
Low-Rate Attack Detection
with

Intelligent Fine-Grained Network
Analysis

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Baskoro Adi Pratomo

October 2020

Cardiff University
School of Computer Science & Informatics

i

Declaration

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree.

Signed . (candidate)

Date .

Statement 1

This thesis is being submitted in partial fulfillment of the requirements for the degree

of PhD.

Signed . (candidate)

Date .

Statement 2

This thesis is the result of my own independent work/investigation, except where oth-

erwise stated. Other sources are acknowledged by explicit references.

Signed . (candidate)

Date .

Statement 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed . (candidate)

Date .

ii

Copyright c© 2020 Pratomo, Baskoro.

Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, Version 1.2 or any later version published by the Free

Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled “GNU Free Documentation

License”.

A copy of this document in various transparent and opaque machine-readable formats

and related software is available at https://baskoroadi.web.id.

https://baskoroadi.web.id

Dedication iii

To my family
for their patience and support.

iv

Abstract

Low-rate attacks are a type of attacks that silently infiltrate the victim network, control

computers, and steal sensitive data. As the effect of this attack type is devastating, it is

essential to be able to detect such attacks. A detection system allows system adminis-

trators to react accordingly. More importantly, when the detection system is to analyse

the network traffic, it may identify the malicious activity before the attack reaches

the system. And by incorporating machine learning into the detection approach, the

Network-based Intrusion Detection System (NIDS) will be able to adapt to evolving

attacks and minimise human intervention, unlike signature-based NIDS.

Several works have tried to address the problem of low-rate attack detection. However,

there are several issues with these previous works. Some of them are dated; therefore

their performance drops on contemporary low-rate attacks. Some of them only focus

on detecting attacks in one protocol, while low-rate attacks exist on various protocols.

To tackle this problem, we proposed two Deep Learning (DL) models which analyse

network payload and were trained with the unsupervised approach. Our best perform-

ing model surpasses the state-of-the-arts and provides an improvement in detection rate

of at least 12.04%. The experiments also show that payload-based NIDSs are superior

to header-based ones for identifying low-rate attacks.

A common approach in payload-based NIDSs is to read the full-length application

layer messages, while in some protocols such as HTTP or SMTP, it is usual to have

lengthy messages. Processing the full-length of such messages would be time-consuming.

Abstract v

The damage from the attack may have been done by the time the decision for the par-

ticular message comes out. Therefore, we proposed an approach that can early predict

the occurrence of low-rate attacks from as little information as possible. Based on our

experiments, the proposed method can detect 97.57% of attacks by merely reading, on

average, 35.21% of the application layer messages. It improves the detection speed by

three-fold.

vi

Acknowledgements

This thesis has been a massive challenge for me. I would not have finished it without

helps and supports from many people I met during my study.

Firstly, I would like to thank my first supervisor, Pete Burnap. Without his guidance,

I would have gotten distracted and lost. He did not give up on me when I almost had

given up on myself. He also showed huge patience when dealing with my writing,

which helped me to get back on my track.

I would like to thank my second supervisor, George Theodorakopoulos, for the dis-

cussions we had during my study. His alternate point of view on various matters had

helped to figure out solutions when I had been stuck with some issues.

I would like to thank Lembaga Pengelola Dana Pendidikan (LPDP), Indonesia, for

providing funding for this research.

I would like to thank my family for the patience and support. In particular, my wife,

Sari, for the constant reminder that brain needs glucose to function, especially during

the lockdown. My mum and sister who always pay attention to my health and my well-

being, and sometimes, my hair. I dedicate this thesis for my uncle, who passed away

during the writing of this thesis. His travels around the world had inspired my younger

self to study abroad.

I would like to thank my friends and colleagues. I’d like to thank Hudan, my partner in

crime, who was never tired having - sometimes - inconsequential debates despite the

Acknowledgements vii

eight hours time difference and who always reminds me that the best thesis is the one

that is finished. I’d like to thank Beryl for organising social events and her suggestions

on our shared interests which have kept me clear-headed. Stefano, for the borderline

banter and life lessons. I will never forget the question you asked in our first meeting.

I would like to thank Roberto for sharing his knowledge on language and cultural

references. Lauren, for the language and mathematical advice, and helping me to adapt

to the local weather. Covid-19 has stopped us from debating whether the window

should be open. Oscar, for spending time to read the thesis and the philosophical

discussions. Nyala, for statistical knowledge. Matthew, my brother, for inspirational

quotes. Joana and Mafalda, for letting me use some space in their house. Lucie, for her

knowledge of places. Pete Sueref, for the constant, literally, pushes. Shakil and Alex,

for the regular coffee meeting. I’d like to thank the Cyber Visualisation Demo team,

Amir, Irene, Matilda, for the cooperation during this time.

I would like to thank the members of the Indonesian Student Association in Wales. It

was a great experience to spend time and to have great discussions with them.

I would like to show appreciation to bands in which their music has helped me to

get through this difficult time: Avenged Sevenfold, DragonForce, Helloween, My

Chemical Romance, Nightwish, Powerwolf, Sabaton (for the historical knowledge),

and SpyAir. Their songs have helped me to stay focused, reduce noise, and keep me

awake.

viii

Contents

Abstract iv

Acknowledgements vi

Contents viii

List of Publications xii

List of Figures xiii

List of Tables xv

List of Acronyms xviii

1 Introduction 1

1.1 Cyber security: threats and detection methods 1

1.2 Contributions . 8

1.3 Limitations . 10

1.4 Thesis Structure . 11

Contents ix

2 Background 13

2.1 Why study low-Rate Attacks? . 13

2.2 Network-based Intrusion Detection Systems 18

2.2.1 Header-based NIDS . 21

2.2.2 Payload-based NIDS . 30

2.3 Conclusions . 40

3 How well do existing validation datasets capture representative examples

of contemporary low rate attacks? 42

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 43

3.2 BlattaSploit Dataset . 53

3.3 Conclusion . 57

4 An unsupervised approach for detecting low-rate attacks in network traffic 59

4.1 Introduction . 59

4.2 The Basics of Deep Learning for Outlier Detection 64

4.2.1 Recurrent Neural Networks 65

4.2.2 Autoencoders . 67

4.3 Low-rate Attack Detection Methodology 69

4.3.1 Network Traffic Preprocessing 69

4.3.2 Outlier Detection Models . 71

4.4 Experiments and Results . 78

4.4.1 Experimental Setup . 78

Contents x

4.4.2 Datasets . 82

4.4.3 Defining Threshold . 83

4.4.4 Results Discussion . 87

4.5 Conclusions . 92

5 Early prediction of low-rate attacks on network traffic with Recurrent

Neural Networks 94

5.1 Introduction . 94

5.2 Threat Model . 100

5.3 Methodology . 101

5.3.1 Data Preprocessing . 103

5.3.2 Training an RNN-based classifier 105

5.3.3 Detecting Attacks . 106

5.4 Experiments and Results . 108

5.4.1 Data Analysis . 110

5.4.2 Comparison With Previous Works 111

5.4.3 Early Prediction . 113

5.4.4 Detection Speed . 117

5.4.5 Visualisation . 124

5.5 Conclusion and Future Work . 125

Contents xi

6 Conclusions 128

6.1 Thesis Summary . 128

6.2 Discussion on Evasion Techniques, Adversarial Attacks, and Future

Works . 136

6.3 Conclusions . 138

Appendices 142

A List of low-rate attacks in BlattaSploit dataset 142

B Experiment results of AE-OD and RNN-OD 167

Bibliography 172

xii

List of Publications

The work introduced in this thesis is based on the following publications.

• B. A. Pratomo, P. Burnap, and G. Theodorakopoulos. Unsupervised approach for

detecting low rate attacks on network traffic with autoencoder. In 2018 Interna-

tional Conference on Cyber Security and Protection of Digital Services (Cyber

Security), pages 1–8. IEEE, 2018

• B. A. Pratomo, P. Burnap, and G. Theodorakopoulos. Blatta: early exploit detec-

tion on network traffic with recurrent neural networks. Security and Communic-

ation Networks, 2020

xiii

List of Figures

1.1 Top 10 attack vectors in 2018-2019. Compiled by McAfee Labs. [62] 2

1.2 An illustration of what is being transmitted between two parties com-

municating via the Internet. A flow transmits multiple packets from

one host to the others. Each packet consists of two parts, headers and

a payload. 5

2.1 The distribution of attack types discussed in anomaly-based NIDS re-

search . 17

2.2 A general taxonomy of research on Network-based Intrusion Detection

System (NIDS) . 20

3.1 The label of a connection in DARPA 99 dataset 46

3.2 The network topology for generating exploit traffic. The Attacker VM

running Metasploit and the vulnerable VMs are placed in different net-

work connected by a router. This router is used to capture all traffic

from these virtual machines. 55

4.1 An unfolded view of a Recurrent Neural Network which processes a

sequence of vectors and outputs a value. 66

4.2 An example of an Autoencoder . 68

List of Figures xiv

4.3 The overview of the RNN-OD and AE-OD 70

4.4 A detailed view of how RNN-OD works 74

4.5 A detailed view of how AE-OD works 76

4.6 Histogram of anomaly scores generated by running AE-OD 84

4.7 Histogram of binary anomaly scores generated by running RNN-OD . 85

4.8 Histogram of floating anomaly scores generated by running RNN-OD 85

5.1 Architecture overview of Blatta . 102

5.2 An example of n-grams of bytes taken with various stride values. . . . 103

5.3 A detailed view of the classifier. n-grams are extracted from the input

application layer message which are then used to train an RNN model

to classify whether the connection is malicious or legitimate. 107

5.4 Visualisation of unknown n-grams in the application layer messages

and outputs of the recurrent layer for each time step. It shows how the

proposed system observes and analyses the traffic. Yellow blocks show

unknown n-grams. Red blocks show the probability of the traffic being

malicious when reading an n-gram at that point. 126

xv

List of Tables

1.1 The distribution of exploits in ExploitDB based on the targeted platform. 7

1.2 The distribution of exploits in ExploitDB based on the targeted port.

The targeted port implies which application layer protocol is used to

conduct the attack. 8

2.1 A list of attack types definitions. 14

2.2 A summary of anomaly-based NIDS which inspect packet headers . . 25

2.3 A summary of works on anomaly-based NIDS which analyse network

payloads . 31

3.1 Attack description in the UNSW-NB15 dataset. 50

3.2 A comparison of publicly available network traffic datasets. 52

3.3 A summary of exploits captured in the BlattaSploit Dataset. The num-

bers next to the protocols are the number of connections in the applic-

ation layer protocols. 57

4.1 RNN-OD hyperparameters configuration 79

4.2 Autoencoder’s hyperparameters configuration 80

4.3 Changeable Parameters in RNN-OD and AE-OD 80

List of Tables xvi

4.4 A result comparison between RNN-OD, AE-OD, and previous works 88

5.1 An illustration of how RNN-OD and Blatta process the same HTTP

message . 98

5.2 Numbers of benign and malicious samples used in the experiments. . 109

5.3 Average message length of application layer messages in the testing set 110

5.4 Comparison to previous works using the UNSW-NB15 dataset as the

testing set . 112

5.5 The ratio of messages in each testing set that are greater than the byte

limit. 114

5.6 Experiment results of using various n values 119

5.7 Experiment results of using various stride values 120

5.8 Experiment results of using various dictionary size 121

5.9 Experiment results of using various size of the embedding vector di-

mension . 122

5.10 Experiment results of using LSTM and GRU as the recurrent layer . . 122

5.11 Experiment results of using various number of recurrent layers 123

5.12 The effect of reducing the number of bytes to the detection speed. The

table shows the average (mean) detection speed in KBps with 95% con-

fidence interval, calculated from multiple experiments. The detection

speed increased significantly (about three times faster than reading the

whole message), allowing early prediction of malicious traffic. 124

A.1 The list of attacks included in BlattaSploit dataset. 142

List of Tables xvii

B.1 The effect of various hidden layers configurations to the detection rate

(DR) and false-positive rate (FPR) of AE-OD 167

B.2 The effect of different length of subsequence and recurrent layer type

(i.e., Long Short-Term Memory (LSTM) and Gated Recurrent Unit

(GRU)) to the detection rate (DR) and false-positive rate (FPR) of

RNN-OD with binary anomaly score 168

B.3 The effect of different length of subsequence and recurrent layer type

(i.e., LSTM and GRU) to the detection rate (DR) and false-positive rate

(FPR) of RNN-OD with floating anomaly score 170

xviii

List of Acronyms

IDS Intrusion Detection System

NIDS Network-based Intrusion Detection System

HIDS Host-based Intrusion Detection System

NLP Natural Language Processing

ML-NIDS Machine learning-based NIDS

OS Operating Systems

DoS Denial of Services

DDoS Distributed Denial of Services

DARPA99 1999 DARPA Intrusion Detection Evaluation Dataset

KDD99 KDD Cup 1999 Dataset

ISCX12 UNB Intrusion Detection Evaluation Dataset 2012

CICIDS2017 CIC Intrusion Detection Evaluation Dataset 2017

KYOTO06 Kyoto 2006+ Dataset

CIDDS Coburg Intrusion Detection Data Sets

DPI Deep Packet Inspection

List of Acronyms xix

VM Virtual Machine

MitM Man in the Middle

SMB Server Message Block

HTTP Hypertext Transfer Protocol

SIP Session Initiation Protocol

IP Internet Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

ICS Industrial Control System

SDN Software-Defined Network

IoT Internet of Things

ISP Internet Service Provider

SMTP Simple Mail Transfer Protocol

FTP File Transfer Protocol

ML Machine Learning

SVM Support Vector Machine

GA Genetic Algorithm

LR Logistic Regression

DNN Deep Neural Network

DL Deep Learning

List of Acronyms xx

CNN Convolutional Neural Network

ANN Artifical Neural Network

NN Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

RNN Recurrent Neural Network

P2P Peer-To-Peer

MSPCA Multi-Scale Principal Component Analysis

PCDTA Probabilistic Counting Deterministic Timed Automata

HMM Hidden Markov Model

SOM Self Organising Map

PCA Principal Component Analysis

DR Detection Rate

FPR False Positive Rate

1

Chapter 1

Introduction

1.1 Cyber security: threats and detection methods

Computer networks are under attack on a daily basis, and new vulnerabilities appear

frequently. Every time a new vulnerability emerges, the network is at risk of a pos-

sible new attack. The impact of an attacker exploiting the vulnerability on a computer

network varies depending on the type of attack the adversary uses.

As shown in Figure 1.1, McAfee Labs compiled a list of the top ten attack vectors in

2018-2019 based on the number of reported breaches, including: malware, account

hijacking, vulnerability, unauthorised access, targeted attacks, code injection, denial

of service, defacement, and theft. Attacks like denial of service aim to take down the

service, thus preventing legitimate users from accessing the service. These attacks are

usually achieved by sending a massive volume of traffic that overloads the targeted

service. GitHub, a popular online source code management website, suffered from this

attack in 2018 when an adversary flooded their servers with 1.3 Tbps of traffic with

126.9 million packets of data each second [61].

Other types of attack silently infiltrate the victim network, control computers, and steal

sensitive data. We refer to this type of attack type as low-rate attacks. For instance, a

group called TortoiseShell compromised the network of several IT providers in Saudi

Arabia [105]. It is thought that the initial infection vector was through a comprom-

ised web server. At least one of the victim’s web servers showed indication of a web

1.1 Cyber security: threats and detection methods 2

Figure 1.1: Top 10 attack vectors in 2018-2019. Compiled by McAfee Labs. [62]

shell. This is a web-based backdoor generally used to upload more malicious files

and control the remote computer. The effect of this attack was devastating. In at least

two organisations, there was evidence that the adversaries had obtained domain admin-

level access. Thus they could easily access any information within the network. The

attacking group was still active as of July 2019.

Another incident involving low-rate attacks was an exploit called EternalBlue. It tar-

gets a vulnerability in an implementation of file-sharing protocol, Shared Message

1.1 Cyber security: threats and detection methods 3

Block (SMB), in older versions of Microsoft Windows [8]. The exploit was stolen

from NSA and weaponised as ransomware which is known as WannaCry. The Wan-

naCry ransomware that had a global impact, including on the National Health Service

(NHS) in the UK [10]. From 12th of May to 18th of May 2017, large numbers of

devices in hospitals and surgeries were compromised, causing 19,000 appointments to

be cancelled. Although the WannaCry incident in 2018 is arguably noisy, the underly-

ing exploit, EternalBlue, can be used for other purposes and may infiltrate the network

silently.

An Intrusion Detection System (IDS) plays an important role in detecting such attacks

on computer systems. They monitor networks or systems activities and raise an alert

when suspected malicious activity has been identified. Based on its placement and

data sources, there are two kinds of IDS: host and network-based IDS. A Host-based

Intrusion Detection System (HIDS) works by examining log files, system calls, or

memory content. A Network-based Intrusion Detection System (NIDS) is placed in the

middle of internal and external networks, usually near the router, thus it can monitor

every incoming and outgoing packet.

One benefit of detecting attacks at the network level is that it enables us to identify

attacks before they reach the victim (endpoint devices). There are two approaches to

achieving this. A signature-based Network-based Intrusion Detection System (NIDS)

looks for a particular signature/pattern of known attacks or a sequence of bytes that

always appears in a particular attack, for example, a No-Operation byte (0x90) in a

buffer overflow attack. The signature/rule database must be updated regularly to cope

with new attacks that have never been seen before (zero-day attacks). However, net-

work attacks are constantly evolving. Every time the defence side comes up with a

signature for the attack, adversaries will often find a way to avoid detection. Encod-

ing attack messages, creating unique attack patterns with polymorphic techniques, or

simply replacing known malicious byte values are some techniques commonly used to

avoid signature-based detection. To cope with diverse attack patterns, the second type

1.1 Cyber security: threats and detection methods 4

of NIDS, anomaly-based NIDSs are gaining traction as a possible solution. Rather than

relying on a database of known malicious patterns, an anomaly-based NIDS is trained

to recognise malicious traffic or look for a deviation from usual/legitimate traffic. This

way, anomaly-based NIDSs have the potential to detect attacks even when the ad-

versary slightly modify their messages.

An anomaly-based NIDS needs a set of samples to gain insight into the characteristics

of network traffic to be able to detect malicious or unusual data flows. A flow consists

of multiple network packets being transmitted from one host to another, and in general

each packet comprises two parts, headers and a payload as illustrated in Figure 1.2.

The usual approach to analyse traffic is to study packet header information, such as

IP addresses, ports, packet size, or time-based statistics (i.e., inter-packet arrival time,

round trip time, and many others). The information is generally helpful to detect high-

rate attacks since they generate a massive amount of packets in a short amount of time,

something that does not often happen with legitimate traffic. Low-rate attacks are more

surreptitious than high-rate ones. They blend in with legitimate traffic. Thus, it ques-

tionable whether packet header data can distinguish malicious traffic from legitimate

data flows.

Many low-rate remote attacks work by injecting specially crafted code inside the pay-

load of network packets. Adversaries need the code to be present on the target system

to gain or maintain control of the target. The code will likely contain a sequence that

would be unlikely to appear in legitimate traffic [39]. Some parts of the transmit-

ted application layer message are consistent in text-based protocols (e.g., HTTP, FTP,

SMTP), such as the name of a requested file, HTTP header values, SMTP/FTP com-

mands, and many others. Analysing the payload, instead of the packet header, offers

a different perspective on the flow of data within a network and therefore potentially

new insights into the malicious traffic destined for a targeted system.

Several anomaly-based NIDSs utilise machine learning by building a model of le-

gitimate traffic, looking for any deviations, and marking those deviations as mali-

1.1 Cyber security: threats and detection methods 5

Figure 1.2: An illustration of what is being transmitted between two parties com-

municating via the Internet. A flow transmits multiple packets from one host to

the others. Each packet consists of two parts, headers and a payload..

cious [108, 58, 103]. This approach is referred to as unsupervised learning. Others,

which are referred to as supervised learning, work by training a model with legitimate

and malicious samples [19, 115, 51]. These anomaly-based NIDSs with a supervised

learning approach can learn the difference between them. Both unsupervised and su-

pervised approaches need representative examples of malicious and legitimate traffic to

evaluate their method. However, 18 out of 34 existing works in this area were evaluated

with the DARPA99 dataset [100], which was released in 1999 and so is missing rep-

resentative data for contemporary attacks. It is also known to have other issues which

present concerns for the validity of these outcomes [74]. It may lead to a problem

as the method might perform well in the experiment setup but poorly in a real-world

environment.

This issue was highlighted with experiments conducted by Hadžiosmanović et al. [50]

1.1 Cyber security: threats and detection methods 6

and Wressnegger et al. [112]. They evaluated several works [107, 24, 108, 86] with

a more recent dataset and found that the performance dropped. It shows that as both

legitimate and malicious traffic has evolved, the previous approaches drop in ability to

detect new and unseen attacks. Since then, newer datasets with more recent malicious

and legitimate traffic have been proposed. ISCX12 [98] and UNSW-NB15 [80] are

some examples of such datasets. Both are generated in a simulated environment with

tools (e.g., IXIA PerfectStorm) to generate malicious and legitimate traffic. However,

it remains a question whether those datasets capture representative examples of con-

temporary low-rate attacks and do not have the similar problem to earlier datasets, i.e.,

DARPA99.

Apart from constantly evolving, low-rate attacks target various services, each uses dif-

ferent protocols. Table 1.1 and 1.2 show the distribution of exploits in ExploitDB, a

website which collects exploits. It is shown that web-based attacks are the most popu-

lar with more than 2000 exploits target HTTP services. However, there are still exploits

in other protocols, such as FTP, IMAP, SMTP, and SSH.

Similar to the header-based NIDS, a payload-based NIDS also requires a set of fea-

tures to identify malicious traffic. A common approach of obtaining features from the

payload is by parsing protocol messages and taking their attribute values [19, 115, 25].

This feature set captures the representation of a specific protocol better, thus making

it easier to identify deviation in the network traffic since this approach would let us

know which part of the message indicates that the traffic is malicious. However, each

protocol has a particular message format. Therefore, this feature extraction method

would require us to create a different set of features for every protocol out there.

Another approach is to use a set of features which are applicable to any protocols.

Each protocol may have a particular model, but all models may use generic features,

such as frequency of bytes, words, or n-grams [107, 86, 103]. These features are

widely used in text classification problem since they can capture behaviour or context

of a text document. Since classifying network payload is relatively close to a text

1.1 Cyber security: threats and detection methods 7

classification problem, it is possible to use the approach for extracting features from

network payload. In doing so, we would not have to craft a feature set to represent

traffic for each protocol.

While some research in payload-based NIDS used protocol-agnostic features [86, 103,

111], they evaluated their approach on HTTP only. It is not yet known whether their

approach can identify low-rate attacks on other protocols. Detecting attacks on various

protocols means we will be able to capture more attacks and reduce the possibility of

the system being compromised.

Table 1.1: The distribution of exploits in ExploitDB based on the targeted plat-

form..
Platform # of exploits

PHP 20224

Windows 9691

Linux 2953

Multiple 2679

Hardware 1748

ASP 1540

CGI 777

Unix 323

OSX 310

JSP 275

Furthermore, some research in payload-based NIDS performs attack detection on a per-

packet basis [108, 103]. This means they treat each packet individually. They do not

consider the possibility of the attack being spread across application layer messages

in multiple packets. This may cause packets of the same connection to be treated

differently. An alert may be raised for one packet in a malicious connection, but not

for the other packets. Other research reconstructs the application layer message[21, 22,

19], thus the detection method sees the complete information about the message. The

1.2 Contributions 8

Table 1.2: The distribution of exploits in ExploitDB based on the targeted port.

The targeted port implies which application layer protocol is used to conduct the

attack..
Ports # of exploits

80 (HTTP) 2043

21 (FTP) 158

443 (HTTPS) 107

8080 (HTTP) 107

143 (IMAP) 48

25 (SMTP) 42

8000 (HTTP) 29

22 (SSH) 27

69 (TFTP) 24

Others 39227

result of this approach would be more accurate as it sees the whole flow. However, an

application layer message length varies from less than 100 bytes to several kilobytes.

If the detection method needed to wait until the end of the message arrives before

making a decision, then it is likely that the attack may have already been executed

on the victim host before it is detected. Therefore, an open research problem is how

we enhance detection methods with early prediction capability, that is: can we detect

a low-rate attack with high accuracy while reading fewer packets in the payload? If

possible, the network administrator may be able to block the attack early and minimise

or even prevent the damage.

1.2 Contributions

Taking into account several questions we have raised with state of the art in NIDS

research, we formulated research questions which will be addressed in the following

1.2 Contributions 9

chapters:

RQ1 How well do existing validation datasets capture representative examples of con-

temporary low rate attacks?

RQ2 Given recent research has shown that previous work on low rate attack detection

across multiple protocols is dated and performance drops on contemporary low

rate attacks, how do we improve the performance of low rate attack detection

models to deal with evolving cyber attacks that are increasingly causes damage

to corporate networks?

RQ3 Can we predict the occurrence of low-rate attacks with fewer data and earlier in

the attack, while still retaining a relationship between the sequence of packets,

in order to reduce harm on the system under attack?

To arrive at these research questions, we first conducted a literature review of existing

research in payload-based NIDS to highlight the current limitations (see Chapter 2).

We then studied existing datasets to determine which ones included recent represent-

ative examples of low-rate attacks. We found existing datasets to be somewhat lacking

in recent representative samples so undertook a rigorous process to develop a bespoke

dataset that contains various low-rate attacks (i.e., exploits, backdoors, shellcode) (see

Chapter 3). Afterwards, we performed experiments with various methods to detect

low-rate attacks and proposed an improvement by using an unsupervised deep learning

model (see Chapter 4).

An application layer message can be extremely long, and as such analysing every byte

in the payload delays the detection of an attack. This would also delay the reaction

and by then the attack may have been complete. Therefore, we developed a novel early

prediction method for low-rate attack traffic that does not depend on analysing the full

message (see Chapter 5). In summary, below are this thesis’ contributions:

Contributions

1.3 Limitations 10

C1 A comparative study of state of the art supervised and unsupervised anomaly-

based methods for detecting low-rate attacks with features obtained from packet

header and payload information to investigate the performance of existing meth-

ods and features when distinguishing low-rate attacks from legitimate traffic.

C2 A comparative study of network traffic datasets to better understand how repres-

entative they are to be used for evaluating NIDS and a dataset of low-rate attack

traffic with state-of-the art attacks, various payloads, and encoders. Addition-

ally, the dataset contains information about the location of the malicious traffic

within the payload. The location is useful to analyse whether an early prediction

method can detect the attack before it completes.

C3 Unsupervised deep learning models to identify low rate attacks in network traffic,

putting aside the requirement to provide malicious samples for the training data.

The proposed approach offers an improvement in detection rate at least 12.04%

from the previous works.

C4 The first early low-rate attack prediction system on network traffic, which pre-

dicts malicious instances as they enter the protected network without analysing

the whole application layer messages, enabling the administrator to react faster

and possibly minimise the damage.

1.3 Limitations

In this thesis, we have several limitations:

• Our proposed methods do not directly take encryption into account. We are

aware that encryption is the biggest challenge in payload-based NIDS as it scrambles

the data, causing essential information regarding malicious traffic to be hidden.

However, unencrypted malicious traffic is still common. Many webshells have

been uploaded through Hypertext Transfer Protocol (HTTP), and this attack is

1.4 Thesis Structure 11

one of the most common attacks in 2019[62]. Moreover, our approach could

still be incorporated with application-layer firewalls, such as ModSecurity. As

these firewalls are located on the protected hosts, they can read the decrypted

application layer messages without breaking any security mechanism, such as

being Man-in-the-Middle to decrypt the message. Apart from that, many works

on payload-based NIDS published during 2014-2019 also did not deal with en-

crypted traffic (See Section 2.2.2).

• Due to the nature of the Machine Learning (ML) techniques used, our pro-

posed methods only work with text-based application layer protocols on top

of TCP/IP. Binary protocols contain different challenges and deserve a separ-

ate study. Again, text-based protocols are still more prevalent[17]. As this thesis

limit the scope to protocols on top of TCP/IP, we excludes any work that detects

attacks on network protocols that do not use TCP/IP, such as serial-based proto-

cols in Industrial Control System (ICS) environments (e.g., Modbus, BacNet).

1.4 Thesis Structure

The structure of this thesis is as follows:

Background: A comparative study of state-of-the-art anomaly-based NIDS which

analyse either packet headers or payloads. We will discuss in more depth the gaps

that exist in this research area and the research questions which direct the following

chapters in our thesis. The associated chapter creates contribution C1.

How well do existing validation datasets capture representative examples of con-

temporary low rate attacks?: We start with a review of existing network traffic data-

sets containing low-rate attacks. After identifying the gaps in the existing datasets, we

propose a low-rate attack traffic dataset which addressed the issues we have found in

the existing datasets. The associated chapter creates contribution C2.

1.4 Thesis Structure 12

An unsupervised approach for detecting low-rate attacks on network traffic: We

develop a novel anomaly-based NIDSs with an unsupervised approach that performs

network payload analysis. The proposed methods are then compared with state-of-the-

art methods. The associated chapter creates contribution C3.

Early prediction of low-rate attacks on network traffic with Recurrent Neural

Networks: We develop a novel early prediction method for low-rate attacks which

reads a small portion of application layer messages. The proposed method can de-

tect low-rate attacks earlier than the state-of-the-art. The associated chapter creates

contribution C4.

Conclusions and future works: A reflection of contributions made in this thesis, as

well as discussion for possible future work in this area.

13

Chapter 2

Background

This chapter discusses the advancement of research in intrusion detection by first

giving a brief explanation of types of attacks and reviewing the existing research to

identify gaps and limitations. The literature review consists of two parts. The first

part identifies all works on anomaly-based Network-based Intrusion Detection Sys-

tem (NIDS)s which use machine learning and packet header information as features.

The second part discuss anomaly-based NIDSs that read payload data and how they

detect low-rate attacks..

2.1 Why study low-Rate Attacks?

Adversaries can launch various attacks on a target system. Each attack type has dif-

ferent traits. Thus detection approaches might work well for some attack types but

not others. Previous research usually mentions which type of attack it tries to identify

explicitly.

To better understand the utility of previous works at detecting attacks, it is necessary

to understand which attack types they have successfully detected. However, different

works have their own terms for naming attack types. Therefore, for the purposes of a

common language, attack types are clustered into eleven types based on their definition.

Similar attack types are grouped. For example, Probe (in the KDD Cup 99 dataset),

Reconnaissance (in UNSW-NB15 dataset), and Analysis (in UNSW-NB15 dataset) are

2.1 Why study low-Rate Attacks? 14

Table 2.1: A list of attack types definitions.
Attack Type Definition

DoS & DDoS
An attack that prevents legitimate users from accessing the

networks, systems, or applications by exhausting resources.

Probe
An activity that gathers information from targeted networks,

systems, or applications.

Fuzzers

An attack that tries to break a program or bypass the

protection by sending various data. It includes brute-force

attacks.

Botnets

Several connected devices which are controlled by the

adversaries to do malicious things, usually distributed

denial of services.

Exploits
An attack that triggers a vulnerability in a system and

usually causes it to be controlled by the adversaries.

Backdoors
Any mechanism that allows unauthorised access to systems

or applications

Worms
A computer program that replicate itself onto other hosts

and do something malicious in them.

similar. Thus they can be put in the same cluster. The summary of attack types and

their brief definition is shown in Table 2.1.

A Denial of Services (DoS) attack prevents legitimate users from accessing the provided

resources. Ping of Death is an example of this type of attack in which the adversary

sends a malformed ICMP packet, bigger than the maximum packet size. This attack

causes the target system to crash or reboot, thus denying access from legitimate users.

The term DoS and flooding are generally used interchangeably since flooding attacks

attempt to make a system fail as well. To amplify the effect, the adversary utilises an

army of controlled devices to send junk messages. This attack is known as Distributed

Denial of Services (DDoS). The incident on GitHub where adversaries sent 126.9 mil-

2.1 Why study low-Rate Attacks? 15

lion packets per second is one of the recent examples of this attack [61].

The army of adversary controlled devices used for a DDoS attack is called a bot-

net [101]. A botnet has many uses, from sending spam emails to taking down a server

in minutes. Therefore, botnet traffic is highly correlated with DDoS traffic.

Another type of attack that behaves similarly to DDoS is a fuzzer. It is an attack which

aims to break an application by giving the target randomly generated input, hoping the

application would raise an error. Due to numerous attempts this attack makes in a short

period of time, the target may refuse to serve legitimate users as a side effect. Brute

force attacks attempt to get into the system by sending a combination of usernames and

passwords. These are also classified as fuzzers due to their similar behaviour, throwing

numerous attempts in the hope of breaking the authentication.

