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NETWORK PSYCHOMETRICS ALZHEIMER’S

Abstract

In a typical pattern of Alzheimer's disease onset, episodic memory decline is 
predominant while decline in other neurocognitive domains is subsidiary or absent. 
Such descriptions refer to relationships between neurocognitive domains as well as 
deFcits within domains. However, the former relationships are rarely statistically 
modelled. This study used psychometric network analysis to model relationships 
between neurocognitive variables in cognitive normality (CN), amnestic mild cognitive 
impairment (aMCI), and early Alzheimer's disease (eAD). Gaussian graphical models 
with extended Bayesian information criterion graphical lasso model selection and 
regularisation were used to estimate network models of neurocognitive and 
demographic variables in CN (n = 229), aMCI (n = 395), and eAD (n = 191) groups. The 
edge density, network strength and structure, centrality, and individual links of the 
network models were explored. Results indicated that while global strength did not 
differ, network structures differed across CN and eAD and aMCI and eAD groups, 
suggesting neurocognitive reorganisation across the eAD continuum. Episodic memory 
variables were most central (i.e., inKuential) in the aMCI network model, whereas 
processing speed and Kuency variables were most central in the eAD network model. 
Additionally, putative clusters of memory, language and semantic variables, and 
attention, processing speed and working memory variables arose in the models for the 
clinical groups. This exploratory study shows how psychometric network analysis can 
be used to model the relationships between neurocognitive variables across the eAD 
continuum and to generate hypotheses for future (dis)conFrmatory research.

Keywords: Alzheimer’s disease; neurocognition; neuropsychology; 
network psychometrics; Gaussian graphical model

1. Introduction
In a typical pattern of Alzheimer's disease (AD) onset, predominant episodic memory 
decline is observed before decline in other neurocognitive domains becomes apparent 
with disease progression (Howieson et al., 2008; Kolb, 2015; Lezak, Howieson, Bigler, & 
Tranel, 2012; Rushing, Sachs-Ericsson, & Steffens, 2014; Weintraub, Wicklund, & 
Salmon, 2012). Neuropsychologists can be relatively conFdent that it is memory that is 
affected, given disproportionately poor performance on a memory test, in part, because 
of latent variable models. Latent variable models model the shared variance underlying 
task performance, which can be taken to signify neurocognitive domains. This type of 
statistical modelling can be useful because neuropsychology operates in a reality in 
which the lack of test-function speciFcity is common (Lezak et al., 2012). 

Nevertheless, descriptions of the typical pattern of decline in AD refer to the 
relationships between neurocognitive domains as well as performance on measures of 
each domain. Episodic memory decline is predominant, while decline in other 
neurocognitive domains is subsidiary or not yet present (Howieson et al., 2008; Kolb, 
2015; Lezak et al., 2012; Rushing et al., 2014; Weintraub et al., 2012). Statistically, these 
descriptions invoke the unique variance between variables as well as shared variance 
signifying domains (Costantini et al., 2015; Epskamp & Fried, 2018). The latent-variable 
approach, with an emphasis on common variance and measurement invariance of 
neurocognitive domains (Bowden, Cook, Bardenhagen, Shores, & Carstairs, 2004; 
Meredith, 1993; Strauss & Smith, 2009), is not best placed to model such between-
variable relationships across the early AD (eAD) continuum. However, it is important 
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that these relationships are calculated as robustly and described as precisely as 
possible. Indeed, the meaningfulness of much neuropsychological data emerges from 
consideration of the relationships amongst variables, such as the presence or absence of 
deFcits in some functions relative to others and the inKuence (whether compensatory 
or detrimental) of one function on another. 

The network psychometric approach is well placed to model the relationships 
between neurocognitive variables in eAD, while complementing the more traditional 
latent variable approach. In essence, network psychometric models represent 
relationships amongst variables once relationships between all other variables in the 
model have been accounted for. The remaining associations, or ‘edges’ in network 
terminology, between variables, or ‘nodes’, can then be visualised as a network 
structure in which the nodes are assumed to inKuence each other. Analysis of this 
network structure, both visually and through network metrics, can offer useful insights 
into relationships between variables. Moreover, network estimation gives rise to 
mathematically precise models of these relationships (van Bork, van Borkulo, Waldorp, 
Cramer, & Borsboom, 2018), which can help to quantify verbal descriptions of typical 
relationships amongst variables. 

