000)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>MIRS score</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4 (14%)</td>
</tr>
<tr>
<td>2</td>
<td>8 (29%)</td>
</tr>
<tr>
<td>3</td>
<td>12 (43%)</td>
</tr>
<tr>
<td>4</td>
<td>4 (14%)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: DM1: myotonic dystrophy type 1; DMPK: myotonic dystrophy protein kinase; MIRS: Muscular Impairment Rating Scale.

2.2. Genetic assessment

Blood samples were taken from DM1 patients to detect expanded alleles. As previously described (Serra et al., 2015), the analysis of normal and proto-mutated alleles was done using “touch down” PCR on DNA extracted from peripheral blood leucocytes (PBL). This required 50 pg of PBL-DNA being amplified in a 20 μl volume with fluorescent labelled primer 101 and primer 102. Eight rounds of reactions were cycled at 94 °C-30°, 68 °C-30° (–1 °C per cycle) and 72 °C-30°, followed by 30 rounds at 94 °C-30°, 60 °C-30° and 72 °C-30°. ABI-Prism 310 Genetic Analyzer was then used to analyse PCR products. Determination of expanded alleles was performed on 10 pg of PBL DNA, which underwent XL-PCR and 1% agarose gel electrophoresis. Southern blotting with subsequent hybridization to a 32P radiolabelled (CTG) 7 oligonucleotide probe was then used to analyse PCR products followed by detection using autoradiography.

2.3. MRI acquisition

All patients and healthy controls received an MRI scan, obtained using a head-only 3.0 T scanner (Siemens Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany), equipped with a circularly polarised transmit–receive coil. The maximum gradient strength is 40 mTm -1, with a maximum slew rate of 400 mTm -1 ms -1. The MRI session included for every subject: (1) a dual-echo turbo spin echo (TSE) (TE1 = 12 ms; TE2 = 109 ms; TR = 6190 ms; ETL = 5, matrix = 256 x 192; FOV = 230 x 172.5 mm2; slice thickness = 3 mm; total number of slices = 48); (2) a fluid attenuated inversion recovery (FLAIR) scan (TE = 96 ms; TR = 8170 ms; TI = 2100 ms; ETL = 13; same matrix and FOV as the dual echo; slice thickness = 3 mm; total number of slices = 45); (3) a magnetization prepared rapid gradient echo (MPRAGE) sequence (TE = 2.7 ms; TR = 2500 ms; TI = 900; flip angle = 8°; matrix = 256 x 208 x 176 mm3); (4) a series of 12 MT-weighted 3D fast low-angle shot (FLASH) sequences (TE = 7.4 ms; TR = 35 ms; flip angle = 78°; matrix = 128 x 96 x 28; FOV = 230 x 172.5 x 140 mm3), optimised for qMT (Cercignani & Alexander, 2006; Cercignani et al., 2009); (5) three 3D FLASH sequences with three different flip angles were collected for mapping the observed T1 of the system (TE = 4.8 ms, TR = 15 ms, flip angles = 5, 7, 15°, respectively, same matrix and FOV as the MT sequence) and (6) three 3D FLASH sequences with near-180 flip angles were collected for B1mapping (TE = 4.8 ms, TR = 28 ms, flip angles = 155°, 180°, 205°, respectively, matrix = 64 x 64 x 40, FOV = 220 x 220 x 160 mm3). The total scan time was approximately 40 min.

2.4. Lesion contouring and lesion masks

The volume of white matter lesions was assessed using a semi-automated local thresholding contouring software (Jim, Version 7, Xinapse Systems, Colchester, UK; www.xinapse.com) on FLAIR scans. Dual-echo scans were used as a reference to increase confidence in lesion identification. A binary lesion mask was obtained for every subject by setting all voxels within a lesion to 1 and the background to zero. The resulting lesion masks were co-registered with every patient’s MPRAGE using an affine registration in ANTs (Avants et al., 2011). Magnetization transfer data were processed using customized software that fits a binary spin bath model to the data acquired with variable settings of MT pulse offset frequency and flip angle (Cercignani et al., 2009; Giuliani et al., 2012). Among other model parameters, this process yields maps of the pool size ratio (F), computed as F = Ml/Ms, where Ml represents the spin density of the liquid pool, and Ms represents the spin density of the macromolecular pool. F expresses the relative density of macromolecules, it is unitless, and is known to correlate with myelin content (Turati et al., 2015). The MPRAGE scan was segmented into white matter, grey matter and cerebrospinal fluid (CSF) for every participant. Next, it was co-registered to the 15° volume acquired as part of sequence 5, used as a reference space for the qMT scans. The same transformation was applied to the white matter segment. A white matter mask was obtained by thresholding the result at 0.8. For all participants with lesions, a NAWM mask was obtained by subtracting the lesion mask from the white matter mask. The average F was computed within lesions and NAWM for every participant. The lesion masks were warped into MNI space and lesion probability maps were obtained for each patient group.