Probe or reconnaissance refers to an activity of gathering information from the targeted

network, system, or application. It is usually the initial step in penetration testing to

give the tester crucial information which will be useful later, such as how the internal

network laid out or what are the operating systems and applications installed. The ad-

versary would then know the weakest link to infiltrate subsequently. A Transmission

Control Protocol (TCP) stealth scan is the most popular technique for reconnaissance.

This technique sends multiple SYN requests to various ports when the adversary re-

ceives a SYN-ACK reply. It is implied that the port is open.

We can see a pattern here. The behaviour of sending multiple requests in a short period

of time, hoping to achieve something appears in four attack types mentioned. Time-

related features (i.e., inter-arrival packet time, round trip time, and many others) would

be able to capture the behaviour of these attack types well[39]. Therefore, we classify

these types of attacks as high-rate attacks.

In contrast to high-rate attacks, we define a low-rate attack as any attack which silently

infiltrate networks, systems, or applications to compromise them, steal information, or

maintain access. This attack-type includes: exploits, backdoors, worms, ICS malicious

2.1 Why study low-Rate Attacks? 16

commands and data exfiltration.

An exploit is a piece of code that triggers unexpected behaviour from an application.

The unexpected behaviour may then be used to escalate privilege or gain control of the

system. This attack type also includes malicious instructions to a device which cause

the device to do something that is not intended. One example is when an adversary ex-

ploit a vulnerability in Whatsapp, which caused them to gain control of victim devices

by sending a specially crafted MP4 file which contains a reverse shell code [9]. In this

case, the reverse shellcode is usually referred to as the exploit payload, the piece of

code which will be executed once the vulnerability is successfully exploited.

When an adversary successfully infiltrates a system, they would want to maintain the

access, even when the main channel they have used during the initial infiltration has

been closed. For that purpose, the adversary would plant a backdoor in the comprom-

ised system. A web shell is an example of a backdoor. It is a web-based application

that allows an adversary to upload files, list directories, add users, and maintain access

to the compromised system. It also includes an act of planting the backdoor program

itself by transmitting the program through a network connection.

Malicious software that can replicate and distribute itself is called a worm. Once a

worm exist in the network, it will spread itself without any trigger from a human.

WannaCry is an excellent example of a worm. It encrypts files in the computer and then

exploits a system vulnerability to propagate itself to other computers in the network.

Based on the above definitions of various attack types, we analysed the existing works

on NIDS to determine the proportions of the existing literature that have addressed

different attack types. Figure 2.1 shows the percentage of attack types being discussed

or considered by existing works on anomaly-based NIDS. DoS and DDoS take the

biggest portion in the chart. This illustrates that detecting those attacks (high rate) has

attracted the most attention. The proportion increases when all high-rate attacks (i.e.,

DoS & DDoS, Probe, Fuzzers, and Botnets) are combined. It takes more than 50% of

the attack types. This result is not surprising given the fact that many network traffic

2.1 Why study low-Rate Attacks? 17

29.7 %

DoS & DDoS

20.79 %

Probe

8.91 %

Fuzzers 5.94 %

Botnets

24.75 %

Exploits

4.95 %

Backdoors

4.95 %
Worms

Figure 2.1: The distribution of attack types discussed in anomaly-based NIDS

research.

datasets generally provide time-related features and generate others from information

found in packet headers (see Section 3.1) which are useful for detecting high-rate at-

tacks.

Where low-rate attacks have been explored, many existing works included them be-

cause they existed in the KDD Cup 99 dataset [113, 34, 60, 32, 42, 48, 96] (see Section

3.1). These cases are arguably limited in their findings because the KDD dataset only

contains 31.66% of low-rate attack out of 120 [67]. Moreover, as these works did not

particularly discuss detecting low-rate attacks. It gives us less information on how

their approaches would work on low-rate attacks more generally. This is problematic

given that effect of low-rate attacks is severe, costing the victim lots of money, as in the

NHS case (£92 million) [10], and ruining their reputation, as in the case of several IT

providers in Saudi Arabia [105]. Therefore, this thesis focuses on detecting low-rate

attacks.

2.2 Network-based Intrusion Detection Systems 18

2.2 Network-based Intrusion Detection Systems

A newly published server on the internet will be targeted by adversaries in minutes or

even seconds. It will be scanned for vulnerabilities and exploited as soon as a vulner-

ability is found as adversaries regularly scan for newly active Internet Protocol (IP)

addresses [23]. To protect their network/system, one usually employs a firewall or an

Intrusion Detection System (Intrusion Detection System (IDS)). A firewall controls the

flow of traffic between networks using differing security postures [99]. It essentially

limits access to services by allowing or blocking connections based on predefined rules.

For instance, some companies do not allow their internal network to access BitTorrent

as it potentially spreads malware, so they drop packets belonging to the protocol. How-

ever, firewalls do not prevent attacks to ’allowed’ services. For instance, they will not

block an SQL injection attack to a company website where web access is allowed.

An IDS is a process or subsystem, implemented in software or hardware, that auto-

mates the tasks of (a) monitoring events that occur in a computer network and (b) ana-

lyzing them for signs of security problems [99]. Unlike firewalls, IDSs also monitor

’allowed’ access, ensuring that it does not contain malicious intent. If a firewall limits

access to a network/system, an IDS monitors the limited access that passes through the

firewall.

Based on its placement and data sources within the system, there are two kinds of

IDS: host-based and network-based IDS. A host-based IDS works by examining log

files, system calls, or memory content. A network-based IDS is placed in the middle

of internal and external networks, usually closer to the router facing the internet. It

monitors every incoming and outgoing packet. The latter can detect malicious activity

before it reaches the protected system. Therefore it may aid the system administrator

to react faster and minimise the damage. For that reason, this research will focus more

on monitoring network traffic to detect malicious behaviour.

Before further exploring NIDSs, we first clarify the definition of Deep Packet Inspec-

2.2 Network-based Intrusion Detection Systems 19

tion (DPI). Broadly speaking, DPI is a data processing technique which inspect the

payload of network packets [20]. It is used for many purposes, such as internet cen-

sorship, logging data from a particular service, or check for malicious code. Some

firewalls have this capability. In that case, DPI is usually used to block traffic to certain

websites or limit bandwidth for some services. NIDSs also have this capability if they

inspect the content/payload of network packets, but it is for different purpose from DPI

firewalls. Although some DPI firewalls also have the capability to detect malicious net-

work traffic, we classify everything that detects malicious traffic as NIDS, including

DPI firewalls.

Figure 2.2 shows a general taxonomy of an NIDS. A signature-based NIDS has a

database of patterns that appear on malicious traffic. For instance, a buffer overflow

attack usually contains a byte value 0x90 as a padding for the exploit payload, thus

if that value is found on the network traffic, the NIDS will raise an alert. It is highly

effective in detecting known attacks given that a good set of rules is provided.

Snort [95] is the most popular open-source NIDS and has been in use since 1998. The

signature database is updated regularly, making it the strongest supported signature-

based NIDS [5]. BroIDS, now known as Zeek [3], is another powerful network analysis

framework that can be utilised as an NIDS. In this area, Zeek is commonly used to ex-

tract information from network traffic and parse protocol messages. Another example

of signature-based NIDS is Suricata [2]. It was built to overcome Snort’s limitation

on multithreading hence makes Suricata faster at processing network data. Suricata is

also able to read Snort’s rules, making it easier to migrate from Snort to Suricata.

The widely known weakness of signature-based NIDSs is that the database needs to

be updated regularly. Otherwise, they will not be able to detect zero-day attacks (new

attacks that have never been seen). Building a sound signature also requires high ex-

pertise on the attack. If the signature is too generic, the NIDS will deem legitimate

traffic as malicious. However, if it is too specific, it would be easier for the adversary

to modify the attack to avoid detection.

2.2 Network-based Intrusion Detection Systems 20

Figure 2.2: A general taxonomy of research on NIDS

To overcome this limitation, the idea of using an anomaly-based NIDS was proposed.

An anomaly-based NIDS typically learns the behaviour or pattern of legitimate traffic

by first building a ’normal’ model. It then raises an alert when the new incoming traffic

deviates from the ’normal’ model. Initially, the approach to build a ’normal’ model was

by utilising statistical-based anomaly/outlier detection. Then, researchers started using

machine learning (ML) algorithms to build a model as they have more predictive power

than the statistical-based model [27].

In general, there are two types of learning in Machine Learning (ML), supervised and

unsupervised. In the case of NIDS, a supervised model is trained by learning pat-

terns in samples of all classes, namely legitimate and malicious traffic. Unsupervised

learning, on the other hand, trains a model by looking at legitimate traffic only, captur-

ing patterns or behaviour within it. Unsupervised learning is similar to statistical-based

methods since it is a further development of outlier detection in statistics. Both learning

types can still be used to detect malicious traffic. There have been many works employ-

ing either supervised or unsupervised learning to identify malicious traffic [39, 100].

An anomaly-based NIDS needs a set of features to be able to distinguish malicious

and legitimate traffic. And there are two main approaches of extracting features from

raw network traffic. The first approach is to obtain the features from the information

presents in the header part of network layer packets (i.e., IP) or transport layer seg-

ments (i.e., TCP, User Datagram Protocol (UDP)). IP addresses, ports, TCP flags,

packet/segment length are commonly used features [39]. Aggregating values across

2.2 Network-based Intrusion Detection Systems 21

multiple packets belonging to the same flow/connection is also a part of this approach [100].

Inter-arrival packet time, the number of packets/bytes transmitted, the average number

of retransmitted packets are examples of aggregated values. Since all of the mentioned

features are extracted from the header part of an IP packet or TCP/UDP segment, any

anomaly-based NIDS which uses them is referred as a header-based NIDS.

The second approach goes deeper in the OSI layers by analysing the payload of net-

work packets: the application layer message. An application layer message contains

information on what the client wants the server to do, such as: asking for a file, sending

a file to be stored, and asking the server to forward an email. This approach analyses

the message and decides whether it is malicious by looking at the properties of the

message. These properties could be the number of printable characters, frequencies of

particular bytes, whether the message satisfies the intended format, or other advanced

features [24, 107, 19]. We refer the anomaly-based NIDS that uses this approach as a

payload-based NIDS.

2.2.1 Header-based NIDS

The advantage of analysing the header of network packets is that it is relatively quick

and straightforward to obtain the necessary values as the header only makes up a small

portion of the packet size [39]. Additional overhead may occur when aggregating val-

ues over several packets, but once the numbers are obtained, they should be fairly quick

to process. Moreover, lots of network traffic datasets already provide the preprocessed

features which can be fed directly to any ML algorithm. Those datasets help research-

ers to focus more on the detection algorithm.

Several existing works utilised existing ML algorithms to detect attacks. Xiang et al.

[113] proposed the Extreme Learning Machine to detect malicious attempts using Ha-

doop to process a significant amount of data. Chitrakar and Huang [34] introduced an

improvement to incremental Support Vector Machine (SVM) by incorporating unused

2.2 Network-based Intrusion Detection Systems 22

support vectors in the next training process. Khammassi and Krichen [60] focused on

improving the feature selection process, which in turn should improve the accuracy

as well by using a combination of Genetic Algorithm (GA) and Logistic Regression

(LR). Wang et al. [110] selected the best features with Information Gain and then ex-

perimented with K-Nearest Neighbour (KNN) and One-class SVM. Selvakumar and

Muneeswaran [96] aimed toward a similar goal of selecting the best features with Mu-

tual Information Firefly algorithm. Chiba et al. [32] conducted experiments on de-

tecting intrusion with Neural Network and various sets of parameters and improved

their work on intrusion detection by introducing an ensemble algorithm of Genetic

Algorithm, Simulated Annealing, and Neural Network [33].

Other research proposed new or improved algorithms and evaluated them with an ex-

isting dataset. GM Median Nearest Neighbours LDA [42] and an ensemble of SVM

with feature augmentation [48] are examples of improvement work on the detection

algorithm.

All the works above were evaluated or trained using the KDD Cup 99 dataset [37].

They either proposed a novel detection algorithm or feature selection strategy. None

of them introduced a new feature, and the dataset itself leans toward DoS and Probe

attacks. Moreover, there is little discussion on what kind of attacks they are trying to

detect as different attack types may exhibit unique behaviour. The fact that the dataset

is outdated has added a problem to the area. It is hard to judge the relevance of the

result to the current situation as attacks have evolved.

There are a few other works on header-based analysis which did not evaluate their

method with the KDD Cup 99 dataset. One noticeable characteristic of these works

is that they always explicitly mentioned what kind of malicious activities they are try-

ing to detect or what type of network environment they will analyse. Some works on

detecting botnets [116, 93, 36], DDoS [29, 87, 30, 65, 16, 91], or both [102, 81, 28].

Some of these works mentioned the type of network environment that they were ana-

lysing. Rahbarinia et al. [93] limit the scope of the network to large Internet Service

2.2 Network-based Intrusion Detection Systems 23

Provider (ISP) networks. Lee et al. [65] and Chen and Yu [29] proposed a method to

detect intrusion in Software-Defined Network (SDN).

Zhang et al. [116] aimed to detect botnets in Peer-To-Peer (P2P) networks (i.e., BitTor-

rent, Emule, Limewire, Skype, and Ares) by clustering the behaviour of different P2P

applications. If a network traffic pattern does not belong to any of the clusters, it will

be marked as a potential botnet activity. Rahbarinia et al. [93] proposed an efficient

tracking of botnets in large ISP networks by analysing DNS requests transmitted by

machines. From those requests, they proposed three groups of features, namely ma-

chine behaviour, domain activity, and IP abuse. They then built several classifiers to

inspect how their proposed features affected botnet detection. Chen and Yu [29] pro-

posed DDoS detection in SDN environment. They extracted several features from the

network header, used a Neural Network (NN) classifier, and implemented it in an SDN

environment with OpenFlow [75]. Similarly, Athena [65] also developed a framework

for anomaly detection in SDN. It collected SDN control messages and extracted fea-

tures from them. Chen et al. [30] proposed an improvement to Multi-Scale Principal

Component Analysis (MSPCA) to detect DoS attacks better. The MSPCA calculates

the Square Prediction Error to see how far the new traffic is from normal behaviour.

If the error surpasses a particular threshold, that traffic is deemed malicious. Stergi-

opoulos et al. [102] employed side-channel features on TCP packets to detect various

attacks and experimented with various ML algorithms. Muller et al. [81] proposed an

incremental clustering which can prevent training attack, a type of attack which dir-

ect a model to consider malicious traffic to be benign. Cid-Fuentes et al. [36] applied

One-Class SVM, a widely known novelty detection algorithm, to detect botnets in the

ISCX 12 dataset (see Section 3.1). Unlike most other approaches, the model in this

approach is continuously updated. Carrasco and Sicilia [28] modelled network traffic

with skip-gram [49] and used a neural network to detect anomalies. Despite having 49

features from the dataset (UNSW-NB15, see Section 3.1), the authors only opted IP

addresses, ports, and protocol as the feature set which arguably not enough to capture

the behaviour of malicious traffic. Mirsky et al. [78] proposed an unsupervised detec-

2.2 Network-based Intrusion Detection Systems 24

tion method of DoS based on Autoencoders, a deep learning architecture that may be

utilised for outlier detection. Their work was evaluated in an Internet of Things (IoT)

environment. Ahmed et al. [16] generated application fingerprints from their network

traffic and utilised those to build an unsupervised model to detect DDoS attacks. Qin

et al. [91] profile anomalous behaviour with symmetry degree, which is the maximum

ratio between the number of internal IP addresses sending packets to external to the

number of external IP addresses sending packets to internal networks.

Table 2.2 summarises the aforementioned works. It highlights that the majority of ex-

isting work have not taken low-rate attacks into account. Most of them focused on

detecting DoS and DDoS (high rate attacks). Carrasco and Sicilia [28] and Stergi-

opoulos et al. [102] did pay attention to exploits as an example for low-rate attacks1.

However, [28] work relies solely on IP addresses, ports, and protocols to identify mali-

cious traffic, which makes the result questionable as the malicious traffic in the dataset

had been generated by a separate set of IP addresses. Considering that earlier works

on header-based NIDS rarely focused on detecting low-rate attacks, it is important to

analyse how well header-based analysis can identify low-rate attacks.

1Publications by Stergiopoulos et al. [102], Mirsky et al. [78], and Carrasco and Sicilia [28] were

published after our paper [88]

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
25

Table 2.2: A list of anomaly-based NIDS research which obtained a set of features from information in the header of network packets.

Attack types are written based on the definition in Table 2.1. The second column shows whether the work took low-rate attacks into

account in their research. A checkmark (X) shows that the respective work included low-rate attacks in the evaluation.

Authors/Work

Attack Types Detected

(Contain Low-Rate

Attacks)

Features Detection Method(s)

Xiang et al.

[113]
Probe, DoS, Exploits (X2) KDD Cup 99 features Extreme learning machine

Chitrakar and

Huang [34]
Probe, DoS, Exploits (X2) KDD Cup 99 features Incremental SVM

Khammassi and

Krichen [60]
Probe, DoS, Exploits (X2) KDD Cup 99 features

Decision Tree with GA-LR for

feature selection

Chiba et al. [32] Probe, DoS, Exploits (X2) KDD Cup 99 features Neural Network

Wang et al. [110] Probe, DoS, Exploits (X2) KDD Cup 99 features KNN, One-class SVM

Elkhadir and

Mohammed [42]
Probe, DoS, Exploits (X2) KDD Cup 99 features GM Median NN-LDA

Gu et al. [48] Probe, DoS, Exploits (X2) KDD Cup 99 features Aggregated SVM

2The work did not specifically discuss low-rate attacks detection as the dataset only contains a small portion of low-rate attacks.

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
26

Work

Attack Types Detected

(Contain Low-Rate

Attacks)

Features Detection Method(s)

Selvakumar and

Muneeswaran

[96]

Probe, DoS, Exploits (X2) KDD Cup 99 features Bayesian Network, C4.5

Chiba et al. [33]
Probe, DoS, Fuzzers, Exploits

(X2)
KDD Cup 99 features Neural Network

Zhang et al.

[116]
Botnets (7) numbers of packets and bytes sent

K-Means + Hierarchical

clustering

Rahbarinia et al.

[93]
Botnets (7)

machine behaviour, domain

activity, and IP abuse
J48, Random Forest

Chen and Yu

[29]
DDoS, Worms (7)

packet rate, percentage of

transport layer packets, IP

addresses, ports, inter-arrival

packet time, duration, number of

packets and bytes, and special

protocol of application layer

NN

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
27

Work

Attack Types Detected

(Contain Low-Rate

Attacks)

Features Detection Method(s)

Chen et al. [30] DoS (7)

number of flows, statistical

parameters of each flowś packet

number (mean, median, and

standard deviation), average bytes

of flows, average bytes of packets,

entropy of IP addresses and ports

(source and destination)

MSPCA

Lee et al. [65] DDoS (7)
number of packets and bytes,

durations, pair flow ratio

K-Means, Gradient Boosted Tree,

Decision Tree, Logistic

Regression, Naive Bayes,

Random Forest, SVM, Gaussian

Mixture, Lasso, Linear, Ridge

Regressions

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
28

Work

Attack Types Detected

(Contain Low-Rate

Attacks)

Features Detection Method(s)

Stergiopoulos

et al. [102]

Backdoors, Exploits, DDoS,

Botnets (X)

Packet Size, Payload Size,

Payload ratio, Ratio to previous

packet, Time difference

Logistic Regression, LDA,

K-Nearest Neighbour, Decision

Tree, Gaussian Naive Bayes,

SVM, ANN

Muller et al. [81] DoS, Botnets, Probe (7)

number of bytes, packet size,

number of concurrent

connections, pause since last

packet

Stream Clustering

Cid-Fuentes

et al. [36]
Botnets (7) datasets features One-class SVM

Carrasco and

Sicilia [28]

Fuzzers, Probe, Backdoors,

DoS, Exploits, Worms (X)

header information (srcip, dstip,

dport and network protocol

(proto))

Skip-Gram with NN

Mirsky et al.

[78]
Probe, MITM, DoS (7)

packet size, packet count, packet

jitter
Autoencoders

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
29

Work

Attack Types Detected

(Contain Low-Rate

Attacks)

Features Detection Method(s)

Ahmed et al.

[16]
DDoS (7)

packet-level and flow-level

features
DPMM Clustering

Qin et al. [91] Probe, Botnet, DDoS (7)
header information (number of

connections)
Symmetry Degree score

2.2 Network-based Intrusion Detection Systems 30

2.2.2 Payload-based NIDS

Network payloads/application layer messages contain information about the request or

command sent to a remote system. Using this we can determine whether the request

or command is intended for malicious purposes. For instance, a remote exploit attack

would send a request containing shellcode which comprises a sequence of bytes that do

not usually appear in the text-based protocol messages (i.e., HTTP, FTP, and SMTP).

The attack may not exhibit distinguishable characteristic on the header-level. In this

case, payload analysis would be a better approach at capturing the attack.

Table 2.3 shows the summary of existing works in payload-based NIDS which use

either a statistical-based approach (threshold model) or a machine learning algorithm.

It shows the features the work used, some of which were preprocessed before being fed

into the detection algorithm, such as being stored in a particular data structure [94, 103]

or turned into a vector matrix [58]. Table 2.3 also gives a brief description of how the

research detects the attack. We use the term threshold model to refer to a detection

method that did not use an ML algorithm, but uses a statistical-based approach to label

new incoming traffic as malicious if ’distance’ between the traffic and the ’normal’

model surpasses the threshold value. Apart from that, datasets used in training and

evaluating the model and protocols covered by the research are also mentioned.

As shown in Table 2.3, in constrast to header-based NIDSs, majority of payload-based

NIDSs took low-rate attacks into account. Although some works also aim to detect

DoS [106, 43, 51] and DDoS [46].

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
31

Table 2.3: A summary of works on anomaly-based NIDS which look at network payloads. The list also includes any approach using

a threshold model, a statistical model where a threshold value is used to distinguish data in different classes. The second column

shows whether the work took low-rate attacks into account in their research. A checkmark (X) in the Attack Types Detected column

shows that the respective work included low-rate attacks in the evaluation. A checkmark (X) in the Support Multi Protocols column

means the method can detect attack and was evaluated on more than one application layer protocols

∗ D=DARPA99, G=GATECH dataset [86], I=ISCX12 [98], SG=self-generated,

U=UNSW-NB15 [80], O=Others, BS=BlattaSploit (see Chapter 3)

Work/Authors

Attack Types

Detected (Contain

Low-Rate Attacks)

Features Detection Method Dataset(s)i

Support

Multi

Protocols

PAYL [107] Worms (X)
Relative frequency count of

each 1-gram
A threshold model. D, SG X

Poseidon [24]
Probe, DoS, Exploits

(X)

Relative frequency count of

each 1-gram.

A threshold model and

Self Organising

Map (SOM) for

preprocessing

D X

Anagram [108] Worms, Exploits (X)
n-grams stored in a Bloom

Filter
A threshold model D, SG 7

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
32

∗ D=DARPA99, G=GATECH dataset [86], I=ISCX12 [98], SG=self-generated,

U=UNSW-NB15 [80], O=Others, BS=BlattaSploit (see Chapter 3)

Work/Authors

Attack Types

Detected (Contain

Low-Rate Attacks)

Features Detection Method Dataset(s)i

Support

Multi

Protocols

Rieck and

Laskov [94]
Exploits (X)

n-grams stored in trie data

structure.
A threshold model D, SG X

McPAD [86] Exploits (X) 2v-grams.
Ensemble of one-class

SVM
D, G 7

HMMPayl [21]
Web-based Exploits

(X)

Byte sequence of the

application layer messages

Ensemble of Hidden

Markov Model (HMM)s.
D, G, O 7

RePIDS [58] Exploits (X)

Mahalanobis Distance Map

which is originated from

relative frequency count of

each 1-gram, filtered by

Principal Component

Analysis (PCA).

A threshold model D, G 7

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
33

∗ D=DARPA99, G=GATECH dataset [86], I=ISCX12 [98], SG=self-generated,

U=UNSW-NB15 [80], O=Others, BS=BlattaSploit (see Chapter 3)

Work/Authors

Attack Types

Detected (Contain

Low-Rate Attacks)

Features Detection Method Dataset(s)i

Support

Multi

Protocols

Oza et al. [82] Exploits (X)
Relative frequency count of

each 1-gram.
Several threshold models D, G, SG 7

Whalen et al.

[111]
Exploits (X) n-grams

Aggregated Bloom Filter,

Logistic Regression,

Random Forest

I, SG 7

Bartos et al. [22] Botnets (7)

information from HTTP

request headers and the

lengths

SVM SG 7

Anderson and

McGrew [19]

Exploits, Backdoors

(X)

Packet header information

and TLS, DNS, and HTTP

messages

Logistic Regression SG 7

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
34

∗ D=DARPA99, G=GATECH dataset [86], I=ISCX12 [98], SG=self-generated,

U=UNSW-NB15 [80], O=Others, BS=BlattaSploit (see Chapter 3)

Work/Authors

Attack Types

Detected (Contain

Low-Rate Attacks)

Features Detection Method Dataset(s)i

Support

Multi

Protocols

Golait and

Hubballi [46]
DDoS (7)

Session Initiation

Protocol (SIP) messages

Probabilistic Counting

Deterministic Timed

Automata (PCDTA)

SG 7

Zhang et al.

[115]
Exploits (X)

Packet header information

and HTTP and DNS

messages

Naive Bayes, Bayesian

Network, SVM
D, SG X

OCPAD [103] Exploits (X) n-grams A threshold model G, SG 7

Bortolameotti

et al. [25]
Backdoors (X) HTTP messages Clustering SG 7

Hamed et al.

[51]

DoS, Fuzzers,

Exploits (X)

n-grams of base64-encoded

payload
SVM I X

Wang et al. [109] Backdoors (X) n-grams of words Linear SVM SG 7

2.2
N

etw
ork-based

Intrusion
D

etection
System

s
35

∗ D=DARPA99, G=GATECH dataset [86], I=ISCX12 [98], SG=self-generated,

U=UNSW-NB15 [80], O=Others, BS=BlattaSploit (see Chapter 3)

Work/Authors

Attack Types

Detected (Contain

Low-Rate Attacks)

Features Detection Method Dataset(s)i

Support

Multi

Protocols

Tripathi and

Hubballi [106]
DoS (7) HTTP/2 header values

Chi-Square-based outlier

detection
SG 7

AE-OD (see

Chapter 4) [88]

Exploits, Backdoors,

Worms (X)

Byte frequencies of L7

payload

Autoencoder-based

outlier detection
U, BS X

RNN-OD (see

Chapter 4)

Exploits, Backdoors,

Worms (X)
Byte sequences of L7 payload

Recurrent Neural

Network-based outlier

detection

U, BS X

Blatta (see

Chapter 5) [89]

Exploits, Backdoors,

Worms (X)
n-grams of L7 payload

Recurrent Neural

Network-based methods
U, BS X

2.2 Network-based Intrusion Detection Systems 36

Before continuing discussion with how existing works in payload-based NIDS detect

malicious traffic, we first discuss the datasets they used to evaluate their approach as it

shows how well the approach would perform and how easy it would be to reproduce the

result. Many older research and some newer ones in this area involved the DARPA99

dataset in their evaluation [107, 24, 108, 94, 86, 21, 58, 82, 115], either as a training

set, a testing set, or both. Some others used other publicly available dataset which

still provide payload information, such as ISCX12 ([111, 51]) and Gatech datasets

([86, 21, 58, 82, 103]. Many newer research opted to generate their evaluation data, but

none of them released the dataset publicly. Some of these data are arguably realistic

as they have been captured from real network traffic. On the other hand, since the

authors do not release the data to public, probably due to privacy concerns, it is hard to

reproduce the result, let alone compare the approaches. Therefore, it remains unknown

why researchers decided to use the self-generated dataset. Could it be because the

existing datasets do not represent actual malicious or legitimate traffic?

Each application which needs data transmission over the network uses an application

layer protocol. Some applications developed a proprietary protocol, while others use

open protocols (e.g., HTTP, SMTP, FTP). For example, a web browser communicates

with web servers with Hypertext Transfer Protocol (HTTP), emails are transmitted

across mail servers with Simple Mail Transfer Protocol (SMTP), people sometimes

transfer files to a server with File Transfer Protocol (FTP). Each of these protocols has

a specific message format. Therefore, an anomaly-based NIDS needs to treat them in

a specific manner if it analyses the payload/application layer message.

Analysing messages of those protocols requires a different set of features. Some works

proposed their feature set from extracting information in application layer messages.

Bortolameotti et al. [25] and Bartos et al. [22] generated their features from HTTP re-

quest URI and HTTP headers, i.e., host, constant header fields, size, user-agent, and

language. The authors then clustered the legitimate traffic based on those features.

Anderson and McGrew [19] collected features by grouping packets from the same

2.2 Network-based Intrusion Detection Systems 37

source and collecting observable metadata, TLS, DNS, and unencrypted HTTP-related

information. Zhang et al. [115] tracked DNS and HTTP traffic and calculated pair-

wise features of two events to see their similarity. These features were obtained from

the transport and application layer. One of their features is the semantical similarity

between two HTTP requests. Tripathi and Hubballi [106] proposed a method to detect

slow-rate DoS attacks on HTTP/2 by using information from HTTP/2 headers values

as a feature set. A method by Golait and Hubballi [46] aimed to detect flooding attacks

on Session Initiation Protocol (SIP) by analysing the sequence of SIP request names.

Features which are derived from a specific protocol capture specific behaviour of le-

gitimate traffic. However, this feature extraction method has a drawback. A different

set of features is needed for every application layer protocol that might be used in the

network. It would be better to have features that can characterise messages of each pro-

tocol without having to craft individual set of features for every protocol. To cope with

this problem, some research borrows a feature extraction method from natural language

processing problems since a payload can also be seen as a text document. A common

approach in that area for modelling document characteristics is to use n-grams. An

n-gram is a set of consecutive items (i.e., bytes, words, letters) with the length of n.

n-grams have several aliases depending on the value of n, namely unigrams, bigrams,

and trigrams for 1, 2, and 3-grams, respectively. The statistical properties of n-grams

are then used to build a machine learning model, as it is usually done in natural lan-

guage processing. Since network payloads have similar traits to text documents, it is

possible to use n-gram models to capture the properties of the payload and identify

malicious traffic.

Wang and Stolfo [107] proposed PAYL, which extracts 1-grams from all bytes of the

payload as a representation of the network traffic. PAYL trains a model over a set

of those 1-grams and applies a simplified Mahalanobis distance to measure how far

the new incoming traffic is from the model. Poseidon [24] improved PAYL by pre-

clustering the data using a self-organising feature map, resulting in a smaller number

2.2 Network-based Intrusion Detection Systems 38

of clusters and increasing the detection speed. RePIDS [57] calculates the distance

between bytes of the payload and stores them in a Mahalanobis Distance Map (MDM).

It then reduces the dimensionality of the MDM and uses the reduced MDM as the

normal model. The distance between a new packet and the model is then calculated.

Anagram [108] improved the detection accuracy of PAYL by collecting high order

n-grams of bytes, instead of 1-gram, from network packets and counting how many

of those n-grams had not been seen in the training phase. The numbers of newly

seen n-grams provide a measure of how anomalous new traffic is. Rieck and Laskov

[94] stored the n-gram representation of bytes in a trie data structure and used various

distance functions to detect anomalies. McPAD [86] and its predecessor [85] employed

multiple Support Vector Machine (SVM) classifiers and modified n-grams of bytes to

2v-grams, which take the first and last characters of a sequence of bytes with the length

of v. HMMPayl [21] is another work based on PAYL which uses Hidden Markov

Models to detect anomalies. Wang et al. [109] obtained n-grams of words in HTTP

headers. They used special characters, such as ":", ",", space, and "&" to segment the

payload into words. Hamed et al. [51] collected n-grams of base64-encoded payload

from the traffic as the dataset they were using stores the payload in base64-encoded

form.

Taking a look back at Table 2.3, it is shown that some existing works on payload-

based NIDS were evaluated with an old dataset, i.e., 1999 DARPA Intrusion Detection

Evaluation Dataset (DARPA99). These works then questionably perform good when

facing contemporary low-rate attacks. Hadžiosmanović et al. [50] tried to answer that

question by conducting experiments with a more recent dataset and PAYL [107], Po-

seidon [24], Anagram [108], and McPAD [86]. They showed that the performance of

those aforementioned works dropped. Another experiment by Wressnegger et al. [112]

with Anagram showed the same result.