One potentially illuminating network metric is strength centrality. Centrality 
refers to the importance of a node in forming the network structure, an implication 
being that not all nodes are equally inKuential in the network (Costantini et al., 2015). 
Strength centrality is simply the sum of the edge weights that are connected to a node 
(van Bork et al., 2018). A node that has high strength in a network model is thought to 
directly inKuence many other nodes in the network, without mediation from other 
nodes (Costantini et al., 2015). The description of the typical neuropsychological proFle
in early AD does not necessarily imply that memory nodes, or indeed any nodes, are the 
most central in the network, although it may be that memory variables are most central. 
However, it is fruitful to investigate the strength centrality properties of network 
models as knowledge of the most central nodes can help to predict the ability of the 
network to compensate for deFcits in a particular node and/or identify targets for 
interventions (Costantini et al., 2015). Accordingly, the primary aim of this study was to 
statistically model network structure and calculate strength centrality indices, and 
other network properties, at three points along the eAD continuum: cognitive normality 
(CN), amnestic mild cognitive impairment (aMCI), and eAD. 

Only one study has used the network psychometric approach to study 
neurocognition in AD. Tosi et al. (2020) used network psychometrics to model the 
performance of older adults in CN, vascular encephalopathy (VE), and AD groups on 
neuropsychological batteries sampling a range of neurocognitive domains. The authors 
also included data from screening tools and demographic variables (age, sex, education) 
in their network models, enabling consideration of the impact of these factors on 
neuropsychological test performance. Network estimation generated a relatively sparse 
network model for the CN group. By contrast, a denser structure containing two clusters 
of nodes was observed in the AD network model, indicating reorganisation of the 
relationships amongst neurocognitive variables in the disease state. One cluster 
consisted of tests related to memory and the other comprised tests with an executive 
component. Category Kuency was the most central node in this network model, with 
high strength and betweenness values. It also served as a bridge between the memory 
and executive clusters. The authors also generated a number of hypotheses on the basis 
of their models, which highlights the utility of network psychometrics as an exploratory 
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tool for generating hypotheses for future conFrmatory research (Epskamp & Fried, 
2018). 

Tosi et al. (2020) analysis is a promising step forwards in the application of 
network psychometrics to the neuropsychology of healthy aging and dementia. 
However, their study presents two avenues for improvement. First, different variables 
were included in each of the network models. These discrepancies limit the 
comparability of the models, even though the different tests probe the same 
neurocognitive domains, because different variables may introduce different patterns of 
dependencies in network models. Second, they did not quantitatively compare the 
networks, which would have been inappropriate given the different number of variables 
in the healthy and clinical network models. Quantitative comparison of network models 
is complementary to visual analysis and may overcome some of the limitations inherent 
in eyeballing data. The present study sought to improve on these limitations by 
quantitatively comparing network strength and structure across groups. Additionally, 
the study devoted much needed attention to the eAD spectrum, where interventions 
based on network approaches to neurocognition are likely to be most fruitful. 

In summary, relationships between neurocognitive variables are often referred 
to in descriptions of AD onset. However, these relationships have not been statistically 
modelled at multiple points across the eAD continuum. Psychometric network 
modelling facilitates the analysis of the unique variance between variables in a 
complementary manner to latent variable modelling. The present study aimed to 
estimate and compare the properties of neurocognitive network models for three 
groups along the eAD continuum, and to use these network models to generate 
hypotheses for future (dis) conFrmatory research.

2. Method and materials
The following sections describe how the data were sourced, all inclusion/exclusion 
criteria, and all variables in the study. There were no experimental manipulations. All R 
code is accessible online: https://osf.io/uzjem/. No part of the study was preregistered 
in a public forum. The proposed analyses were approved by the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) Data and Publications Committee.

2.1. Dataset and pre-processing
Data used in this study were sourced from the ADNI database 
(http://adni.loni.usc.edu/data-samples/access-data/), which has been described in 
detail elsewhere (Petersen et al., 2010). The ADNI is led by Michael W. Weiner, MD, and 
up-to-date information on the initiative can be accessed at www.adniinfo.org/. For this 
study, all ADNI participants who participated in baseline neuropsychological 
assessment were eligible for inclusion. Participants were excluded if they were missing 
diagnostic data, demographic data, or more than 10% of their neuropsychological test 
data. Mean imputation was used for cases with less than 10% missing data.

2.2.  Participants
Data from a total of 815 ADNI participants were selected for analysis. Demographic 
information and dementia severity for each group is presented in Table 1. Participants 
were grouped into CN, aMCI, and eAD groups on the basis of the diagnosis (or lack of) 
they received during their initial ADNI visit. 

The ADNI used the Petersen et al. (2010) diagnostic criteria for amnestic MCI 
and the National Institute of Neurological and Communicative Disorders and Stroke - 
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Alzheimer's Disease Related Disorders Association criteria for probable AD (McKhann 
et al., 1984). ADNI exclusion criteria included a Hachinski Ischemic Score (Moroney et 
al., 1997; Rosen, Terry, Fuld, Katzman, & Peck, 1980) greater than 4; a Geriatric 
Depression Scale (Yesavage et al., 1983) of 6 or higher; inadequate visual and auditory 
acuity for neuropsychological testing; changes in medication for 4 weeks prior; and 
poor general health (Petersen et al., 2010). Accordingly, vascular or mixed dementia, 
depression and other confounding factors were unlikely to inKuence the 
neuropsychological data. 

