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1 introduction

Let C be the boundary surface of a strictly convex bounded three-dimension-

al body. Strictly convex means that if P and Q are points on C, then points

on the line segment PQ between P and Q lie in the convex body, but not on

its boundary C. Let MC denote the dilation of C by a factor M . Andrews [1]

proved a general result which in three dimensions gives the number of points of

the integer lattice on MC to be

O

(

M
3
2

)

, (1)

as M tends to infinity. Strict convexity is necessary because a part of a 2-

dimensional plane in the boundary C can give as many as a constant times M2

integer points for infinitely many values of M .

We consider the integer points within a distance δ of the surfaceMC. The two-

dimensional case has been well-studied [12], [5], [9], [6], [10] and [11]. Introducing

δ requires some uniform approximability condition on the surface C, usually

expressed in terms of upper and lower bounds for derivatives and determinants

of derivatives. Let A be the 2-dimensional area of C. The search region has

3-dimensional volume

(

2Aδ +O(δ2)
)

M2, (2)

and this is known to be the number of integer points on average over transla-

tions of the surface MC. To obtain an asymptotic formula one considers the

Fourier transform of the convex body, with conditions at least as far as the 18th
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derivatives in order to estimate the multiple exponential integrals [7]. Hlawka [8]

obtained a general dimensional asymptotic formula, which in three-dimensions

yields an error of size (1); see also Krätzel [13]. Under the C∞ hypothesis of

a convergent Taylor series, the error term in the asymptotic formula has been

improved, most recently by Müller [18].

We derive an upper bound for the number of integer points within a distance

δ of the surface. We require only that C has a tangent plane at every point,

and that any two-dimensional cross-section through the normal at some point P

consists (in a neighbourhood of P ) of a plane curve C ′ with continuous radius of

curvature ρ′ satisfying a condition

1

M
< c0 < ρ′ < c1.

This condition involves derivatives up to the second order. We actually suppose

that M is large and we assume the condition

c0M +
1

2
≤ ρ = ρ′M ≤ c1M − 1

2
, (3)

with C contained in a sphere of radius c1M .

Our upper bound has two terms whose orders of magnitude correspond to (1)

and (2). The constant factor in the second term is larger than 2A.

In Müller [18] the differential inequality assumed is that the Gaussian curva-

ture does not vanish. We can regard (3) as a corresponding quantitative bound.

Under the curvature conditions we prove that an upper bound for the number

of integer points N lying on or within a distance δ from the surface C is given by

N ≤
(

c1
c0

)2

216
(

(c1M)
3
2 + 29δ(c1M)2

)

.

In section 3 we consider the convex hull of the integer points in a d-dimension

-al convex body satisfying the Curvature Condition, and find explicit bounds for

the number of faces in different dimensions.

There is a vast literature on the lattice points in a convex polytope. We

have been able to use some parts of this theory [1], [2], [3], [4], [16], [17] and [19].

Where possible, this theory has been stated in the general d-dimensional case. To

extend all the results of this paper to d dimensions requires more investigation of

configurations in intermediate dimensions, and of the distribution of large faces of

the convex hull with short normal vectors. This will be the subject of a following

paper [14].
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2 shells and curvature

Let C0 be the locus of points at distance δ from C measured along the interior

normals to C, and let C1 be the locus of points at distance δ measured along

the exterior normals. Let E be the d-dimensional shell bounded by C0 and C1 so

that E has thickness 2δ. Let S be the set of integer points in E, and let H be

the convex hull of S, so that H is a d-dimensional convex polytope. All points of

S lie in H , but not all integer points on the boundary of H lie in S.

CURVATURE CONDITION (with size parameter M). For any point P on

C and any two-plane Π through the normal to C at P , let C(Π, P ) be the closed

plane curve C∩Π. Then C(Π, P ) is a twice differentiable plane curve with radius

of curvature ρ lying in the range

c0M +
1

2
≤ ρ ≤ c1M − 1

2
, (4)

where the constants c0, c1 and δ satisfy

1

M
< c0 ≤ 1 ≤ c1, and δ <

1

4
. (5)

As an immediate consequence of the Curvature Condition we have the following

Lemma.

LEMMA 2.1. Let C satisfy the Curvature Condition. For both of the boundary

hypersurfaces C0 and C1 of the shell E, at each point Q of the hypersurface there is

a tangent hyperplane. The 2-dimensional section C(Π, Q) by a 2-plane normal to

the tangent hyperplane is twice differentiable. The radius of curvature of C(Π, Q)

lies in the range

c0M ≤ ρ ≤ c1M. (6)

The proof follows by direct consideration of points on C0(Π, Q) and C1(Π, Q)

with respect to C(Π, Q).

By the condition (4), S, the set of integer points, lies in a d-hypersphere of

radius R = c1M , and we recall the formulae for Vd, the volume, and for Sd, the

surface content, of a d-dimensional sphere [19].

Vd = αdR
d, Sd = dαdR

d−1, (7)

where

α2k =
πk

k!
, α2k+1 =

22k+1πkk!

(2k + 1)!
, αd ≤ 6. (8)
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3 Convex polytopes

In this section we again consider the general d-dimensional case, so that the

convex hull H of the set of integer points S is a d-dimensional convex polytope,

where d ≥ 2.

LEMMA 3.1. To each hypersurface face of the convex polytope H we assign a

standard normal vector; this is the unique outward normal integer vector (A1, A2, A3, . . . , Ad),

which is primitive in the sense that hcf(A1, A2, A3, . . . . . . , Ad) = 1. Then for each

N ≥ 1 there are

≤ 3dNd (9)

hyperfaces of H whose standard normal vector has length at most N .