DARPA99 have issues with not having representative samples of contemporary legit-

imate and malicious traffic anymore [74]. Thus, researchers have generated network

2.2 Network-based Intrusion Detection Systems 39

traffic datasets which arguably include recent attacks, such as ISCX12 [98], UNSW-

NB15 [80], and others. Similar to DARPA99, most of them were generated in a simu-

lated environment with a tool like IXIA PerfectStorm and contain both malicious and

legitimate traffic.

In order to properly evaluate low-rate attack detection, it is important to have a rep-

resentative samples of such attacks. Using a more recent tool to generate attacks does

not guarantee that the resulting traffic will be representative. Analysing the resulting

traffic is still necessary to determine whether existing datasets capture representative

and realistic behaviours of contemporary attacks, particularly low-rate attacks. This

leads us to our first research question:

RQ1: How well do existing validation datasets capture representative examples of

contemporary low rate attacks?

More recent works provided improvements from the earlier ones, but they either did not

focus on detecting low-rate attacks [116, 93, 29, 87, 30, 65, 81, 36, 78] or covered only

one protocol, mostly HTTP [111, 82, 51, 97, 109], despite utilising protocol-agnostic

features. Although HTTP is the most popular protocol on the internet, the statistics

from ExploitDB in Table 1.2 show that low-rate attacks on other protocols do exist.

Being able to detect more attacks would reduce the possibility of the system being

compromised. This issue then led us to our second research question:

RQ2: Given recent research has shown that previous work on low rate attack detection

across multiple protocols is dated and performance drops on contemporary low rate

attacks, how do we improve the performance of low rate attack detection models to

deal with evolving cyber attacks on a range of protocols that are increasingly causing

damage to corporate networks?

In research on payload-based NIDS, there are two common approaches on when to

begin detection. Firstly, the method would read the payload of an individual IP packet

and started detecting once it received a packet [107, 108, 24, 58, 86, 103, 94]. Existing

2.3 Conclusions 40

approaches to this disregard the relationship between packets, which may lead the

detection method to mark packets belonging to the same connections differently. One

could be deemed as malicious while others not. Therefore, performance measurement

might not be accurate.

Another approach is to reconstruct the TCP streams and extract features from the whole

message or use the reconstructed payload information from the dataset [21, 22, 19, 46,

115, 25, 51, 106]. In doing so, the classifier would have the same decision for all

packets belonging to the same connection and complete view of the message, hence

making a better decision. However, some protocols may have very long messages

which need many packets to be sent, such as SMTP, HTTP. However, this approach

may be time consuming as the NIDS would have to wait until the end of the message

to arrive. As there is no existing model which provides early prediction of low-rate

attacks, we argue that this is an open research area needs addressing. By conducting

early prediction, we could potentially react quickly and minimising the damage. This

issue leads us to a question:

RQ3: Can we predict the occurrence of low-rate attacks with fewer data and earlier

in the attack, while still retaining a relationship between the sequence of packets?

2.3 Conclusions

Detecting low-rate attacks is an essential task but sometimes overlooked. Nevertheless,

the effect of them successfully executing on a system is severe, leading to economic

and reputational costs to the victim. This leads us to focus on detection of low-rate

attacks in network traffic. Low-rate attack detection has received attention by security

researchers - yet there are several issues still to be addressed, such as: the existence

of representative examples of contemporary low-rate attacks to validate methods in

this area; previous works having performance drops on contemporary low-rate attacks;

and no existing works have yet addressed the problem of early prediction of low-rate

2.3 Conclusions 41

attacks. This chapter highlights these issues and gives the following contribution:

C1: A comparative study of state of the art supervised and unsupervised anomaly-

based methods for detecting low-rate attacks with features obtained from packet header

and payload information to investigate the performance of existing methods and fea-

tures when distinguishing low-rate attacks from legitimate traffic.

42

Chapter 3

How well do existing validation

datasets capture representative

examples of contemporary low rate

attacks?

Evaluating the performance of an Network-based Intrusion Detection System (NIDS)

is usually conducted by running it over data that contain malicious and legitimate

traffic. The number of detected malicious traffic and misclassified legitimate instances

are then counted. However, to be confident with the result, the data used to evaluate

the method must resemble the real-world situation. Moreover, attacks are evolving, so

while evaluating an anomaly-based NIDS with an old dataset may yield a good per-

formance - the result may not be representative of its ability to detect contemporary

attacks. The performance may drop when it faces more recent attacks as was shown

in the experiments conducted by Hadžiosmanović et al. [50] and Wressnegger et al.

[112].

DARPA99 is the most widely used dataset in this area. Some issues with this dataset

are mentioned by McHugh [74]. Several newer publicly available network traffic data-

sets have been published since then, such as ISCX12 [98], UNSW-NB15 [80]. Since

now the community has more options for evaluating their approach, it is important to

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 43

analyse whether those options are appropriate for contemporary low-rate attack detec-

tion. This leads to our first research question:

RQ1: How well do existing validation datasets capture representative examples of

contemporary low rate attacks?

We will first discuss existing datasets that contain low-rate attacks and highlight their

issues and limitations. Afterwards, we propose a new low-rate attack traffic dataset to

complement the existing datasets.

3.1 Existing Network Traffic Datasets with Low-Rate

Attacks

There are many network traffic datasets available, but since we focus on detecting low-

rate attacks, we will only discuss such datasets that contain low-rate attacks. Therefore,

we also exclude datasets which are not clearly labelled. Some datasets, i.e., KYOTO06,

CAIDA, Digital Corpora, and MAWI, do not have a label for each connection in the

dataset which would make the evaluation difficult. Therefore, we analysed DARPA99,

KDD99, NSL-KDD, ISCX12, UNSW-NB15, and GATECH dataset in the following

sections.

We proposed six metrics to measure how well these datasets for evaluating low-rate

attack detection methods: how many years ago the traffic was generated, whether the

raw payloads can be found in its PCAP files, whether each attack is labelled corres-

ponding to its attack category, the proportion of low-rate attack instances, whether the

dataset contains duplicate records, and whether there are low-rate attacks over multiple

application layer protocol. Another metric we are going to use is whether the dataset

contains legitimate traffic as well as malicious traffic. This metric is not essential to

measure how well the datasets are, but it is still worth noting which dataset has samples

of legitimate traffic. Before going further, we will first explain why these metrics were

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 44

chosen.

Network-based applications keep evolving, and detection methods have to be able to

identify attacks in recent traffic. A dataset with obsolete network traffic would not be

a good sample for evaluating NIDS. The difference between the real-world network

traffic and the one in the dataset would be too far. A detection method may perform

well with the dataset but poorly when faces the real-world network traffic. An average

exploit has a life expectancy of 5.39 and 8.84 years [14]. Exploits older than that are

unlikely to be used anymore as most systems will have been patched against it. Those

attacks are unlikely to be seen in the real network. We argue that period when the

dataset was generated influence how close it is to the real-world traffic. Therefore, we

aimed to use datasets that had been generated no more than five years ago. Five years

was selected so that the result of this analysis will still be applicable for the next three

years as the upper limit is 8.84 years.

Datasets, such as KDD99 and NSL-KDD, remove the raw payload and do not provide

the PCAP files where the data were generated from. As shown in Table 2.3, fifteen

works relied on payload information to identify low-rate attacks. KDD99 and NSL-

KDD do not provide such information. Thus, researchers would have limited informa-

tion about the network traffic.

Labels are one of the most essential components in a dataset. Without good labels, it

is difficult to measure the proposed method. Datasets commonly have the information

on whether a specific record is malicious or legitimate. As we are more focused on

low-rate attacks, it is important to know which malicious traffic was generated by a

low-rate attack. Therefore, attack type labels are essential. Without it, we would not

be able to take specifically low-rate attacks from the dataset.

As most dataset in comparison contains both high and low-rate attacks, it is needed to

know the proportion of the low-rate attack instances in the dataset to know whether

there are enough samples.

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 45

The number of samples does not give the full picture of the dataset. We also need to

know whether the dataset contains duplicate records. Duplicate records are an import-

ant aspect to consider for Machine Learning (ML)-based NIDS as they may cause the

algorithm to bias towards more occurring records. Although duplicate records may

be removed during the preprocessing step, it is still preferable if the dataset does not

contain them.

Finally, there are multiple protocols on the internet. We use Hypertext Transfer Pro-

tocol (HTTP) for web browsing and Simple Mail Transfer Protocol (SMTP) for send-

ing emails. Having representatives for low-rate attacks on multiple protocols would be

better to evaluate our method with more varied environments.

1999 DARPA Intrusion Detection Evaluation and KDD Cup 1999 Datasets

In 1999, Defense Advanced Research Projects Agency (DARPA) released a second

evaluation dataset for IDS[68]. They simulated real network traffic by generating ma-

licious and benign requests to the network, then captured all network packets by using

tcpdump. This is the dataset that then known as 1999 DARPA Intrusion Detection

Evaluation Dataset (DARPA99).

DARPA99 consists of three weeks of captured packets for training and two weeks for

testing. The first and third week are attack free and usually used to train an Intrusion

Detection System (IDS) model. The second, fourth, and fifth weeks contain attacks of

different categories, and the last two weeks are for testing. Labels are provided in the

form of text files that are too complicated to relate with the packets in the PCAP files.

A sample of a label is shown in Fig. 3.1

DARPA99 is still quite popular. As shown in Chapter 2, Table 2.3, this dataset was

used nine times as a benchmark. McHugh [74] argued that the dataset was not realistic

enough to simulate a real network. Then Mahoney and Chan [72] added weight to this

argument by running their IDSs on DARPA99 and real network data, which resulted

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 46

Figure 3.1: The label of a connection in DARPA 99 dataset

in very different outcomes. Brugger and Chow [26] also ran Snort[95] over DARPA99

and the result was poor. They suggested that it was caused by either the failure of the

dataset to model the attack correctly or Snort did not have suitable signatures for old

attacks. Moreover, this dataset only contains 18.97% of low-rate attack instances out of

190 overall attack instances in the dataset [68], which may make the performance of a

NIDS evaluated with it biased towards the other types of attack, for instance Distributed

Denial of Services (DDoS) and Probe attacks.

In the International Conference on Knowledge Discovery and Data Mining, there was

a data mining competition which used a preprocessed version of the DARPA98 to eval-

uate the submitted approaches. It is known as KDD Cup 1999 Dataset (KDD99) [37].

The committee extracted 41 features from the raw network traffic, in the form of PCAP

files, and stored them into a comma-separated file. Each connection was then la-

belled as normal or attack. Similar to DARPA99 dataset, this dataset considers four

attack types, namely denial of service (DOS), unauthorised access from a remote ma-

chine (R2L), unauthorised access to local superuser privileges (U2R), and probing.

These categories are further divided into specific attack techniques, e.g., buffer over-

flow, IP sweep, neptune.

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 47

Since this dataset was generated from the DARPA98 dataset, an earlier version of

DARPA99, it has the same problem of not being realistic enough [74]. This dataset

also contains many duplicate records which would bias the model [104].

Despite all the criticism, the use of KDD99 dataset is surprisingly still prevalent in IDS

research. In Chapter 2, Table 2.2, it is shown that this dataset was used by eight works,

some of them were published in the last five years. The fact that this old dataset is still

used to evaluate modern approaches is concerning.

NSL-KDD

Aware of the problem in the KDD99, Tavallaee et al. [104] proposed a few fixes to it.

They filtered out redundant records in the training and testing set. Therefore classifiers

would not be biased towards more frequent records. They also made the number of

records in each group/class proportional. Thus the evaluation result would be more

balanced. Finally, they selected a small portion of randomly selected records, enabling

everyone able to run an experiment over the same set. Thus, the results will be com-

parable.

Similar to the KDD99, NSL-KDD is a preprocessed traffic dataset. It provides CSV

files with pre-selected features which were directly taken from the KDD99. It may

have a different number of records, but the features are exact copies.

This dataset does help to make results across many experiments more comparable.

However, this fact does not eliminate the problem that the KDD99 traffic is not a rep-

resentative of a modern real-world situation. This problem is also raised by Tavallaee

et al. [104], yet they argued that NSL-KDD can still be used to evaluate anomaly-based

NIDS approaches.

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 48

UNB Intrusion Detection Evaluation Dataset 2012 (ISCX12)

Due to the critiques of DARPA 99 dataset, Shiravi et al. [98] generated a network

traffic dataset called ISCX12. To make it as close as possible to realistic traffic, they

analysed real network traces, built profiles of the traffic, and used those profiles to

simulate user behaviour. The traffic generated by the simulation was then captured and

used as samples of legitimate behaviour. In doing so, this dataset claimed not to have

privacy-related problems, yet be sufficiently realistic.

ISCX12 consists of seven days of network traffic from 11 to 17 June 2012. The only

clean, attack-free set is the 11th June - all the others contain attack traffic. Most of

them are HTTP-based Denial of Services (DoS), IRC botnet, and SSH brute force at-

tacks. This dataset also has attacks that stem from a PDF buffer overflow vulnerability

and SQL injections. Most packets, whether they are benign or malicious, are HTTP

packets, though it also contains other protocols (i.e. FTP, SMTP, and IMAP) in smaller

samples. It makes the proportion of protocols imbalanced and overall detection ac-

curacy can be misleading. When taking average results of detection, a great result on

HTTP might hide poor results on other protocols.

Shiravi et al. [98] released the PCAP files and provide preprocessed information in

XML format. Each record in the XML file consists of a tuple of transport layer pro-

tocol (i.e., source & destination IP addresses and ports), TCP flags, number of bytes &

packets, captured time, direction, and the payload encoded with base64. Connection

labels are written in the XML files as well. Unlike the DARPA99 or KDD99, ISCX12

only labels a connection as Normal or Attack, no attack classes present. Although the

tag appName mentions what application (e.g., HTTPWeb, DNS, SSH) generates the

respective traffic, it is difficult to determine the type of attack. Therefore, it is difficult

to see if a proposed method would detect low-rate attacks as they are confused with

high-rate attacks.

Another issue we found after examining ISCX12 is duplicate records. Several TCP

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 49

connections have two XML records. One usually contains the payload while the other

does not. Hence, extra care in removing these duplicate records is needed prior to using

this dataset. Alternatively, they could use the provided PCAP files instead.

UNSW-NB15 Dataset

Moustafa and Slay [80] generated the UNSW-NB15 dataset by running an IXIA Per-

fectStorm, a tool to emulate traffic, in the Cyber Range Lab of the Australian Centre

for Cyber Security (ACCS). The traffic in this dataset was captured in two days, on the

22th January and 17th February 2015. It contains nine attack classes: Fuzzers, Back-

doors, Denial of Service, Exploits, Generic, Reconnaissance, Shellcode, and Worms as

described in Table 3.1. Apart from PCAP files, UNSW-NB15 also provides the prepro-

cessed data in CSV files and the output of flow information extraction tools (Argus [70]

and Bro-IDS, now known as Zeek [3]). Each record in this dataset is labelled with its

categories (normal/attack) and its attack type, making it more suitable for research

which addresses a specific type of attacks.

The UNSW-NB15 dataset proposed 47 features (excluding the attack category and la-

bel). These features are clustered into flow, basic, content, time, and additional related

features. Flow features consist of the transport layer tuple, i.e., IP addresses, ports, and

protocol type. Basic features include packet-based and flow-based features, such as

duration, number of bytes, and number of packets. Content features do not necessarily

explore the content/payload of a connection. They contain some TCP-related informa-

tion, such as window advertisements or sequence numbers. Time features, as the name

implies, include various features related to time, for example: jitter, start & end time,

and inter-packet arrival time. Lastly, additional generated features are divided into

general purposes and connection features.

In general, this dataset is a significant improvement to the DARPA99. However, this

dataset also comes with some issues. For payload analysis it is worth noting that some

exploits and worms in this dataset are barely distinguishable from legitimate traffic.

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 50

For example, several exploit attacks in this dataset send a short HTTP request message

containing nothing but a simple HTTP GET request to a non-existent file. Another

issue we found is the Host header in several HTTP requests is an arbitrary string. It

may affect the detection performance if the research relies on the occurrence of specific

bytes as legitimate HTTP requests do not have this behaviour. Therefore, it may be

beneficial to complement this dataset with additional attack traffic.

Table 3.1: Attack description in the UNSW-NB15 dataset.

Class Name Description

Normal Legitimate traffic without any malicious payload

Analysis Port scanning, spam, and HTML file injection

Backdoors Planting malicious files as an alternative entrance to the server

DoS Denial of service attack

Exploits
Attacks that exploit vulnerabilities in the server to make it doing

something unintended

Fuzzers Sending various inputs to an application to find vulnerabilities

Generic Attacks that try to break block ciphers

Reconnaissance Used to gather information of the server

Shellcode
Small piece of code which used to run a program on the remote

server

Worms
A piece of code that can replicate themselves, sometimes over the

network as well

Gatech Dataset

Perdisci et al. [86] captured seven days of HTTP requests to the College of Computing

School website at Georgia Institute of Technology. The traffic in this set is completely

unlabelled and deemed legitimate. However, the legitimate traffic data do not seem

3.1 Existing Network Traffic Datasets with Low-Rate Attacks 51

to be publicly available, since this would have privacy issues due to containing non-

anonymised sensitive data. Perdisci et al. [86] only released the attack traffic dataset

they had generated. It is publicly available on his website. Some existing works refer

to this dataset as Gatech or McPAD dataset. For the rest of the thesis, we will refer to

this dataset as Gatech dataset.

Perdisci et al. [86] ran 66 HTTP-based exploits against a vulnerable system and cap-

tured the traffic. Eleven of these attacks contain shellcode and eight of them were

used to generate polymorphic attacks. Some attacks have modified payload to avoid

detection by an NIDS. As they carefully craft the attack so that the traffic contain real

working exploits, it is safe to say that the attacks in this dataset are realistic. Therefore,

this dataset has been used to evaluate payload-based NIDSs [82, 103, 86, 85].

The first issue we found in this dataset is the removal of HTTP reponses. Perdisci

et al. [86] removed the HTTP responses from the PCAP files so that the dataset only

contains unidirectional flows toward the victim machine. Thus, it is unclear what the

responses from the victim machines are, so not necessarily representative of real-world

traffic flows. Another issue with this dataset is the exploits they used are quite old by

today’s standards. Most of these exploits were published in 2001-2003 (i.e., MS01-

033, MS01-044, MS03-022). Lastly, this dataset only has HTTP-based attacks, no

attacks on other protocols exist in the dataset.

3.1
E

xisting
N

etw
ork

Traffic
D

atasets
w

ith
L

ow
-R

ate
A

ttacks
52

Table 3.2: A comparison of publicly available network traffic datasets.

Dataset

Traffic

captured

less than 5

years ago

PCAP

files

provided

Attack type

label

provided

Proportion of low-rate

attacks

No

duplicate

records

Contain

legitimate

traffic

Contain more

than one L7

protocol

DARPA99 7 X X 36/190 (18.97%) X X X

KDD99 7 7 X 37/120 (31.66%) 7 X X

NSL-KDD 7 7 X 37/120 (31.66%) X X X

ISCX12 7 X 7 unknown X X X

UNSW-NB15 X X X 27K/2,540K (1.06%) 7 X X

Gatech Dataset 7 X 7 173/173 (100%) 7 7 7

BlattaSploit X X X 5,687/5,687 (100%) X 7 X

3.2 BlattaSploit Dataset 53

We have discussed strengths and limitations specific to each dataset which are sum-

marised in Table 3.2. To conclude, older datasets, such as DARPA99, KDD99, and

NSL-KDD, only have a small proportion of low-rate attacks. ISCX12 was generated

with more recent traffic but lacks information on attack types for classification pur-

poses. UNSW-NB15 improved on that matter since it has a clear label of attack types.

However, some low-rate attack traffic in UNSW-NB15 contain arbitrary byte sequence

and non-working exploits, making these attacks indistinguishable from the legitim-

ate traffic. To cope with this issue, Gatech dataset may be an option to complement

UNSW-NB15 as it provides a better representation of low-rate attack traffic. However,

it lacks contemporary low-rate attacks.

Malicious low-rate attack traffic may contain background packets as part of the pro-

tocol message; thus, the victim will be able to respond accordingly. For instance, an

SQL injection attack to a website would not be successful if the attacker only sent a

malicious SQL query to the server without sending the required HTTP request along

with it. None of the aforementioned datasets have information on which part contains

malicious byte sequence and which one is the part of protocol messages. It is difficult

to validate whether a detection by a payload-based NIDS is actually triggered by the

malicious sequence. It is also not possible to judge how early a payload-based NIDS

can predict the occurrence of a low-rate attack because none of the previously used

datasets log where the attack actually takes place within the network payload. There-

fore, to supplement UNSW-NB15 dataset, we proposed a new low-rate attack traffic

dataset, BlattaSploit.

3.2 BlattaSploit Dataset

BlattaSploit contains recent low-rate attacks with diverse sets of exploitation tech-

niques, protocols, and NIDS evasion techniques. Each exploitation technique was

launched with various attack payloads, malicious code carried by low-rate attacks to

3.2 BlattaSploit Dataset 54

be executed in the victim machine, so that it would generate various network payload.

To ensure the generated traffic had variation, the attack payload is also encoded with

different encoding techniques, e.g., base64 encoding, Shikata Ga Nai, XOR encoding.

The encoding technique also makes the malicious payload supposedly harder to detect

by a signature-based NIDS.

Metasploit is a penetration testing framework which allows researchers to use various

attack vectors to enumerate services, exploit vulnerabilities, or maintain access to the

compromised system [12]. We can utilise these various tools in Metasploit to generate

attack traffic, by executing them against vulnerable hosts.

Following the typical approach to generating network traffic datasets using a simulated

environment [98, 80, 86], we set up two VirtualBox Virtual Machine (VM)s that acted

as vulnerable servers to be attacked. The first server was installed with Metasploit-

able 2 [13], a vulnerable Operating Systems (OS) designed to be infiltrated by Metas-

ploit and contains vulnerable services, e.g., vsftpd, apache httpd. The second VM was

installed with Debian 5, vulnerable services, and Wordpress 4.1.18. Both servers were

set up in the victim subnet while the attacker machine was placed in a different subnet.

These two subnets were connected with a router which was used to capture the traffic,

as depicted in Figure 3.2. The network topology is rather simple and far less complex

than what we would have in the real world. But since we focus more on the gener-

ated application layer messages/payloads, this setup still generated representative data

as the payloads are intact regardless of the number of hops the Internet Protocol (IP)

packets have to go through.

The attacking VM ran Kali Linux 2016.02 and Metasploit 4.14.27, while the router ran

Ubuntu 16.04. The router was set up to block any outgoing traffic to the internet to

prevent irrelevant packets from being captured, such as checking-for-update messages

sent by the hosts to the repository server. It also prevented the vulnerable VMs from

getting attacked from the Internet during the process.

Metasploit has a collection of working attack techniques and is updated regularly. Each

3.2 BlattaSploit Dataset 55

Attacker VM
192.168.66.6

Metasploitable VM
192.168.99.9

Debian VM
192.168.99.6

Switch Switch
Router

Figure 3.2: The network topology for generating exploit traffic. The Attacker

VM running Metasploit and the vulnerable VMs are placed in different network

connected by a router. This router is used to capture all traffic from these virtual

machines..

attack technique comes with a set of attack payloads and encoders. An attack payload

is a piece of code which is intended to be executed on the remote machine, whilst an

encoder is a technique to modify the appearance of particular exploit code to avoid

signature-based detection. As mentioned earlier, we executed the attacks against the

vulnerable servers with various combinations of attack payloads and encoders to obtain

diverse malicious application layer messages.

Each set of attack techniques, a payload, and an encoder were executed at a particular

time. No other sets were executed when an exploit was running so that we would

know from which set the packets belonged to, and the generated traffic was stored in

a separate PCAP file. In other datasets, timestamps are normally used to mark which

packets belong to a class, but this information would not be reliable since packets

may not arrive in order and if there is more than one source sending traffic at a time,

their packet may get mixed up with other sources. Therefore, we decided to separate

3.2 BlattaSploit Dataset 56

network traffic of attacks into separate files.

After the capturing process had finished, we manually analysed the generated PCAP

files. We found that not all of the exploits had sent a payload to the victim machine.

We then excluded any traffic that: had not sent packets beyond TCP handshaking,

had sent only a login request with an arbitrary username and password and failed to

get a response from the victim, and had sent a request for non-existent files. This

exclusion was conducted to avoid including attacks that can also be considered as high-

rate attacks, i.e., fuzzers and bruteforcing. After the filtering, we ended up with 5,687

distinct TCP connections. Finally, we preprocessed the PCAP files with tcpflow [44]

to obtain the application layer message for each TCP connection.

A summary of this dataset is shown in Table 3.3, while the complete list of attack

techniques used to generate this dataset is shown in Table A.1. 81.25% of attacks in

this dataset were disclosed after 2010 and 29 of them were published after 2015, which

means the majority of attacks in this dataset are fairly recent and targeting various

applications. Although HTTP takes a considerable amount of traffic in this dataset, the

BlattaSploit dataset still contains attacks on other protocols, namely FTP, SMTP, and

POP3. This dataset also has various type of attack payloads, e.g., JavaScript, PHP, Perl,

Python, Ruby, Shell script, SQL, and byte code/opcode for shellcode-based exploits.

We obtained the type of attack payload by manually observing the generated traffic.

We also marked the position of the attack payload in the application layer message so

that we know where the malicious part of the message really is. This information will

be useful to measure how the performance of early attack prediction in Chapter 5.

We noticed that there are some cases where an exploit contains an attack payload

“wrapped” in another scripting language, for example, a Python script to make a re-

verse shell connection which uses the Bash echo command at the beginning. For these

cases, the type of the attack payload is the one with the longest byte sequence. In this

example, the type of the particular connection is Python.

It is also important to note whilst the vulnerable servers in our setup used a seven year

3.3 Conclusion 57

Table 3.3: A summary of exploits captured in the BlattaSploit Dataset. The num-

bers next to the protocols are the number of connections in the application layer

protocols..
Number of TCP Connections 5,687

Protocols Included (The

number of TCP connections)

HTTP (5515), FTP (6), SMTP

(74), POP3 (93)

Payload Types
Javascript, Shellcode, Perl, PHP,

Python, Ruby, Bash, SQL

old operating system, the payload carried by the exploit was the identical payload to a

more recent exploit would use. For example, both CVE-2019-9670 (disclosed in 2019)

and CVE-2012-1495 (disclosed in 2012) can use generic/shell_bind_tcp as a

payload. The traffic generated by both exploits will still be similar. Therefore, we argue

that our dataset still represents recent attacks. Moreover, only attacks that generated

exploit payload and actually dealt damage to the victim are kept in the dataset. Attacks

that are showing the same behaviour as high-rate attacks are also excluded, making the

recorded traffic more representative to low-rate attacks.

3.3 Conclusion

In this chapter, we have discussed existing datasets that contain low-rate attack traffic

and their limitations. Some of them have issues with the lack of contemporary low-rate

attacks (e.g., DARPA99, KDD99, NSL-KDD, and Gatech). ISCX12 dataset does not

state the attack type of its malicious traffic, leading to confusion in separating low-

rate attacks from the others. Finally, low-rate attacks traffic in UNSW-NB15 is barely

distinguishable from the legitimate traffic. Therefore, we argue that UNSW-NB15 can

still be used for evaluation if complemented with a more representative network traffic

dataset that contains contemporary low-rate attacks.

3.3 Conclusion 58

We have generated a novel attack dataset, BlattaSploit, which is made up of 81.25%

of low-rate attacks disclosed between 2010-2017. Each attack was launched with vari-

ous combinations of attack payload and encoder, making the generated traffic diverse.

Moreover, the dataset also has information on the type of attack, the type of the attack

payload, the type of encoder, and the location of the attack payload in the application

layer message. To the best of our knowledge, at the time of writing, BlattaSploit is a

dataset which includes the widest range of contemporary low-rate attacks, giving the

following contribution:

C2: A comparative study of network traffic datasets to better understand how repres-

entative they are to be used for evaluating NIDS and a dataset of low-rate attack traffic

with state-of-the art attacks, various payloads, and encoders. Additionally, the dataset

contains information about the location of the malicious traffic within the payload. The

location is useful to analyse whether an early prediction method can detect the attack

before it completes.

59

Chapter 4

An unsupervised approach for

detecting low-rate attacks in network

traffic

4.1 Introduction

New vulnerabilities appear every day, and thus, adversaries always have a new vec-

tor to exploit. Furthermore, most of these attacks can be conducted remotely, and the

adversary can launch the attack from anywhere in the world and target various ap-

plication layer protocols. For instance, Cisco Data Center Network Manager has a

vulnerability in which an authenticated user can upload a Web Application Resources

(WAR) file over HTTP containing malicious scripts and execute the remote command

as root [11]. Another example, some versions of PureFTPd may become an entry point

for adversaries to exploit Bash Shellshock vulnerability [6] by embedding the remote

code in FTP messages. By exploiting these vulnerabilities, adversaries may gain con-

trol of our computer without having to be physically present in front of the computer.

It increases the possibility of our system being attacked.

As discussed in Chapter 2, there have been several studies on detecting low-rate attacks

on network traffic. Some of them extract information from the packet header [113, 34,

60, 32, 42, 48, 96, 33, 102, 28]. These works use information such as Internet Protocol

4.1 Introduction 60

(IP) addresses, ports, packet size, inter-packet time difference to characterise low-rate

attack traffic. Some others analyse the payload of network traffic as the content of a

packet is deemed to contain more distinctive information which can be used to identify

low-rate attacks [107, 108, 86, 103].

Some approaches, particularly the older ones, were evaluated with old datasets, such as

KDD Cup 1999 Dataset (KDD99) [113, 34, 60, 32, 42, 48, 96, 33] and 1999 DARPA

Intrusion Detection Evaluation Dataset (DARPA99) [107, 24, 108, 94, 21, 58, 82].

Therefore, their approach may not work well with more recent traffic as both network-

based applications and low-rate attacks have evolved over the years. Hadžiosmanović

et al. [50] and [112] put more strength in this argument by running previous stud-

ies [107, 108, 24, 86] on more recent data and their results show performance degrad-

ation.

More recent studies show improvements from older research [111, 82, 51, 97, 109].

They also evaluated their approach with more recent data, either from self-generated

traffic or publicly available datasets (i.e., UNB Intrusion Detection Evaluation Data-

set 2012 (ISCX12) and UNSW-NB15). Nevertheless, these recent studies only focus

on Hypertext Transfer Protocol (HTTP), even though their network traffic represent-

ation was protocol-agnostic and could have been used for detecting attacks on other

protocols. These two issues brought us to our second research question:

RQ2: Given recent research has shown that previous work on low rate attack detection

across multiple protocols is dated and performance drops on contemporary low rate

attacks, how do we improve the performance of low rate attack detection models to

deal with evolving cyber attacks on a range of protocols that are increasingly causing

damage to corporate networks?

Machine Learning (ML) algorithms are capable of classifying objects and artefacts

based on features exhibited in data and handle various modalities of input. ML has

been successfully applied in many domains with a high success rate, such as image

classification, natural language processing, speech recognition, and even intrusion de-

4.1 Introduction 61

tection system. There has been much research on implementing machine learning to

address network intrusion detection [100].

There are two main approaches to training a ML model, supervised and unsupervised.

Supervised approaches train the model with samples with known labels. In the case of

Network-based Intrusion Detection System (NIDS), the classes may be malicious and

legitimate. Thus, the model learns to distinguish legitimate and malicious traffic. How-

ever, supervised learning has two known issues, imbalanced data and the requirement

to have well-labelled samples. The amount of legitimate traffic is always undoubtedly

larger than the malicious one, and this is always the case with every publicly available

dataset. If we blindly apply a supervised ML method with imbalanced data, the model

may prefer to classify legitimate traffic correctly with the cost of missing the mali-

cious instances. The cost of classifying an attack as legitimate traffic is much higher

than the other way around [100]. A common workaround to handle this problem is by

adding artificial samples to the underrepresented classes or randomly sampling from

the over-represented classes [66].

The lack of malicious samples is another issue with supervised approaches. Supervised

learning generally performs better than unsupervised at classifying known attacks [63],

but it may struggle to detect attacks which are not similar to those it has seen during the

training. In the real world, attack methods are changing all the time and it is extremely

difficult to obtain enough recent malicious network traffic to train a supervised ML

model. This problem may lead to the ML model becoming ’out of date’ and miss more

recent attacks.

Unsupervised learning, on the other hand, is more commonly used to draw inference

from data without known labels. A task that belongs in this category is anomaly/outlier

detection. Anomaly detection is a task where a model is trained over samples of ’nor-

mal’ data or legitimate traffic in this case and then looks for any new data which devi-

ate from the normal model. This is particularly useful when features/activities that are

part of the target class change frequently (i.e., cyber attacks). For instance, PAYL [107]

4.1 Introduction 62

clustered network traffic based on the 1-gram representations of bytes in its payload.