Dementia severity was measured by the Clinical Dementia Rating Scale (CDR), 
which is a 5-point clinician-rated scale of memory, orientation, judgement and problem 
solving, community affairs, functioning regarding at home and with hobbies, and 
personal care (Morris, 1993). A score of 0 signiFes the absence of dementia and higher 
scores represent more severe dementia. The Mini-Mental State Exam (MMSE) was also 
used (Folstein, Folstein, & McHugh, 1975). AD participants (CDR mean = .7, SD = .3; 
MMSE mean = 23.1, SD = 2.1) were therefore considered to have mild or eAD according 
to the CDR and MMSE.

Table 1. Demographic data and dementia severity by group
Group

Cognitively normal Amnestic mild 
cognitive 

impairment

Early Alzheimer’s 
disease

n 229 395 191
Gender

Male (%)
Female (%)

52%
48%

64.3%
35.7%

52.4%
47.6%

Age (years)
Education (years)
Premorbid ability 

ANART (errors)
Dementia severity

CDR 
MMSE

76.0 (5.0)
16.1 (2.9)

9.1 (8.0)

0.0 (0.0)
29.1 (1.0)

74.9 (7.4)
15.7 (3.0)

13.6 (9.9)

0.5 (0.0)
27.0 (1.8)

75.4 (7.5)
14.8 (3.0)

15.8 (10.0)

0.7 (0.3)
23.4 (2.1)

NB. brackets contain standard deviations. ANART: American National Adult Reading Test (Blair 
& Spreen, 1989). CDR: Clinical Dementia Rating Scale (Morris, 1993). MMSE: Mini-Mental State 
Exam (Folstein et al., 1975). 

2.3.  Neurocognitive variables
Neuropsychological tests were selected from the battery administered to ADNI 
participants. Variables with restricted variance, such as error scores on the trail making 
tests and category Kuency, were excluded. This was necessary given the network 
modelling procedures, which depended on the assumption of normality (Epskamp & 
Fried, 2018), and the between subjects approach of the study, which required adequate 
variance to produce reliable results (Hedge, Powell, & Sumner, 2018). For the eligible 
variables, non-paranormal transformation was used on raw scores to approximate the 
normal distribution (Liu, Lafferty, & Wasserman, 2009). Descriptive statistics are 
presented in Table 2.

2.3.1. Attention/processing speed
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2.3.1.1.Trail Making Test Part A and B.
Trail Making Test Part A (TMTA) requires the participant to draw lines to connect a 
scrambled array of the numbers 1 to 25 in ascending order (Reitan, 1958). Trail Making 
Test Part B (TMTB) requires the participant to perform an ostensibly similar task while 
alternating between the numbers 1 to 13 and the letters A to L in ascending order (i.e., 
1-A-2-B-3-C, etc.) To make partial correlations in the network models easier to 
interpret, completion times for TMTA and TMTB were reversed (i.e., signed negatively) 
so that higher scores reKected better performance.

2.3.1.2. Wechsler Adult Intelligence Scale - Revised Digit Symbol Substitution.
Digit-Symbol Substitution (DSS) requires the participant to match symbols to digits 
according to an explicit key under a strict 90 sec time limit (Wechsler, 1981). The DSS 
score corresponds to the total number of correct responses generated within the time 
limit.