Proof. There are (2N + 1) possibilities for each vector entry so that the total

possible number of vectors is

(2N + 1)d ≤ 3dNd.

LEMMA 3.2. Let U be a set of K integer points in d-dimensional space that

do not all lie on some hyperplane. Then there is a simplicial complex of at least

(K − d) non-overlapping simplices whose vertices are the K points of U .

Proof. This Lemma may be proved from the outside in, by successively removing

vertices of the convex hull of U , or from the inside out by choosing simplices of

minimal non-zero volume [15].

LEMMA 3.3. Let H be a convex polytope contained in a hypersphere radius R,

whose vertices are integer points. Then the number of (d− 1)-hyperplane faces of

H whose standard normal vector has length greater than N is

≤ αdR
d−1d!

N
. (10)

Proof. Consider d integer points x1,x2,x3, . . . ,xd lying on a hyperplane face with

primitive normal vector (A1, A2, A3, . . . , Ad), where the d-integer points form a

simplex with (d−1)-dimensional volume V (d−1), and xd+1, an integer point lying

off the hyperplane face. The perpendicular distance from xd+1 to the hyperplane

face is

D =
k

√

(A2
1 + A2

2 + A2
3 + . . .+ A2

d)
, (11)

for some positive integer k. We chose xd+1 so that the distance is minimal and

so k = 1. Then, the d-dimensional volume V (d) of the convex hull of these d+ 1

points satisfies

V (d)(x1,x2,x3, . . . ,xd+1) =
1

d
DV (d−1)(x1,x2,x3, . . . ,xd).
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Since the volume of a d-simplex whose vertices are integer points is at least 1/d!,

we have

V (d−1)(x1,x2,x3, . . . ,xd) ≥
d

(d)!

1

D
=

1

(d− 1)!

√

(A2
1 + A2

2 + A2
3 + . . .+ A2

d)

≥ N

(d− 1)!
(12)

by the conditions of the Lemma.

The (d − 1)-dimensional hypervolume of the hyperplane faces of the convex

polytope must be less than or equal to the (d− 1)-hypervolume of the surface of

the d-dimensional hypersphere enclosing it. Let Ai be the hypervolume of each

hyperplane face of the polytope then by equation (7) we have

∑

Ai ≤ Sd = dαdR
d−1. (13)

We obtain an upper bound for the number of large hyperplane faces of the convex

polytope by dividing the lower bound (12) into the upper bound (13) to obtain

≤ dαdR
d−1(d− 1)!

N
. (14)

THEOREM 3.4. Let H be a convex polytope contained in a d-sphere of radius

R. Then H has at most

2 (3αdd!)
d

d+1 R
d(d−1)
d+1 (15)

hyperplane faces.

Proof. We take

N =

(

αdd!

3d

)

1
d+1

R
d−1
d+1 .

in (9) of Lemma 3.1 and (10) of Lemma 3.3. The total number of hyperplane

faces is the sum of bounds for those with long normal vectors in (9) and those

with short normal vectors in (10)

≤ αdR
d−1d!

N
+ (3N)d = 2 (3αdd!)

d
d+1 R

d(d−1)
d+1 .

LEMMA 3.5. Let H be a convex d-polytope with vertices at integer points. From

each j-face Fi of H, we pick out (j + 1) vertices vi,1,vi,2, . . . ,vi,j+1 that do not

all lie on a (j − 1)-dimensional plane. Let wi be the centroid of these vertices

wi =
1

j + 1

(

vi,1 + vi,2 + . . .+ vi,(j+1)

)

. (16)
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Let T = {w1,w2, . . . ,wh} be the set of centroids associated with all the j-faces

of H. For a set U , let conv{U} denote the smallest convex set containing all the

elements of U . Then the centroids wi are true vertices of conv{T}, in the sense

that for any t = 1. . . . , h

conv{T\{wh}} 6= conv{T}.

Proof. We must rule out the possibility that

wi =

h
∑

g=1

λgwg, (17)

with

0 ≤ λg ≤ 1,
h

∑

g=1

λg = 1. (18)

Substituting for wg using (16) and multiplying by (j+1) to clear fractions yields

vi,1 + vi,2 + . . .+ vi,(j+1) =

h
∑

g=1

j+1
∑

f=1

λgvg,f . (19)

Each j-face Fi is the intersection of at least (d−j) facets or hyperplanes of H and

our (j + 1) vertices of Fi are also vertices of each of these hyperplanes. We label

these hyperplanes Π1,Π2, . . . ,Πk, . . .Πt with primitive integer normal vectors nk,

so that any point r lying on Πk satisfies the equation

r.nk = Dk.

As H is convex, all the Πk are supporting hyperplanes of P . Hence, for any point

x in H we have

x.nk ≤ Dk, (20)

where we have assumed (using a suitable integer vector translation) that H con-

tains the origin. Applying (20) to (19) yields

(vi,1 + vi,2 + . . .+ vi,(j+1)).nk = Dk(j + 1) =

h
∑

g=1

j+1
∑

f=1

λgvg,f .nk

≤ (j + 1)

h
∑

g=1

λgDk = Dk(j + 1),

implying that

Dk(j + 1) =

h
∑

g=1

λg

j+1
∑

f=1

vg,f .nk ≤ Dk(j + 1). (21)
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This equality is only satisfied if all of the vertices vg,f for which λg 6= 0 are on

the hyperplanes Πk, 1 ≤ k ≤ t.