It then calculates the distance between a new incoming packet and the normal model

with simplified Mahalanobis distance. An alert is raised when the distance surpasses a

threshold value. Perdisci et al. [86] proposed an ensemble of one-class Support Vector

Machine (SVM)s, an unsupervised variation of SVMs which is trained with data from

one class (i.e., the normal/benign class), to identify shellcode in network traffic. New

traffic that is voted by the one-class SVMs as not part of the class is deemed malicious.

OCPAD [103] used a similar concept with one-class Naive Bayes to look for malicious

network payload. All these approaches do not require malicious traffic samples for

training the model, and are therefore likely to perform better in an environment with

frequently changing behaviour such as computer networks. This benefit led us to focus

on the unsupervised approach in this chapter.

The performance of machine learning algorithms depends heavily on the representa-

tion of the given data. This representation, also is referred to as features, are usually

manually crafted with some input from human knowledge. A flow in network traffic

can be represented by, for example, the number of packets transmitted, the average

size of packets, the inter-arrival time between packets, etc. Most publicly available

network traffic dataset (e.g., KDD99, ISCX12, UNSW-NB15) includes such informa-

tion to help researchers designing their NIDS. Using the mentioned representations as

features is common in header-based NIDS [78, 28]. However, we argue that this in-

formation is not enough to capture the behaviour of low-rate attacks as it contains less

distinguishable information than those obtained from within the payload in the case

of low-rate attacks [39]. The question is, what would be the best way to represent a

network payload?

Manually crafted features from the network payload would be difficult to obtain as

there are many application layer protocols with various message format. For instance,

HTTP, FTP, and SMTP messages are completely different from each other. It requires

a great deal of human effort and time to craft features for each protocol. Therefore,

4.1 Introduction 63

previous works on payload-based NIDS used a more high-level and abstract repres-

entation of data such as frequency of bytes [107, 24, 82, 58], byte sequences [21], or

byte subsequences [108, 94, 86, 111, 103, 25]. Abstract features can capture factors of

variation which explain the observed data better [47]. For instance, different browsers

requesting the same web page from a web server send a slightly different HTTP re-

quest message. However, these messages would be different from the message sent by

adversaries to exploit a vulnerability in the web server. High-level and abstract features

may handle the variation of messages sent by different browsers, and the model would

still classify them as legitimate traffic.

The aforementioned works then apply a detection method that uses the abstract rep-

resentation of the network payload to identify attacks. Some of these works employ

threshold-based statistical model [107, 108, 94, 82], while others used ML algorithms,

e.g., Logistic Regression [111], SVM [86], Hidden Markov Model (HMM) [21]. Des-

pite the fact that these works used abstract representation of network payload, the stat-

istical model and the conventional ML algorithms do not work well with raw-form

data or abstract features, particularly when facing a vast amount of data [64]. There-

fore, we argue that there is a room for improvement for the detection method. Deep

learning, which is also a type of ML algorithms, can deal with the high-level abstrac-

tion of data better than the conventional ML algorithms and works well at detecting

patterns in large volumes of data. [47]. Although, not all deep learning architectures

are compatible with unsupervised learning.

Therefore, in this chapter, we will investigate how well unsupervised Deep Learn-

ing (DL) models with payload-based features can identify low-rate attacks in network

traffic. We will first discuss which DL architecture can be used for outlier detection.

Afterwards, the proposed detection methods are described. Lastly, we show how our

proposed method performs on recent datasets and several protocols. To evidence an

improvement of our proposed method over the state-of-the-art, we compare the results

of our experiment with other NIDSs. The existing works were picked based on their

4.2 The Basics of Deep Learning for Outlier Detection 64

source code or pseudocode availability and whether their approach is unsupervised.

All of these works then were evaluated using recent datasets, UNSW-NB15[80] and

BlattaSploit.

To summarise, the contribution discussed in this chapter is:

C3: Unsupervised deep learning models to identify low rate attacks in network traffic,

putting aside the requirement to provide malicious samples for the training data. The

proposed approach offers an improvement in detection rate at least 12.04% from the

previous works.

4.2 The Basics of Deep Learning for Outlier Detection

Deep Learning (DL) can be used in supervised or unsupervised mode, depending on

the architecture used. As this chapter focuses on the latter, we will cover which archi-

tectures are compatible with outlier detection and suitable for our case. Before we go

into that, we will first introduce the basic concept of deep learning.

Before DL rose to prominence, Artifical Neural Network (ANN)s were the state of

the art- referred to as feedforward neural networks or multilayer perceptron. An ANN

model consists of multiple layers in which information flows from the input layer to

the output layer with several computations performed in the middle layers. The middle

layer is referred to as the hidden layer.

Each hidden layer contains several neurons that can be activated or not depending on

the output of the activation function of the neuron. It allows important information

to be forwarded to make the decision, while unimportant information is blocked. A

neuron accepts a vector of input x and does a linear transformation y = W ∗x+b, where

W is the weight, and b is a bias. y then is processed by the activation function. During

the training phase, an ANN model will compare the difference between its output and

the target. The difference is then propagated back to the previous layers. Thus they

4.2 The Basics of Deep Learning for Outlier Detection 65

can update the weights and biases of their neurons accordingly, hence improving the

quality of the model. This method is called backpropagation.

At the beginning of their appearance, ANNs were not preferable due to their com-

plexity and lack of powerful hardware. The recent development of graphics cards has

brought a new light to solve that problem. Newer graphic cards enable us to speed up

the ANN model computation. They decrease the training time and increase the number

of calculation a computer can perform in parallel. This recent development allows re-

searchers to add more hidden layers. It enables the model to solve complex non-linear

problems.

Inspired by how our brains work, DL has a capability of recognising more abstract

representation of data. For instance, a DL model can classify images by analysing the

pixel values [47]. As another example, a DL model capable of classifying documents

by looking at the words/letters inside them. Therefore, it is intriguing to see whether

DL with unsupervised learning can help in detecting low-rate attacks by analysing

more abstract representation of network traffic.

DL includes feedforward neural networks with more than one hidden layers. At the

time of this writing, DL has many architectures [47]. In the next few sections, we

will discuss some well-known DL architectures in more detail, which can be used for

outlier detection, such as Recurrent Neural Networks and Autoencoders.

4.2.1 Recurrent Neural Networks

Recurrent Neural Network (RNN)s were designed for processing sequential data [47].

An RNN model takes an input sequence denoted by X = x1, x2, ..., xn where n is the

sequence length and xi is a feature vector for 1 ≤ i ≤ n. The unfolded view of a

RNN is shown in Figure 4.1. Unlike the feedforward Neural Network (NN), the hid-

den neuron/unit has a feedback loop where the output at a time step is passed to the

next time step calculation carrying information from the previous time step. Therefore,

4.2 The Basics of Deep Learning for Outlier Detection 66

x1

x2

x3

x4

x5

x6 Output

Recurrent

layer

Input

layer

Output

layer

Figure 4.1: An unfolded view of a Recurrent Neural Network which processes a

sequence of vectors and outputs a value. This model is commonly used for docu-

ment classification in which the vectors usually represent words, and the output

is the class of the document..

it is said that the hidden neuron shares parameters. It makes RNNs able to learn the

property of a sequence better.

RNNs are widely used in natural language processing area due to their ability to work

well with sequential/temporal data. They can predict the next item in a sequence given

a sequence of previous items. However, vanilla RNNs are known to have a vanishing

gradient problem, which usually appears when they work with a long sequence. It

is a problem that occurs when the gradient used to update the neuron weight becomes

extremely small, preventing the neuron from updating its weight. Gated RNNs can

avoid this problem by adding gate(s) to a neuron, thus selecting which information

to be passed to the next time step calculation. Long Short-Term Memory (LSTM)

and Gated Recurrent Unit (GRU) are a further development of RNNs that utilise this

approach.

Existing works on NIDS utilising an RNN model, or its further development such as

4.2 The Basics of Deep Learning for Outlier Detection 67

LSTM and GRU, are usually supervised [92, 52, 69]; although some research in other

areas has shown to be incorporating RNNs for outlier detection. Malhotra et al. [73]

proposed an LSTM model that can identify outliers by looking at whether the model

can correctly predict the next item in a sequence. In that research, they experimented

with sequences of ECG, valve, power consumption, and multi-sensor engine data. The

model is trained to predict the next element in the sequence, so that it remembers the

temporal patterns of the training data. Therefore, when the model sees a new and un-

known sequence, the prediction is expected to be make a lot of mistakes. The sequence

is then deemed anomalous. Feng et al. [43] proposed Industrial Control System (ICS)

attack detection with an unsupervised LSTM similar to what Malhotra et al. [73]’s ap-

proach, but their work cannot be used to detect attacks on TCP/IP-based protocols as

their features were specifically crafted for Modbus traffic. In the following section, we

will describe more how this approach can identify low-rate attacks in network traffic

but before that we will discuss Autoencoders, another DL architecture which can be

utilised as an outlier detection.

4.2.2 Autoencoders

The usual feedforward neural networks map a set of input features to a target output

or a class. They typically have a smaller number of neurons as the layer goes deeper

because each layer extracts more abstract representations and passes them so that the

model will get a more concrete representation and can make a better decision [47].

For instance, in the first layer of an image recognition model, the neurons may contain

information about lines. The second layer may recognise edges. Then the third layer

may see the shape which will be used to determine what image the picture has. In other

words, feedforward neural networks compress and extract information.

In contrast to the purpose of classifying objects with feedforward neural networks,

an autoencoder is typically used to learn a representation of a set of data by encod-

ing/compressing the input then decoding/decompressing in the hidden layers. It is

4.2 The Basics of Deep Learning for Outlier Detection 68

x1

x2

x3

x4

x5

x6

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Hidden

layers

Input

layer

Output

layer

Figure 4.2: An example of an Autoencoder

essentially trained to attempt to copy its input values to its output [47]. Hence it has

the same number of input and output neurons, as shown in Figure 4.2. The encoding-

decoding process removes or blurs noises in the data. Additionally, an autoencoder can

recognise outliers since unseen data would not be correctly reconstructed, resulting in

a huge difference between the input and output values [53]. This difference is referred

to as a reconstruction error.

With autoencoders’ ability to detect outliers/unseen data, it is possible to use them

to identify anomalous behaviour in network traffic. For example, Kitsune [78] takes

packet size, packet count, and packet jitter as a feature set to identify Probe, Man in the

Middle (MitM), and Denial of Services (DoS) attacks. They argued that attack traffic

would exhibit different values of those features. However, Kitsune [78] does not focus

on detecting low-rate attacks nor analysing payload. It remains a question of whether

the approach can work on low-rate attacks.

In the following section, we will discuss in more detail how RNN and Autoencoder-

based approaches are incorporated separately to our proposed method for detecting

low-rate attacks. We will then investigate the performance of both approaches and find

out which unsupervised approach is more suitable for identifying low-rate attacks in

4.3 Low-rate Attack Detection Methodology 69

Section 4.4.

4.3 Low-rate Attack Detection Methodology

This section details our two methods to detect low-rate attacks in network traffic, as

described in Figure 4.3. The first method utilises an RNN-based model for outlier

detection, while the second employs an Autoencoder. The first step in these two ap-

proaches, the network traffic preprocessing, is the same. The step reconstructs network

packets to an application layer message. It is conducted to ensure that our models

can see the full picture of the payload which we argue will result in better accuracy in

comparison to approaches that process network packets individually [107, 103]. Each

detection method has its feature extraction method as both require a different repres-

entation of network payload. The RNN-based method needs a sequence of bytes from

the payload, while the autoencoder-based method involves a set of byte frequencies.

Although RNN and Autoencoders have been used as an outlier detection method in

other areas, there has been no research that utilises them to identify low-rate attacks

by reading the network traffic representation that we proposed (i.e., byte sequence and

byte frequencies). Moreover, we also proposed two statistical approaches to help the

model decide whether the output of the RNN or Autoencoder belongs to the normal

model.

4.3.1 Network Traffic Preprocessing

Application layer messages are usually longer than the maximum size of an IP packet.

They are therefore needed to be segmented into multiple IP packets and sent indi-

vidually, sometimes they arrive in order, sometimes not. A payload-based NIDS that

reads the application layer message would have a more complete picture of the mes-

sage being transmitted and thus more accurately detect the attack. Therefore, in our

4.3 Low-rate Attack Detection Methodology 70

Network Packets

TCP
Reconstruction

Application Layer
messages (i.e.
HTTP requests,
SMTP commands)

Byte sequences

Byte frequencies

RNN-based
outlier detection

Autoencoder-based
outlier detection

Outlier?

Outlier?

Network traffic preprocessing Outlier detection methods

Figure 4.3: The overview of the proposed methods. The first step is applicable

to both methods, which is reconstruct application layer messages from network

packets. Each method has its own set of features but both aim at identifying

outliers in the network traffic and mark them as malicious..

approaches, when a network packet arrives, it is not directly processed by the outlier

detector. The packet is put in a queue buffer instead and then, together with other pack-

ets of the same flow (identified by IP addresses, ports), are reassembled to an applic-

ation layer message. We implemented the application layer message reassembly from

scratch by following the RFC 793 standard [4], as there is a bug in the PyNIDS[79]

library. PyNIDS includes arbitrary bytes in the reconstructed messages which would

confuse our RNN and Autoencoders models. PyNIDS is a wrapper for libNIDS which

was written in C and has not been maintained since eight years ago, therefore fixing

the bug would have taken a long time. We verify that our implementation is correct by

comparing the reconstructed application layers messages with the Wireshark Follow

TCP Stream feature.

A typical TCP connection is finished when a FIN packet is received. When the packet

is received, the connection is marked as ready and can be examined by the outlier

detector. However, connections may be interrupted for various reasons. Thus we also

4.3 Low-rate Attack Detection Methodology 71

monitor how long a TCP connection has been in the buffer. If it has been in the buffer

longer than a predefined timeout value, the connection is deemed as interrupted and

marked as ready to be processed by the outlier detector. Finally, messages of each

application layer protocol are grouped as each protocol is analysed independently. In

other words, we will have a model for each protocol. These models is trained with the

same method, but a different training set. Therefore, our proposed methods can detect

low-rate attacks on multiple protocols.

4.3.2 Outlier Detection Models

Section 4.2 has explained the basic concept of RNN and Autoencoders for outlier de-

tection. In this section, we are more focused on how we build the deep learning struc-

ture and how we apply the model to our data, application layer messages. This section

also formulates the way we transform the application layer message to a feature set,

train the model, and feed it to the algorithm.

As our proposed methods are unsupervised, we first collected legitimate traffic from

the dataset, reconstruct the application layer messages from it, and train the models on

those data. In the training phase, it is anticipated that the models learn the pattern of

network payload in legitimate traffic. Afterwards, the models will be able to identify

any deviations from the normal pattern and marked them as malicious.

We formulateMp as a set of messagesm of an application layer protocol p (i.e., HTTP,

Simple Mail Transfer Protocol (SMTP)). Both proposed models (RNN-OD and AE-

OD) work with Mp, but each model has its network payload representation as inputs

to the model as it has a different method to detect outliers. The RNN-based model

uses a sequence of byte values to represent an mp, while the Autoencoder-based model

uses byte frequency as the representation. Both approaches are explained further in the

following sections.

4.3 Low-rate Attack Detection Methodology 72

Outlier Detection with Recurrent Neural Networks

Our RNN-based outlier detection model (RNN-OD) works based on the principle that

low-rate attacks would have unusual byte sequence. RNN-OD takes overlapping sub-

sequences of bytes with a particular length. It is then trained to predict what the next

byte of each subsequence is. The training process enables the RNN-OD to learn the

subsequence of bytes that usually appear in legitimate traffic. An unseen low-rate at-

tack is expected to make the RNN model output incorrect next-byte predictions as it

may contain a sequence of bytes that rarely appears in legitimate traffic and is unknown

to the model.

Formally, we define the sequence B = {b1, b2, . . . , bl} of length l as a sequence of

bytes, where each byte bi is a byte in an application layer message mp with the length

of l. We choose some length of n, such that n < l.

Then we define the set S as in equation 4.1 where each si is a subsequence of length

n+ 1 of B.

S = {si|si = (bi, bi+1, bi+2, . . . , bi+n+1)∀1 <= i <= l − n+ 2} (4.1)

We then split each subsequence si into x and y where x is the input to our RNN-OD

model and y is the target output:

x = {sk | 0 ≤ k < n} (4.2)

y = sn (4.3)

Hence, we train a function Fp, where function Fp is a recurrent neural network-based

classifier to predict the next item ŷ from a sequence x, over the set S (as S is now

defined as the set of all sequences si) in protocol p in the training phase. The function

4.3 Low-rate Attack Detection Methodology 73

Fp is then optimised with backpropagation so that the predicted output ŷ equal to the

actual value of y. For instance, during the training phase, FHTTP reads all HTTP

messages, FFTP takes File Transfer Protocol (FTP) messages, and FSMTP deals with

SMTP messages. After obtaining the messages, each of those functions will collect a

set of subsequences s from them.

Stating that our RNN classifier as Fp(x) would be an oversimplification as there are

many operations involved in the function. Thus, we formulate our function Fp(x) in

more detail as:

Fp(x) = argmax(SF (R(E(x))))) (4.4)

Where E(x) is a function that transforms each x to a vector with a specific dimension.

It can also be referred to as Embedding layer. Function R is the recurrent layer which

takes embedded vectors as inputs and outputs an intermediate vector value which is

processed by a linear softmax function SF . The output of the Softmax function SF is

the probability of bytes being the next item in the sequence. Argmax function returns

the item with the highest probability.

Up to this point we have referred to the use of RNNs. In fact, we use LSTM and

GRU - types of RNN which work better with longer sequences as they can filter which

information should be passed onto the next time step calculation by incorporating

gates [54, 35]. In general, the purpose of R function does not change, neither does

the dimension of inputs and outputs.

To measure how far the new incoming traffic from the normal model, RNN-OD needs

to calculate the anomaly score. We first obtain the anomaly score of each application

layer messages seen in the training phase to calculate a threshold that will be used in

the detection phase. Any application layer message which has an anomaly score above

the threshold is deemed malicious.

As illustrated in Figure 4.4, our RNN-OD model works by taking a subsequence x and

4.3 Low-rate Attack Detection Methodology 74

Application Layer
messages (i.e. HTTP
requests, SMTP
commands)

Byte sequence
(s)

RNN-based
model

n

x

y

x

y

x

y

ŷ

ŷ

ŷ

Compare

Byte sequence
(s)

Byte sequence
(s)

Figure 4.4: A detailed view of how RNN-OD works. The RNN model accepts

byte sequences of application layer message and tries to predict the next byte of

the subsequence. The RNN model is expected to make many prediction mistakes

when facing a low-rate attack as it supposedly has never been seen during the

training phase..

throwing the predicted next item ŷ. The anomaly score is essentially the difference

between the predicted and actual outputs, yet this difference can be measured dis-

cretely or continuously. Therefore, in this part, we propose two methods to calculate

the anomaly score ap of an application layer message mp, namely binary and floating

score.

Binary anomaly score is calculated by counting the number of correct prediction the

4.3 Low-rate Attack Detection Methodology 75

model makes. Let Ŷ be a set of predicted items ŷs:

Ŷ = {ŷi|0 ≤ i < (l − n)} (4.5)

Then the binary anomaly score abinaryp of message mp is defined as follows:

abinaryp =

∑l−n
i=0 vi
l

vi = 1, ŷi = yi

vi = 0, otherwise

(4.6)

Floating anomaly score is calculated by accumulating the difference of the predicted

probability of ŷ, which can be obtained from the output of the Softmax function, and

the actual probability of y. Therefore, if Prob(y) is the probability of y, the floating

anomaly score afloatp of message mp is defined as:

afloatp =

∑l−n
i=0(Prob(ŷ − Prob(y))2

l
(4.7)

In the detection phase, we first obtain a set of subsequence s from the application

layer message as described by Equation 4.1. Each subsequence s is split into x and y

as described by Equation 4.2 and 4.3 respectively. Subsequently, the anomaly scores

(i.e., binary and floating) are calculated. An alert is raised when the anomaly score

surpasses the threshold (the method of defining the threshold is explained in detail in

Section 4.4.3).

Outlier Detection with Autoencoders

As explained in Section 4.2.2, an autoencoder is a model which attempts to copy the

input to its output. This behaviour makes an autoencoder able to learn the data repres-

entation. In other words, an autoencoder is trained to memorise the pattern of training

data. In this case, we aim to develop a model which remembers the pattern of legitimate

traffic that we refer to as AE-OD. Figure 4.5 generally shows how AE-OD works.

4.3 Low-rate Attack Detection Methodology 76

Legitimate
Application Layer
Messages

Byte frequencies

Autoencoder model

Malicious
Application Layer
Messages

Compare

Compare

Reconstructed
byte frequencies

Byte frequencies
Reconstructed
byte frequencies

Figure 4.5: A detailed view of how AE-OD works. Byte frequencies of an applic-

ation layer message is fed into the Autoencoder to be reconstructed. Legitimate

application layer messages would have reconstructed byte frequencies that are

similar to the inputs, while low-rate attacks would have reconstructed byte fre-

quencies which are far from the inputs, resulting in higher anomaly scores..

We represent application layer messages in the traffic as byte frequencies as low-rate

attacks would exhibit a different distribution of byte frequencies. We could have used

byte sequence as the data representation, as we do with RNN-OD, but Autoencoder is

not designed to work with sequential data with variable length. As a byte value varies

from 0 to 255, byte frequencies are the numbers of occurrence of every possible byte

value in an application layer message divided by the message length. The division is

needed so that the frequency of a byte is relative to the length of the message. There-

fore, the model will not be biased toward either short or long messages. Similar to

RNN-OD, AE-OD analyses legitimate traffic in the training phase.

4.3 Low-rate Attack Detection Methodology 77

Let mp denote a legitimate application layer message transmitted with protocol p. We

then define X = {xi | 0 ≤ i ≤ 255} as a set of byte frequencies of mp. The vector

of byte frequencies X is the input to the Autoencoder. An Autoencoder model is

essentially a non-linear function Gp which collects an input vector X from a protocol

p message and transform it to X̂ . The function can be defined as follows:

X̂ = Gp(X) (4.8)

, where X̂ = {x̂i | 0 ≤ i ≤ 255}. Function Gp is then optimised with backpropagation

so that X̂ is as close as possible to X , and similar to the RNN-OD model, Gp is a stack

of hidden neural network layers, although they are not recurrent in this case.

In the training phase, AE-OD reads legitimate application layer messages and groups

them by the protocol used. For each protocol, it trains an autoencoder model to recon-

struct the byte frequencies of the application layer messages.

As is the case with RNN-OD, it is needed to measure the distance between the normal

model and the new incoming traffic. The anomaly score for each protocol in AE-OD

aaep is obtained from the mean squared of the sum difference between each element

in X and X̂ respectively. As mentioned in Section 4.2.2, it can also be referred as a

reconstruction error, but from this point onwards we will keep the term anomaly score

for brevity. We define the anomaly score of AE-OD as follows:

aae =
1

256

255∑
i=0

(xi − x′i)2 (4.9)

In the detection phase, AE-OD analyses application layer messages, obtains the byte

frequencies, feeds them to the autoencoder model, and calculates the anomaly score.

Every application layer message with an anomaly score higher than the threshold is

deemed malicious. The threshold, similar to RNN-OD, can be defined manually. How-

ever, we propose to use a statistical approach to define the threshold so that it is also

learned from the training data (see Section 4.4.3).

4.4 Experiments and Results 78

4.4 Experiments and Results

This section details our experiments with both RNN-OD and AE-OD. We first detail

our experimental setup, including the parameters used, the previous works to be com-

pared with, and the metrics used to measure the performance.

We then describe the datasets used to evaluate our proposed methods. In summary,

UNSW-NB15 is used as it contains more recent legitimate traffic and several low-

rate attacks. We also assessed the methods with our generated low-rate attack dataset,

BlattaSploit to see how good our proposed methods in detecting contemporary low-rate

attacks.

The approach to statistically define a threshold is also discussed later on in this section.

The training data is analysed to see what the most suitable approach to pick a threshold

value as it would affect the performance of our proposed methods.

Lastly, we will show the results of our experiments. To validate our results, we also

compared them with the result of previous works. Our extensive experiments show

improvements in detection rate with the cost of increasing false positive.

4.4.1 Experimental Setup

We implemented the proposed methods using Python 2.7.12 with Keras 2.0.6 [1],

Tensorflow 1.2.1 with GPU support, and pcapy 0.10.8. All experiments were con-

ducted on a personal computer with Intel Core i7-6700 @3.40 GHz, 16 GB RAM, and

NVIDIA GeForce GT-730.

The hyperparameters values of RNN-OD is shown in Table 4.1 and of AE-OD is shown

in Table 4.2. There are a couple of other parameters that we explored to see how they

affect the performance, i.e., the length of subsequence n for RNN-OD and number of

neurons in the hidden layers of AE-OD. The options for each parameter is shown in

Table 4.3.

4.4 Experiments and Results 79

Table 4.1: RNN-OD hyperparameters configuration
Hyperparameters Value(s)

Recurrent Output Dimension 32

Number of Epochs 10

Activation Functions in

Hidden Layer(s)
Hyperbolic Tangent

Activation Functions in

Output Layer
Sigmoid

Dropout 0.2

Optimiser adadelta

Loss Function Categorical Crossentropy

We set the activation function of the recurrent layer to hyperbolic tangent as it con-

verges faster than Sigmoid [18] and works better in recurrent layers than ReLU. While

in AE-OD, we use ReLU as the activation function for the hidden layers as they are

not recurrent, and it gives faster and efficient training on large datasets than Sig-

moid [45]. As an optimiser, we chose Adadelta for both models as it has less com-

putational overhead than the vanilla stochastic gradient descent[114]. Then, we set

the number of epochs to ten as the loss value starts being steady after ten epochs.

To prevent overfitting, we also add Dropout layers with 0.2 probability. Finally, to

provide reproducibility of the result, the complete source code of our implement-

ation is available on https://github.com/bazz-066/neuralnetwork-AD (RNN-OD) and

https://github.com/bazz-066/aeids-py (AE-OD).

We compared our proposed methods with PAYL [107], Kitsune [78], Decanter [25],

OCPAD [103] and Wang et al. [110]’s. Generally, we picked these works to evaluate

due to their code or binaries availability and their unsupervised approach. Kitsune [78]

and Wang et al. [110]’s are header-based NIDS, while PAYL, Decanter, and OCPAD

are payload-based NIDS. The header-based and payload-based NIDSs were included

4.4 Experiments and Results 80

Table 4.2: Autoencoder’s hyperparameters configuration
Hyperparameters Value(s)

Number of Hidden Layer(s) 1;3;5

Activation Functions in

Hidden Layer(s)
ReLU

Activation Functions in

Output Layer
Sigmoid

Dropout 0.2

Optimiser adadelta

Loss Function Binary Crossentropy

Number of Epochs 10

Table 4.3: Changeable Parameters in RNN-OD and AE-OD
Hyperparameters Value(s)

Length of subsequence n 3; 5; 7

Number of Neurons in

Hidden Layer(s)

(200); (200, 100, 200); (200, 100, 50, 100,

200)

Recurrent Layer Type LSTM, GRU

in the experiments so that we can also compare the results of using features from the

packet header and network payload. McPAD [86] was going to be included, but its

packet capture library was unable to read PCAP files captured with Linux cooked-

mode capture(SLL), which was used by both UNSW-NB15 and BlattaSploit to capture

the network traffic.

We measure our proposed system’s performance and previous works with a combina-

tion of detection rate and false-positive rate as they are more intuitive than accuracy.

The amount of legitimate traffic is always much greater than malicious traffic. Accur-

acy metric only measures the number of correct prediction regardless of the type of the

4.4 Experiments and Results 81

actual data. If an evaluation dataset contained 99% of legitimate traffic, by randomly

guessing all incoming traffic as legitimate, the method would get 99% accuracy while

it missed all the attacks.

Detection rate (DR) and false-positive rate (FPR) is calculated as in equation 4.10

and 4.11. True positive (TP) is the number of detected malicious connections. False-

positive (FP) is the number of legitimate connections which are considered malicious.

True negative (TN) is the number of legitimate connections which are deemed as legit-

imate. False-negative (FN) is the number of malicious connections that go undetected.

DR =
TP

TP + FN
(4.10)

FPR =
FP

TN + FP
(4.11)

As we have two metrics to measure the performance, it is crucial to find the balance

between these two metrics as increasing the detection rate could also come with the

increase of the false-positive rate. This balance varies between cases and depends on

the cost of undetected attacks. When the attack has severe effect to the system, which

is the case for low-rate attack detection, it would be better to prioritise the detection

rate over the false-positive rate as the cost of false-positives is less impactful [100].

As the number of legitimate and malicious samples is highly imbalanced (see Section

4.4.2) and to emphasize lower false negatives, we use another metric, F2-score, which

is derived from Fβ-score with β is set to 2. This metric finds the balance between the

detection rate and false-positive rate. Therefore, it helps us to conclude when both

detection rate and false-positive rate increase. F2-score is calculated as in equation

4.12.

F2 =
(1 + 22)× TP

(1 + 22)× TP + (22)× FN + FP
(4.12)

4.4 Experiments and Results 82

4.4.2 Datasets

As previously mentioned in Chapter 3, publicly available network traffic datasets suffer

from several issues. DARPA99 dataset is obsolete and does not represent contemporary

traffic, both legitimate and malicious. ISCX12 dataset does not have information about

attack types which makes it impossible to collect low-rate attacks from the dataset as

it contains several high-rate attacks (i.e., DoS and Brute force attacks). UNSW-NB15

dataset is not perfect as well. Nevertheless, it is the most recent dataset that contains

contemporary and representative legitimate traffic. Therefore, we still use it to evaluate

our methods.

UNSW-NB15 dataset comprises two days of captured network traffic, the first one was

captured on 22 January 2015 (UNSW-JAN) and the other traffic was collected on 17

February 2015 (UNSW-FEB). The difference between those two days is the amount

of traffic since the latter has roughly ten times more traffic. Both of them contain ten

classes of traffic, i.e. Normal, Analysis, Backdoors, DoS, Exploits, Fuzzers, Generic,

Reconnaissance, Shellcode, and Worms. The explanation of those classes is shown in

Table 3.1. To detect low-rate attacks, we only used Normal, Backdoors, Exploits, and

Worms classes in the experiments.

We also used our BlattaSploit dataset, which contains various low-rate attacks to evalu-

ate RNN-OD and AE-OD. Since the traffic is entirely different from the one in UNSW-

NB15, we can also see how our models perform with data that have never been seen

before.

In our experiments, the training set was obtained from legitimate traffic in UNSW-

JAN. The testing set consists of legitimate traffic in UNSW-FEB, malicious HTTP

and SMTP traffic from both UNSW-JAN and UNSW-FEB, and malicious traffic in

BlattaSploit. We only tested all methods on HTTP, FTP, and SMTP, since they are the

protocols with the highest proportion of traffic in the UNSW-NB15 dataset.

UNSW-NB15 dataset has 17,041 HTTP, 1,232 FTP, and 4,631 SMTP attacks. Blat-

4.4 Experiments and Results 83

taSploit contains 5515 HTTP, 9 FTP, and 74 SMTP attacks. We will analyse the false

positive (legitimate traffic classified as malicious) with legitimate traffic in UNSW-

FEB as traffic from UNSW-JAN has been used to train the model. There are 153,718

legitimate HTTP, FTP, and SMTP connections in UNSW-FEB.

4.4.3 Defining Threshold

The proposed methods are trained on the training set (i.e., legitimate traffic of UNSW-

JAN). After the training finished, the same set of samples is fed into the model to obtain

the anomaly scores to calculate the threshold. The threshold value is calculated based

on this set of anomaly scores. RNN-OD and AE-OD have its own threshold value but

the method to calculate it is the same.

The basic idea is that the anomaly score of a low-rate attack would be far from the av-

erage anomaly scores of legitimate traffic in the training set. Low rate attacks are sup-

posedly exhibit different byte sequence or frequencies and have never been seen by the

model. Therefore, RNN-OD would struggle predicting the next item in the sequence

and AE-OD would have a difficult time reconstructing low-rate attacks byte frequen-

cies. The question is, how do we obtain the average anomaly score? A traditional

statistical method utilises mean (µ) and standard deviation (σ). This approach works

with an assumption that outliers usually fall outside this range: µ−2∗σ > ap > µ+2∗σ

or µ− 3 ∗ σ > v > µ+3 ∗ σ. However, this approach requires the data to be normally

distributed. Therefore, to verify that our data is normally distributed, we performed a

series of statistical tests.