Table 2. Descriptive statistics
Group

Cognitively 
Normal

Mild 
Cognitive 

Impairment

Alzheimer’s 
Disease

Domain Test M SD M SD M SD
DSS 45.7 10.2 36.8 11.2 26.5 13.3Attention
TMT 

Part A 
Part B

36.4
89.2

13.2
44.3

44.5
129.4

22.2
74.0

66.9
186.7

37.0
95.6

Working 
memory

Digit Span
Forwards
Backwards

8.8
7.2

2.0
2.2

8.3
6.1

2.0
2.1

7.6
4.9

1.9
2.0

Episodic 
memory

AVLT
Immediate
Intrusions
Delayed
Recognition
Recognition
Errors

43.0
1.5
7.4

12.8

0.8

9.8
1.8
3.7
2.7

1.2

30.7
1.4
2.8
9.7

3.0

9.0
1.6
3.3
3.6

2.2

23.1
1.0
0.7
7.2

1.9

7.8
1.9
1.6
4.0

2.3
Language BNT (30 

items)
27.3 3.2 25.0 4.4 20.3 21.9

Fluency Category 
fluency 34.6 8.1 26.6 7.3 20.2 7.4

Visuospatial Clock 
drawing
Clock copying

4.7
4.8

0.7
0.6

4.2
4.6

1.0
0.7

3.4
4.3

1.3
1.0

Premorbid 
ability

ANART 9.1 8.0 13.6 9.9 15.8 10.0

DSS: Digit Symbol Substitution. TMT: Trail Making Test. AVLT: Rey Auditory Verbal Learning 
Test. BNT: Boston Naming Test. ANART: American National Adult Reading Test. 
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2.3.2. Working memory
2.3.2.1.Wechsler Memory Scale - Revised Digit Span Forwards and Backwards. 
Digit span forwards (DSF) requires the participant to attend to and repeat a string of 
single digits in the order in which it was heard, with each string length increasing by 1 
digit on subsequent trials. Digit span backwards (DSB) requires the participant to 
repeat each increasingly long string in the reverse order to which it was heard 
(Wechsler, 1987). The DSF and DSB scores represent the total number of trials 
completed correctly. 

2.3.3. Memory
2.3.3.1.Rey Auditory Verbal Learning Test.
During the Rey Auditory Verbal Learning Test (AVLT), the participant attempts to 

memorise a list of 15 semantically unrelated words over 5 trials, each of which ends in a 
free-recall trial. Following these 5 trials, a new list of 15 unrelated ‘distractor’ words is 
read to the participant, and they are asked to repeat the original word list. The 
participant is asked to repeat the original word list again after a 30-minute delay period. 
In the ADNI, AVLT Immediate was the sum of correct responses on trials 1 to 5 (Rey, 
1964). AVLT Intrusions was the sum of intrusion errors on trials 1 to 5. AVLT Delayed 
was the number of words from the original word list repeated after the 30minute delay. 
AVLT Recognition was the number of correctly identiFed target words on a recognition 
trial in which all of the words from the original and ‘distractor’ lists plus 20 
phonemically and/or semantically similar words (50 words total) were presented to the 
participant. AVLT Recognition Errors was the number of incorrect responses on the 
recognition trial. Intrusions and Recognition Errors were resigned negatively so that 
lower scores signify poorer performance.

2.3.4. Language
2.3.4.1.Boston Naming Test. 
The Boston Naming Test (BNT) is a confrontation naming task in which the participant 
is presented with 60 sequential line drawings of increasingly difficult to identify items 
and asked to name them (Kaplan, Goodglass, & Weintraub, 1983). In the ADNI, 
participants were shown 30 stimuli. The BNT score represents the total number of 
spontaneously provided correct answers, without reliance on semantic or phonemic 
cues.

2.3.5. Visuospatial 
2.3.5.1. Clock Drawing and Copying. The clock drawing task involves drawing a clock, 
without the aid of a visual example. Clock copying involves drawing a clock with a visual 
example present (Goodglass & Kaplan, 1983). The ADNI used a 5-point scale to credit 
participants for an approximately circular face, symmetry of number placement, 
correctness of numbers, presence of two hands and the presence of two hands set to the 
speciFed time.

2.3.6. Fluency
2.3.6.1.Category Fluency.
In category Kuency tasks, the participant must name as many instances of a semantic 
category, in this case animals and vegetables, as they can within a 60 second time limit 
(Morris et al., 1989). In the present study, total correct scores were summed prior to 
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transformation to create a single category Kuency variable. The score reKects the total 
number of correct responses for both categories.

2.4.  Network estimation
Three Gaussian graphical models (GGM) with extended Bayesian information criterion 
graphical lasso (EBICglasso) model selection and regularisation were estimated on the 
basis of the neurocognitive and demographic data for the CN, aMCI, and eAD groups. 

2.4.1. The Gaussian graphical model
The GGM is an undirected graphical model, or Markov random field. The GGM is 
computed on the inverse of a covariance matrix, which encodes partial correlations 
(Epskamp, Borsboom, & Fried, 2018). Subsequently, in a GGM, edges can be interpreted 
as partial correlation coefficients ranging from -1 to 1 (Epskamp, Borsboom, et al., 2018; 
Epskamp, Waldorp, Mottus, & Borsboom, 2018; Lauritzen, 1996); although, these will 
differ from standard partial correlation coefficients due to the model selection and 
regularisation procedures employed. The edges represent the remaining association 
between two variables after conditioning on all other variables. All GGMs were 
estimated in R using the ‘qgraph’ package (Epskamp, Cramer, Waldorp, Schmittmann, & 
Borsboom, 2012) as implemented in the ‘bootnet’ package version 1.3 (Epskamp, 
Borsboom, et al., 2018).

