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The in�uence of spectral registration on di�usion-weighted magnetic resonance spectroscopy
ADC estimates.
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Synopsis
Spectral registration is a powerful frequency and phase o�set correction method. Di�usion-weighted MRS (dMRS) provides a particularly stern challenge
for drift correction due to the lower SNR, varying lineshape, and increased gradient-induced frequency drift. Here, simulated data are used to examine
spectral registration and its new robust iteration in the context of dMRS. The accuracy of these methods is examined across a broad range of SNR, and
the e�ect they have on ADC estimates, investigated.

Introduction
Magnetic resonance spectroscopy (MRS) is an inherently low signal-to-noise ratio (SNR) technique, necessitating multiple acquisitions to produce
su�cient data quality. However, due to heating/cooling of hardware and physiological/bulk motion, transients incur frequency/phase o�sets. Without
correction, incoherent averaging occurs, broadening the spectrum, distorting the lineshape, and reducing the �nal SNR. These issues are further
exacerbated in di�usion-weighted MRS (dMRS). Here, �eld gradients encode di�usion-weighting into the MRS experiment, attenuating the metabolite
signals. Unlike the water molecules in standard di�usion-weighted imaging, metabolites are predominantly intracellular and some are cell-speci�c,
reducing the need for complex modelling. However, this increased speci�city comes at the cost of sensitivity, with SNR hampered by di�usion-weighting,
and large gradient amplitudes inducing further frequency drift [1]. 

Several processing approaches have been suggested to mitigate frequency and phase errors, including referencing to peaks like Creatine [2] or residual-
water [3], alignment by correlation [4], and the widely adopted spectral registration (SR) method [5], which �ts transients to a reference spectrum,
adjusting the individual frequency and phase terms. A more recent iteration of the SR algorithm – robust spectral registration (RSR) [6] includes
automated lipid and residual-water removal to improve corrections for unstable data, and performs SR to a weighted average spectrum in a statistically
optimised order.  

In the SR and RSR papers, the in�uence of SNR is considered, with both methods exhibiting a performance noise �oor. When these methods are applied
to dMRS, there are inherent SNR/lineshape variations across b-values, and the e�ect this might have on di�usion estimates has not been investigated.
This work applies SR and RSR to a simulated dataset with known frequency/phase o�sets, and the e�ect of SNR on apparent di�usion coe�cient (ADC)
estimates is investigated.

Methods
MR spectra were simulated using a density matrix formalism in FID-A [7]. MRS acquisition parameters were chosen to mirror previous work [8]: a DW-
PRESS sequence, T  = 2500ms, T  = 74ms, 24 averages, 2KHz bandwidth, 2048 points, and 5Hz line broadening was added. The 24 simulated metabolites
were then appropriately scaled by relative in-vivo concentration, and the metabolite di�usion properties modelled using a mono-exponential decay: 

where:  is the ADC,  is 1 for the simulated data, and b are the b-values: 0, 557, 2260, 5107, 9099, 14237, 19837 s/mm . Gaussian noise was then
added to create a dataset of 100 dMRS experiments with b=0 SNR varying between 0.03 to 3000, sampled logarithmically. Frequency and phase errors
were modelled in a similar manner to the original SR paper, with a total drift of 5Hz and -1 degrees, respectively, and random noise with standard
deviations of 0.2Hz and 6 degrees, respectively. 

Frequency and phase errors of the simulated transients were then quanti�ed using RSR and SR. Additionally, the e�ect of direct averaging (DA) was
investigated, whereby each transient was averaged to its nearest neighbour in a pairwise fashion prior to correction. This has been suggested [9] as a
means to extend the performance of correction methods to lower SNR data. Each recombined spectra was then quanti�ed using Tarquin [10], and the
�tted peaks used to estimate the mono-exponential decay of TNAA, Tcho, and MyI. The estimates of frequency, phase and ADC were then compared to
the known ground truth, across the range of SNR .

Results & Discussion
Fig.1 and Fig.2 show the frequency and phase correction �delities, respectively. Where the �delity, Q, of parameter P is given by: 

where:  is the simulated frequency/phase o�set, and  is the estimate of the correction algorithm. While both methods performed well over
similar SNR ranges, RSR appears to be less accurate than SR for high b-value spectra. This could impact di�usion �ts, with higher b-values more greatly
a�ected by incoherent averaging. DA does o�er some bene�t to frequency correction of low SNR data, providing a minor extension to the e�ective SNR
range of both approaches. However, this e�ect is minor, and the detrimental impact DA has to phase correction suggests it might not be bene�cial, at
least for the frequency/phase o�sets considered here.  

Fig.4 shows the distribution of the �tted ADC values as a percentage di�erence from the known ground truth. I.e.: 
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While both approaches lead to overestimation of the ADC, the bias appears worse for RSR. This is attributed to higher frequency/phase errors for larger
b-values, arti�cially attenuating the signal. This e�ect is mitigated by excluding points based on the SNR of the averaged spectrum. A threshold of 2 was
established as most e�ective for this dataset. Table.1 shows the skewness of the ADC distributions for both methods, with and without SNR �ltering.
While SR and RSR are similarly skewed before SNR �ltering, afterwards, SR is an order of magnitude better than RSR, suggesting this as the preferred
method for dMRS.

Conclusions
While RSR improves on the previous iteration's robustness to in-vivo acquisition instabilities, a bias could be introduced for lower SNR dMRS data. If
experimental instabilities can be su�ciently screened, SR appears to be the preferable method for dMRS pre-processing. While direct averaging appears
to have little e�ect on ADC estimates, SNR-based �ltering is essential to avoid overestimation of ADCs.
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Figures

Fig.1: Frequency correction �delity for SR and RSR with two increments of direct averaging. A frequency correction �delity of 1 indicates perfect
correction, 0 indicates correction was as e�ective as no correction, and a value less than 0 is worse than no correction. RSR performs better for low b
data than high b-value data, indicating a potential for bias in di�usion �ts. While DA provides a marginal gain in the e�ective domain of both SR and RSR,
it compromises the �delity of higher SNR data.
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Fig.2: Phase correction �delity for SR and RSR with two increments of direct averaging. A phase correction �delity of 1 indicates perfect correction, 0
indicates correction was as e�ective as no correction, and a value les than 0 is worse than no correction. Again, both methods perform well for high SNR
data, with RSR having a slightly worse performance for high b-values. DA appears detrimental to phase correction in both methods, even for high SNR
data. However this might not be the case for other frequency/phase o�sets.

Fig.3: Representative data. Panel 1 shows an example of the �t quality following quanti�cation in Tarquin. Panel 2 shows the reconstructed MRS data as
a function of b-value. Panel 3 shows an example of the actual vs �tted exponential decays, extracted from quanti�ed metabolite amplitudes.

Fig.4: Histograms of the percentage deviation from known the ADC. Data are pooled from the �ts of TNAA, TCho, and MyI, and di�usion �ts with 
<0.75 were excluded. The blue bars represent �ts of all data, while orange bars are data �t after excluding points with SNR < 2. Here a negative value

indicates an underestimation of the ADC, while a positive value indicates overestimation. All methods tended to overestimation, suggesting that higher
b-values were disproportionately a�ected by incoherent averaging. However, �ltering based on SNR remedies this to an extent.

Table.1: Skewness of the distributions of deviations from the known ADC. A skewness of zero would indicate a Gaussian distribution with no bias. The
positive skewness observed here indicates a tendency to overestimate the ADC. Both methods bene�t from SNR-based �ltering, but SR exhibits the least
bias.
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