As mentioned previously, RNN-OD and AE-OD were trained with legitimate traffic

of UNSW-JAN, and the same set is fed again into the model to calculate the anomaly

scores. We then investigated whether the anomaly scores produced by RNN-OD and

AE-OD were normally distributed. We first plot the histogram of the anomaly scores.

Figure 4.6, 4.7, and 4.8 show the histogram of anomaly scores generated by AE-OD,

4.4 Experiments and Results 84

0.000000 0.000002 0.000004 0.000006 0.000008 0.000010
0

2000

4000

6000

8000

10000

12000

14000
Histogram of Training Set Reconstruction Errors

Figure 4.6: Histogram of anomaly scores generated by running AE-OD over the

training set. It shows that the reconstruction errors of the training set are skewed.

RNN-OD with binary anomaly score, and RNN-OD with floating anomaly score re-

spectively. These images exhibit similar pattern, the anomaly scores are highly skewed

and have multiple peaks.

To ensure that the anomaly scores of the training set are not normally distributed, we

also ran a normality test [38, 83]. We obtained a zero p-value for each set of anomaly

scores, which means the null hypothesis is rejected, and the data are not normally

distributed. Thus, utilising mean and standard deviation to find the threshold is not

suitable for identifying outliers.

Diez et al. [40] suggest interquartile range (IQR) to detect outliers. It is supposedly

more robust as it relies on the median (m), which is less affected by outliers in the

data. However, this approach is still not suitable for skewed data. Hence, we propose

to use a modified IQR approach for skewed data proposed by Hubert and Vandervieren

[55]. It uses medcouple (MC) to measure the skewness of data.

Let F be the data, MC(F) is medcouple of sorted F where x1 < x2 < x3 < ... < xn.

4.4 Experiments and Results 85

Figure 4.7: Histogram of anomaly scores generated by running AE-OD over the

training set. It shows that the reconstruction errors of the training set are skewed.

Figure 4.8: Histogram of floating anomaly scores generated by running RNN-OD

over the training set. It shows that the reconstruction errors of the training set

are skewed.

4.4 Experiments and Results 86

MC(F) as defined as in equation 4.13. xi and xj are sampled independently.

MC(F) = median
xi<m<xj

h(xi, xj) (4.13)

h(xi, xj) =
(xj −m)− (m− xi)

xj − xi
(4.14)

Afterwards, let Q3 be the 3rd quartile of the data, then TIQR, the threshold of the

modified IQR method is defined as in equations 4.15 and 4.16.

TIQR = Q3 + e3∗MC ∗ 1.5 ∗ IQR, if MC ≥ 0 (4.15)

TIQR = Q3 + e4∗MC ∗ 1.5 ∗ IQR, if MC < 0 (4.16)

Another method of detecting outlier is by using modified Z-score, which works based

on median absolute deviation [56]. The authors argue that median and median ab-

solute deviation are robust measures of central tendency and dispersion, respectively.

However, the way it applies in this chapter is different from the TIQR approach.

We first need to calculate the Z-score of the reconstruction error. Let E = {ei|i <

length(F)} be a set of anomaly scores obtained from the training data. Median ab-

solute deviation MAD can be calculated as in equation 4.17. Thus the Z-score z of

particular Ei is calculated as in equation 4.18 [56]. When using this approach, a mes-

sage is considered as malicious when the z is greater than 3.5 [56].

MAD = median({(|ei −median(E)|), ei ∈ E, 0 < i < n}) (4.17)

z =
0.6745 ∗ (|e−median(R)|)

MAD
(4.18)

4.4 Experiments and Results 87

4.4.4 Results Discussion

In summary, we have six different methods, based on Autoencoders and RNN, to eval-

uate. RNN-OD and AE-OD both have a set of changeable parameters (see Table 4.3),

but for brevity, Table 4.4 only shows the best configuration, in terms of the combin-

ation of detection rate and false positive rate, we have found during the experiments.

The complete results of the experiment can be seen in Appendix B.

In this section, the number of hidden layers in AE-OD was set to three with 200, 100,

and 200 neurons respectively. RNN-OD was configured to use LSTM, and the length

of subsequence was set to three.

Table 4.4 shows the result of our experiments. All methods were trained on the same

training set (i.e., legitimate traffic in UNSW-JAN). We measure the experiments with

three metrics. DR-UNSW shows the method detection rate of low-rate attacks in

UNSW-NB15 dataset. DR-BS shows the detection rate of malicious traffic in BlattaS-

ploit dataset. And FPR-UNSW measures the number of legitimate traffic in UNSW-

FEB that was detected as malicious. There is no FPR for BlattaSploit dataset as it only

contains malicious traffic. We then provide the F2-score of each method which con-

siders the result of both datasets. We summed the detection rate of both UNSW-NB15

and BlattaSploit dataset and used the FPR of UNSW-NB15 to obtain the F2-score. As

all discussed methods merely raise alerts to the administrator, none of them prevents

any traffic from going through. False positives will not cause important messages to be

dropped. Therefore, the cost of classifying an attack as benign is greater than deeming

a legitimate connection as malicious. The F2-score helps us to conclude when both

detection rate and false-positive rate increase. It emphasizes the detection rate without

neglecting the false-positive rate.

In general, RNN-OD with binary anomaly score and TIQR threshold method performed

the best among all methods. It achieved a detection rate higher than 99% for both

UNSW-NB15 and BlattaSploit datasets while maintaining relatively low FPR (3.57%).

4.4 Experiments and Results 88

Table 4.4: A result comparison between RNN-OD, AE-OD, and previous works.

DR-UNSW shows the method’s detection rate on the UNSW-NB15 dataset. DR-

BS shows the method’s detection rate on the BlattaSploit dataset. F2 are calcu-

lated by including the detection rate of both UNSW-NB15 and BlattaSploit data-

sets, as well as the false positive rate of legitimate traffic in UNSW-NB15 dataset.

Method

DR-

UNSW

(%)

DR-BS

(%)

FPR-

UNSW

(%)

F2

AE-OD (TIQR Threshold) 51.55 96.83 0.89 0.67

AE-OD (Z-Score Threshold) 100 100 23.61 0.74

RNN-OD (Binary anomaly

score & TIQR Threshold)
99.13 99.97 3.57 0.95

RNN-OD (Binary anomaly

score & Z-Score Threshold)
0 0 0 0

RNN-OD (Floating anomaly

score & TIQR Threshold)
34.24 58.07 1.12 0.41

RNN-OD (Floating anomaly

score & Z-Score Threshold)
100 100 99.98 0.38

OCPAD (1-gram) 19.88 16.65 0.00 0.12

OCPAD (3-gram) (HTTP

only)
29.08 23.31 8.85 0.23

PAYL 87.09 83.93 0.05 0.86

Wang et al. [110] (One-class

SVM-based)
100 100 46.83 0.52

Wang et al. [110]

(KNN-based)
36.41 100 0.03 0.41

Kitsune [78] 0 0 0.0004 0

Decanter [25] (HTTP Only) 68.13 7.62 0.02 0.15

4.4 Experiments and Results 89

This model achieved the highest F2-score of 0.95. AE-OD with Z-score threshold,

RNN-OD with floating anomaly score and Z-score threshold, and One-class SVM-

based [110] may have 100% detection rate for both datasets. However, their FPR

is also very high, making them infeasible to be implemented in real-life situations.

Other methods either only worked well with one dataset (i.e., Decanter, and KNN-

based [110]) or showed unsatisfactory performance (< 50% detection rate) in both

datasets (i.e., OCPAD, the rest of RNN-OD, and Kitsune).

During the experiment with RNN-OD with binary anomaly score and TIQR threshold

method, we found that it performed best at analysing SMTP traffic with 100% detection

rate and 1% false positive rate. It is because the byte sequences in SMTP messages

in our dataset are more uniformly distributed than other protocols. Therefore when

there is an exploit code, the sequence is highly unusual and easily detected by the

method. On the other protocol, this method performed worst at analysing FTP attacks

in BlattaSploit with a detection rate of 77.78%. We suspect that this result was caused

by the FTP messages in the training data are relatively shorter than HTTP or SMTP

messages. Therefore, the model has fewer samples for training. As for HTTP, this

method has the highest rate of false positives among other protocols in the testing set.

To further analyse how some of our methods came up with a lower performance, we

break down the result based on the protocol (i.e., HTTP, FTP, and SMTP) and the

attack types (i.e., Backdoors, Exploits, Worms). AE-OD with TIQR threshold seems to

struggle with detecting low-rate attacks in UNSW-NB15 dataset. When we looked at

the result in more detail, it is revealed that AE-OD with TIQR threshold had difficulties

in detecting HTTP-based exploits, only 30.5% of this type of attacks were identified.

However, this method achieved 80% of detection rate for other attack types on HTTP.

It even detected 100% of low-rate attacks on FTP and SMTP. RNN-OD with floating

anomaly score and TIQR threshold suffered a similar problem. In our further analysis,

its low detection rate was caused by missing many HTTP-based exploits.

AE-OD with the Z-Score threshold has a reasonable detection rate, but the FPR is un-

4.4 Experiments and Results 90

acceptable in real-life situations. This result is caused by the method classifying all

legitimate FTP traffic and 15.31% of legitimate HTTP traffic as malicious (see Ap-

pendix B. Both the number of layers and the number of neurons have no significant

effect on the false positive rate. The results differ by around 0.5% or about 700 of

153,718 samples. Moreover, these parameters did not affect the detection rate at all;

all protocol detection rates were 100%.

In RNN-OD, using the Z-score threshold method resulted in inferior performance re-

gardless of our anomaly score calculation method. This poor performance can be seen

in all protocols and attack types. Therefore, we argue that defining threshold with the

Z-Score method is not suitable for RNN-OD. This method results in a higher threshold

than it should be, causing malicious traffic to be deemed normal.

Suppose we look at the result from RNN-OD with floating anomaly score and TIQR

threshold method (see Appendix B, the detection rate on HTTP contributed badly to

the overall performance. At best, the method can only detect 12.39% of HTTP-based

attacks in UNSW-NB15 dataset and 57.87% of attacks in BlattaSploit. It might be

caused by the way the anomaly score is calculated. Suppose the predicted output value

of the RNN model is close to the actual value. In that case, although the prediction is

said to be incorrect, the contribution to the overall anomaly score is smaller than the

incorrect prediction with a big difference from the actual value. Therefore, causing

the threshold to be less sensitive to malicious samples. Similar behaviours are also

observed on SMTP and FTP albeit less damaging.

As previously mentioned, the one-class SVM model [110] with header-based features

provided a higher detection rate than our best performing method, but it comes with

46.83% False Positive Rate (FPR), which would be unacceptable in a real-life environ-

ment. The KNN-based model [110] does capture 100% of malicious traffic in the Blat-

taSploit dataset, although it performed poorly on UNSW-NB15 dataset. This method

could be considered the best performing method due to its ability to identify more ma-

licious traffic in BlattaSploit, a dataset with more representative low-rate attacks with

4.4 Experiments and Results 91

lower false-positive, but it is worth noting that BlattaSploit was generated in a differ-

ent environment from UNSW-NB15. They have different network topology and, thus,

have really distinct feature values, such as the number of hops and inter-arrival packet

time. Therefore, the method may have deemed all messages in BlattaSploit as mali-

cious merely because of that difference. It is like training a method with data from

one company and evaluating it with malicious data from another company. The model

performance would be high, but it is misleading. Ultimately, the F2-score shows that

RNN-OD outperforms the KNN-based model [110]. It shows that RNN-OD works

better at recognising attacks regardless of the dataset used to evaluate.

Other header-based NIDS, Kitsune [78], failed to detect any low-rate attacks at all.

When we analysed the reconstruction errors generated by Kitsune, we found out that

the reconstruction error of legitimate traffic has a massive range. Thus all low-rate

attack anomaly scores fell into this range. Despite using an ensemble of Autoencoders,

Kitsune with header-based features missed all low-rate attacks in our datasets. As our

payload-based approaches, particularly the AE-OD that also utilises an Autoencoder,

provide a better performance, this finding supports our argument that header-based

features may not be suitable to capture the behaviour of low-rate attacks.

Our best performance model (RNN-OD) also provides improvements over other payload-

based NIDS. Among others, OCPAD performed the worst. It detected less than 30%

of low-rate attacks at best. It even performed worse than PAYL, the earlier approach.

PAYL may show a decent result with a high detection rate and low false-positive rate.

Its F2-score is 0.86, the second highest after our best performance model. However,

further analysis showed that it could only detect 42.93% of HTTP-based low-rate at-

tacks. It struggled to detect exploits in HTTP traffic. We also show that Decanter [25]

had trouble identifying HTTP low-rate attacks in UNSW-NB15 dataset, let alone at-

tacks in BlattaSploit dataset. Furthermore, it only works on HTTP.

When conducting experiments, there were several issues we faced with the previous

works. OCPAD [103] could not process SMTP traffic with 3-grams. It consumed too

4.5 Conclusions 92

much RAM. Even with 16 GB memory pre-allocated for the Java Virtual Machine

(JVM), the JVM still threw an OutOfMemory exception. Kitsune [78] took four weeks

to process our training and testing sets from UNSW-NB15 dataset and became slower

over time.

4.5 Conclusions

In this chapter, we have presented two methods (i.e., RNN-OD and AE-OD) to detect

low-rate attacks such as exploits, backdoors, and worms. Both have a slightly different

approach to detect these attacks. To detect whether an application layer message is

malicious, RNN-OD takes windowed byte subsequences from it and predicts the next

byte for each subsequence. A malicious application layer message would cause RNN-

OD to make incorrect predictions. When number of incorrect predictions surpasses a

threshold value calculated in the training phase, the payload is flagged as malicious. On

the other hand, AE-OD computes byte frequencies of the application layer message.

The byte frequencies are then fed into an Autoencoder in which the output will be

compared to the input byte frequencies. AE-OD deemed the application layer message

malicious when the difference between its input and output surpasses the pre-calculated

threshold in the training phase.

Our experiments show that the best performing model, a recurrent neural network with

Long Short-Term Memory unit, combined with binary anomaly score and the statist-

ical thresholding approach, was able to identify low-rate attacks in various application

layer protocols (i.e., HTTP, FTP, and SMTP). In terms of detection rate, the proposed

RNN-OD surpassed all previous works with an improvement of F2-score at least 0.09.

Therefore, none of the earlier works that have been included for comparison could

match RNN-OD performance.

It has also been demonstrated that header-based NIDSs struggled at detecting low-

rate attacks. Wang et al. [110]’s, which had been evaluated with KDD99 dataset and

4.5 Conclusions 93

showed a good result, was now evaluated with newer UNSW-NB15 dataset. Our exper-

iments show that the models suffer from either high false-positive rate or low detection

rate. The argument is also supported by Kitsune’s failure to detect any low-rate attacks.

94

Chapter 5

Early prediction of low-rate attacks on

network traffic with Recurrent Neural

Networks

5.1 Introduction

An exploit is an example of low-rate attacks that takes advantage of the existence of

bugs and vulnerabilities. They infiltrate the system by giving the system an input which

triggers malicious behaviour. As time passes, the number of bugs and vulnerabilities

increases, along with the number of exploits. In the first quarter of 2019, there were

400,000 new exploits [62], while more than 16 million exploits have been released in

total. Only one of these is needed to infiltrate our system. More importantly, exploits

are only a type of low-rate attacks. With the existence of other low-rate attacks, such

as backdoors and worms, the threat to our system becomes more dangerous.

As demonstrated in Chapter 4, one way to detect low-rate attacks is to scan network

traffic for their presence. However, the state of the art methods presented in Chapter 4,

as well as the novel results we presented, all function by detecting the attack using a

complete payload - i.e. after the exploit has completed. In this chapter we investigate

whether an attack could be detected before it arrives at the vulnerable system. If this

can be achieved, earlier action can be taken to minimise or nullify the damage. There

5.1 Introduction 95

is also no need to dynamically analyse the attack on a clone server or Virtual Machine

(VM) - as it is usually the case in host-based detection approaches, making this ap-

proach more time-efficient to block and provide rapid response to attacks. Therefore,

detecting low-rate attacks in network traffic is a promising way to prevent low-rate

attacks from infecting protected systems.

Detecting low-rate attacks on the wire, however, has challenges. Firstly, processing the

vast amount of data without decreasing network throughput below acceptable levels;

quality of service is still a priority. Secondly, there are various ways to encode the pay-

loads [31], by modifying the payload to make it appear different, yet still, achieve the

same goal. This technique makes it easy to evade any rule-based detection. Lastly, en-

crypted traffic is also a challenge; attackers may transmit an exploit with an encrypted

protocol, e.g., HTTPS.

As discussed in Chapter 2, there are many ways to detect low-rate attacks in network

traffic. Rule-based detection systems work by matching signatures of known attacks

to the network traffic. Anything that matches the rule is deemed malicious. The most

prevalent open-source intrusion detection system, Snort [95], has a rule that marks any

traffic which contains byte 0x90 as shellcode-related traffic. This rule is based on the

knowledge that most x86-based shellcodes are preceded by a sequence of no operation

(NOP) instructions in which the bytes typically contain this value. However, this rule

can easily be evaded by employing other NOP instructions, such as the “0x41 0x49”

sequence. Apart from that, rule-based detection systems are susceptible to zero-day

attacks for which no detection rule exists. Such systems are unable to detect these at-

tacks until the rule database is updated with the new attack signature. Anomaly-based

Network-based Intrusion Detection System (NIDS)s with Machine Learning (ML) al-

gorithms offer a solution to this problem. And as demonstrated in Chapter 4, payload-

based NIDSs are better at detecting low-rate attacks than header-based NIDSs.

One of the first leading research in payload analysis is PAYL [107]. It extracts 1-grams

from all bytes of the payload as a representation of the network traffic. The model is

5.1 Introduction 96

then trained over a set of those 1-grams. PAYL [107] measures the distance between the

new incoming traffic with the model with a simplified Mahalanobis distance. Similar

to PAYL, Oza et al. [82] extracts n-grams of HTTP traffic with various n values. They

compared three different statistical models to detect anomalies/attacks. HMMPayl [21]

is another work based on PAYL which uses Hidden Markov Models to detect anom-

alies. OCPAD [103] stores the n-grams of bytes in a probability tree and uses one-class

Naïve Bayes classifier to detect malicious traffic. Golait and Hubballi [46] developed

Probabilistic Counting Deterministic Timed Automata which inspects byte values of

application layer messages to identify attacks on VOIP applications. Min et al. [77]

extracts words from the application layer message and detect web-based attacks with

a combination of Convolutional Neural Network (CNN) and Random Forest. In the

previous chapter, we utilised Recurrent Neural Network (RNN)s with an unsupervised

approach and windowed byte subsequences of payloads to improve on the detection

rate of these previous methods by at least 12.04%. A common approach that is found

on all of the works as mentioned above is they read all bytes in application layer mes-

sages and do not decide whether the payload is malicious or not until all bytes have

been read. These messages can be lengthy and spread over multiple network packets.

Reading the whole messages before making a decision may lead to a delay in detecting

the attack and gives the attack time to execute before an alert is raised. To the best of

our knowledge, this issue has never been addressed by the previous approaches. It then

led us to a research question:

RQ3: Can we predict the occurrence of low-rate attacks with fewer data and earlier

in the attack, while still retaining a relationship between the sequence of packets?

We, therefore, propose Blatta, an early low-rate attack prediction system which reads

application layer messages and detects whether these messages are likely to be mali-

cious by reading only the first few bytes. It is the first work to our knowledge that

provides early prediction of malicious application layer messages, thus detecting a po-

tential attack earlier than other state-of-the-art approaches, and enabling a form of an

5.1 Introduction 97

early warning system.

In the previous chapter, RNN-OD takes windowed byte subsequences from applica-

tion layer messages, uses each individual byte in a subsequence as an input for each

time step, and outputs a byte value for each subsequence. The last two steps are re-

peated over the set of byte subsequences of an application layer message. For every

subsequence, the predicted next-byte is compared to the actual one. RNN-OD raises an

alert when the underlying RNN model makes many incorrect byte value predictions.

The experiments with this approach showed an improvement over previous methods.

Inspired by the effectiveness of RNNs at detecting attacks in entire payloads in the

previous chapter, the approach taken with Blatta in this chapter also utilises a recurrent

neural network (RNN)-based model. There are three main differences between the

RNN model used by RNN-OD (previous chapter) and Blatta (this chapter). The first

difference is what is being processed by the RNN model in each time step calculation,

or the input. Although in the preprocessing step RNN-OD obtains windowed byte

subsequences from the application layer message, RNN-OD only takes a byte value as

an input for each time step. On the other hand, the underlying RNN model in Blatta

processes high-order n-grams (n > 1) in each time step. The second main difference

between these two approaches is the output. The RNN model in RNN-OD outputs

a byte value, representing the predicted next byte, as shown in Figure 4.4. There is

an extra step in RNN-OD to decide whether the payload is malicious by counting the

number of wrong byte predictions, rather than learning the sequences of malicious/non-

malicious payloads. While Blatta directly outputs a decision on whether the payload is

malicious.

To better illustrate these differences, we provide a sample of truncated Hypertext Trans-

fer Protocol (HTTP) message in Table 5.1, which shows how each approach turns the

message into features and what would be delivered as the output when the length of the

subsequence is set to five. Each pair of square brackets represents the subsequence/n-

grams which will be processed by the RNN model. Note that in this illustration, RNN-

5.1 Introduction 98

OD only processes the first subsequence and further splits the subsequence into indi-

vidual bytes. It then should output a space character as it is the expected byte value.

This process is repeated for each subsequence in the square brackets, but for brevity,

we only show the first calculation. In contrast to that, Blatta uses all the n-grams ob-

tained from the payload as the input for the RNN model and should directly output a

decision that this message is not malicious.

Table 5.1: An illustration of how RNN-OD and Blatta process the same HTTP

message.
Sample HTTP

message
GET / HTTP/1.0

Method RNN-OD Blatta

Preprocessed

subsequences/n-

grams

[G, E, T, ’ ’, /]; [E, T, ’ ’, /, ’ ’]; [T,

’ ’, /, ’ ’, H]; [’ ’, /, ’ ’, H, T]; [/, ’

’, H, T, T]; [’ ’, H, T, T, P]; [H, T,

T, P, /]; [T, T, P, /, 1]; [T, P, /, 1, .];

[P, /, 1, ., 0]

[’GET /’, ’ET / ’, ’T / H’, ’ / HT’,

’/ HTT’, ’ HTTP’, ’HTTP/’,

’TTP/1’, ’TP/1.’, ’P/1.0’]

Input of the

RNN model
’G’, ’E’, ’T’, ’ ’, ’/’

’GET /’, ’ET / ’, ’T / H’, ’ / HT’,

’/ HTT’, ’ HTTP’, ’HTTP/’,

’TTP/1’, ’TP/1.’, ’P/1.0’

Expected

output of the

RNN model

’ ’ (a space character) Non-malicious payload

RNN-OD works by calculating an anomaly score over a full-length of an application

layer message. If the number of bytes read from the message was reduced, the inform-

ation passed to the model would also be reduced. It may cause the model to incorrectly

classify the input because the number of error and the length of the message, two

components for calculating the anomaly score, would be different. This difference

would affect badly to the model accuracy if we made early prediction with RNN-OD.

5.1 Introduction 99

Therefore, using RNN with the unsupervised approach may not be suitable for early

prediction and requires further research to mitigate the potential performance drop. On

the other hand, if we have labelled messages (i.e., malicious or legitimate) during the

training, it is more straightforward for the RNN model to gradually learn whether a

sequence of bytes is malicious in every time step. Therefore, it is possible to stop the

calculation in an earlier time step while avoiding a significant accuracy drop. Blatta

is built on that principle, which is why it uses a supervised approach. While changing

the approach to supervised in this chapter may cause Blatta to lose some flexibility in

detecting unseen attacks, we are more focused at looking for evidence of the ability to

predict attacks earlier and need to use labelled data during the training phase.

There are several other payload-based NIDSs that incorporate RNNs in their approach [43,

92, 69, 52], yet none of them address the problem of early detection, all of them re-

quire the processing of the full-length payload before making a decision. Feng et al.

[43] proposed a set of features from Modbus messages and an RNN-based model to

detect attacks. Their approach requires reading the full-length Modbus messages be-

fore the feature set can be obtained. Moreover, their approach can only be used on

Modbus messages as the features are not compatible with any TCP/IP-based protocols.

[92, 69, 52] rely on individual bytes (1-grams) from the full-length payload as the fea-

tures to their RNN model. Their RNN-based models take a sequence of bytes as input,

process each item sequentially, and output the decision after it has finished processing

the last item of the sequence. In the case of Blatta, the novel element is the ability

to predict the exploit traffic early, by using the intermediate output of the RNN-based

model, and not waiting for the full-length message to be processed. Our experiments

show that this approach has little effect on accuracy, but enables us to make earlier

network attack predictions while retaining high accuracy and a low false-positive rate.

Therefore, Blatta is the first method that successfully addresses the problem of early

detection of low-rate attacks.

To summarise, the key contribution of this chapter is:

5.2 Threat Model 100

C4: The first early low-rate attack prediction system on network traffic, which predicts

malicious instances as they enter the protected network without analysing the whole

application layer messages, enabling the administrator to react faster and possibly min-

imise the damage.

The rest of this chapter is structured as follows: Section 5.2 details the threat model

which Blatta will face. How Blatta works is explained in Section 5.3. Then, Section

5.4 explains our extensive experimentation with Blatta. Finally, the chapter concludes

in Section 5.5.

5.2 Threat Model

A threat model is a list of possible things that may affect protected systems. Having

one means we can identify which part is the focus of our proposed approach, thus, in

this case, we can potentially understand better what to look for to detect the malicious

traffic and what the limitations are.

The proposed method focuses on detecting remote attacks by reading application layer

messages from the unencrypted network traffic. However, the detection method of

Blatta can be incorporated with application-layer firewalls, i.e., web application fire-

walls. Therefore, we can still detect the exploitation attempt before it reaches the

protected application. In general, the type of attacks we consider here are:

(1) Low-rate attacks that send malicious scripting languages (e.g., PHP, Ruby, Python,

or SQL), shellcode, or Bash scripts to maintain control to the server or gain access

to it remotely. For example, apache_continuum_cmd_exec exploit with reverse shell

payload which will force the targeted server to open a connection to the attacking

computer and provide shell access to the attacker. By focusing on the connections dir-

ected to servers, we can safely assume JavaScript code in the application layer message

could also be malicious since usually JavaScript code is sent from server to client, not

the other way around.

5.3 Methodology 101

(2) Low-rate attacks that utilise one of the text-based protocols over TCP, i.e., HTTP

and FTP. Text-based protocols tend to be more well structured than binary-based ones.

We also put more focus on HTTP and FTP as attacks on these protocols were harder to

detect by our previous approach in Chapter 4 (i.e., RNN-OD and AE-OD).

5.3 Methodology

Extracting features from application layer messages is the first step toward an early

prediction method. We could use variable values in the message (e.g., HTTP header

values, FTP commands, SMTP header values), but it would require us to extract a

different set of features from each application layer protocol. It is preferable to have a

generic feature set which applies to various application layer protocols. Therefore, we

propose the use of n-grams to model the application layer message.

Using 1-grams arguably overlooks information about the context of the payload string

as a sequence of activities. One of the key benefits of an RNN model is the ability to

learn sequences of activities. Therefore, we model the payload as sequences of high-

order n-grams where n > 1 to capture more contextual information about the network

payload. In doing so, Blatta takes the relation between consecutive subsequences of

the application layer message into account. To test the effectiveness of higher order

n-grams, we directly compare 1-grams to higher-order n-grams in our experiments.

Moreover, while related work such as [59]’s, [41], and OCPAD [103] previously used

high-order n-grams, they did not utilise a model capable of learning sequences of activ-

ities and thus not capable of making early-stage predictions within a sequence. Our

novel RNN-based model will consider the long-term dependency of the sequence of

n-grams.

A RNN takes a sequence of inputs and processes them sequentially in several time

steps, enabling the model to learn the temporal behaviour of those inputs. In this case,

the input to each time step is an n-gram, unlike earlier works [92, 69, 52] and our

5.3 Methodology 102

Network Packets

TCP Reconstruction

Application
Layer messages
(i.e. HTTP
requests, SMTP
commands)

n-grams
RNN-based model

Most common n-grams in
the training set

Malicious

Legitimate

Figure 5.1: Architecture overview of Blatta. Application layer messages are ex-

tracted from captured traffic using tcpflow [44]. n-grams are obtained from those

messages. They will then be used to build a dictionary of most common n-grams

and train the RNN-based model (i.e., LSTM and GRU). The trained model output

a prediction whether the traffic is malicious or benign..

previous method (i.e., RNN-OD) which also utilised an RNN model but took a byte

value as the input for each RNN time step. Moreover, these works took the output from

the last time step to make decision, while our novel approach produces classification

outputs at intermediate intervals as the RNN model is already confident about the de-

cision. We argue that this approach will enable the proposed system to predict whether

a connection is malicious without reading the full length of application layer messages,

therefore providing an early warning method.

In general, as shown in Figure 5.1, the training and detection process of Blatta are as

follows:

Training phase. n-grams are extracted from application layer messages. l most com-

mon n-grams are stored in a dictionary. This dictionary is used to encode an n-gram to

an integer. The integer encoded n-grams are then fed into an RNN model, training the

model to classify whether the traffic is legitimate or malicious.

Detection phase. For each new incoming TCP connection directed to the server, we

5.3 Methodology 103

HELLO_WORLD

HEL ELL LLO LO_ O_W ...

HEL LLO O_W WOR RLD

HEL LO_ WOR

String:

n-grams, n=3, stride=1:

n-grams, n=3, stride=2:

n-grams, n=3, stride=3:

Figure 5.2: An example of n-grams of bytes taken with various stride values.

reconstruct the application layer message, obtain the the first few bytes of the message,

and determine if the sequence belongs to malicious traffic.

5.3.1 Data Preprocessing

In well-structured documents such as text-based application layer protocols, byte se-

quences can be a distinguishing feature that makes each message in their respective

class differ from each other. Blatta takes the byte sequence of application layer mes-

sages from network traffic. In the training phase, we reconstruct the application layer

messages as the message may be split into multiple TCP segments and transmitted in

an arbitrary order. For that purpose, we utilise tcpflow [44] to read PCAP files,

reconstruct TCP segments, and obtain the application layer messages. While in the

detection phase, only the first few bytes are obtained from the application layer mes-

sage. The number of bytes taken from the message will be explored further in the

experiments (see Section 5.4.3).

We then represent the byte sequence as a collection of n-grams taken with various

stride value. An n-gram is a consecutive sequence of n items from a given sample, in

this case, an n-gram is a consecutive series of bytes obtained from the application layer

message. Stride is how many steps the sliding window takes when collecting n-grams.

Figure 5.2 shows examples of various n-grams obtained with a different value of n and

stride.

5.3 Methodology 104

We define the input to the classifier to be a set of n-grams. LetX = {x1, x2, x3, ..., xk}

be the n-grams collected from an application layer message as the input to the RNN

model, and k be the number of n-grams taken from each application layer message.

The issue is, an RNN only accepts a sequence of numeric data or of vectors. Therefore,

the input n-grams need to be encoded in a form that is accepted by the RNN model

before processing further.

Each n-gram is categorical data. It means a value of 1 is not necessarily smaller than

a value of 50. They are simply different. Encoding n-grams with one-hot encoding

is not a viable solution as the resulting vector would be sparse and hard to model.

Therefore, Blatta transforms the sequence of n-grams with embedding technique. Em-

bedding is essentially a lookup table that maps an item to a dense vector with a fixed

size dimension of embedded_dim [76]. In this case, each n-gram is transformed to

a decimal vector with the size of embedded_dim. Using pre-trained embedding vec-

tors, e.g. GloVe [84], to initialise the embedding layer is common in natural language

processing problems, but these pre-trained embedding vectors were generated from a

corpus of words from Wikipedia, while our approach works with byte-level n-grams,

and most of them do not exist in Wikipedia articles. Therefore, it is not possible to use

the pre-trained embedding vectors. Instead, we initialise the embedding vectors with

random values which will be updated by backpropagation during the training so that

n-grams which usually appear together will have vectors that are close to each other.

It is worth noting that the number of n-grams collected raises exponentially as the

n increases. If we considered all possible n-gram values, the model would overfit.