2.4.2. Model selection and regularisation
Network models are subject to sampling variation, which can introduce unreliable 
associations (Epskamp & Fried, 2018). To promote replicability and guard against 
overinterpretation of network models it is important to limit the number of spurious 
edges in a model. EBICglasso model selection and regularisation was employed as it 
returns a sparse network structure (i.e., one with relatively few edges) in comparison to 
less conservative model selection techniques. As the study was exploratory, 
emphasising specificity at the potential cost of sensitivity was preferential to lessen the 
chance that hypotheses generated by analysing the network models might be due to 
false positive edges. The least absolute shrinkage and selection operator (lasso) works 
by constraining the sum of partial correlation coefficients, meaning that all edge weight 
estimates are pulled towards zero and some are estimated as zero (Tibshirani, 1996). In 
EBICglasso, the lasso tuning parameter is assigned automatically by minimising the 
extended Bayesian information criterion (EBIC). An EBIC hyperparameter determines 
how much the criterion prefers simpler models. An EBIC hyperparameter of 0 favours 
sensitivity, and runs the risk of including spurious edges, while a setting of 0.5 
privileges specificity, and runs the risk of reducing sensitivity when the true network 
structure is dense (Epskamp & Fried, 2018). The EBIC hyperparameter value used in 
the study (0.25) was selected by optimising the desired psychometric properties, which 
were estimated with simulation studies. 

2.4.3. Simulation studies
Three simulation studies were conducted to investigate the impact of various model 
selection parameters and sample sizes on the psychometric properties of the network 
models, and to select optimal parameters for promoting specificity. The psychometric 
properties of interest were the sensitivity, specificity and correlation of the network 
model to a large number of comparator models. Simulation studies were performed 
under each observed network model (CN, aMCI, and eAD) for varying sample sizes and 
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EBIC hyperparameter values. They can be described in terms of a five-step process. 
First, random data was generated under the parameters of an observed network model, 
which acted as the input. Second, while the parameters (E.g., edge weights, network 
structure, etc.) of the input network model were held constant, different values were set 
for the EBIC hyperparameter (0, 0.25, 0.5) and sample size (100, 200, 500). Third, a 
comparator network model was estimated on the basis of the randomly generated data 
from the input network model and the various altered factors. Fourth, the comparator 
network was compared to the input network model. Fifth, stages two to four were 
repeated 1000 times, which gave rise to estimates of the sensitivity, specificity, and 
correlation between comparator and input networks under different conditions. 
Simulation studies indicated that an EBIC hyperparameter value of 0.25 and the 
observed sample sizes were sufficient for ensuring specificity without negating 
sensitivity. The simulation studies were also conducted within the ‘bootnet’ package 
(Epskamp, Borsboom, et al., 2018). The results of the simulation studies are available in 
Appendix A.

2.4.4. Post-hoc investigations
2.4.4.1.  Edge weight stability
Because network models are subject to sampling variation, it is also important to 
investigate the stability of the edge weight estimates in the final network models to 
ensure that undue certainty is not applied when interpreting them. Non-parametric 
bootstrapping was employed to generate 95% confidence intervals around edge 
weights in each group using a five-step process, also implemented in ‘bootnet’ 
(Epskamp, Borsboom, et al., 2018). First, edge weights were computed in the original 
sample for each group. Second, a new comparator dataset was generated by randomly 
sampling from the original dataset with replacement. Third, edge weights were 
computed in the new comparator dataset. Fourth, steps two (resampling from data with 
replacement) and three (computing statistics in generated data) were repeated 1000 
times. Finally, the ranges of the computed edge weights were used to draw confidence 
intervals for each edge weight in each network model. The full results of these analyses 
are presented in Appendix B. 

2.4.4.2.  Edge density
The edge density index was used to describe the density of each network model. This 
descriptive statistic is calculated by simply dividing the number of observed edges by 
the number of possible edges. The number of possible edges is calculated first using the 
simple formula P(P – 1)/2 in which P denotes the number of nodes in the network 
model (Epskamp et al., 2017). The number of possible edges for each model was 136, 
given the presence of 17 nodes. 

2.4.4.3.  Comparison of network structures
The network comparison test (NCT) was used to explore the invariance of network 
structure and global strength across CN, aMCI, and eAD neurocognitive network models. 
‘Network structure’ refers to the assumption that the network as a whole (i.e., the 
specific patterns of edges connecting nodes) is identical across groups. ‘Global strength’ 
refers to the assumption that the absolute sum of all edges is the same across networks 
(Opsahl et al., 2010; van Borkulo et al., 2017). The NCT is a non-parametric 
permutation-based hypothesis test which employs five stages to determine whether 
certain statistics from two groups differ (van Borkulo et al., 2017). First, the NCT 
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computes the statistic of interest (e.g., the network structure) of two network models. 
Second, all cases (i.e., participants from sample A and sample B) are pooled in a single, 
larger dataset. Third, two new groups are created by randomly redistributing the cases 
(i.e., cases from different initial groups are highly likely to be combined within the two 
new groups). Fourth, the statistic (e.g., the network structure) is computed for the two 
new groups and steps two to four are repeated 1000 times to obtain a null distribution. 
Finally, the NCT tests whether the observed difference computed in the original group is 
in the null distribution arising from step four. If the original statistic is in the null 
distribution, then the networks do not differ with regards to that statistic. In other 
words, the NCT probes whether observed differences in a statistic between both groups 
is larger than might be expected from a null distribution in which these groups come 
from the same population. The p values generated by the NCT are equal to the 
proportion of test statistics in the null distribution that are at least as extreme as the 
observed test statistic. As the study was exploratory, a threshold was not set for 
considering NCT-generated p values statistically significant or not. Rather, p values for 
each analysis were interpreted as rough indices of surprisingness given the assumption 
that the observed statistics did not differ across groups.