Now any j-face Fi of a convex d-polytope H can be defined as the intersection of

the q-faces that contain Fi, j ≤ q ≤ (d− 1). Therefore, as the vertices vg,f lie on

such an intersection with q = (d− 1), we deduce that the vertices vg,f for which

λg 6= 0 are all vertices of our j-face Fi. That is, vg,1,vg,2, . . . ,vg,j+1 are vertices

of Fi.

This implies that for g 6= i in equation (19) we must have λg = 0, as two

distinct j-faces of H cannot share (j + 1) vertices. Hence there is only one term,

λg, with g = i and λi = 1 yielding the trivial expression, right hand side is

identical to left hand side in equation (19).

Therefore, wi has only one expression as a convex sum of

T = {w1,w2, . . . ,wh},

and thus wi is not in the convex hull of T −wi.

Theorem 3.6 is a version of Andrew’s Theorem [1] with explicit constants. The

second statement regarding the number of faces was not stated in [1]. McMullen

[17] has upper bounds for the number of faces in terms of the vertices. These

bounds can be attained by polytopes with integer vertices lying on a twisted quan-

tic curve, but the parameter R is very large. Hence, for a spherically contained

convex d-polytope, there exist triples, (d, f0, j), for which the second statement of

Theorem 3.6 is an improvement on the general upper bound stated by McMullen

in [17].

THEOREM 3.6. In d-dimensional space, a convex polytope H with f0 vertices,

all at integer points, contained in a hypersphere of radius R satisfies

f0 ≤ 2 (3αdd!)
d

d+1 (2R)
d(d−1)
d+1 ≤ 36d!(2R)

d(d−1)
d+1 . (22)

Let 1 ≤ j ≤ d− 2. Under the conditions of the theorem, the number fj of j-faces

of P satisfies

fj ≤ 2 (3αdd!)
d

d+1 (2(j + 1)R)
d(d−1)
d+1 . (23)

Proof. Let T be the set of midpoints of edges of H , and let H ′ be the convex hull

of T . By Lemma 3.5 each point of T is a vertex of H ′. Let V be the vertex of H

where edges e1, e2, . . . , er meet and letW1,W2, . . . ,Wr be the respective midpoints

of these edges. The W1,W2, . . . ,Wr are all vertices of H ′ but not necessarily of

the same facet.

By construction, each vertex V of H is truncated by a facet F of H ′ and we

say that V belongs to the facet F . Geometrically we can think of V as lying

7



above the facet F . The supporting hyperplane Π of H ′ containing F cuts H in

a (d − 1)-dimensional convex polytope Q. The join of V to any other vertex V ′

of H cuts Π within this convex polytope. We now show that V ′ cannot lie above

the facet F . The vertices of Q are points X1, X2, . . . , Xr on e1, e2, . . . , er and Xi

is either Wi, the midpoint of ei, or between V and Wi. Therefore, if V
′ lies above

F , then V ′ lies in conv(Q, V ) and so V ′ lies in conv(V,X1, X2, . . . , Xr). The only

vertex of H in this list is V , so V ′ = V .

This implies that the number of facets of H ′ is greater than or equal to the

number of vertices of H .

Now 2H ′ is a polytope with integer vertices lying in a d-sphere radius 2R,

so the number of faces of H ′ is given by (15) of Theorem 3.4, but with a larger

implied constant. We deduce the result (22).

For each j-face G of H we choose j+1 vertices that do not all lie on the same

(j − 1)-plane and construct C(G), the centroid of the j + 1 vertices. Since C(G)

does not lie on the (j − 1)-dimensional boundary of G, C(G) cannot lie on any

other j-face. Let U be the set of centroids C(G) constructed from the j-faces of

H .

By Lemma 3.5, U is a strictly convex set and we define H ′′ to be the convex

hull of the points C(G) in U . Then (j + 1)H ′′ is a polytope with integer point

vertices lying in a sphere radius (j+1)R, so that the number of vertices of H ′′ is

given by equation (22), but with a larger implied constant. Each j-face G gives

a distinct point C(G) in U which is a vertex of the convex polytope H ′′. We

deduce the result (23).

4 Major arcs and lattices

Throughout this section H is the convex hull of the set S of integer points inside

the shell E. It is helpful in many problems to separate “major arcs”, regions where

there is good Diophantine approximation, from “minor arcs”, regions where there

is not. In this paper a major arc can be described informally as a region U of the

shell E such that the convex hull of all the integer points in U is contained in the

intersection of E with some hyperplane. In three dimensions, major arcs on the

plane faces and edges of the convex hull H can have dimension 1 or 2.

LEMMA 4.1. The maximum length of a straight line segment in E is

≤ 4
√

δc1M. (24)

A chord AB of C1 tangent to C0 has length

4
√

δc0M ≤ AB ≤ 4
√

δc1M (25)
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Proof. Let R = c1M and let Π be a two-dimensional plane containing the normal

vector at a point X on C1 and any other point A also on the outer boundary

C1. The two-dimensional section E⋆ of the shell E in Π is depicted in Figure 1.

We consider the line segment AB when it is wholly contained within E⋆ and so

the perpendicular distance XY from AB to X must be ≤ 2δ. Applying circular

geometry to the circle radius R with respect to the mid-point Y of chord AB we

find that
(

AB

2

)2

= AY 2 = XY (2R−XY ), (26)

and for fixed R, this is maximal when XY = R. Hence we take XY as large as

possible in (26), yielding the required result.

The lower bound in (25) corresponds to the case when the cross-sectional

curve is a circle of minimal radius of curvature R = c0M + 1/2. In this case, by

(26)

AB = 2AY = 4
√

δ(R− δ) ≥ 4
√

δc0M,

by (4) and (5).