Therefore, we limit the number of embedding vectors by building a dictionary of most-

common n-grams in the training set. We define the dictionary size as l in which it

contains l unique n-grams and a placeholder for other n-grams that do not exist in the

dictionary. Thus the embedding vectors has l + 1 entries. However, we would like the

size of each embedded vector to be less than l + 1. Let ε be the size of an embedded

vector (embedded_dim). If xt represents an n-gram, the embedding layer transforms

5.3 Methodology 105

X to X̂ . We denote X̂ = {x̂1, ..., x̂k} where each x̂ is a vector with the size of ε. The

embedded vectors X̂ are then passed to the recurrent layer.

5.3.2 Training an RNN-based classifier

Since the input to the classifier is sequential data, we opted to use a method that takes

into account the sequential relationship of elements in the input vectors. Such methods

capture the behaviour of a sequence better than processing those elements individu-

ally [47]. A Recurrent Neural Networks is an architecture of neural networks in which

each layer takes time-series data, processes them in several time steps, and utilises the

output of the previous time step in the current step calculation. We refer to these layers

as recurrent layers. Each recurrent layer consists of recurrent units.

The vanilla RNN has a vanishing gradient problem, a situation where the recurrent

model cannot be further trained because the value to update the weight is too small

thus there would be no point of training the model further. Therefore, Long Short-Term

Memory (LSTM) [54] and Gated Recurrent Unit (GRU) [35] are employed to avoid this

situation. Both LSTM and GRU have cells/units that are connected recurrently to each

other, replacing the usual recurrent units which existed in earlier RNNs. What makes

their cells different is the existence of gates. These gates decide whether to pass certain

information coming from the previous cell (i.e., input gate and forget gate in LSTM

unit, update gate in GRU) or going to the next unit (i.e., output gate in LSTM). Since

LSTM has more gates than GRU, it requires more calculations, thus computationally

more expensive. Yet it is not conclusive whether one is better than the other [35]. Thus

we use both types and compare the results. For brevity, we will refer to both types as

recurrent layers and their cells as recurrent units.

The recurrent layer takes a vector x̂t for each time step t. In each time step, the re-

current unit outputs hidden state ht with a dimension of |ht|. The hidden state is then

passed to the next recurrent unit. The last hidden state hk becomes the output of the

5.3 Methodology 106

recurrent layer, which will be passed onto the next layer.

Once we obtain hk, the output of the recurrent layer, the next step is to map the vector

to benign or malicious class. Mapping hk to those classes requires us to use linear

transformation and softmax activation unit.

A linear transformation transforms hk into a new vector L using Equation (5.1), where

W is the trained weight and b is the trained bias. After that, we transform L to obtain

Y = {yi| 0 6 i < 2 }, the log probabilities of the input file belonging to the classes

with LogSoftmax, as described in Equation (5.2). The output of LogSoftmax is the

index of an element that has the largest probability in Y . All these forward steps are

depicted in Figure 5.3.

L = W ∗ hk + b,L = { li | 0 6 i < 2 } (5.1)

Y = argmax
0 6 i < 2

(
log

exp(li)∑2
i=0 exp(li)

)
(5.2)

In the training phase, after feeding a batch of training data to the model and obtaining

the output, the next step is to evaluate the accuracy of our model. To measure our

model’s performance during the training stage, we need to calculate a loss value which

represents how far our model’s output is from the ground truth. Since this approach is

a binary classification problem, we use Negative Log Likelihood [90] as the loss func-

tion. Then the losses are backpropagated to update weights, biases, and the embedding

vectors.

5.3.3 Detecting Attacks

The process of detecting low-rate attacks is essentially similar to the training process.

Application layer messages are extracted. n-grams are acquired from these messages

5.3 Methodology 107

Application layer messages

n-gram

embedded
vector

recurrent
unit

softmax
unit

n-gram

embedded
vector

recurrent
unit

n-gram

embedded
vector

recurrent
unit

Integer encoded
n-grams as inputs ...

...

...

Embedding
layer

Recurrent layer
with LSTM/GRU
units

Legitimate Malicious

softmax
unit

Decision can be acquired
earlier without waiting for the
last n-grams to be processed

Training and detection phase

Detection phase only

Figure 5.3: A detailed view of the classifier. n-grams are extracted from the input

application layer message which are then used to train an RNN model to classify

whether the connection is malicious or legitimate..

and encoded using the dictionary that was built during the training process. The en-

coded n-grams are then fed into the RNN model that will output probabilities of these

messages being malicious. When the probability of an application layer message being

malicious is higher than 0.5, the message is deemed malicious and an alert is raised.

The main difference in this process to the training stage is the time when Blatta stops

processing inputs and makes the decision. Blatta takes the intermediate output of the

5.4 Experiments and Results 108

RNN model, hence requiring fewer inputs and disregarding the needs to wait for the

full-length message to process. We will show in our experiment that the decision taken

by using intermediate output and reading fewer bytes is close to reading the full-length

message. Giving the proposed approach an ability of early prediction.

5.4 Experiments and Results

In this section, we evaluate Blatta and present evidence of its effectiveness in predict-

ing low-rate attacks in network traffic. Blatta is implemented with Python 3.5.2 and

PyTorch 0.2.0 library. All experiments were run on a PC with Core i7 @ 3.40GHz, 16

GB of RAM, NVIDIA GeForce GT 730, NVIDIA CUDA 9.0, and CUDNN 7.

The best practice for evaluating a machine learning approach is to have separate train-

ing and testing set. As the name implies, the training set is used to train the model,

and the testing set is for evaluating the model’s performance. We split BlattaSploit

dataset in a 60:40 ratio for training and testing set as malicious samples. The division

was carefully taken to include diverse types of exploit payloads. As samples of benign

traffic to train the model, we obtained the same number of HTTP and FTP connections

as the malicious samples from UNSW-JAN (see Section 4.4.2). Having a balanced set

of both classes is essential in supervised learning.

We measure our model’s performance by using samples of malicious and legitim-

ate traffic. Malicious samples are obtained from 40% of BlattaSploit dataset (2,276

samples), exploits and worms samples in UNSW-FEB (see Section 4.4.2) set (10,855

samples). As for the legitimate traffic samples, we obtained the same number (10,855)

of benign HTTP and FTP connections in UNSW-FEB. We used the UNSW dataset to

compare our proposed approach performance with previous works.

In summary, the details of the training and testing sets used in the experiments are

shown in Table 5.2.

5.4 Experiments and Results 109

Table 5.2: Numbers of benign and malicious samples used in the experiments.
Set Obtained from Num of samples Class

Training Set BlattaSploit 3,406 Malicious

UNSW-JAN 3,406 Legitimate

Testing Set BlattaSploit 2,276 Malicious

UNSW-FEB 10,855 Legitimate

UNSW-FEB 10,855 Malicious

We evaluated the classifier model by counting the number of true positive (TP), true

negative (TN), false positive (FP), and false negative (FN). They are then used to calcu-

late the detection rate (DR) and false-positive rate (FPR), which are metrics to measure

our proposed system’s performance.

DR measures the ability of the proposed system to detect malicious traffic correctly.

The value of DR should be as close as possible to 100%. It would show how well our

system able to detect low-rate attack traffic. The formula to calculate DR is shown in

Equation 5.3. We denote TP as the number of identified malicious connections and FN

as the number of undetected malicious connections in the testing set.

DR =
TP

TP + FN
(5.3)

FPR is the percentage of legitimate samples that are classified as malicious. We would

like to have this metric to be as low as possible. High FPR means many false alarms

are raised, rendering the system to be less trustworthy and useless. We calculate this

metric using the Equation 5.4. We denote FP as the number of false positives detected

and N as the number of benign samples.

FPR =
FP
N

(5.4)

We now have two metrics to measure the performance. It is important to find the bal-

5.4 Experiments and Results 110

ance between improving DR and keeping FPR low. As we stated in the conclusion of

Chapter 4, it depends on the cost of undetected attacks. Undetected low-rate attacks

would be highly impactful as we would not have any idea the attack was happening.

Thus no countermeasure could be done to prevent or mitigate the consequences. There-

fore, we prioritise DR over FPR.

5.4.1 Data Analysis

Before discussing the results, it is preferable to analyse the data first to make sure that

the results are valid, and the conclusion taken is on point. Blatta aims to detect attack

traffic by reading the first few bytes of the application layer message. Therefore, it

is crucial to know how many bytes are there in the application layer messages in our

dataset. Hence, we can be sure that Blatta reads fewer bytes than the full length of the

application layer message.

Table 5.3 shows the average length of application layer messages in our testing set.

The median of message lengths in the benign samples is 474, lower than any other

sets. Therefore, deciding after reading fewer bytes than at least that number implies

our proposed method can predict malicious traffic earlier, thus providing improvements

over previous works.

Table 5.3: Average message length of application layer messages in the testing set
Set Median of Message Lengths

BlattaSploit 2285

UNSW-NB15 Legitimate samples 474

UNSW-NB15 Malicious samples 202

5.4 Experiments and Results 111

5.4.2 Comparison With Previous Works

We compare Blatta results with other related previous works. PAYL [107], OCPAD [103],

Decanter [25], were included in the experiment as those are payload-based NIDS which

are compared in the previous chapter and are unsupervised. Additionally, we also ex-

perimented with our unsupervised approaches, RNN-OD and AE-OD, described in

Chapter 4. PAYL and OCPAD read an IP packet at a time, while Decanter, RNN-OD,

and AE-OD reconstruct TCP segments and process the whole application layer mes-

sage. None of them provides early detection, but to show that Blatta also offers im-

provements in detecting malicious traffic, we compare the detection and false-positive

rates of those works with Blatta. In this experiment, Blatta still read the full-length ap-

plication message, and the early prediction will be discussed further in Section 5.4.3.

We evaluated all methods with Exploits and Worms data in UNWS-NB15 as those

match our threat model (see Section 5.2). Backdoors and Shellcode in UNSW-NB15,

despite being a part of low-rate attacks, are excluded in this evaluation due to not

having HTTP and File Transfer Protocol (FTP) traffic. It is also worth noting that

although the training set for Blatta and other methods is slightly different, as Blatta is

supervised and other methods are unsupervised, the testing set is the same. Blatta’s

training set is described in Table 5.2, while other methods did not include any traffic in

BlattaSploit for training the model. The testing set in this experiment also did not use

any traffic in BlattaSploit as a portion of it was used to train Blatta. We would like to

investigate whether Blatta, which has not seen any malicious traffic in UNSW-NB15

dataset, can recognise low-rate attacks that do not exist during its training phase.

Blatta has a set of parameters that needs to be selected ahead of the training phase.

These parameters are n, recurrent layer types, the number of recurrent layer(s), stride,

dictionary size, and the embedding vector dimension. We will explore more about

the effect of various values for these parameters later. As for this experiment, we

set the parameters to the predefined default values (i.e., n = 5, stride = 1, dic-

tionary size=2000, embedding_dim=32, recurrent layer=LSTM, number of recurrent

5.4 Experiments and Results 112

Table 5.4: Comparison to previous works using the UNSW-NB15 dataset as the

testing set.
Method Detection Rate (%) FPR (%)

Exploits in

UNSW-NB15

Worms in

UNSW-NB15

Blatta 99.04 100 1.93

PAYL 87.12 26.49 0.05

OCPAD 10.53 4.11 0.00

Decanter 67.93 90.14 0.03

RNN-OD 98.87 97.54 4.41

AE-OD 47.51 81.12 0.99

layers=1). The default values were selected based on a preliminary experiment, which

had given the best result. Apart from the modifiable parameters, we set the optimiser

to Stochastic Gradient Descent with learning rate 0.1 as using other optimiser did not

necessarily increase or decrease the performance in our preliminary experiment. The

number of epochs is fixed to five as the loss value did not decrease further, adding more

training iteration did not give significant improvement.

The results of the experiments are shown in Table 5.4. In general, Blatta has the highest

detection rate (99.04% and 100%) - albeit it also comes with the cost of increasing

false positives (1.97%). Nevertheless, the increase in false positives does not negate

the improvement in detection rate over previous methods. Moreover, Blatta detect

the most low-rate attacks although it has never seen the attack in the training phase.

Therefore, the supervised Blatta can perform on par with the unsupervised methods at

detecting unknown attacks.

5.4 Experiments and Results 113

5.4.3 Early Prediction

In this section, we explore Blatta’s capability to make an early prediction. Blatta makes

an early prediction when it successfully identifies which class a TCP connection be-

longs to by reading bytes fewer than the full-length of its application message. There

is always a possibility when Blatta ends up reading a full-length message because the

message is shorter than the predefined limit. In that case, the prediction will not be

deemed early. To see how many correct predictions are early, we define early_ratio as

a ratio of correct predictions (i.e., true positive or true negative) that are made before

reading the end of the message, TPearly and TNearly respectively, to the total correct

prediction, TP and TN. Equation 5.5 defines how much malicious traffic is correctly

detected before the method reads the last byte and Equation 5.6 defines how much of

legitimate traffic is correctly detected before the method reads the last byte.

early_ratiop =
TPearly

TP
(5.5)

early_ration =
TNearly

TN
(5.6)

Before experimenting, we calculated the percentage of samples that are longer than

some predefined byte limits. As shown in Table 5.5, more than 99% of legitimate

samples are shorter than 500 bytes, and malicious samples in UNSW-NB15 tends to

be shorter than the samples in BlattaSploit. This trend is also supported by the median

of message lengths shown in Table 5.3.

During the experiment, we set Blatta to read full-length application layer messages first

then we reduced the number of bytes read to 700, 600, 500, 400, 300, and 200 to see

how the reduction would affect its performance at detecting low-rate attacks. Unlike

the previous section, we used all samples in the testing set, including malicious traffic

from BlattaSploit; hence the result is slightly different.

5.4 Experiments and Results 114

Table 5.5: The ratio of messages in each testing set that are greater than the byte

limit..
Set

Byte limit
UNSW-NB15

legitimate samples

UNSW-NB15

malicious samples
BlattaSploit

200 88.97% 51.05% 99.43%

300 79.41% 26.80% 96.31%

400 70.81% 17.68% 89.50%

500 0.68% 13.78% 85.54%

600 0.66% 11.82% 77.33%

700 0.66% 10.91% 74.91%

We also explore how each parameter affects the detection and false-postiives rate of

Blatta. In the beginning of the experiment, we set the parameters to their default values

as described in Section 5.4.2. Then we tried different values for each parameter and

analysed the effect.

In general, reading the full length of application layer messages mostly gives more

than 99% detection rate with around 2.51% false-positive rate. This performance stays

still with a minor variation when the length of input messages is reduced down to

500 bytes. When the length is limited to 400, the false positive rate spikes up for

some configurations. Our hypothesis is benign samples have a relatively short length.

Therefore, we will pay more attention to the results of reading 500 bytes or fewer and

analyse each parameter individually.

n is the number of bytes (n-gram) taken in each time step. As shown in Table 5.6,

we experimented with 1, 3, 5, 7, and 9-gram. For brevity, we omitted n = 2, 4, 6, 8

because the result difference is not significant. As predicted earlier, 1-gram were least

effective. The detection rates were around 50%. As for the high-order n-grams, the

detection rates are not much different, but the false-positive rates are. 5-gram and 7-

gram provide better false-positive rates (2.51%) even when Blatta reads the first 400

5.4 Experiments and Results 115

bytes. 7-gram gives lower false-positive rate (8.92%) when reading first 300 bytes, yet

it is still too high for real-life situations. Having a higher n means more information is

considered in a time step. However, this may lead to overfitting instead of increasing

performance.

As the default value of n is five, we experimented with a stride of one to five and presen-

ted the result in Table 5.7. It can be observed how the model would react depending

on how much the n-grams overlapped. Non-overlapping n-grams provide lower false

positives with around 1-3% decrease in detection rates. A value of two and three for

the stride performs the worst. They missed quite a few malicious traffic.

The dictionary size plays a vital role in this experiment. Having too many n-grams

leads to overfitting as the model would have to memorise too many of them that may

barely occur. As shown in Table 5.8, we found that a dictionary size of 2000 has the

highest detection rate and the lowest false positive rate. Reducing the size to 1000

has made the detection rate to drop for about 50%, even when the model read the

full-length messages.

Blatta would have used a one-hot vector as big as the dictionary size for the input in a

time step without the embedding layer. Therefore, the embedding dimension has the

same effect as dictionary size. Having it too big leads to overfitting, too little could

mean too much information is lost due to the compression. As presented in Table 5.9,

our experiments show a dimension of 16, 32, or 64 give similar detection rates, differs

less than 2%. An embedding dimension of 64 can have the least false positive when

reading 300 bytes.

Changing the recurrent layer does not seem to have much difference. LSTM has a

minor improvement over GRU as shown in Table 5.10. We argue that preferring one

after the other would not make a significant improvement other than training speed.

Adding more hidden layers does not improve the performance. On the other hand, it

harms the detection speed, as shown in Table 5.12.

5.4 Experiments and Results 116

The experiment data also shows a substantial shift of performance between reading

300-400 bytes, particularly in term of the false positive rate. When we looked at the

model’s output for each time step, earlier time steps tend to classify everything as

malicious when the model has limited information. As more data came in, the model

became better at classifying. The change typically happened when reading more than

300 bytes. At that stage, the model typically has read the URL and the host header for

HTTP and more than one commands for FTP. That information helps the model to be

better at recognising legitimate traffic.

After analysing this set of experiments, we ran another experiment with a configura-

tion based on the previously explained best-performing parameters. The configuration

is n=5, stride=5, dictionary size=2000, embedding dimension=64, and a LSTM layer.

The model then has a detection rate of 97.57% with 1.93% false positives by reading

the first 400 bytes. By limiting the input to 400 bytes, Blatta has an early_ration

of 72.07%. As for the early_ratiop, we looked at the result of malicious samples

in UNSW-NB15 and BlattaSploit separately. 88.35% correctly identified attacks in

BlattaSploit (2,043 out of 2,276/89.76%) were made before the end of the message

arrived, whilst only 17.18% correctly identified attacks (10,789 out of 10,855/99.39%)

in UNSW-NB15 were early predicted. Considering that half of the number of mali-

cious samples from UNSW-NB15 is shorter than 200 bytes, the result is not surprising.

When we reduced the number of bytes read to 200, the overall detection dropped to

88.56%, and the false positive rate increased to 10.50%. Therefore, we suggest the

configuration mentioned earlier, including the limit of 400 bytes, be used as a baseline

for further research.

In this experiment, Blatta has been evaluated with malicious data from two datasets.

Using the optimal configuration, the detection rates vary from 89.76% to 99.39% de-

pending on the dataset used. We then expect Blatta to perform not too far from those

values when it is evaluated on different datasets or real-world data. Considering we

only have limited datasets with low-rate attacks, the robustness of Blatta on a broader

5.4 Experiments and Results 117

range of data remains to be seen, and further research is needed.

We conclude that Blatta can produce an accurate prediction before the end of the mes-

sage for most samples. This result shows that Blatta retains high accuracy with an early

ratio for legitimate traffic of 72.07% and 28.51% for malicious traffic. In the following

section, we will show that the early prediction causes the detection speed to increase.

For the subsequent experiment, we used the optimal set of parameters we mentioned

earlier.

5.4.4 Detection Speed

In the IDS area, detection speed is another metric worth looked into, apart from accuracy-

related metrics. Time is of the essence in detection, the earlier we detect malicious

traffic, the faster we could react. However, detection speed is affected by many factors,

such as the hardware or other applications/services running at the same time as the

experiment. Therefore, in this section, we analyse the difference of execution time

between reading the full and partial payload.

We first calculated the execution time of each record in the testing set, then divided

the number of bytes processed by the execution time to obtain the detection speed in

kilobytes/seconds (KBps). Eventually, the detection speed of all records was averaged.

The result is shown in Table 5.12.

As shown in Table 5.12, reducing the processed bytes to 700, about half the size of an

IP packet, increased the detection speed by approximately two times (from an average

of 8.366 KBps to 16.486 KBps). Evidently, the trend keeps rising as the number of

bytes reduced. If we take the number of bytes limit from the previous section, which is

400 bytes, Blatta can provide about three times increment in detection speed or 22.17

KBps on average. We are aware that this number seems small compared to the trans-

mission speed of a link in the network which can reach 1 Gbps/128 MBps. However,

we argued that there are other factors which limit our proposed method from perform-

5.4 Experiments and Results 118

ing faster, such as the hardware used in the experiment and the programming language

used to implement the approach. Given the approach runs in a better environment, the

detection speed will increase as well.

5.4
E

xperim
ents

and
R

esults
119

Table 5.6: Experiment results of using various n values and various length of input to the model. Bold values show the parameter

value which gives the highest detection rate and lowest false positive rate.

of bytes # of bytes

Parameter All 700 600 500 400 300 200 All 700 600 500 400 300 200

n 1 47.22 48.69 49.86 50.65 51.77 54.99 65.32 1.18 1.19 1.21 1.21 71.31 78.7 89.43

3 99.87 99.51 99.77 99.10 99.59 98.93 91.07 2.51 2.51 2.51 2.51 72.61 10.29 20.51

5 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.60 11.08

7 99.86 99.47 99.59 99.37 99.19 98.53 97.08 2.51 2.51 2.51 2.51 2.51 8.92 80.92

9 99.81 99.59 99.62 99.57 99.23 98.16 88.93 2.51 2.51 2.51 2.51 72.60 74.16 90.60

Detection Rate False Positive Rate

5.4
E

xperim
ents

and
R

esults
120

Table 5.7: Experiment results of using various stride values and various length of input to the model. Bold values show the parameter

value which gives the highest detection rate and lowest false positive rate.

of bytes # of bytes

Parameter All 700 600 500 400 300 200 All 700 600 500 400 300 200

stride 1 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.60 11.08

2 73.39 74.11 74.01 74.45 74.69 74.62 77.82 1.81 1.81 1.81 1.81 71.92 72.46 19.86

3 82.51 82.54 83.07 83.12 83.25 83.50 85.75 1.50 1.49 1.50 1.51 71.62 75.47 89.63

4 99.60 99.19 99.26 99.28 98.61 98.55 98.37 1.93 1.93 1.93 1.93 1.93 74.09 10.50

5 99.73 98.95 98.88 98.65 98.00 95.77 88.29 1.93 1.92 1.93 1.93 1.93 54.16 90.02

Detection Rate False Positive Rate

5.4
E

xperim
ents

and
R

esults
121

Table 5.8: Experiment results of using various dictionary size and various length of input to the model. Bold values show the

parameter value which gives the highest detection rate and lowest false positive rate.

of bytes # of bytes

Parameter All 700 600 500 400 300 200 All 700 600 500 400 300 200

dictionary 1000 47.78 49.50 50.36 50.79 51.80 54.83 54.68 1.21 1.21 1.22 1.22 71.33 79.47 89.42

size 2000 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.60 11.08

5000 99.87 99.37 99.75 99.79 99.62 99.69 99.66 2.51 2.51 2.51 2.51 72.61 10.03 90.61

10000 99.86 99.44 99.74 99.55 99.44 98.55 98.33 2.51 2.51 2.51 2.51 72.61 79.06 90.15

20000 99.84 99.81 99.69 99.24 99.21 99.43 98.91 2.51 2.51 2.51 2.51 72.61 80.46 89.64

Detection Rate False Positive Rate

5.4
E

xperim
ents

and
R

esults
122

Table 5.9: Experiment results of using various size of the embedding vector dimension and various length of input to the model. Bold

values show the parameter value which gives the highest detection rate and lowest false positive rate.

of bytes # of bytes

Parameter All 700 600 500 400 300 200 All 700 600 500 400 300 200

embedding 16 99.89 99.65 99.70 99.67 99.22 99.09 98.81 2.51 2.51 2.51 2.51 2.51 76.77 80.94

dimension 32 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.60 11.08

64 99.87 99.20 99.41 99.09 98.61 96.76 85.52 2.51 2.51 2.51 2.51 2.51 4.51 89.85

128 99.84 99.33 99.60 99.35 98.99 97.69 86.78 2.51 2.51 2.51 2.51 72.60 4.27 10.88

256 99.88 99.76 99.80 99.22 99.38 98.64 90.34 2.51 2.51 2.51 2.51 72.60 80.79 90.60

Detection Rate False Positive Rate

Table 5.10: Experiment results of using LSTM and GRU as the recurrent layer and various length of input to the model. Bold values

show the parameter value which gives the highest detection rate and lowest false positive rate.

of bytes # of bytes

Parameter All 700 600 500 400 300 200 All 700 600 500 400 300 200

recurrent layer LSTM 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.60 11.08

GRU 99.88 99.35 99.48 99.35 99.06 97.94 86.22 2.51 2.51 2.51 2.51 2.51 78.95 8.48

Detection Rate False Positive Rate

5.4
E

xperim
ents

and
R

esults
123

Table 5.11: Experiment results of using number of recurrent layers and various length of input to the model. Bold values show the

parameter value which gives the highest detection rate and lowest false positive rate.

of bytes # of bytes

Parameter All 700 600 500 400 300 200 All 700 600 500 400 300 200

of layers 1 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 2.51 72.60 11.08

2 99.86 99.46 99.46 99.38 99.2 99.72 88.65 2.51 2.51 2.51 2.51 72.59 78.78 20.29

3 99.84 99.38 99.68 99.1 99.18 98.16 87.35 2.51 2.51 2.51 2.51 2.51 74.94 10.83

Detection Rate False Positive Rate

5.4 Experiments and Results 124

Table 5.12: The effect of reducing the number of bytes to the detection speed. The

table shows the average (mean) detection speed in KBps with 95% confidence

interval, calculated from multiple experiments. The detection speed increased

significantly (about three times faster than reading the whole message), allowing

early prediction of malicious traffic..
of LSTM Layers

of bytes 1 2 3

All 8.366± 0.238327 5.514± 0.004801 3.698± 0.011428

700 16.486± 0.022857 10.704± 0.022001 7.35± 0.044694

600 18.16± 0.020556 11.97± 0.024792 8.21± 0.049584

500 20.432± 0.02352 13.65± 0.036668 9.376± 0.061855

400 22.17± 0.032205 14.94± 0.037701 10.302± 0.065417

300 24.076± 0.022857 16.368± 0.036352 11.318± 0.083477

200 26.272± 0.030616 18.138± 0.020927 12.688± 0.063024

5.4.5 Visualisation

To investigate how Blatta has performed the detection, we took samples of both benign

and malicious traffic and observed the input and output. We were particularly interested

in the relation of n-grams that are not stored in the dictionary to the decision (unknown

n-grams). Those n-grams either did not exist in the training set or were not common

enough to be included in the dictionary.

On Figure 5.4, we visualise three samples of traffic taken from different sets, Blat-

taSploit and UNSW-NB15 datasets. The first part of each sample shows n-grams that

did not exist in the dictionary. The yellow highlighted parts show those n-grams. The

second part shows the output of the recurrent layer for each time step. The darker the

red highlight, the closer the probability of the traffic being malicious to one in that time

step.

5.5 Conclusion and Future Work 125

As shown in Figure 5.4, malicious samples tend to have more unknown n-grams. It is

evident that the existence of these unknown n-grams increases the probability of the

traffic being malicious. As an example, the first five bytes of the five sample have

around 0.5 probability of being malicious. And then the probability went up closer to

one when an unknown n-grams are detected.

Similar behaviour also exists in the benign sample. The probability is quite low because

there are many known n-grams. Despite the existence of unknown n-grams in the

legitimate sample, the result shows that the traffic is legitimate. Furthermore, most of

the time, the probability of the traffic being malicious is also below 0.5.

5.5 Conclusion and Future Work

This chapter presents Blatta, the first early prediction system for low-rate attacks which

can detect malicious traffic by reading only 400 bytes from the application layer mes-

sage. First, Blatta builds a dictionary containing most common n-grams in the training

set. Then, it is trained over legitimate and malicious sequences of n-grams. Lastly, it

continuously reads a small chunk of an application layer message and predicts whether

the message will be a malicious one.

Decreasing the number of bytes taken from application layer messages only has a

minor effect on Blatta’s detection rate. Blatta does not need to read the whole ap-

plication layer message like previously related works to detect low-rate attack traffic,

creating a step change in the ability of system administrators to detect attacks early

and to block them before the attack damages the system. Extensive evaluation of the

new exploit traffic dataset has clearly demonstrated the effectiveness of Blatta. The

result shows that Blatta only requires the first 400 bytes to achieve 97.57% detection

rate with 1.93% false-positive rate with an early ratio for legitimate traffic of 72.07%

and 28.51% for malicious traffic. In doing so, Blatta also provides a speed improve-

ment by three-fold, in comparison to processing the full-length messages. This speed

5.5 Conclusion and Future Work 126

Figure 5.4: Visualisation of unknown n-grams in the application layer messages

and outputs of the recurrent layer for each time step. It shows how the proposed

system observes and analyses the traffic. Yellow blocks show unknown n-grams.

Red blocks show the probability of the traffic being malicious when reading an

n-gram at that point..

improvement would help administrators react faster and minimise the damage to the

system.

A model that can recognise malicious behaviour based on a sequence of messages

exchanged between clients and a server would be an area which could be looked at in

the future. Detecting attacks on encrypted traffic while retaining the early prediction

capability could be a future research direction. It also remains to be seen whether the

5.5 Conclusion and Future Work 127

approach can be modified to support training with unlabelled data.

128

Chapter 6

Conclusions

Low-rate attacks present threats to computer systems, particularly when they can be

executed remotely by adversaries from anywhere in the world. Detecting such attacks

on the network is challenging, yet may provide big rewards. Identifying the attack

before it reaches the victim machines or services, could give administrators the ability

to react faster and perhaps prevent the attack from achieving its full impact. Therefore,

this thesis focuses on studying Network-based Intrusion Detection System (NIDS)s for

identifying low-rate attacks.

6.1 Thesis Summary

In Chapter 2, we presented a literature review of existing works in NIDSs. In terms of

detection methods, there are signature-based and anomaly-based NIDSs. Signature-

based NIDSs, e.g., Snort [95] and Zeek [3], have a set of rules/signatures that represents

what would be contained in malicious network traffic. If the exact signature is found

in the traffic, then it is deemed as malicious. It is necessary to update the database

of rules/signatures regularly, otherwise, this type of NIDSs typically will suffer from

variation of known attacks or attacks which have never been seen, zero-day attacks.

On the other hand, anomaly-based NIDSs learn the behaviour of network traffic and

identify the malicious traffic, either by discovering the difference between legitimate

and malicious traffic or by memorising the behaviour of legitimate traffic and looking

6.1 Thesis Summary 129

for anomalies. Several anomaly-based NIDSs incorporate Machine Learning (ML)

algorithms as they are supposed to have more predictive power than statistical-based

approaches [27].

In terms of the part of network traffic to analyse, there are header-based and payload-

based NIDSs. A network packet consists of headers and payload. The headers contain

information such as Internet Protocol (IP) addresses, ports, flags, packet lengths, and

many others. There is also some information which is derived or aggregated from other

information in the header part, e.g., inter-arrival time, average packet size, the total

number of bytes in a Transmission Control Protocol (TCP) flow, and others. Header-

based NIDSs process this kind of information to determine whether a packet or a flow is

malicious, while payload-based NIDSs typically inspect the content or the application

layer message of a TCP flow.

The literature review of various low-rate attack detection methods makes the following

contribution:

C1: A comparative study of state of the art supervised and unsupervised anomaly-

based methods for detecting low-rate attacks with features obtained from the packet

header and payload information to investigate the performance of existing methods

and features when distinguishing low-rate attacks from legitimate traffic.

In Table 2.2 and Table 2.3, it is shown that several previous works on NIDS were

evaluated with old datasets, i.e., 1999 DARPA Intrusion Detection Evaluation Data-

set (DARPA99) and KDD Cup 1999 Dataset (KDD99). These datasets are notorious

for having multiple issues, particularly with not having representative samples of con-

temporary legitimate and malicious traffic [?]. Therefore, it makes the methods’

ability in detecting contemporary low-rate attacks questionable. Since the release of

DARPA99 and KDD99, other network traffic datasets have been published, such as

UNB Intrusion Detection Evaluation Dataset 2012 (ISCX12), UNSW-NB15 and Gat-

ech datasets. As the community has more options for evaluating their approach, it is

deemed necessary to investigate whether these options are appropriate for contempor-

6.1 Thesis Summary 130

ary low-rate attack detection. It then led us to our first research question:

RQ1: How well do existing validation datasets capture representative examples of

contemporary low rate attacks?

Chapter 3 aims to answer this question. In Chapter 3, we investigated the strengths

and limitations of publicly available network traffic datasets, e.g., DARPA99, KDD99,

NSL-KDD, ISCX12, UNSW-NB15, and Gatech datasets, and the result is shown in

Table 3.2. Datasets that contain older traffic, such as DARPA99, KDD99, and NSL-

KDD, tend to have a small proportion of low-rate attacks. More than 99% of malicious

traffic in the datasets is either Distributed Denial of Services (DDoS) and Probe attacks.