2.4.4.4.  Centrality indices 
Node strength and betweenness were calculated for each network model and reported 
as standardized z scores. Before these centrality estimates were interpreted, their 
stability was probed with case-dropping bootstrapping. These bootstraps worked in a 
similar way to the bootstrapping procedures described above; however, they used 
subsampling without replacement and diminishing sample sizes rather than resampling 
with replacement and constant sample sizes. These methods generated a centrality 
stability coefficient (CS), which quantified, with 95% confidence, the greatest 
proportion of participants that could be dropped to preserve a correlation of higher 
than 0.7 with the original centrality values. A CS of 0.5 or higher is indicative of a stable 
centrality estimate across diminishing cases and a CS that does not exceed 0.25 should 
not be interpreted (Epskamp & Fried, 2018). Only the strength index met the minimum 
criterion for stability; therefore, betweenness centrality estimates are not presented or 
interpreted in the paper. The full results of the strength centrality analyses are available 
in Appendix C. 

3. Results/discussion
Network plots for the CN, aMCI, and eAD groups are presented in Figures 1, 2, and 3, 
respectively. 

3.1.  Cognitive normality
The CN network model, shown in Figure 1, was relatively dense (edge density = 0.79), 
with multiple links between tests of different neurocognitive domains, although some of 
these edges were relatively weak (e.g., DSS-AVLT Immediate, bootstrapped mean edge 
weight = 0.04, 95% CI = 0.02, 0.13). 

The most central nodes in the model were AVLT Immediate (strength centrality z 
score = 1.99) and DSS (z = 1.28), both of which were linked to various tests of different 
domains, indicating that memory acquisition and attentional/processing speed abilities 
were particularly important inKuences on neurocognitive functioning for the CN older 
adult group. Premorbid ability (ANART) was also highly central (z = 1.11), consistent 
with the lack of pathology in the CN group and the well-established association between 
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general cognitive ability and functioning in neurocognitive domains (Binder et al., 2009; 
Diaz-Asper, Schretlen, & Pearlson, 2004; Mohn, Sundet, & Rund, 2014). 

The strongest edges in the network model were between tests representing the 
same neurocognitive domain. Additionally, these more substantial edges were present 
amongst all tests of the same neurocognitive domain. These two Fndings highlight the 
shared variance associated with neurocognitive domains and suggest that they provide 
a good account of neurocognitive functioning for a group of healthy older adults. 

Figure 1. Neurocognitive network model for cognitively normal older adults

DSS: Digit Symbol Substitution. TMTA: Trail Making Test Part A. TMTB: Trail Making Test Part 
B. DSF: Digit Span Forward. DSB: Digit Span Backward. AVLT Imm: Rey Auditory Verbal 
Learning Test Immediate. AVLT Imm: Rey Auditory Verbal Learning Test Intrusions. AVLT Del: 
Rey Auditory Verbal Learning Test Delayed. AVLT Rec: Rey Auditory Verbal Learning Test 
Recognition. AVLT Rec Err: Rey Auditory Verbal Learning Test Recognition Errors. BNT: Boston 
Naming Test. CF: category fluency. Clock: clock drawing. Clock C: clock copying. Education: 
education (years). Age: age (years). Premorbid: American Adult National Reading Test.

In some cases, edges between tests of different domains were relatively 
substantial. For example, the edge between AVLT Immediate and category Kuency
(bootstrapped mean edge weight = .15, 95% CI = .04, .26), after conditioning on all other 
variables in the network. This edge could reKect the co-dependence of semantic and 
episodic memory during episodic memory encoding (Greenberg & Verfaellie, 2010), at 
least for list-learning tasks which feature semantically unorganised information. 

Together, the properties of the CN network model suggest that neurocognitive 
variables had multiple small inKuences on each other, irrespective of their purported 
domain; however, neurocognitive functioning was largely characterised by the presence 
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of fractionated neurocognitive domains. Network qualities were different in the aMCI 
and eAD models, suggesting neurocognitive reorganisation in the disease states.