LEMMA 4.2. Let R = c1M and let F be a facet or hyperplane face of H that

lies in a hyperplane Ψ with outward normal n. Let X be the point of C1 at which

n is the outward normal. Let h be the distance from X along the inward normal

to the nearest point Y on the hyperplane Ψ. Let E ′ be the (d − 1)-dimensional

section of E contained in Ψ, so that E ′ contains all parts of the face F that lie

in the shell E. Then the (d−1)-dimensional volume V of E ′ is bounded above by

V ≤ 2
d+9
2 dδR

d−1
2 h

d−3
2 . (27)

Figure 1: (section by 2-plane Π through l and X).
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Figure 2: (section by 2-plane Π1 through l and T ).

Proof. Let Π be a two-dimensional plane through XY , and let E⋆ be the two-

dimensional section of E by Π (Figure 1). Then Π cuts Ψ in a straight line l

which meets C1 in two distinct points A and B. The points A and B lie inside

the circle radius R through X with n as outward normal at X . For clarity, the

curves C0 and C1 in Figure 1 are drawn as circles. From (26) in the proof of

Lemma 4.1 we have

AY ≤
√

h(2R− h) = k. (28)

Hence the set E ′ = E ∩Ψ lies within a (d− 1)-sphere centre Y radius ≤
√
2Rh.

Case 1. When h ≤ 2δ the plane Ψ does not cut C0 and by (6), the diameter of

E ′ satisfies (24). This implies that the whole of the facet F is contained within

the shell E. Therefore, the (d − 1)-dimensional volume V of E ′ is less than or

equal to that of a (d− 1)-sphere radius
√
2hR. Applying (7) yields

V ≤ αd−1(2hR)
d−1
2 ≤ 2

d+5
2 (hR)

d−1
2 . (29)

Case 2. When h > 2δ the hyperplane Ψ meets C0, and the line l in the two-

dimensional plane Π cuts C0 in two distinct points A0 and B0. Let A0T be the

normal from A0 to C1, so the distance A0T is 2δ, and let C⋆ be the hypersphere

radius R touching C1 at T . Let Π1 be the two-dimensional plane through the line

l and the point T (Figure 2). Then C1 and the shell E are contained within C⋆.

The line l cuts C⋆ at A⋆ and B⋆, so that by the geometry of circles

AA0.A0B ≤ A⋆A0.A0B
⋆ = 2δ(2R− 2δ) ≤ 4δR, (30)

On the line l, the point A lies between A⋆ and A0, with AA0 = η (say) and η > 0.

Hence

η ≤ A⋆A0. (31)

10



We also have

A0B
⋆ ≥ Y B⋆ = k =

√

h(2R− h). (32)

Each point of E ′ lies within a distance η of the (d − 2)-dimensional surface of

C1 ∩Ψ. The (d− 2)-dimensional volume of C1 ∩Ψ is at most the surface content

of a (d− 1)-dimensional sphere radius k, which by (7) is equal to

(d− 1)αd−1k
d−2.

Therefore, the (d− 1)-dimensional volume V of E ′ satisfies

V ≤ (d− 1)αd−1ηk
d−2 (33)

From (30), (31) and (32) we have

ηk ≤ A⋆A0.A0B
⋆ ≤ 4δR. (34)

Hence we can write

V ≤ (d− 1)αd−1(4δR)kd−3

which simplifies to

V ≤ 2
d+7
2 (d− 1)δR

d−1
2 h

d−3
2 . (35)

Combining (29) and (35) yields

V ≤ 2
d+9
2 dδR

d−1
2 h

d−3
2 .

and hence the result.

LEMMA 4.3. In d-dimensional space, the number of integer points of S in E

that lie strictly inside the convex hull H of S is

≤ 2δd!αdd(c1M)d−1. (36)

In particular, if d = 3, then the number of integer points lying within a short

distance δ of the convex hull H is

≤ 48πδ(c1M)2. (37)

Proof. Given that the integer point vertices of our convex hull H lie within a

distance δ from the closed convex hypersurface C, we can associate a hyperslab

of width 2δ with each facet of the polytopal convex hull where the hyperslabs will

overlap.

Any integer points H∩E must lie within a distance 2δ of the nearest polytope

facet Fi with hypersurface area Ai. The internal or “dihedral” angles between

facets are ≤ 180◦ due to convexity. Let P be such a point with nearest hyperface

11



Fi, so that the perpendicular from P to the hyperplane Fi actually hits Fi. If

not, then some other hyperplane is nearer (Fj say) under the distance equation

(11) defined in Lemma 3.3.

Therefore each integer point P lying inside the convex hull can be associated

uniquely with a nearest hyperface Fi.

Corresponding to each hyperface Fi we have a hyperslab Si consisting of two

completely parallel hyperfaces Fi and Fi shifted by 2δ in the normal direction to

the hyperplane. The hypervolume of Si = 2δAi where Ai is the hypersurface area

of Fi.

We know from Lemma 3.2 that in d-dimensions, K points that do not all lie

on the same hyperplane form at least (K − d) non-overlapping simplices. Each

simplex has hypervolume 1/d! multiplied by an integer so that each of these

simplices has hypervolume ≥ 1/d!.

Therefore, if Ki is the number of internal integer points associated uniquely

with the hyperface Fi, which itself has at least d integer point vertices, then the

total number of internal and boundary integer points of the hyperface is

≥ d+Ki,

so that we have at least Ki non-overlapping simplicies, yielding

Ki

d!
≤ 2δAi,

so that

Ki ≤ 2d!δAi.

Hence the total number of integer points lying within a short distance δ of the

convex hull H is

≤
∑

i

Ki ≤
∑

i

2d!δAi.