2.5. Identification of temporal lesions

FLAIR scans and lesion masks of DM1 patients were visually inspected by 2 experienced observers to identify the presence of anterior temporal lobe lesions. For patients who showed them, separate masks of temporal and non-temporal lesions were created, and F values extracted for comparison.

2.6. Volumetric analysis

As brain atrophy is known to occur in both, MS and DM1, we also compared some measures of global and local brain volume. Every participants’ MPRAGE was segmented using SPM (Di Paola et al., 2008), after lesion filling. The grey matter, white matter and CSF probability images in standard space were ‘modulated’, i.e. multiplied by the jacobian of the warping transformation to preserve volumetric information. The brain parenchymal fraction (BPF) was computed as the sum of the grey and white matter volume divided by the total intracranial volume.

2.7. Statistical analysis

Statistical analyses on clinical and imaging data were performed using SPSS (SPSS Inc., Chicago, Illinois). The imaging data included in the analysis are: lesion load, BPF, mean lesion F, mean NAWM F values. Before analysis, data were plotted to check their distribution. Values are expressed as mean ± standard deviations (SDs), or as median ± interquartile ranges (IQRs) depending on the normal distribution of the values. Student’s t test was used to compare the means of F of lesions between patients groups, means of NAWM F and means of BPF between the 3 groups. If significant differences in relevant cohort characteristics (e.g., age, sex) were present, multiple linear regression analysis was
used. Due to skewness in its distribution, the lesion load data was normalized using logarithmic transformation and comparison between the means of each group was carried out with Student’s t test. Linear regressions were used to examine the relationship between the neuroimaging parameters examined and triplet expansion accounting for age.

3. Results

3.1. Demographic and clinical characteristics

The three groups did not differ significantly with regard to sex but DM1 patients in our cohort tended to be older (Mean age: 42.1; SD: 12.1 years) than MS patients (Mean age: 35.8; SD: 7.63 years), and healthy controls were younger overall, but a smaller group (Mean 33.8, SD 8.4) (X² 1.1p = ns; p = 0.009 respectively). The patients with MS had a median expanded disability status scale (EDSS) score of 2.0 (range: 0–4), and a mean disease duration of 7.7 years (SD: 4.2). Their mean number of years of formal education was 13.2 (SD: 3.5). Table 1 summarizes the principal clinical and genetic characteristics of the DM1 patients. A larger proportion of patients had adult onset DM1, 20 out of 28 (71%), while 8 out of 28 (29%) had childhood disease onset. The mean triplet expansion was 469.85, with a range of 54–1200. Each expansion was grouped according to the guidelines of the Myotonic Dystrophy consortium (IDMC, 2000).

3.2. Lesion burden and radiological results

As we expected, patients with MS in our cohort had more extensive white matter disease. Once normalised on the logarithmic scale, an independent t test demonstrated that the mean lesion volume was higher in MS (median 6386, IQR 20100) than DM1 (median 2288.8, IQR 6995.3) (p = 0.002, CI –0.717 to –0.165). The healthy control cohort did not show any macroscopic lesions. The BPF was lower in MS than in DM1 patients (p = 0.009, CI = 0.009–0.06), and higher in healthy controls than in both patient groups (p = 0.001, CI = 0.034–0.099 for MS, and p = 0.02, CI = 0.005–0.06 for DM1).

Table 2 summarises the principal MRI characteristics of the patient groups.