Gatech dataset may have more low-rate attacks than those datasets, but it still lacks con-

temporary attacks. Despite providing more contemporary traffic, more recent datasets

still have several issues. ISCX12 lacks attack type information. Thus it is impossible

to look for particular malicious traffic that contains a low-rate attack. UNSW-NB15

solved this issue by providing attack type labels for each flow. However, we found

that some low-rate attack traffic in this dataset is indistinguishable from the legitimate

traffic as it contains an arbitrary byte sequence and non-working exploits. Neverthe-

less, UNSW-NB15 contains the most recent traffic, in comparison to the other datasets,

which is why it was still used to evaluate our proposed methods.

Another trait we have found with the existing datasets is that low-rate attack traffic

may contain background packets as part of the protocol message. These background

packets allow the victim to respond accordingly. However, none of the investigated

datasets mention which part of the traffic contains the malicious sequence. This causes

difficulty when validating whether detection by a payload-based NIDS is triggered

by the malicious sequence or the background packets. Furthermore, it would not be

possible for us to judge how early a payload-based NIDS can predict the occurrence

of a low-rate attack without knowledge of the part of the payload that contains the

malicious sequence.

To address this problem and complement UNSW-NB15 dataset, we generated an attack

6.1 Thesis Summary 131

dataset, BlattaSploit, that contains low-rate attacks, with 81.25% of them disclosed

between 2010-2017. Each attack was executed with various combinations of attack

payloads and encoders to make the generated traffic more diverse. The location of

the malicious sequence is included in the dataset. To the best of our knowledge, Blat-

taSploit has the widest range of contemporary low-rate attacks, creating the following

contribution:

C2: A comparative study of network traffic datasets to better understand how repres-

entative they are to be used for evaluating NIDS and a dataset of low-rate attack traffic

with state-of-the art attacks, various payloads, and encoders. Additionally, the dataset

contains information about the location of the malicious traffic within the payload. The

location is useful to analyse whether an early prediction method can detect the attack

before it completes.

Low-rate attacks are continually evolving. New attack vectors emerge regularly. Rule-

based detection struggles to keep up with these changes as it will have to be updated

with new attack signatures regularly. Researchers proposed anomaly-based NIDSs to

address this issue. As we mentioned earlier, there are two approaches on how we get

the representation of network traffic, from header information or the payload.

Older studies, which were evaluated with old datasets (i.e., KDD99 [113, 34, 60, 32,

42, 48, 96, 33, 110] and DARPA99 [107, 24, 108, 94, 21, 58, 82]), may struggle

to differentiate more recent legitimate or malicious traffic. While more recent stud-

ies [111, 82, 51, 97, 109], despite showing improvements over the older ones, mostly

focus on only one protocol (e.g., Hypertext Transfer Protocol (HTTP)). These two

issues brought us to our second research question:

RQ2: Given recent research has shown that previous work on low-rate attack detection

across multiple protocols is dated and performance drops on contemporary low rate

attacks, how do we improve the performance of low rate attack detection models to

deal with evolving cyber attacks on a range of protocols that are increasingly causing

damage to corporate networks?

6.1 Thesis Summary 132

To address the problem of low-rate attack detection, several researchers opted to de-

velop a detection method using a ML model. This model is commonly trained over

a set of data to learn to distinguish legitimate and malicious traffic. The training can

be supervised or unsupervised. Supervised learning relies on having samples for both

classes. Therefore lack of malicious samples, which often the case in real-world situ-

ations, may lead to the difficulty of training the ML model. On the other hand, un-

supervised models may be trained over samples of legitimate traffic only. They learn

the behaviour of normal traffic and look for deviation to identify malicious traffic.

Therefore, we proposed unsupervised Deep Learning (DL) models to detect low-rate

attacks. DL-based models were chosen as they work better with abstract representation

and a vast amount of data than conventional ML algorithms used by previous works

(e.g., Logistic Regression [111], Support Vector Machine (SVM) [86], Hidden Markov

Model (HMM) [21]).

We proposed the use of two DL architectures, Recurrent Neural Network (RNN)s and

Autoencoders, to develop two separate detection models based on the principle of un-

supervised learning. We refer to the RNN-based model as RNN-OD and the one with

Autoencoders as AE-OD. These two methods have a slightly different approach to de-

tect low-rate attacks, but both are trained with a set of legitimate traffic. RNN-OD

works by obtaining windowed byte subsequences from an application layer message

and predicting the next byte for each subsequence. A malicious application layer mes-

sage would cause RNN-OD to make many incorrect guesses, surpassing the threshold

value, which was calculated in the training phase. On the other hand, AE-OD com-

putes byte frequencies of the application layer message. The byte frequencies are then

fed into an Autoencoder model in which the output will be compared to the input byte

frequencies. AE-OD deemed the application layer message malicious when the differ-

ence between its input and output surpasses the pre-calculated threshold in the training

phase.

Our experiments explained in Section 4.4.4, used two metrics to measure the perform-

6.1 Thesis Summary 133

ance of our proposed methods and previous works, detection rate and false-positive

rate. It is crucial to find the balance between these two metrics as increasing the de-

tection rate could also come with the increase of the false-positive rate. This balance

varies between cases and depends on the cost of undetected attacks. When the attack

has severe effect to the system, which is the case for low-rate attack detection, it would

be sensible to prioritise increasing the detection rate over the increase of false-positive

rate since the cost of too many false-positive is more of an inconvenience [100]. Which

is why F2-score was also utilised as it prioritises detected attacks while still considering

false positives.

It is shown in our experiments in Section 4.4.4 that the best performing model was able

to identify low-rate attacks in various application layer protocols (i.e., HTTP, FTP, and

SMTP). The best performing model is the recurrent neural network with Long Short-

Term Memory (LSTM) unit (RNN-OD), combined with binary anomaly score and the

statistical thresholding approach. In terms of detection rate, the proposed RNN-OD

surpassed all previous works with an improvement of at least 12.04%. Albeit it comes

with an increased false-positive rate of 3.52% over PAYL, the method with the second

best detection rate. Therefore, none of the previous works that have been included for

comparison could match RNN-OD performance.

It has also been demonstrated that header-based NIDSs struggled at detecting low-rate

attacks. The failure of Kitsune [78] at detecting any low-rate attacks and the poor

performance from Wang et al. [110]’s methods support the argument. Wang et al.

[110]’s, which had been evaluated with KDD99 dataset and showed a good result,

was now evaluated with newer UNSW-NB15 dataset. Our experiments show that the

models suffer from either high false-positive rate or low detection rate. This result

supports our earlier argument that works that methods which were evaluated with older

datasets would struggle when facing more recent data. These results give support to

the following contribution:

C3: Unsupervised deep learning models to identify low rate attacks in network traffic,

6.1 Thesis Summary 134

putting aside the requirement to provide malicious samples for the training data. The

proposed approach offers an improvement in detection rate at least 12.04% from the

previous works.

Due to the better performance of the payload-based NIDSs over header-based ones, as

demonstrated by the experiments in Chapter 4, we looked for further improvements to

payload-based NIDSs. Some application layer protocols may require long messages to

be transmitted, such as HTTP and Simple Mail Transfer Protocol (SMTP). Processing

the full-length messages would be time-consuming. The damage from the attack may

have been done by the time the decision comes out. Therefore, we need an approach

that can predict the occurrence of low-rate attacks from as little information as possible

from the application layer message. To the best of our knowledge, none of the previous

works has addressed this issue. It then led us to the third research question:

RQ3: Can we predict the occurrence of low-rate attacks with fewer data and earlier

in the attack, while still retaining a relationship between the sequence of packets?

In Chapter 4, we proposed a novel low-rate attack detection method with an RNN.

The effectiveness of RNNs at processing sequential data inspired us to apply a similar

approach to the problem of early detection of attacks. More importantly, we can obtain

an intermediary result from the RNN layers. It is not necessary to wait until the RNN

finishes processing the last time step calculation. This trait makes RNN be capable of

early prediction.

Blatta is an RNN-based low-rate attack detection system which is trained over samples

of a full-length payload of legitimate and malicious traffic. However, in the detec-

tion phase, it only requires the first few bytes to decide whether an application layer

message is malicious. Thus it provides the benefit of early prediction.

Blatta takes a sequence of high-order n-grams (n > 1) from the application layer

message, use each n-gram as the input to the RNN model for each time step, and output

a prediction whether the message is malicious. And as we mentioned earlier, Blatta

6.1 Thesis Summary 135

obtains the intermediate output of the RNN or the output of the RNN after several time

steps, hence no need to wait for the full-length message to be processed.

To test the effectiveness of Blatta, we first evaluated it to detect low-rate attacks that

were not the part of its training set and compared it with other unsupervised payload-

based NIDSs, including our previous approaches, RNN-OD and AE-OD. The result

shows that Blatta can still identify low-rate attacks with a high detection rate, even

higher than any other methods. The false-positive rate of Blatta is also lower than

RNN-OD. However, as part of its supervised nature, Blatta needs continual retraining

with both new legitimate and malicious traffic so that it can still recognise the evolving

attacks. While for unsupervised approaches this is not so much of a problem.

We then tested the early prediction capability of Blatta by analysing how many bytes it

needs to provide detection and false-positive rate on par to the detection with full-

length messages. The result shows that Blatta only requires the first 400 bytes to

achieve 97.57% detection rate and 1.93% false positives rate with an early ratio for

legitimate traffic of 72.07% and 28.51% for malicious traffic. In doing so, Blatta also

provides a speed improvement by three-fold, in comparison to processing the full-

length messages.

Blatta is the part of the following contribution:

C4: The first early low-rate attack prediction system on network traffic, which predicts

malicious instances as they enter the protected network without analysing the whole

application layer messages, enabling the administrator to react faster and possibly min-

imise the damage.

6.2 Discussion on Evasion Techniques, Adversarial Attacks, and Future Works 136

6.2 Discussion on Evasion Techniques, Adversarial At-

tacks, and Future Works

Our proposed approaches are not a silver bullet to tackle low-rate attacks. There are

evasion techniques which could be employed by adversaries to evade the detection.

These techniques may raise new questions and open possibilities for future works.

Therefore, this section talks about such evasion techniques and discuss why our current

methods have not covered them.

Since RNN-OD and AE-OD work by analysing restructured application layer mes-

sages, it is safe to disregard evasion techniques on transport or network layer level, e.g.,

IP fragmentation, TCP delayed sending, TCP segment fragmentation. They should be

handled by the underlying tool that reconstructs TCP sessions. Those evasion tech-

niques are usually handled by other defensive techniques, such as using Snort prepro-

cessor. As they are well-known today, rules/signatures for such evasion techniques are

already built into Snort. Such evasion techniques will also not work on Blatta as it only

needs to read the first few bytes from the first packet after the TCP handshake.

Two possible evasion techniques are compression and/or encryption. Both compres-

sion and encryption change the byte values from the original and make the malicious

code harder to detect by any payload-based detection. As an example, Metasploit

has a collection of evasion techniques which include compression. The compression

evasion technique, however, only works on HTTP and utilises gzip. This technique

compresses HTTP responses but does not compress HTTP requests. All HTTP-based

attacks in UNSW-NB15 and BlattaSploit have their malicious code in the request. Thus

no compressed attack data is available to analyse the performance if the adversary uses

compression. Apart from that, gzip compressed data could still be detected because

it always starts with the magic number 1f 8b and the decompression can be done in

a streaming manner in which Blatta can do so. There is also no need to decompress the

whole data since Blatta works well with partial input.

6.2 Discussion on Evasion Techniques, Adversarial Attacks, and Future Works 137

Encryption is possibly the biggest obstacle in payload-based NIDS: None of the pre-

vious payload-based NIDS in our literature (see Section 2.2.2) have addressed this

challenge. There are other studies which deal with payload analysis in encrypted

traffic [71, 15]. However, these studies focus on classifying which application gener-

ates the network traffic instead of detecting low-rate attacks. Thus they are not directly

relevant to our research.

On its own, RNN-OD, AE-OD, and Blatta cannot detect attacks hiding in encrypted

traffic. However, their model can be exported and incorporated with application-layer

firewalls such as ShadowDaemon [7]. ShadowDaemon is commonly installed on a

Web server and intercepts HTTP requests before being processed by the webserver

software. It detects attacks based on its signature database. Since it is extensible and

reads the same data as our methods (i.e., application-layer messages), it is possible to

use one of our models to extend the capability of ShadowDaemon beyond rule-based

detection. More importantly, this approach would enable our methods to deal with

encrypted traffic, making it more applicable in real-life situations.

Another challenge which might be faced by Blatta is when attackers place the exploit

code closer to the end of the application layer message. Hoping that in doing so, the at-

tack would not be detected as Blatta reads merely the first few bytes. However, exploits

with this kind of evasion technique would still be detected since this evasion technique

needs padding to place the exploit code at the end of the message by putting dead code

such as NOP. This is a common technique to evade a signature-based Intrusion Detec-

tion System (IDS) called dead code insertion. The dead code would still be recognised

as a sign of malicious attempts as it is most likely to be a byte sequence which rarely

exists in the legitimate traffic.

Any ML-based approaches are now susceptible to adversarial techniques. An ad-

versarial ML works by crafting an input that can fool the detection method. The input

can be supplied during the training phase. For example, suppose an adversary knows

that an ML-based NIDS gathers legitimate data for the training model. In that case,

6.3 Conclusions 138

they may send malicious traffic so that it will be deemed legitimate. Therefore, the

model will recognise such traffic as legitimate.

Another adversarial technique that can be used is crafting a malicious input that has

similar features to legitimate traffic. For instance, if the adversary knew the byte fre-

quency distribution of legitimate traffic in a network protected with AE-OD, they could

craft a message containing malicious payload with the byte frequency of legitimate

traffic. This evasion would be possible with the assumption that the adversary knows

the legitimate byte frequency. This evasion technique opens up two directions of future

research, how the adversary can make sure that the attack still works after modifying

the message and how the defender can cope with this kind of evasion technique.

6.3 Conclusions

We predict low-rate attacks will still be recurring threats in the future based on the

previous incidents. As new software occurring, there will always be vulnerabilities

which could be exploited for the adversary benefit. Therefore, we have researched

low-rate attack detection to reduce the risk of being attacked by such techniques. We

started this thesis by conducting a systematic review that led us to analyse existing

network traffic datasets, propose methods that improve the detection performance, and

propose an early detection method that enables administrators to react faster and thus

minimise the damage.

During the dataset analysis, we proposed six essential and one recommended metrics

to justify whether a network traffic dataset is suitable for evaluating low-rate attack

detection methods. This metrics may help companies measure how trustworthy the

result of a ML-based detection method is based on the dataset used for its evaluation.

For example, companies should be highly sceptical when they are presented with a

great result when, in fact, the method was evaluated with DARPA99 dataset.

Based on the dataset comparison, we also decided to generate an attack traffic dataset,

6.3 Conclusions 139

BlattaSploit, that was used to complement UNSW-NB15 dataset to evaluate our sub-

sequent detection methods. BlattaSploit contains low-rate attacks, 81.25% of which

were disclosed between 2010-2017, making it an attack traffic dataset with the broad-

est range of new low-rate attacks. As we provide PCAP files in BlattaSploit, we hope

the dataset can be widely used with any tools that extract information from raw net-

work traffic. It will not limit researchers to develop new features, unlike preprocessed

dataset such as KDD99 and NSL-KDD.

Chapter 4 presents our proposed detection methods (i.e. AE-OD and RNN-OD) that

can be trained on unlabelled data. Our methods would be useful for companies or

organisations that would like to train the detection method with their self-generated

data. They do not need to spend time labelling the data. They could record the traffic

for a period of time when an attack is unlikely to happen and use the captured traffic as

the baseline for the normal model.

The experiment shows that the best performing model, a recurrent neural network with

Long Short-Term Memory units, combined with binary anomaly score and the stat-

istical thresholding approach, can identify low-rate attacks in various application layer

protocols (i.e., HTTP, FTP, and SMTP). The proposed RNN-OD also surpassed all pre-

vious works with an improvement of F2-score at least 0.09. Therefore, it gives more

assurance to be used in a real-world situation than the previous related works.

The drawback of both AE-OD and RNN-OD is that they need to read the full-length

application layer messages, potentially slowing down detection time. While they could

still be used for real-time detection by scanning network traffic in real-time, if the

traffic is big enough, it is suggested to use them as a forensic tool. For providing

real-time detection, we proposed Blatta. Blatta can early predict the occurrence of

low-rate attacks in an application layer message, providing faster detection time. In

the experiment, Blatta was three times faster when reading fewer bytes while keeping

the detection rate high. The detection speed improvement would help administrators

be notified earlier and react faster, minimising damage to the system.

6.3 Conclusions 140

Nevertheless, the presented approaches are not perfect. None of the approaches has

been evaluated against adversarial techniques. Suppose the adversarial technique is

shown to be able to decrease the detection capability of the approaches. In that case, it

is crucial for us to develop an improved method capable of handling adversarial inputs.

Adversarial machine learning is also another direction we can pursue. Existing ad-

versarial techniques for NIDS typically only works on header-based NIDSs as their

feature values are easier to change. It remains to be seen if a similar approach would

work on the area of payload-based NIDSs. Modifying the attack may evade detection

but not harm the system; the attack fails. Therefore, the adversarial technique should

decrease the NIDS performance while keeping the attack works.

141

Appendices

142

Appendix A

List of low-rate attacks in BlattaSploit dataset

Table A.1: The list of attacks included in BlattaSploit dataset.

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/generic_exec

Generic Web Application

Unix Command

Execution

Exploit 1993

exploit/unix/webapp/guestbook_ssi_exec

Matt Wright

guestbook.pl Arbitrary

Command Execution

Exploit CVE-1999-1053 1999

143

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/qtss_parse_xml_exec

QuickTime Streaming

Server parse_xml.cgi

Remote Execution

Exploit CVE-2003-0050 2003

exploit/linux/http/linksys_apply_cgi

Linksys WRT54 Access

Point apply.cgi Buffer

Overflow

Exploit CVE-2005-2799 2005

exploit/unix/webapp/barracuda_img_exec

Barracuda IMG.PL

Remote Command

Execution

Exploit CVE-2005-2847 2005

exploit/unix/webapp/openview_connectednodes_exec

HP Openview

connectedNodes.ovpl

Remote Command

Execution

Exploit CVE-2005-2773 2005

exploit/unix/webapp/php_vbulletin_template

vBulletin misc.php

Template Name Arbitrary

Code Execution

Exploit CVE-2005-0511 2005

144

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/php_xmlrpc_eval
PHP XML-RPC

Arbitrary Code Execution
Exploit CVE-2005-1921 2005

exploit/unix/webapp/twiki_history

TWiki History

TWikiUsers rev

Parameter Command

Execution

Exploit CVE-2005-2877 2005

exploit/unix/webapp/wp_lastpost_exec

WordPress

cache_lastpostdate

Arbitrary Code Execution

Exploit CVE-2005-2612 2005

exploit/linux/http/peercast_url
PeerCast URL Handling

Buffer Overflow
Exploit CVE-2006-1148 2006

exploit/linux/pop3/cyrus_pop3d_popsubfolders

Cyrus IMAPD pop3d

popsubfolders USER

Buffer Overflow

Exploit CVE-2006-2502 2006

exploit/unix/webapp/pajax_remote_exec
PAJAX Remote

Command Execution
Exploit CVE-2006-1551 2006

145

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/tikiwiki_jhot_exec
TikiWiki jhot Remote

Command Execution
Exploit CVE-2006-4602 2006

exploit/unix/webapp/tikiwiki_graph_formula_exec

TikiWiki

tiki-graph_formula

Remote PHP Code

Execution

Exploit CVE-2007-5423 2007

exploit/unix/webapp/coppermine_piceditor

Coppermine Photo

Gallery picEditor.php

Command Execution

Exploit CVE-2008-0506 2008

exploit/unix/webapp/php_eval
Generic PHP Code

Evaluation
Exploit 2008

exploit/unix/webapp/trixbox_langchoice
Trixbox langChoice PHP

Local File Inclusion
Exploit CVE-2008-6825 2008

exploit/linux/http/ddwrt_cgibin_exec

DD-WRT HTTP Daemon

Arbitrary Command

Execution

Exploit CVE-2009-2765 2009

146

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/http/contentkeeperweb_mimencode

ContentKeeper Web

Remote Command

Execution

Exploit OSVDB-54552 2009

exploit/unix/webapp/dogfood_spell_exec

Dogfood CRM spell.php

Remote Command

Execution

Exploit OSVDB-54707 2009

exploit/unix/webapp/nagios3_statuswml_ping

Nagios3 statuswml.cgi

Ping Command

Execution

Exploit CVE-2009-2288 2009

exploit/unix/webapp/open_flash_chart_upload_exec
Open Flash Chart v2

Arbitrary File Upload
Backdoor CVE-2009-4140 2009

exploit/unix/webapp/oscommerce_filemanager

osCommerce 2.2

Arbitrary PHP Code

Execution

Exploit OSVDB-60018 2009

147

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/ftp/proftpd_133c_backdoor

ProFTPD-1.3.3c

Backdoor Command

Execution

Backdoor OSVDB-69562 2010

exploit/unix/webapp/cakephp_cache_corruption

CakePHP Cache

Corruption Code

Execution

Exploit CVE-2010-4335 2010

exploit/unix/webapp/mitel_awc_exec

Mitel Audio and Web

Conferencing Command

Injection

Exploit OSVDB-69934 2010

exploit/unix/webapp/redmine_scm_exec

Redmine SCM

Repository Arbitrary

Command Execution

Exploit CVE-2011-4929 2010

exploit/linux/http/vcms_upload
V-CMS PHP File Upload

and Execute
Backdoor CVE-2011-4828 2011

148

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/linux/http/webid_converter

WeBid converter.php

Remote PHP Code

Injection

Exploit OSVDB-73609 2011

exploit/unix/http/ctek_skyrouter

CTEK SkyRouter 4200

and 4300 Command

Execution

Exploit CVE-2011-5010 2011

exploit/unix/webapp/mybb_backdoor

myBB 1.6.4 Backdoor

Arbitrary Command

Execution

Backdoor OSVDB-76111 2011

exploit/linux/http/dlink_dir605l_captcha_bof

D-Link DIR-605L

Captcha Handling Buffer

Overflow

Exploit OSVDB:86824 2012

exploit/linux/http/esva_exec

E-Mail Security Virtual

Appliance learn-msg.cgi

Command Injection

Exploit OSVDB (85462) 2012

149

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/linux/http/hp_system_management

HP System Management

Anonymous Access Code

Execution

Exploit OSVDB (91812) 2012

exploit/linux/http/symantec_web_gateway_exec

Symantec Web Gateway

5.0.2.8 ipchange.php

Command Injection

Exploit CVE-2012-0297 2012

exploit/linux/http/symantec_web_gateway_file_upload

Symantec Web Gateway

5.0.2.8 Arbitrary PHP

File Upload Vulnerability

Backdoor CVE-2012-0299 2012

exploit/linux/http/symantec_web_gateway_pbcontrol

Symantec Web Gateway

5.0.2.18 pbcontrol.php

Command Injection

Exploit CVE-2012-2953 2012

exploit/linux/http/wanem_exec
WAN Emulator v2.3

Command Execution
Exploit OSVDB-85345 2012

150

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/linux/http/webcalendar_settings_exec

WebCalendar 1.2.4

Pre-Auth Remote Code

Injection

Exploit CVE-2012-1495 2012

exploit/linux/http/zen_load_balancer_exec

ZEN Load Balancer

Filelog Command

Execution

Exploit OSVDB-85654 2012

exploit/linux/http/zenoss_showdaemonxmlconfig_exec

Zenoss 3 showDae-

monXMLConfig

Command Execution

Exploit OSVDB-84408 2012

exploit/unix/http/freepbx_callmenum

FreePBX 2.10.0 / 2.9.0

callmenum Remote Code

Execution

Exploit CVE-2012-4869 2012

exploit/unix/webapp/basilic_diff_exec

Basilic 1.5.14 diff.php

Arbitrary Command

Execution

Exploit CVE-2012-3399 2012

151

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/egallery_upload_exec
EGallery PHP File

Upload Vulnerability
Backdoor OSVDB-83891 2012

exploit/unix/webapp/invision_pboard_unserialize_exec

Invision IP.Board

unserialize() PHP Code

Execution

Exploit CVE-2012-5692 2012

exploit/unix/webapp/narcissus_backend_exec

Narcissus Image

Configuration Passthru

Vulnerability

Exploit OSVDB-87410 2012

exploit/unix/webapp/projectpier_upload_exec
Project Pier Arbitrary

File Upload Vulnerability
Backdoor OSVDB-85881 2012

exploit/unix/webapp/spip_connect_exec
SPIP connect Parameter

PHP Injection
Exploit OSVDB-83543 2012

exploit/unix/webapp/wp_asset_manager_upload_exec

WordPress

Asset-Manager PHP File

Upload Vulnerability

Backdoor OSVDB-82653 2012

152

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/wp_foxypress_upload

WordPress Plugin

Foxypress uploadify.php

Arbitrary Code Execution

Backdoor WPVDB-6231 2012

exploit/unix/webapp/wp_frontend_editor_file_upload
Wordpress Front-end

Editor File Upload
Backdoor WPVDB-7569 2012

exploit/unix/webapp/wp_property_upload_exec

WordPress WP-Property

PHP File Upload

Vulnerability

Backdoor OSVDB-82656 2012

exploit/unix/webapp/wp_reflexgallery_file_upload
Wordpress Reflex Gallery

Upload Vulnerability
Backdoor CVE-2015-4133 2012

exploit/unix/webapp/xoda_file_upload

XODA 0.4.5 Arbitrary

PHP File Upload

Vulnerability

Backdoor OSVDB-85117 2012

153

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/linux/http/cfme_manageiq_evm_upload_exec

Red Hat CloudForms

Management Engine 5.1

agent/linuxpkgs Path

Traversal

Exploit CVE-2013-2068 2013

exploit/linux/http/dlink_command_php_exec_noauth

D-Link Devices

Unauthenticated Remote

Command Execution

Exploit OSVDB:89861 2013

exploit/linux/http/dlink_diagnostic_exec_noauth

D-Link DIR-645 /

DIR-815 diagnostic.php

Command Execution

Exploit
CVE-2014-

100005
2013

exploit/linux/http/dreambox_openpli_shell
OpenPLI Webif Arbitrary

Command Execution
Exploit OSVDB (90230) 2013

exploit/linux/http/netgear_readynas_exec
NETGEAR ReadyNAS

Perl Code Evaluation
Exploit CVE-2013-2751 2013

154

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/linux/http/pineapp_ldapsyncnow_exec

PineApp Mail-SeCure

ldapsyncnow.php

Arbitrary Command

Execution

Exploit OSVDB-95781 2013

exploit/linux/http/pineapp_livelog_exec

PineApp Mail-SeCure

livelog.html Arbitrary

Command Execution

Exploit OSVDB-95779 2013

exploit/linux/http/raidsonic_nas_ib5220_exec_noauth

Raidsonic NAS Devices

Unauthenticated Remote

Command Execution

Exploit EDB-24499 2013

exploit/linux/http/sophos_wpa_sblistpack_exec

Sophos Web Protection

Appliance sblistpack

Arbitrary Command

Execution

Exploit CVE-2013-4983 2013

155

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

ex-

ploit/linux/http/synology_dsm_sliceupload_exec_noauth

Synology DiskStation

Manager

SLICEUPLOAD Remote

Command Execution

Backdoor CVE-2013-6955 2013

exploit/linux/http/zabbix_sqli

Zabbix 2.0.8 SQL

Injection and Remote

Code Execution

Exploit CVE-2013-5743 2013

exploit/linux/smtp/exim4_dovecot_exec

Exim and Dovecot

Insecure Configuration

Command Injection

Exploit OSVDB-93004 2013

exploit/unix/webapp/carberp_backdoor_exec

Carberp Web Panel C2

Backdoor Remote PHP

Code Execution

Backdoor 2013

exploit/unix/webapp/clipbucket_upload_exec
ClipBucket Remote Code

Execution
Exploit PACKETSTORM-

123480

2013

156

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/datalife_preview_exec

DataLife Engine

preview.php PHP Code

Injection

Exploit CVE-2013-1412 2013

exploit/unix/webapp/flashchat_upload_exec
FlashChat Arbitrary File

Upload
Backdoor OSVDB-98233 2013

exploit/unix/webapp/graphite_pickle_exec
Graphite Web Unsafe

Pickle Handling
Exploit CVE-2013-5093 2013

exploit/unix/webapp/havalite_upload_exec
Havalite CMS Arbitary

File Upload Vulnerability
Backdoor OSVDB-94405 2013

exploit/unix/webapp/horde_unserialize_exec

Horde Framework

Unserialize PHP Code

Execution

Exploit CVE-2014-1691 2013

exploit/unix/webapp/instantcms_exec
InstantCMS 1.6 Remote

PHP Code Execution
Exploit BID-60816 2013

157

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/kimai_sqli

Kimai v0.9.2

’db_restore.php’ SQL

Injection

Exploit OSVDB-93547 2013

exploit/unix/webapp/libretto_upload_exec

LibrettoCMS File

Manager Arbitary File

Upload Vulnerability

Backdoor OSVDB-94391 2013

exploit/unix/webapp/openemr_upload_exec
OpenEMR PHP File

Upload Vulnerability
Backdoor CVE-2009-4140 2013

exploit/unix/webapp/php_charts_exec

PHP-Charts v1.0 PHP

Code Execution

Vulnerability

Exploit OSVDB-89334 2013

exploit/unix/webapp/squash_yaml_exec
Squash YAML Code

Execution
Exploit CVE-2013-5036 2013

158

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/vbulletin_vote_sqli_exec

vBulletin in-

dex.php/ajax/api/reputation/vote

nodeid Parameter SQL

Injection

Exploit CVE-2013-3522 2013

exploit/unix/webapp/vicidial_manager_send_cmd_exec
VICIdial Manager Send

OS Command Injection
Exploit CVE-2013-4467 2013

exploit/unix/webapp/zimbra_lfi
Zimbra Collaboration

Server LFI
Exploit CVE-2013-7091 2013

exploit/linux/http/alienvault_sqli_exec

AlienVault OSSIM SQL

Injection and Remote

Code Execution

Exploit CVE-2016-8581 2014

exploit/linux/http/fritzbox_echo_exec

Fritz!Box Webcm

Unauthenticated

Command Injection

Exploit CVE-2014-9727 2014

159

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/linux/http/ipfire_bashbug_exec

IPFire Bash Environment

Variable Injection

(Shellshock)

Exploit CVE-2014-6271 2014

exploit/linux/http/pandora_fms_exec
Pandora FMS Remote

Code Execution
Exploit 2014

exploit/linux/http/pandora_fms_sqli

Pandora FMS Default

Credential / SQLi

Remote Code Execution

Exploit 2014

exploit/unix/http/twiki_debug_plugins

TWiki

Debugenableplugins

Remote Code Execution

Exploit CVE-2014-7236 2014

exploit/unix/http/vmturbo_vmtadmin_exec_noauth

VMTurbo Operations

Manager vmtadmin.cgi

Remote Command

Execution

Exploit CVE-2014-5073 2014

160

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/freepbx_config_exec
FreePBX config.php

Remote Code Execution
Exploit CVE-2014-1903 2014

exploit/unix/webapp/joomla_akeeba_unserialize

Joomla Akeeba Kickstart

Unserialize Remote Code

Execution

Exploit CVE-2014-7228 2014

exploit/unix/webapp/projectsend_upload_exec
ProjectSend Arbitrary

File Upload
Backdoor EDB-35424 2014

exploit/unix/webapp/simple_e_document_upload_exec
Simple E-Document

Arbitrary File Upload
Backdoor EDB-31142 2014

exploit/unix/webapp/skybluecanvas_exec
SkyBlueCanvas CMS

Remote Code Execution
Exploit CVE-2014-1683 2014

ex-

ploit/unix/webapp/wp_creativecontactform_file_upload

Wordpress Creative

Contact Form Upload

Vulnerability

Backdoor OSVDB-113669 2014

161

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/wp_downloadmanager_upload

Wordpress Download

Manager

(download-manager)