3.2.  Amnestic mild cognitive impairment
As shown in Fig. 2, the aMCI network model was also relatively dense (edge density = 
.78). In comparison with the CN model, the global strength of the aMCI model was not 
surprisingly different (NCT global strength comparison: p = .47, test statistic = .44). 
Neither was the overall structure of model surprisingly different from the CN model 
(NCT network structure comparison: p = .18, test statistic = .23). Descriptively, there 
were more edges linking tests of different domains in the aMCI model than in the CN 
model, which suggests some reorganisation of the relationships amongst 
neurocognitive variables in the disease state. For the most part, these edges were 
weaker than those connecting tests of the same domain. This tendency suggests that the 
neurocognitive status of the aMCI group was still partly characterised by the presence 
of relatively distinct neurocognitive domains.

Figure 2. Neurocognitive network model for older adults with amnestic mild cognitive 
impairment

DSS: Digit Symbol Substitution. TMTA: Trail Making Test Part A. TMTB: Trail Making Test Part 
B. DSF: Digit Span Forward. DSB: Digit Span Backward. AVLT Imm: Rey Auditory Verbal 
Learning Test Immediate. AVLT Imm: Rey Auditory Verbal Learning Test Intrusions. AVLT Del: 
Rey Auditory Verbal Learning Test Delayed. AVLT Rec: Rey Auditory Verbal Learning Test 
Recognition. AVLT Rec Err: Rey Auditory Verbal Learning Test Recognition Errors. BNT: Boston 
Naming Test. CF: category fluency. Clock: clock drawing. Clock C: clock copying. Education: 
education (years). Age: age (years). Premorbid: American Adult National Reading Test.

12



NETWORK PSYCHOMETRICS ALZHEIMER’S

While global network strength and structure did not appear to differ across the aMCI 
and CN models, and weakened neurocognitive domains were still visible in the aMCI model, 
two putative clusters emerged. One of these consisted of tests probing memory, semantic, and 
language abilities (namely the AVLT, BNT, and category fluency); the other was formed of tests 
with attention, processing speed, and working memory components (including DSS and the 
digit span and trail making tests). This pattern of association differed from the more 
fractionated neurocognitive domains shown in the CN network model, which were less 
distinguishable in the aMCI network. The constellations of edges amongst tests of memory-
semantic-language abilities and tests with attention-speed-working memory components in 
the aMCI model may reflect the divergence of consolidated and fluid abilities, which has been 
observed within screening tests in groups with dementia (Brugnolo et al., 2009; Duro, Simoes, 
Ponciano, & Santana, 2010). 

The three most central nodes in the aMCI model were AVLT Delayed (strength 
centrality z score = 1.44), AVLT Immediate (z = 1.36), and DSS (z = 1.19). These findings 
suggest that episodic memory acquisition, storage and retrieval processes, and, to a lesser 
extent, attention/processing speed were major influences on neurocognitive functioning in the 
aMCI group. Accordingly, it is hypothesised that episodic memory variables will be most 
central in future confirmatory network studies of patients with aMCI (hypothesis 1).

An edge between category fluency and AVLT Immediate was present in the aMCI 
network model, as it was in the CN network. This association (bootstrapped mean edge weight 
= .18, 95% CI = .11, .30) is consistent with the finding that semantic knowledge can provide 
scaffolding for the acquisition of episodic memories in medial temporal lobe (MTL) amnesia 
(Kan et al., 2009). On this basis, it is hypothesized that the semantic processes underlying 
category fluency performance may support the acquisition of word list memoranda in aMCI 
(hypothesis 4).

Overall, the characteristics of the aMCI network model suggest that the neurocognitive 
functioning of the aMCI group was strongly influenced by episodic memory functioning and 
processing speed. Additionally, while relatively distinct neurocognitive domains were evident, 
neurocognitive status was also shaped by the presence of memory-semantic-language and 
attention-speed-working memory constellations of variables. 

3.3.  Early Alzheimer’s disease
The eAD network model, shown in Fig. 3, was relatively sparse (edge density = .5), 
although this may be because the sample size was smaller than that of the aMCI 
network and EBIC is a function of N (Epskamp & Fried, 2018). The global strength of the 
model was not surprisingly different from the CN (NCT global strength comparison: p = 
.61, test statistic = .50) or the aMCI (NCT global strength comparison: p = .96, test 
statistic = .06) models. By contrast, the network structure of the eAD model appeared to 
be somewhat different from that of the CN model (NCT network structure comparison: 
p = .02, test statistic = .38) and the aMCI model (NCT network structure comparison: p = 
.02, test statistic = .38), suggesting that reorganisation occurred amongst the 
neurocognitive variables in the more advanced disease state. 

Descriptively, the eAD model contained few weak edges between tests of 
different domains and a small number of larger edges linking tests of different domains 
(e.g., CF-BNT, bootstrapped mean edge weight = .36, 95% CI = .29, .52). These 
properties suggest that, at a group level, the neurocognitive functions probed by the 
tests did not have many slight influences on each other. Instead, they had a small 
number of more substantial influences on each other in this more advanced disease 
state. 
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Regarding strength centrality, DSS (strength centrality z score = 2.00), category 
fluency (z = 1.31), and AVLT Immediate (z = 1.01) were the three most central nodes in 
the model. This indicates that attention/processing speed and fluency, as well as 
episodic memory, were particularly strong influences on neurocognitive functioning in 
eAD. 