Examining the lesion substrate of all patients, we found more evidence of myelin disruption within lesions compared to NAWM, with the mean F of lesions being lower than the NAWM (p < 0.01, CI 0.06–0.07), and lower in MS than in DM1 (p < 0.01, CI 0.01–0.04).

In addition to examining the lesion volume in each group, we also investigated the distribution of lesions in each cohort by creating lesion masks and probability maps. Fig. 1 shows the lesion distribution in the 2 patient groups, highlighting the overall greater lesion load in MS patients. Although the lesion volume was smaller in DM1 patients, the distribution was similar with the following exceptions: DM1 patients did not show any lesions in the cerebellum and brainstem; 3 out of 28 DM1 patients (11%) presented with a pattern of temporal lobe lesions typical for DM1 (Fig. 2). Given the small number of DM1 patients with typical temporal lesions, no formal statistical comparison was performed. A plot of the mean F and its SD for every patient is shown in Fig. 3. The data are not conclusive but suggest that F might be higher in temporal lobe compared to non-temporal lobe lesions.

Due to the differences in age and sex distribution between groups, we performed further multiple regression analyses with NAWM and lesion F, respectively, as the dependent variables, and group, age and sex as factors.

This analysis showed significant differences between F of the NAWM in the MS group compared to the DM1 (beta 0.45, p < 0.01) and control group (beta 0.42, p < 0.01), while there did not appear to be a significant difference between NAWM in DM1 patients and controls (beta –0.003, p = ns). Details are shown in Table 3.

Within lesions, multiple regression analysis indicated that patients with MS had significantly lower F compared to the DM1 cohort (beta –0.28, p < 0.01), when adjusted for age and sex as shown in Table 4.

There was no association between FLAIR lesion load, lesion F or NAWM F and either triplet expansion and age (p value > 0.5 for all models explored) in DM1 patients. The triplet expansion number was mildly correlated with patient age (p = 0.02, r = 0.43). The F of lesions in DM1 was not found to correlate to triplet expansion number (p = ns, r = 0.02). Patient age and disease onset did not demonstrate any correlation with lesion load on FLAIR (p = ns, r = 0.27, p = ns r = –0.14).

We found a statistically significant difference between lesion load in DM1 patients with adulthood and childhood onset on FLAIR once transformed to allow normalization of the data. (Adult onset: n = 20 med 3134.8 IQR 8414.75; Childhood onset: n = 8, med = 1898.2, IQR = 1857.6; p = 0.03. 95% CI 0.03 to 0.68) However, within the childhood onset group there were less patients, and the age range of this group was 18–55, with a younger median age of 32, compared to 45 (range 31–69) for the adult onset group which may explain some of this variation.

Examining for correlation between many of the clinical variables with imaging results using Spearman’s and Pearson’s coefficient (depending on the normality of the variable) did not demonstrate any significant correlation except for age and triplet expansion, which was mildly correlated. Given the large number of comparisons, however, this result cannot be considered conclusive.

4. Discussion

This study demonstrates that the white matter lesion distribution in people with DM1 largely overlaps with that typical of relapsing remitting MS, and that such lesions are likely to be characterised by demyelinisation, as measured by a reduction in the magnetization transfer parameter F. Conversely, no evidence of demyelinisation within the NAWM was observed in DM1 brains.