Unauthenticated File

Upload

Backdoor WPVDB-7706 2014

exploit/unix/webapp/wp_infusionsoft_upload
Wordpress InfusionSoft

Upload Vulnerability
Backdoor CVE-2014-6446 2014

exploit/unix/webapp/wp_symposium_shell_upload

WordPress WP

Symposium 14.11 Shell

Upload

Backdoor OSVDB-116046 2014

exploit/linux/http/dlink_dcs931l_upload
D-Link DCS-931L File

Upload
Backdoor CVE-2015-2049 2015

exploit/linux/http/efw_chpasswd_exec

Endian Firewall Proxy

Password Change

Command Injection

Exploit CVE-2015-5082 2015

162

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/linux/http/f5_icall_cmd

F5 iControl iCall::Script

Root Command

Execution

Exploit CVE-2015-3628 2015

exploit/linux/http/pineapple_bypass_cmdinject

Hak5 WiFi Pineapple

Preconfiguration

Command Injection

Exploit CVE-2015-4624 2015

exploit/unix/webapp/joomla_contenthistory_sqli_rce

Joomla Content History

SQLi Remote Code

Execution

Exploit CVE-2015-7857 2015

exploit/unix/webapp/maarch_letterbox_file_upload
Maarch LetterBox

Unrestricted File Upload
Backdoor CVE-2015-1587 2015

ex-

ploit/unix/webapp/sixapart_movabletype_storable_exec

SixApart MovableType

Storable Perl Code

Execution

Exploit CVE-2015-1592 2015

ex-

ploit/unix/webapp/wp_easycart_unrestricted_file_upload

WordPress WP EasyCart

Unrestricted File Upload
Backdoor CVE-2014-9308 2015

163

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/wp_holding_pattern_file_upload

WordPress Holding

Pattern Theme Arbitrary

File Upload

Backdoor CVE-2015-1172 2015

ex-

ploit/unix/webapp/wp_inboundio_marketing_file_upload

Wordpress InBoundio

Marketing PHP Upload

Vulnerability

Backdoor WPVDB-7864 2015

exploit/unix/webapp/wp_nmediawebsite_file_upload

Wordpress N-Media

Website Contact Form

Upload Vulnerability

Backdoor WPVDB-7896 2015

exploit/unix/webapp/wp_platform_exec

WordPress Platform

Theme File Upload

Vulnerability

Backdoor WPVDB-7762 2015

exploit/unix/webapp/wp_worktheflow_upload

Wordpress Work The

Flow Upload

Vulnerability

Backdoor WPVDB-7883 2015

164

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

ex-

ploit/unix/webapp/wp_wpshop_ecommerce_file_upload

WordPress WPshop

eCommerce Arbitrary

File Upload Vulnerability

Backdoor WPVDB-7830 2015

exploit/linux/http/apache_continuum_cmd_exec

Apache Continuum

Arbitrary Command

Execution

Exploit
Ex-

ploitDB:39886
2016

exploit/linux/http/centreon_useralias_exec
Centreon Web Useralias

Command Execution
Exploit

Ex-

ploitDB:39501
2016

exploit/linux/http/dlink_hnap_login_bof

Dlink DIR Routers

Unauthenticated HNAP

Login Stack Buffer

Overflow

Exploit CVE-2016-6563 2016

exploit/linux/http/ipfire_proxy_exec IPFire proxy.cgi RCE Exploit
Ex-

ploitDB:39765
2016

exploit/linux/http/kaltura_unserialize_rce
Kaltura Remote PHP

Code Execution
Exploit EDB-39563 2016

165

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/unix/webapp/drupal_coder_exec

Drupal CODER Module

Remote Command

Execution

Exploit 2016

exploit/unix/webapp/drupal_restws_exec

Drupal RESTWS Module

Remote PHP Code

Execution

Exploit 2016

exploit/unix/webapp/sugarcrm_rest_unserialize_exec

SugarCRM REST

Unserialize PHP Code

Execution

Exploit 2016

exploit/unix/webapp/tikiwiki_upload_exec

Tiki Wiki

Unauthenticated File

Upload Vulnerability

Backdoor 2016

exploit/linux/http/dnalims_admin_exec
dnaLIMS Admin Module

Command Execution
Exploit CVE-2017-6526 2017

166

Module Name Vulnerability Name
Attack

Type
Reference

Disclosure

Year

exploit/linux/http/github_enterprise_secret

Github Enterprise

Default Session Secret

And Deserialization

Vulnerability

Exploit
Ex-

ploitDB:41616
2017

exploit/linux/http/logsign_exec
Logsign Remote

Command Injection
Exploit 2017

exploit/linux/http/trueonline_p660hn_v1_rce

TrueOnline / ZyXEL

P660HN-T v1 Router

Unauthenticated

Command Injection

Exploit
CVE-2017-

18368
2017

exploit/linux/http/wipg1000_cmd_injection
WePresent WiPG-1000

Command Injection
Exploit 2017

exploit/unix/webapp/wp_phpmailer_host_header

WordPress PHPMailer

Host Header Command

Injection

Exploit
CVE-2016-

10033
2017

167

Appendix B

Experiment results of AE-OD and RNN-OD

Table B.1: The effect of various hidden layers configurations to the detection rate (DR) and false-positive rate (FPR) of AE-OD

Number of Neurons in

Each Hidden Layer

Threshold

Method
DR FPR

HTTP FTP SMTP All HTTP FTP SMTP All

200, 100 TIQR 28.75 100.00 100.00 51.55 0.58 3.71 0.05 0.89

Z-score 100.00 100.00 100.00 100.00 15.31 100.00 0.70 23.61

200 TIQR 42.18 100.00 100.00 60.68 1.93 100.00 0.05 15.29

Z-score 100.00 100.00 100.00 100.00 15.06 100.00 1.15 23.57

200, 100, 50 TIQR 42.53 100.00 100.00 60.92 3.11 100.00 0.05 16.01

Z-score 100.00 100.00 100.00 100.00 15.49 100.00 0.70 23.72

168

Table B.2: The effect of different length of subsequence and recurrent layer type (i.e., Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU)) to the detection rate (DR) and false-positive rate (FPR) of RNN-OD with binary anomaly score

Recurrent

units
Protocol(s)

Num of

subsequence
Threshold method

TIQR with Binary Anomaly Score Z-Score with Binary Anomaly Score

DR-UNSW DR-BS FPR DR-UNSW DR-BS FPR

LSTM HTTP 3 99.74 100.00 5.08 0.00 0.00 0.00

5 99.92 100.00 5.09 0.00 0.00 0.00

7 99.90 100.00 5.09 0.00 0.00 0.00

FTP 3 90.50 77.78 1.54 0.00 0.00 0.00

5 100.00 100.00 98.74 0.00 0.00 0.00

7 96.51 60.00 2.27 0.00 0.00 0.00

SMTP 3 100.00 100.00 1.00 0.00 0.00 0.00

5 100.00 100.00 14.37 0.00 0.00 0.00

7 100.00 100.00 8.18 0.00 0.00 0.00

All 3 99.14 99.97 3.57 0.00 0.00 0.00

5 99.95 100.00 20.58 0.00 0.00 0.00

7 99.68 99.94 5.45 0.00 0.00 0.00

169

Recurrent

units
Protocol(s)

Num of

subsequence
Threshold method

TIQR with Binary Anomaly Score Z-Score with Binary Anomaly Score

DR-UNSW DR-BS FPR DR-UNSW DR-BS FPR

GRU HTTP 3 99.98 100.00 12.13 0.00 0.00 0.00

5 99.74 100.00 5.07 0.00 0.00 0.00

7 99.59 99.23 14.00 0.00 0.00 0.00

FTP 3 97.24 90.91 1.77 0.00 0.00 0.00

5 97.49 90.91 2.48 0.00 0.00 0.00

7 92.61 75.00 1.20 0.00 0.00 0.00

SMTP 3 100.00 100.00 0.06 0.00 0.00 0.00

5 100.00 100.00 17.15 0.00 0.00 0.00

7 100.00 96.10 3.30 0.00 0.00 0.00

All 3 99.79 99.99 7.70 0.00 0.00 0.00

5 99.64 99.99 7.68 0.00 0.00 0.00

7 99.19 99.16 9.56 0.00 0.00 0.00

170

Table B.3: The effect of different length of subsequence and recurrent layer type (i.e., LSTM and GRU) to the detection rate (DR)

and false-positive rate (FPR) of RNN-OD with floating anomaly score

Recurrent

units
Protocol(s)

Num of

subsequence
Threshold method

TIQR with Floating Anomaly Score Z-Score with Floating Anomaly Score

DR-UNSW DR-BS FPR DR-UNSW DR-BS FPR

LSTM HTTP 3 12.39 57.87 1.48 100.00 100.00 100.00

5 2.47 18.84 1.43 100.00 100.00 100.00

7 2.97 33.44 1.86 100.00 100.00 100.00

FTP 3 68.10 44.44 1.49 100.00 100.00 99.92

5 100.00 100.00 98.71 100.00 100.00 4.33

7 78.00 70.00 2.30 100.00 100.00 99.59

SMTP 3 84.56 77.92 0.02 100.00 100.00 100.00

5 91.42 100.00 0.06 100.00 100.00 100.00

7 83.33 100.00 0.06 100.00 100.00 100.00

All 3 34.25 58.07 1.12 100.00 100.00 99.99

5 31.49 19.86 14.82 100.00 100.00 86.50

7 28.25 34.20 1.48 100.00 100.00 99.94

171

Recurrent

units
Protocol(s)

Num of

subsequence
Threshold method

TIQR with Floating Anomaly Score Z-Score with Floating Anomaly Score

DR-UNSW DR-BS FPR DR-UNSW DR-BS FPR

GRU HTTP 3 2.63 20.24 1.44 100.00 100.00 100.00

5 12.30 26.21 1.45 100.00 100.00 100.00

7 3.10 25.03 1.42 99.99 100.00 100.00

FTP 3 8.04 0.00 95.64 100.00 100.00 99.92

5 89.63 100.00 97.06 100.00 100.00 99.74

7 32.14 62.50 2.25 100.00 100.00 99.60

SMTP 3 17.18 5.19 0.00 100.00 100.00 100.00

5 99.93 100.00 0.40 100.00 100.00 100.00

7 87.49 100.00 0.06 100.00 100.00 100.00

All 3 6.62 20.04 14.37 100.00 100.00 99.99

5 39.55 27.13 14.68 100.00 100.00 99.96

7 26.04 25.89 1.20 99.99 100.00 99.94

172

Bibliography

[1] Keras: The python deep learning library. URL https://keras.io/.

[2] Suricata open source ids/ips/nsm engine. URL https://suricata-ids.org/.

[3] The zeek network security monitor. URL https://www.zeek.org/index.

html.

[4] Transmission control protocol, 1981. URL https://tools.ietf.org/html/

rfc793.

[5] Snort product review, Nov 2009. URL https://www.scmagazine.com/

review/snort/.

[6] Cve-2014-6271, 2014. URL https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2014-6271.

[7] Shadow daemon: a collection of tools to detect, record, and block attacks
on web applications, 2015. URL https://shadowd.zecure.org/overview/

introduction/.

[8] Cve-2017-0143, Sep 2016. URL https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2017-0143.

[9] CVE-2018-11932. Available from MITRE, CVE-ID CVE-2018-11932., Dec. 2
2018. URL https://nvd.nist.gov/vuln/detail/CVE-2018-11932.

[10] Wannacry ransomware attacks cost the nhs Â£92m. Computer Fraud & Secur-

ity, 2018(11):1â3, 2018. doi: 10.1016/s1361-3723(18)30102-7.

[11] Cve-2019-1619, 2019. URL https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2019-1619.

https://keras.io/
https://suricata-ids.org/
https://www.zeek.org/index.html
https://www.zeek.org/index.html
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://www.scmagazine.com/review/snort/
https://www.scmagazine.com/review/snort/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://shadowd.zecure.org/overview/introduction/
https://shadowd.zecure.org/overview/introduction/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0143
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0143
https://nvd.nist.gov/vuln/detail/CVE-2018-11932
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1619
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1619

Bibliography 173

[12] R. 7. Metasploit penetration testing framework, 2003. URL https://www.

metasploit.com/.

[13] R. 7. Metasploitable, 2012. URL https://metasploit.help.rapid7.com/

docs/metasploitable-2.

[14] L. Ablon and A. Bogart. Zero days, thousands of nights: The life and times of

zero-day vulnerabilities and their exploits. Rand Corporation, 2017.

[15] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè. Mimetic: Mobile encrypted
traffic classification using multimodal deep learning. Computer Networks, 165:
106944, 2019.

[16] M. E. Ahmed, S. Ullah, and H. Kim. Statistical application fingerprinting for
ddos attack mitigation. IEEE Transactions on Information Forensics and Secur-

ity, 14(6):1471–1484, 2018.

[17] C. C. f. A. I. D. Analysis. The caida anonymized internet traces dataset 2008
- ongoing, 2008. URL http://www.caida.org/data/passive/passive_

dataset.xml.

[18] G. A. Anastassiou. Multivariate hyperbolic tangent neural network approxima-
tion. Computers & Mathematics with Applications, 61(4):809–821, 2011.

[19] B. Anderson and D. McGrew. Identifying encrypted malware traffic with con-
textual flow data. In Proceedings of the 2016 ACM workshop on artificial intel-

ligence and security, pages 35–46. ACM, 2016.

[20] J. Andress. Network security. In The Basics of Information Security, pages
151–169. Elsevier, 2014. doi: 10.1016/b978-0-12-800744-0.00010-5. URL
https://doi.org/10.1016/b978-0-12-800744-0.00010-5.

[21] D. Ariu, R. Tronci, and G. Giacinto. Hmmpayl: An intrusion detection system
based on hidden markov models. computers & security, 30(4):221–241, 2011.

[22] K. Bartos, M. Sofka, and V. Franc. Optimized invariant representation of net-
work traffic for detecting unseen malware variants. In 25th {USENIX} Security

Symposium ({USENIX} Security 16), pages 807–822, 2016.

https://www.metasploit.com/
https://www.metasploit.com/
https://metasploit.help.rapid7.com/docs/metasploitable-2
https://metasploit.help.rapid7.com/docs/metasploitable-2
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://doi.org/10.1016/b978-0-12-800744-0.00010-5

Bibliography 174

[23] M. Boddy. Exposed: Cyberattacks on Cloud Honeypots. Apr 2019.
URL https://www.sophos.com/en-us/medialibrary/PDFs/Whitepaper/

sophos-exposed-cyberattacks-on-cloud-honeypots-wp.pdf.

[24] D. Bolzoni, S. Etalle, and P. Hartel. Poseidon: a 2-tier anomaly-based network
intrusion detection system. In Fourth IEEE International Workshop on Inform-

ation Assurance (IWIA’06), pages 10–pp. IEEE, 2006.

[25] R. Bortolameotti, T. van Ede, M. Caselli, M. H. Everts, P. Hartel, R. Hofstede,
W. Jonker, and A. Peter. Decanter: Detection of anomalous outbound http traffic
by passive application fingerprinting. In Proceedings of the 33rd Annual Com-

puter Security Applications Conference, pages 373–386. ACM, 2017.

[26] S. T. Brugger and J. Chow. An assessment of the darpa ids evaluation dataset
using snort. UCDAVIS department of Computer Science, 1(2007):22, 2007.

[27] D. Bzdok, N. Altman, and M. Krzywinski. Points of significance: statistics
versus machine learning, 2018.

[28] R. S. M. Carrasco and M.-A. Sicilia. Unsupervised intrusion detection through
skip-gram models of network behavior. Computers & Security, 78:187–197,
2018.

[29] X.-F. Chen and S.-Z. Yu. Cipa: A collaborative intrusion prevention architecture
for programmable network and sdn. Computers & Security, 58:1–19, 2016.

[30] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau. Detection of network anom-
alies using improved-mspca with sketches. Computers & Security, 65:314–328,
2017.

[31] T.-H. Cheng, Y.-D. Lin, Y.-C. Lai, and P.-C. Lin. Evasion techniques: Sneaking
through your intrusion detection/prevention systems. IEEE Communications

Surveys & Tutorials, 14(4):1011–1020, 2012.

[32] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M. Rida. A novel archi-
tecture combined with optimal parameters for back propagation neural networks
applied to anomaly network intrusion detection. Computers & Security, 75:36–
58, 2018.

https://www.sophos.com/en-us/medialibrary/PDFs/Whitepaper/sophos-exposed-cyberattacks-on-cloud-honeypots-wp.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/Whitepaper/sophos-exposed-cyberattacks-on-cloud-honeypots-wp.pdf

Bibliography 175

[33] Z. Chiba, N. Abghour, K. Moussaid, M. Rida, et al. Intelligent approach to
build a deep neural network based ids for cloud environment using combination
of machine learning algorithms. Computers & Security, 86:291–317, 2019.

[34] R. Chitrakar and C. Huang. Selection of candidate support vectors in incre-
mental svm for network intrusion detection. computers & security, 45:231–241,
2014.

[35] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on

Deep Learning, December 2014, 2014.

[36] J. A. Cid-Fuentes, C. Szabo, and K. Falkner. An adaptive framework for the
detection of novel botnets. Computers & Security, 79:148–161, 2018.

[37] K. Cup. Dataset. available at the following website

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99. html, 1999.

[38] R. B. d’Agostino. An omnibus test of normality for moderate and large size
samples. Biometrika, 58(2):341–348, 1971.

[39] J. J. Davis and A. J. Clark. Data preprocessing for anomaly based network
intrusion detection: A review. Computers & Security, 30(6):353–375, 2011.

[40] D. M. Diez, C. D. Barr, and M. Cetinkaya-Rundel. OpenIntro statistics. Cre-
ateSpace, 2012.

[41] P. Duessel, C. Gehl, U. Flegel, S. Dietrich, and M. Meier. Detecting zero-day
attacks using context-aware anomaly detection at the application-layer. Interna-

tional Journal of Information Security, 16(5):475–490, 2017.

[42] Z. Elkhadir and B. Mohammed. A cyber network attack detection based on gm
median nearest neighbors lda. Computers & Security, 2019.

[43] C. Feng, T. Li, and D. Chana. Multi-level anomaly detection in industrial
control systems via package signatures and lstm networks. In 2017 47th An-

nual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), pages 261–272. IEEE, 2017.

Bibliography 176

[44] S. L. Garfinkel and M. Shick. Passive tcp reconstruction and forensic ana-
lysis with tcpflow. Technical report, NAVAL POSTGRADUATE SCHOOL
MONTEREY CA, 2013.

[45] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence

and statistics, pages 315–323, 2011.

[46] D. Golait and N. Hubballi. Detecting anomalous behavior in voip systems: A
discrete event system modeling. IEEE Transactions on Information Forensics

and Security, 12(3):730–745, 2016.

[47] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[48] J. Gu, L. Wang, H. Wang, and S. Wang. A novel approach to intrusion detection
using svm ensemble with feature augmentation. Computers & Security, 2019.

[49] D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y. Wilks. A closer look at skip-
gram modelling. In LREC, pages 1222–1225, 2006.

[50] D. Hadžiosmanović, L. Simionato, D. Bolzoni, E. Zambon, and S. Etalle. N-
gram against the machine: On the feasibility of the n-gram network analysis for
binary protocols. In International Workshop on Recent Advances in Intrusion

Detection, pages 354–373. Springer, 2012.

[51] T. Hamed, R. Dara, and S. C. Kremer. Network intrusion detection system based
on recursive feature addition and bigram technique. Computers & Security, 73:
137–155, 2018.

[52] Y. Hao, Y. Sheng, and J. Wang. Variant gated recurrent units with encoders
to preprocess packets for payload-aware intrusion detection. IEEE Access, 7:
49985–49998, 2019.

[53] S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using rep-
licator neural networks. In International Conference on Data Warehousing and

Knowledge Discovery, pages 170–180. Springer, 2002.

[54] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

http://www.deeplearningbook.org

Bibliography 177

[55] M. Hubert and E. Vandervieren. An adjusted boxplot for skewed distributions.
Computational statistics & data analysis, 52(12):5186–5201, 2008.

[56] B. Iglewicz and D. C. Hoaglin. How to detect and handle outliers, volume 16.
Asq Press, 1993.

[57] A. Jamdagni, Z. Tan, P. Nanda, X. He, and R. Liu. Intrusion detection using
geometrical structure. In 2009 Fourth International Conference on Frontier of

Computer Science and Technology, pages 327–333. IEEE, 2009.

[58] A. Jamdagni, Z. Tan, X. He, P. Nanda, and R. P. Liu. Repids: A multi tier
real-time payload-based intrusion detection system. Computer Networks, 57(3):
811–824, 2013.

[59] X. Jin, B. Cui, D. Li, Z. Cheng, and C. Yin. An improved payload-based anom-
aly detector for web applications. Journal of Network and Computer Applica-

tions, 106:111–116, 2018.

[60] C. Khammassi and S. Krichen. A ga-lr wrapper approach for feature selection
in network intrusion detection. computers & security, 70:255–277, 2017.

[61] S. Kottler, B. Anglin, N. Waisman, and K. Ballinger. February
28th ddos incident report, Mar 2018. URL https://github.blog/

2018-03-01-ddos-incident-report/.

[62] M. Labs. McAfee Labs Threat Report - August 2019. Aug 2019.
URL https://www.mcafee.com/enterprise/en-us/assets/reports/

rp-quarterly-threats-aug-2019.pdf.

[63] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck. Learning intrusion detection:
supervised or unsupervised? In International Conference on Image Analysis

and Processing, pages 50–57. Springer, 2005.

[64] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–
444, 2015.

[65] S. Lee, J. Kim, S. Shin, P. Porras, and V. Yegneswaran. Athena: A framework
for scalable anomaly detection in software-defined networks. In 2017 47th An-

nual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), pages 249–260. IEEE, 2017.

https://github.blog/2018-03-01-ddos-incident-report/
https://github.blog/2018-03-01-ddos-incident-report/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf

Bibliography 178

[66] G. Lemaître, F. Nogueira, and C. K. Aridas. Imbalanced-learn: A python tool-
box to tackle the curse of imbalanced datasets in machine learning. Journal

of Machine Learning Research, 18(17):1–5, 2017. URL http://jmlr.org/

papers/v18/16-365.

[67] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R. Kendall, S. E. Web-
ster, and M. A. Zissman. Results of the darpa 1998 offline intrusion detection
evaluation. In Recent advances in intrusion detection, volume 99, pages 829–
835, 1999.

[68] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999
darpa off-line intrusion detection evaluation. Computer networks, 34(4):579–
595, 2000.

[69] H. Liu, B. Lang, M. Liu, and H. Yan. Cnn and rnn based payload classification
methods for attack detection. Knowledge-Based Systems, 163:332–341, 2019.

[70] Q. LLC. Argus. URL https://openargus.org/.

[71] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian. Deep packet:
A novel approach for encrypted traffic classification using deep learning. Soft

Computing, 24(3):1999–2012, 2020.

[72] M. V. Mahoney and P. K. Chan. An analysis of the 1999 darpa/lincoln laboratory
evaluation data for network anomaly detection. In International Workshop on

Recent Advances in Intrusion Detection, pages 220–237. Springer, 2003.

[73] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal. Long short term memory net-
works for anomaly detection in time series. In Proceedings, volume 89. Presses
universitaires de Louvain, 2015.

[74] J. McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory.
ACM Transactions on Information and System Security (TISSEC), 3(4):262–
294, 2000.

[75] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner. Openflow: enabling innovation in campus net-
works. ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

http://jmlr.org/papers/v18/16-365
http://jmlr.org/papers/v18/16-365
https://openargus.org/

Bibliography 179

[76] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances in

neural information processing systems, pages 3111–3119, 2013.

[77] E. Min, J. Long, Q. Liu, J. Cui, and W. Chen. Tr-ids: Anomaly-based intrusion
detection through text-convolutional neural network and random forest. Security

and Communication Networks, 2018, 2018.

[78] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An ensemble
of autoencoders for online network intrusion detection. machine learning, 5:2,
2018.

[79] Mitrecnd. Pynids, Jul 2014. URL https://github.com/MITRECND/pynids.

[80] N. Moustafa and J. Slay. Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set). In Military Com-

munications and Information Systems Conference (MilCIS), 2015, pages 1–6.
IEEE, 2015.

[81] S. Muller, J. Lancrenon, C. Harpes, Y. Le Traon, S. Gombault, and J.-M. Bonnin.
A training-resistant anomaly detection system. Computers & Security, 76:1–11,
2018.

[82] A. Oza, K. Ross, R. M. Low, and M. Stamp. Http attack detection using n-gram
analysis. Computers & Security, 45:242–254, 2014.

[83] E. S. Pearson, R. B. D ââ’AGOSTINO, and K. O. Bowman. Tests for departure
from normality: Comparison of powers. Biometrika, 64(2):231–246, 1977.

[84] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors
for word representation. In Empirical Methods in Natural Language Pro-

cessing (EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/

anthology/D14-1162.

[85] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-class svm classifi-
ers to harden payload-based anomaly detection systems. In Sixth International

Conference on Data Mining (ICDM’06), pages 488–498. IEEE, 2006.

[86] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. Mcpad: A multiple
classifier system for accurate payload-based anomaly detection. Computer Net-

works, 53(6):864–881, 2009.

https://github.com/MITRECND/pynids
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

Bibliography 180

[87] S. Ponomarev and T. Atkison. Industrial control system network intrusion de-
tection by telemetry analysis. IEEE Transactions on Dependable and Secure

Computing, 13(2):252–260, 2015.

[88] B. A. Pratomo, P. Burnap, and G. Theodorakopoulos. Unsupervised approach
for detecting low rate attacks on network traffic with autoencoder. In 2018 In-

ternational Conference on Cyber Security and Protection of Digital Services

(Cyber Security), pages 1–8. IEEE, 2018.

[89] B. A. Pratomo, P. Burnap, and G. Theodorakopoulos. Blatta: early exploit de-
tection on network traffic with recurrent neural networks. Security and Commu-

nication Networks, 2020.

[90] PyTorch. Negative log likelihood, 2016. URL hhttps://pytorch.org/docs/

stable/nn.html#nllloss.

[91] T. Qin, Z. Liu, P. Wang, S. Li, X. Guan, and L. Gao. Symmetry degree measure-
ment and its applications to anomaly detection. IEEE Transactions on Informa-

tion Forensics and Security, 15:1040–1055, 2019.

[92] Z.-Q. Qin, X.-K. Ma, and Y.-J. Wang. Attentional payload anomaly detector
for web applications. In International Conference on Neural Information Pro-

cessing, pages 588–599. Springer, 2018.

[93] B. Rahbarinia, R. Perdisci, and M. Antonakakis. Segugio: Efficient behavior-
based tracking of malware-control domains in large isp networks. In 2015 45th

Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works, pages 403–414. IEEE, 2015.

[94] K. Rieck and P. Laskov. Language models for detection of unknown attacks in
network traffic. Journal in Computer Virology, 2(4):243–256, 2007.

[95] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA,
volume 99, pages 229–238, 1999.

[96] B. Selvakumar and K. Muneeswaran. Firefly algorithm based feature selection
for network intrusion detection. Computers & Security, 81:148–155, 2019.

[97] M. Shen, M. Wei, L. Zhu, and M. Wang. Classification of encrypted traffic with
second-order markov chains and application attribute bigrams. IEEE Transac-

tions on Information Forensics and Security, 12(8):1830–1843, 2017.

hhttps://pytorch.org/docs/stable/nn.html#nllloss
hhttps://pytorch.org/docs/stable/nn.html#nllloss

Bibliography 181

[98] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani. Toward developing
a systematic approach to generate benchmark datasets for intrusion detection.
Computers & Security, 31(3):357–374, 2012.

[99] R. Shirey. Internet security glossary, version 2. RFC 4949, RFC Editor, August
2007. URL https://tools.ietf.org/html/rfc4949.

[100] R. Sommer and V. Paxson. Outside the closed world: On using machine learn-
ing for network intrusion detection. In 2010 IEEE symposium on security and

privacy, pages 305–316. IEEE, 2010.

[101] W. Stallings and L. Brown. Computer security. Pearson Education (US), 2017.

[102] G. Stergiopoulos, A. Talavari, E. Bitsikas, and D. Gritzalis. Automatic de-
tection of various malicious traffic using side channel features on tcp packets.
In European Symposium on Research in Computer Security, pages 346–362.
Springer, 2018.

[103] M. Swarnkar and N. Hubballi. Ocpad: One class naive bayes classifier for
payload based anomaly detection. Expert Systems with Applications, 64:330–
339, 2016.

[104] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the
kdd cup 99 data set. In 2009 IEEE Symposium on Computational Intelligence

for Security and Defense Applications, pages 1–6. IEEE, 2009.

[105] S. R. A. I. Team, A. R. A. I. T. A. I. Team, and S. S. Response. Tortoiseshell
group targets it providers in saudi arabia in probable supply chain attacks, Sep
2019. URL https://www.symantec.com/blogs/threat-intelligence/

tortoiseshell-apt-supply-chain.

[106] N. Tripathi and N. Hubballi. Slow rate denial of service attacks against http/2
and detection. Computers & security, 72:255–272, 2018.

[107] K. Wang and S. J. Stolfo. Anomalous Payload-Based Network Intrusion De-
tection. In E. Jonsson, A. Valdes, and M. Almgren, editors, Recent Advances

in Intrusion Detection: 7th International Symposium, RAID 2004, Sophia An-

tipolis, France, September 15 - 17, 2004. Proceedings, pages 203–222, Ber-
lin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-30143-

https://tools.ietf.org/html/rfc4949
https://www.symantec.com/blogs/threat-intelligence/tortoiseshell-apt-supply-chain
https://www.symantec.com/blogs/threat-intelligence/tortoiseshell-apt-supply-chain

Bibliography 182

1. doi: 10.1007/978-3-540-30143-1_11. URL http://dx.doi.org/10.1007/

978-3-540-30143-1{_}11.

[108] K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A content anomaly detector
resistant to mimicry attack. In International Workshop on Recent Advances in

Intrusion Detection, pages 226–248. Springer, 2006.

[109] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti. Detecting android
malware leveraging text semantics of network flows. IEEE Transactions on

Information Forensics and Security, 13(5):1096–1109, 2017.

[110] W. Wang, J. Liu, G. Pitsilis, and X. Zhang. Abstracting massive data for light-
weight intrusion detection in computer networks. Information Sciences, 433:
417–430, 2018.

[111] S. Whalen, N. Boggs, and S. J. Stolfo. Model aggregation for distributed content
anomaly detection. In Proceedings of the 2014 Workshop on Artificial Intelligent

and Security Workshop, pages 61–71. ACM, 2014.

[112] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. A close look on n-grams in
intrusion detection: anomaly detection vs. classification. In Proceedings of the

2013 ACM workshop on Artificial intelligence and security, pages 67–76. ACM,
2013.

[113] J. Xiang, M. Westerlund, D. Sovilj, and G. Pulkkis. Using extreme learning
machine for intrusion detection in a big data environment. In Proceedings of the

2014 Workshop on Artificial Intelligent and Security Workshop, pages 73–82.
ACM, 2014.

[114] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[115] H. Zhang, D. D. Yao, N. Ramakrishnan, and Z. Zhang. Causality reasoning
about network events for detecting stealthy malware activities. computers &

security, 58:180–198, 2016.

[116] J. Zhang, R. Perdisci, W. Lee, X. Luo, and U. Sarfraz. Building a scalable system
for stealthy p2p-botnet detection. IEEE transactions on information forensics

and security, 9(1):27–38, 2013.

http://dx.doi.org/10.1007/978-3-540-30143-1{_}11
http://dx.doi.org/10.1007/978-3-540-30143-1{_}11

	Abstract
	Acknowledgements
	Contents
	List of Publications
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Cyber security: threats and detection methods
	Contributions
	Limitations
	Thesis Structure

	Background
	Why study low-Rate Attacks?
	Network-based Intrusion Detection Systems
	Header-based NIDS
	Payload-based NIDS

	Conclusions

	How well do existing validation datasets capture representative examples of contemporary low rate attacks?
	Existing Network Traffic Datasets with Low-Rate Attacks
	BlattaSploit Dataset
	Conclusion

	An unsupervised approach for detecting low-rate attacks in network traffic
	Introduction
	The Basics of Deep Learning for Outlier Detection
	Recurrent Neural Networks
	Autoencoders

	Low-rate Attack Detection Methodology
	Network Traffic Preprocessing
	Outlier Detection Models

	Experiments and Results
	Experimental Setup
	Datasets
	Defining Threshold
	Results Discussion

	Conclusions

	Early prediction of low-rate attacks on network traffic with Recurrent Neural Networks
	Introduction
	Threat Model
	Methodology
	Data Preprocessing
	Training an RNN-based classifier
	Detecting Attacks

	Experiments and Results
	Data Analysis
	Comparison With Previous Works
	Early Prediction
	Detection Speed
	Visualisation

	Conclusion and Future Work

	Conclusions
	Thesis Summary
	Discussion on Evasion Techniques, Adversarial Attacks, and Future Works
	Conclusions

	Appendices
	List of low-rate attacks in BlattaSploit dataset
	Experiment results of AE-OD and RNN-OD
	Bibliography