The boundary content of our convex d-polytope H is less than or equal to that

of the hypersphere with radius of curvature c1M enclosing it. Therefore

∑

i

Ki ≤ 2d!δαdd(c1M)d−1.

The next two lemmas are commonplaces of integer geometry, so we merely sketch

the proofs.

LEMMA 4.4. Let Π be a hyperplane with equation

n.x = D,

where n is a primitive integer vector, and D is an integer. Then the integer points

of Π form a lattice with determinant |n|.

12



Proof. The lattice of integers on Π is congruent to the lattice of integers on the

plane n.x = 0. Let m = n.n. The lattice of integer vectors with n.x ≡ 0(modm)

consists of (d−1)-dimensional lattices on the plane n.x = 0 and on parallel planes

at distance |n|.

LEMMA 4.5. Let Λ be a j-dimensional lattice of determinant n, 1 ≤ j ≤ d. Let

U be a convex set in the j-plane of Λ, with j-dimensional volume V , containing

K points of the lattice Λ. Then one of the following two cases holds.

(1) Major case. All the points of Λ in the set U lie on a (j − 1)-dimensional

plane.

(2) Minor case.

K ≤ j!
V

n
+ j ≤ (j + 1)!

V

n
.

Proof. In the minor case, by Lemma 3.2, there is a simplicial complex of at least

K− j non-overlapping simplices, each of volume at least n/j!, whose vertices are

the K points of U . The union of these simplices lies inside U and this gives the

first inequality. There is at least one such simplex, so V ≥ n/j!, and we deduce

the second inequality.

5 Vertex Components

From this point on, we are restricted to three dimensions.

For each point P in our shell E, there exists a normal to the outer boundary

surface C1, meeting C1 at a point R1. We call R1 the normal projection of P onto

C1 and R0 the normal projection of P onto C0. The vertices of our polyhedron,

must, by definition lie in E and for every other non vertex integer point in E there

must exist a nearest vertex. We now formalise this concept with the following

definition.

DEFINITION. Let P be a point of S in the shell E and R1 be the normal

projection of P onto C1. Let V be a vertex of the convex polyhedral hull H

and E ′ be the plane sectional strip of E containing V , P and R1. If the line

segment R1V lies entirely within the closed strip E ′, then we say that P lies in

the component S(V ) of S.

LEMMA 5.1. Every point P of S belongs to some vertex component S(V ).

Proof. The line segment PR1 cuts the boundary of the polyhedral hull H at some

point Q between P and R1 inside E, so that Q lies in some plane face F of H .

If Q is a vertex of H then P belongs to S(Q) as QR1 will lie on the line segment

R0R1 inside E.

13



We now assume that Q is not a vertex of H and triangulate the face F of H

containing Q so that Q lies in some triangle W = V1V2V3. If QVi does not enter

the interior of the convex set bounded by C0 then neither does R1Vi, implying

that P lies in S(Vi).

If P lies in no S(Vi) then each line segment QVi on F cuts the interior of C0

in some point Qi also on F but not in E. The whole convex triangle Q1Q2Q3

therefore lies strictly inside C0 and contains Q. Hence, Q is not in E which is

impossible, since Q lies on the line segment R0R1, which is strictly inside E. This

contradiction shows that for some i, the line segment ViQ lies in E and so ViR1

lies in E and P is in the component corresponding to Vi.

LEMMA 5.2 (spacing lemma). Let V be a vertex of the convex hull H. Let P

be a point of S not in the component S(V ) of V . Let R1 and R2 be the respective

normal projections of P and V onto C1. Then

R1R2 >
√

c0δM (38)

and the angle between the normals to C1 at R1 and R2 is

>
1

c1

√

c0δ

M
(39)

Proof. Since P is not in the component of V , the line R1V cuts C0 in two points

W1 and W2. Let E ′ be the plane sectional closed strip of E defined by the line

R1V and the point R2, so that E ′ also contains the points W1 and W2. Between

W1 and W2 on C0 is a point W where the tanget to C0 in E ′ passes through R1.

Then

R1V > R1W2 > R1W ≥ 2
√

δc0M

by (25). Hence

R1R2 ≥ R1V − 2δ > 2
√

δc0M − 2δ

≥ 2
√

δc0M −
√

δc0M =
√

δc0M,

by (4) and (5), which is (38).

To obtain (39) we consider the sphere B with centre on R2V produced, radius

c1M , touching C1 at R2. There is a point R′
1 on B where the outward normal

is parallel to the outward normal to C1 at R1, making some angle θ with the

outward normal at R2. Since C1 has sectional radius of curvature less than or

equal to c1M , the radius of B, we have

R1R2 ≤ R′
1R2.

The shortest distance from R′
1 to R2 along the surface of B is θc1M , so

θc1M ≥ R′
1R2 ≥ R1R2 >

√

c0δM,
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θ >
1

c1

√

c0δ

M

as required.

As each integer point P in S belongs to at least one component S(V ) labelled

by some vertex V of the convex hull H , components labelled by different vertices

may well overlap and different vertices of the convex hull may be close together.

We pick a well-spaced set of vertices of H as follows. Pick a vertex V1, and let

the enlarged component S ′(V1) be the union of all components S(V ) with V in

S(V1).

Now pick a vertex V2 not in S ′(V1), and form the enlarged component S ′(V2).

We pick Vi+1 not in S ′(V1), S
′(V2), . . . , S

′(Vi), and so on until all of the vertices

V of the convex hull H lie in some enlarged component.