4.1. Lesion distribution

MS lesions are known to be located primarily in a perivascular distribution (Tallantyre et al., 2008). Although they can form in virtually every area of the central nervous system, their density typically increases with proximity to the ventricles, suggesting a role for CSF-mediated factors in the accumulation of damage (Jehna et al., 2015). Our results suggest that white matter lesions tend to follow a similar anatomical pattern in DM1 patients, at least in the supratentorial compartment. Whether this distribution is suggestive of similar mechanisms of lesion formation remains to be clarified. Lesion distribution in MS has been postulated to be related to lymphocyte trafficking pathways and distinct antigen presentation depending on the particular area of the central nervous system involved (Gross et al., 2017). It is likely that the mechanism is different in DM1, however an inflammatory reaction to RNA inclusion bodies may be a hypothesis to consider. Despite the similar lesion distributions in the 2 patient cohorts (i.e., DM1 and MS), there were also some important differences. First, none of the DM1 patients showed any lesions in the cerebellum and brainstem, which again remarks substantial pathophysiological differences between DM1 and...
MS with respect to macroscopic white matter damage. Interestingly, infratentorial lesions are common in MS, and often associated with clinical symptoms when in relation with an acute MS relapse. In addition, 3 DM1 patients (but none of the MS patients) showed the typical anterior temporal white matter lesions (Fig. 2). This is consistent with previous imaging studies of patients with DM1 demonstrating specificity for the anterior temporal region (Miaux et al., 1997; Ogata et al., 1998), whose pathological substrate has been characterized by decreased myelin sheaths and severely disordered arrangement of axons with microscopically heterotopic neurons (Ogata et al., 1998). As only 3 patients in our sample presented with anterior temporal lobe lesions, it was not possible to perform a formal statistical analysis of those patients or investigate any correlation with triplet size or a significantly larger lesion load compared to other parts of the brain. Nonetheless, these anterior temporal lesions showed (in 2 out of 3 cases) higher F values in comparison with those distributed to other brain regions. It is difficult to provide a definite interpretation of this finding. Post-mortem studies of DM1 have recognized different substrates in different areas of the brain, such as inclusion bodies in the cerebral cortex and neurofibrillary tangles in the temporal lobes, a finding which may suggest that the variation of lesion distribution being seen, could be due to different substrate involvement (Ono et al., 1987, 1989). However, it is also possible that these differences are explained by intrinsic variations in tissue type. A similar finding, differentiating between periventricular and deep white matter hyperintensities in an aging cohort was interpreted as evidence of altered fluid dynamic and CSF leakage in the periventricular area, possibly linked to abnormal glymphatic system function (Iordanishvili et al., 2019). Although this is an intriguing hypothesis, given the small number of anterotemporal lesions in this study, we refrain from speculating on this subject. Considering the questions remaining regarding the mechanisms of disease, in future research, it may be important to compare DM1 with other genetically inherited neurological disorders, which predominantly affect white matter, through imaging and histological studies. CADASIL is an arteriopathy which results in white matter disease, predominantly in the anterior temporal lobes due to vascular insult (Li et al., 2008). Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is a rare autosomal recessive disorder caused by mutations in the thymidine phosphorylase gene, which leads to excess levels of thymidine and resultant mitochondrial DNA replication abnormalities. A study by Gramegna et al. found evidence of microvascular damage leading to diffuse white matter involvement in patients with MNGIE on brain MRI, MR spectroscopy and histopathology (Gramegna et al., 2018a). Additionally, another interesting observation by the same group has highlighted the potential role of mitochondrial dysfunction in DM1, illustrating that patients with higher levels of CSF lactate on MR spectroscopy also demonstrate greater white matter disease (Gramegna et al., 2018b). Comparing these disease entities using advanced neuroimaging techniques alongside histopathology could shed further light on the disease mechanisms involved in DM1.

4.2. Lesion Substrate

With regards to the quantitative analysis, we demonstrate that, while we found no evidence of demyelination in the NAWM of DM1 patients in our study, F values within the lesions are significantly reduced, suggesting a reduction in myelin density. It should be reiterated, however, that F is computed as a ratio, and therefore a reduction could be caused by either, a decrease in the numerator, or an increase in the denominator. The latter could happen in the presence of oedema (i.e., an increase in free water). Indeed, previous experimental studies have demonstrated that inflammation in the absence of demyelination can cause similar changes (Stanisz et al., 2004). Therefore this study cannot conclude with absolute certainty that demyelination explains all the observed changes in F from DM1 brains. The average F values from DM1 lesions are higher than MS lesions, suggesting a less extensive loss of myelin, but they are significantly lower than in the NAWM, and than in the white matter of healthy controls. Neuropathological investigations in DM1 are extremely limited (Ogata et al., 1998; Mizukami et al., 1999; Itoh et al., 2010). Itoh et al. (2010) who examined 11 patients with DM1...
reported, in the deep white matter, microscopic evidence of dilated perivascular spaces, loss of adjacent axons and myelin, capillary hyalinization, and fibrillary gliosis. They argued that the macroscopic lesions detectable on MRI scans in the white matter of DM1 patients may be considered as instances of état criblé and represent a DM1 specific morphological change. Interestingly, they did not report any obvious abnormality in the NAWM, consistently with our current results.