LEMMA 5.3 (thickness lemma). Let S ′(V ) be an enlarged component and let

R2 be the normal projection of V onto C1. Let P be a point in S ′(V ). Then the

distance h of P from the tangent plane at R2 satisfies

h ≤ 52δc1
c0

. (40)

Proof. The integer point P lies in some component S(V ′) with V ′ in S ′(V ). Let

R1 and R′
2 be the respective normal projections of P and V ′ onto C1. The line

segments R1V
′ and R′

2V lie inside the shell E, so by Lemma 4.1

R1V
′ ≤ 4

√

δc1M, R′
2V ≤ 4

√

δc1M.

The distances V ′R′
2 and V R2 are at most 2δ, so

R1R2 ≤ R1V
′ + V ′R′

2 +R′
2V + V R2 ≤ 8

√

δc1M + 4δ ≤ 10
√

δc1M, (41)

where we have used (4) and (5).

Let E ′ be the plane sectional strip of E defined by R1, V and the normal

projection R2 of V onto C1. Let C
′ be the convex curve defined by the intersection

of C1 and E ′.

For fixed distance R1R2 = D, the distance of R1 from the tangent to C ′ at R2

in E ′ is greatest when the radius of curvature is least, which is when C ′ is an arc

of a circle radius c0M . Let α be the angle between R1R2 and the tangent at R2.

In the extreme case when C ′ is a circle radius c0M , the chord R1R2 subtends an

angle 2α at the centre of the circle, so

D = 2c0M sinα,

and the distance of R1 from the tangent at R2 is

D sinα =
D2

2c0M
≤ 100δc1M

2c0M
=

50δc1
c0

.
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The distance of P from the tangent plane to C1 at R2 is therefore

≤ 50δc1
c0

+ 2δ ≤ 52δc1
c0

.

REMARK. If we can obtain a bound valid for δ sufficiently small, then we

can deduce a possible weaker bound for large δ by dividing the shell E into

concentric shells Er, 1 ≤ r ≤ R of thickness δ0, bounded by shrunken copies of

the exterior surface C1 of E. By inequality (6), we have a uniform upper bound

of c1M for the sectional radius of curvature at any point on each shell Er. Hence,

when regarding maximum sectional radius of curvatures, we can work within the

general shell boundary C1, whose sectional radius of curvature is also ≤ c1M .

LEMMA 5.4 (flatness lemma). Let S ′(V ) be an enlarged vertex component of

our convex polyhedral hull H. If

δ < δ0 =

√

c0
273.5213c1

.
1√
c1M

, (42)

then all the points of S ′(V ) lie on a plane through the vertex V .

Proof. Let R2 be the normal projection of V onto C1. All points P of S ′(V ) lie

within a distance 52δc1/c0 from the tangent plane at R2 and by (41)

PV ≤ PR1 +R1V
′ + V ′R2 +R2V ≤ 8

√

δc1M + 4δ ≤ 10
√

δc1M.

Hence, the set of integer points S ′(V ) all lie within a rectangular box L, of volume

Vol(L), with

Vol(L) ≤ 52δc1
c0

(

20
√

δc1M
)2

<
1

6
, (43)

where we have used the assumption (42). Therefore, by Lemma 4.5 the major

arc case holds, and all points of the enlarged vertex component S ′(V ), including

V itself, lie on a plane.

LEMMA 5.5 (approximate tangency). Let S ′(V ) be an enlarged component. Let

T be the point of C1 closest to V . Let P be another point of S ′(V ), and let g be

the integer vector V P . Then the angle α between V P and the normal to C1 at T

satisfies

| cosα| ≤ 52δc1
c0|g|

. (44)

Proof. Let Π be the plane through P and the normal to C1 at T through V .

Then C1 will appear in Π as a convex curve C ′. Let l be the tanget to C ′ at T ,

and let U be the foot of the perpendicular from P to l in Π. If W is the foot of

the perpendicular from V to PU then V TUW is a rectangle in Π.
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By Lemma 5.3 we have

PU ≤ 52δc1
c0

.

Now if P is between W and U , then

V P | cosα| = PW ≤ WU = V T ≤ 2δ

and if W is between P and U then

V P | cosα| = PW ≤ PU ≤ 52δc1
c0

.

The inequality (44) holds in both cases.

LEMMA 5.6 (sums of reciprocals). We have

∑

1≤|e|≤E

1

|e| ≤ 26E2. (45)

Proof. Applying the Cauchy condensation method, we divide the normal vectors

into ranges
F

2
< |e| ≤ F, F = 1, 2, 4, . . . , 2K,

where 2K is the largest power of 2 less than or equal to E. The number of integer

vectors in this range is

≤ (2F + 1)3 − (F + 1)3 ≤ 19F 3

so that
∑

F/2<|e|≤F

1

|e| ≤ 19F 3.
2

F
= 38F 2.

Summing over the ranges for F , we have

∑ 1

|e| ≤ 38(1 + 4 + 16 + . . .+ 22K)

≤ 39(22K+2 − 1)

4− 1
≤ 13.4(22K)

≤ 26E2.
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6 Plane Faces and Edges

In Lemma 4.3, we counted all of the integer points in the extended vertex compo-

nents that lie strictly inside the convex hull H . Therefore we need only consider

the set S(H) of integer points in our extended vertex components that lie strictly

on the plane faces and edges of H in S.

Let S⋆(Vi) be the subset of S
′(Vi) consisting of integer points on the boundary

of H . We will call this a boundary component. We have shown that for each

extended vertex component S ′(Vi), if δ is sufficiently small then S ′(Vi) lies in a

plane and so S⋆(Vi) lies in the same plane.

LEMMA 6.1. The number of integer points on 1-dimensional boundary compo-

nents is estimated by

∑

dimS⋆(Vi)=1

|S⋆(Vi)| ≤
(

21633πc1
c20

)

δ(c1M)2. (46)

Proof. First we note that at most two one-dimensional components can lie on

the same straight line. If this were not the case and there were more than two,

then there would exist at least two seperate sections of a straight line segment

that do not lie in the shell E. This in turn means that there exists a straight

line segment that cuts C0 or C1 more than twice which contradicts the convex

property assumed.

We consider all the boundary components S⋆(Vi) which are one-dimen

-sional lying parallel to some primitive integer vector e. Suppose that the com-

ponent contains l points of S(H), where

L+ 1 ≤ l ≤ 2L (47)

for some L equal to a power of two. We can take g = (l−1)e in Lemma 5.5, with

|g| ≥ (l − 1)|e| ≥ L|e|.

In Lemma 5.5 the angle α between the vector e and the normal to C1 at T , the

point of C1 nearest to V , satisfies

| cosα| ≤ 52δc1
c0L|e|

.

Hence
∣

∣

∣

π

2
− α

∣

∣

∣
≤ 26c1πδ

c0L|e|
. (48)

We want to discuss the spacing of the vertices Vi that label the enlarged com-

ponents S ′(Vi) and so the boundary components S⋆(Vi). Each Vi has a normal

projection Ti on C1. Consider a sphere B of radius c1M . We map Ti on C1 to

18



the point Wi on B where the outward normal n to B is parallel to the outward

normal to C1 at Ti.

Let Vi and Vj be distinct vertices labelling enlarged vertex components. Since

Vj /∈ S(Vi), we have

TiTj >
√

c0δM,

by (38) of Lemma 5.2. Since C1 has sectional radii of curvature at most c1M ,

WiWj ≥ TiTj >
√

c0δM.

Hence balls Bi, radii
1
2

√
c0δM , centred on the points Wi on B, are disjoint.

The three-ball Bi meets the surface of the sphere B in a set Ai which contains

the centre Wi of Bi and is a two-ball in spherical geometry. As the Bi are disjoint,

the areas Ai, on the surface of the sphere B, are also disjoint and do not overlap.

Hence different sets S ′(Vi) correspond to disjoint sets Ai, centreWi, on the surface

of the sphere B. The area of Ai is greater than the area of the intersection of a

plane through Wi with Bi, which is

πc0δM

4
. (49)

As Vi ∈ S⋆(Vi) and S⋆(Vi) j S ′(Vi), different sets S⋆(Vi) also correspond to

disjoint set Ai, centre Wi, on the surface of the sphere B.

For each vector e, there is an equatorial plane of the sphere B at right angles

to e. By (48) the point Wi on the surface of B, where the normal is parallel to

the normal n to C1 at T , lies

≤ 26πδc1M

c0L|e|
from the equatorial plane measured along the surface of B. As stated, the set

Ai is the intersection of the surface of B with a three-ball radius 1
2

√
c0δM , so it

forms a two-ball in the spherical geometry of the surface of B, whose radius in

spherical geometry is

≤ π

2
.

√

c0δM

4
≤ π

√

c0δM

16
.
4
√
δc1M

L|e|

=
πδc1M

L|e|

√

c0
c1

≤ πδc1M

c0L|e|
,

by equation (4) and Lemma 4.1.

Hence, each point of Ai lies within a distance

≤ 26πδc1M

c0L|e|
+

πδc1M

c0L|e|
=

27πδc1M

c0L|e|

from the equatorial plane, measured along the surface of the sphere B.
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We consider the “girdle” of one-dimensional boundary components

S⋆(Vi) which are parallel to the fixed vector e. The components in the girdle

satisfying (47) correspond to points Wi and disjoint sets Ai on the surface of B,

such that every point of Ai lies close to the equatorial plane perpendicular to e.

The disjoint sets Ai lie in an annulus whose volume in spherical geometry is at

most

(2πc1M)

(

54πδc1M

c0L|e|

)

=
27(2π)2δ(c1M)2

c0L|e|
.

By equation (49) the number of disjoint sets Ai in the girdle is at most

22

π(c0δM)
.
27(2π)2δ(c1M)2

c0L|e|

=
27(4πc1)

2M

πc20L|e|
, (50)

so the boundary components S⋆(Vi) in the girdle for which the number l of points

is in the range (47) contribute at most

54π(4c1)
2M

c20|e|
(51)

integer points. The estimate (51) refers only to components in the girdle for which

l lies in the range (47). We keep the condition (47), and sum over primitive integer

vectors e. Since each component is a straight line segment lying within the strip

E, by Lemma 4.1 we have

L|e| ≤ (l − 1)|e| ≤ 4
√

δc1M.

We note that if two boundary components lie on the same line, then the vertices

Vi which label the boundary components S⋆(Vi) must be different, so they are

counted separately in this argument. We use Lemma 5.6 to sum over e, so that

the number of points on 1-dimensional boundary components with l in the range

(47) is at most

54π(4c1)
2M

c20
.26

(

4
√
δc1M

L

)2

=
21533c1πδ(c1M)2

c20L
2

. (52)

Finally we remove the condition (47) by summing L through powers of 2, noting

that
(

1 +
1

2k
+

1

4k
+

1

8k
+ . . .

)

≤ 2k

2k − 1
≤ 2.

Hence the total number of integer points of S(H) which lie on 1-dimension

-al boundary components is at most
(

21633c1π

c20

)

δ(c1M)2 ≤
(

21633πc1
c20

)

δ(c1M)2.
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LEMMA 6.2. The number of integer points lying on the plane boundary com-

ponents is estimated by

≤ 219δ(c1M)2. (53)

Proof. For each plane boundary component, by (43) of Lemma 5.4, the integer

points will all lie in a square of area

400δc1M.