Although MTR has been used previously to investigate brain changes occurring in DM1, this is the first study to use qMT. It is important to

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>P value</th>
<th>Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.225</td>
<td><0.001</td>
<td>0.033 to 0.057</td>
</tr>
<tr>
<td>DM1</td>
<td>0.45</td>
<td><0.001</td>
<td>0.028 to 0.055</td>
</tr>
<tr>
<td>Control</td>
<td>0.42</td>
<td><0.001</td>
<td>0.0 to 0.0</td>
</tr>
<tr>
<td>Age</td>
<td>0.00</td>
<td>0.858</td>
<td>0.0 to 0.0</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.011</td>
<td>0.013</td>
<td>-0.019 to -0.002</td>
</tr>
</tbody>
</table>

Abbreviations: DM1: myotonic dystrophy type 1; MS: multiple sclerosis; NAWM: normal appearing white matter.
reiterate that this technique provides a more specific quantification of myelin than MTR, as the MTR is acquisition-dependent and incorporates effects independent of myelin content (Cercignani & Bouyagoub, 2018), such as changes in T1 (Henkelman et al., 2001) and changes in extra-cellular volume fraction (Stanisz et al., 2004). This might explain why a previous investigation of NAWM in DM1 using MTR found significant differences between DM1 patients and healthy controls (Naka et al., 2002) while we did not. It is possible that the changes observed by Naka et al. (2002) are explained by substrates other than demyelination. An additional difficulty in comparing results of studies in this patient cohort rests on the small numbers often included, the significant effects of anticipation and expansion number on phenotype, the variation in group onset and in imaging protocols, some or all of which may help explain the difference in results with respect to the NAWM. Our findings are consistent with other studies demonstrating reduced F value within lesions in MS, in terms of the values of the lesions’ substrate (Sled 2018). As qMT is a relatively novel technique, not available on clinical scanners, it is difficult to find studies that have applied it to diseases such as CADASIL, which would be very helpful to compare against our current findings.

4.3. Correlation with clinical and genetic data

Our results did not demonstrate any correlation between triplet number and lesion load, F value or MIRS(Muscular impairment rating scale) scores. There has been reported variability between triplet size depending on the site at which it is sampled, for example, repeats are larger in muscle samples than in corresponding blood samples (Thornton et al., 1994). In clinical practice samples are always taken from the blood, however it is possible that CSF samples might more accurately reflect increasing lesion load or changes in the central nervous system, and this may be something to consider in future studies. Different studies have demonstrated varied results with regards to correlation between MRI changes, clinical findings, cognition, and triplet expansion (Meola and Sansone, 2007; Serra et al., 2015). This disparity again may result from the well-known heterogeneity within this patient group due to differences in genetic inheritance and expression, clinical phenotypes, and notably study designs. It has been shown that modal CTG repeat length might not be the best variable to consider for these correlations, as it tends to correlate with the age of onset (Cumming et al., 2019). Instead, progenitor CTG repeat length is the best predictor of risk as it tends to correlate with the age of onset (Cumming et al., 2019). Differences in genetic inheritance and expression, clinical phenotypes, and the nature of white matter changes.

4.5. Conclusion

In conclusion, we have shown that the distribution of lesions within the white matter is similar in DM1 and MS, suggesting that proximity to the ventricles might increase susceptibility to tissue damage regardless of the underlying pathological mechanism. In addition, we have demonstrated that demyelination occurs within DM1 lesions, but not in the NAWM, and that the DM1 typical anterior temporal lesions might be different from the periventricular ones. These data support the use of quantitative MRI techniques for the characterization of brain changes associated with DM1, and the need for sensitive non-invasive imaging biomarkers to aid in our monitoring of progression, possible response to treatment and advancing our understanding of this disease.

Declaration of Competing Interest

The authors declare no competing financial interests.

Acknowledgments

This work was funded in part by a grant from the Italian Ministry of Health (RF-2013 02358409) awarded to M. Cercignani. G. Meola is supported by FMM-Fondazione Malattie Miotoniche-Milan, Italy.

References