The boundary components are convex sets lying on the convex hull H . Hence the

convex hull of the plane boundary components, H ′ say, is a convex polyhedron

contained within H , and the boundary components lie on the boundary planes

of H ′. If the boundary of the convex polyhedron H ′ contains two parallel planes,

then the convex body includes all points of the joins of any point on one plane

with any point on the other plane. It follows that the outward normal vectors

must be in opposite directions. Boundary components lie on boundary planes of

H ′, so the direction of the outward normal determines the boundary plane.

Therefore, either the plane boundary components will all have different out-

ward normal vectors ni, or some will share vectors and so form convex sets that

all lie on the same plane. In the latter instance, these plane boundary compo-

nents will all lie in an annulus as described in Lemma 4.2. As each component is

convex in this annulus we can apply Lemma 4.5 and summing over all possible

normal vectors gives the total number of integer points to be

≤ 3!263δc1M
∑ 1

|ni|
. (54)

Applying similar logic to the former case yields

≤ 3!400δc1M
∑ 1

|ni|
(55)

integer points. The constant in (55) is greater than that in (54) and for each ni

only one of the cases can occur. Hence we need only calculate the sum in (55).

We note that the sum over all possible short normal vectors (length ≤ N) will be

greater than the sum over all possible long normal vectors (length ≥ N) and so

we consider twice the sum over the short normal vectors, giving

≤ 2.3!400δc1M
∑

1≤|ni|≤N

1

|ni|
,

where, by Theorem 3.4,

N = 2K =

(

8π

27

)

1
4

(c1M)
1
2 .
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Applying Lemma 5.6 yields

2.3!400δc1M
∑

1≤|ni|≤N

1

|ni|
≤ 2123.52δc1MN2

≤ 2123.52δ(c1M)2 ≤ 219δ(c1M)2,

as required.

LEMMA 6.3. The number of integer points on three-dimensional boundary com-

ponents, when δ = δ0, is estimated by

∑

dimS⋆(Vi)=3

|S⋆(Vi)| ≤ 8 (24)
3
4 (2c1M)

3
2

≤ 29 (c1M)
3
2 . (56)

Proof. From (43), the three-dimensional boundary component S⋆(Vi) will have a

volume Vol(Hi), with

Vol(Hi) ≤
52δc1
c0

(

20
√

δc1M
)2

.

Since δ = δ0 this gives a volume of at most 1/6. Applying the minor arc case of

Lemma 4.5 then gives

Ki ≤ 24Vol(Hi) ≤ 4, (57)

where Ki is the number of integer points contained in S⋆(Vi). However, the

existence of a 3-dimensional S⋆(Vi) in S ′(Vi) requires that Ki ≥ 4, and so if

we consider δ = δ0, then Ki, the number of integer points in the boundary

component, is exactly 4. The number of vertices of the convex hull is

≤ 2 (24)
3
4 (2c1M)

3
2 ,

by (22), in Theorem 3.6. Hence, when δ = δ0, the total number of integer points

in the three-dimensional boundary components is estimated by

≤ 8 (24)
3
4 (2c1M)

3
2 ≤ 29 (c1M)

3
2 . (58)

We now collect together the terms (22), (46), (53), (56) and (36) to obtain

an upper bound for the total number of integer points contributed from the j-

dimensional extended vertex components, 0 ≤ j ≤ 3, along with the internal

integer points, when δ ≤ δ0. This gives

≤
(

c1
c0

)(

(27 + 29)(c1M)
3
2 + (219 + 21633π + 28)δ0(c1M)2

)
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≤
(

c1
c0

)(

210(c1M)
3
2 + 223δ0(c1M)2

)

. (59)

This result is valid for a shell of thickness δ = δ0 and consists of terms independent

of δ (degree zero) , and those with a factor of δ (degree one).

We cover the shell E of all extended vertex components, bounded internally

by C0 and externally by C1, by R thinner concentric shells E1, . . . , ER of thickness

δ0. The distance between C1 and C0 along any inward normal vector to these two

surfaces is 2δ. Hence we choose R to be the smallest such integer with

Rδ0 ≥ 2δ, (R− 1)δ0 < 2δ,

so that

R <
2δ

δ0
+ 1. (60)

The shell Er consists of the points on some inward normal whose distance l from

the surface C1 lies in the range

(r − 1)δ0 ≤ l ≤ rδ0.

When we replace δ with rδ0 in Lemma 2.1, we see that each shell Er will satisfy

the Curvature Condition, so that any plane sectional curve of Er will lie in the

range

c0M ≤ ρ ≤ c1M.

Therefore, expression (59) gives a uniform upper bound for the number of integer

points contributed by any shell Er. We note that

δ0
√

c1M ≤
(

c1
c0

)(

1

28

)

, (61)

and
(

δ0
√

c1M
)−1

≤
(

c1
c0

)

29. (62)

THEOREM 6.4. The number of integer points lying on or within a short dis-

tance δ from a convex closed surface that is contained in a sphere of radius c1M

in three-dimensional Euclidean space is

≤
(

c1
c0

)2

216
(

(c1M)
3
2 + 29δ(c1M)2

)

.

Proof. We multiply the upper bound (59) by the maximum number of shells given

by (60). This yields
(

2δ

δ0
+ 1

)(

c1
c0

)(

210(c1M)
3
2 + 223δ0(c1M)2

)

.

Simplifying using (61) and (62) and combining terms we have at most
(

c1
c0

)2

216
(

(c1M)
3
2 + 29δ(c1M)2

)

integer points.
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