Putative clusters of memory-semantic-language variables and attention-speed-
working memory variables emerged in the eAD model, as was the case in the aMCI 
model. In the eAD model, these constellations were generally formed of stronger edges 
between tests, regardless of whether they probed the same or different domains. This 
may suggest that the neurocognitive status of the eAD group was more strongly 
influenced by the reorganisation of neurocognitive abilities into two main elements. 

Figure 3. Neurocognitive network model for older adults with early Alzheimer’s disease

DSS: Digit Symbol Substitution. TMTA: Trail Making Test Part A. TMTB: Trail Making Test Part 
B. DSF: Digit Span Forward. DSB: Digit Span Backward. AVLT Imm: Rey Auditory Verbal 
Learning Test Immediate. AVLT Imm: Rey Auditory Verbal Learning Test Intrusions. AVLT Del: 
Rey Auditory Verbal Learning Test Delayed. AVLT Rec: Rey Auditory Verbal Learning Test 
Recognition. AVLT Rec Err: Rey Auditory Verbal Learning Test Recognition Errors. BNT: Boston 
Naming Test. CF: category fluency. Clock: clock drawing. Clock C: clock copying. Education: 
education (years). Age: age (years). Premorbid: American Adult National Reading Test.

Reorganisation was also indicated within the memory-semantic-language 
collection of variables, especially amongst the episodic memory variables. AVLT 
Intrusions and recognition errors were strongly negatively associated with AVLT 
Delayed (bootstrapped mean edge weight = .31, 95% CI = .46, = .16) and AVLT 
Recognition (bootstrapped mean edge weight = .42, 95% CI = .54, = .21), respectively. 
By contrast, memory errors were positively associated with tests of episodic memory in 
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the CN model and only intrusions were negatively associated with recognition and 
delayed recall in the aMCI model. Subsequently, memory errors may have a more 
detrimental influence on episodic memory functioning and, by extension, general 
neurocognitive status in eAD than in aMCI and CN. 

Again, a possible compensatory relationship was shown in the link between 
category fluency and AVLT Immediate in the eAD model. This link was present in all 
models, as previously discussed, but strongest for the eAD group (boot strapped mean 
edge weight = .36, 95% CI = .24, .49). This increase in edge strength across the eAD 
continuum may indicate increasing recruitment of the semantic processes underlying 
category fluency to support the acquisition of word list memoranda in eAD, thus 
offering some compensation for episodic memory impairment (hypothesis 4). 

In summary, the properties of the eAD network model suggest that the 
neurocognitive functioning of this group was characterised by the strong influence of 
attention/processing speed and fluency as well as episodic memory, and a broader 
tendency for abilities to group into memory-semantic-language-related variables and 
attention-speed-working memory-related variables.

4. General discussion 
Descriptions of the typical pattern of impairment in early AD (Howieson et al., 2008; 
Kolb, 2015; Lezak et al., 2012; Rushing et al., 2014; Weintraub et al., 2012) invoke 
relationships between variables. These relationships had not been explicitly statistically 
modelled at multiple points along the eAD continuum. Accordingly, the primary aims of 
the study were to estimate neurocognitive network models for CN, aMCI, and eAD 
participants and to explore the centrality and other network characteristics of these 
models. Additionally, the study aimed to generate hypotheses for future 
(dis)confirmatory research. 

The neurocognitive network models suggested that memory variables were 
highly influential for all groups, particularly for the aMCI group where the immediate 
and delayed AVLT variables displayed the highest strength centrality. DSS, a measure of 
attention/processing speed, was also highly central in the network models for both 
clinical groups. Indeed, DSS showed the highest strength centrality in the eAD model. 
These network properties suggest that attention and processing speed, as well as 
episodic memory variables, were important influences on neurocognitive functioning in 
aMCI and eAD, particularly for the eAD group. 

In general, non-episodic memory variables may become more central in the 
network models with disease progression. Notably, category fluency became more 
central in the network models across the eAD continuum. Category fluency was the 
second most central variable in the eAD network model (strength centrality z score = 
1.31), suggesting that the processes sampled by this task were important influences on 
neurocognitive status in eAD. By contrast, category fluency variable was less central in 
the aMCI (z score = .54) and CN (z = .32) network models, implying it was less 
influential for these groups. In Tosi et al. (2020), category fluency was the most central 
node in the AD model. This could be because the AD participants in their study were 
more advanced (MMSE mean total = 20.87, 95% CI = 20.52, 21.23) than those in the 
present study (MMSE score of 23.4, 95% CI = 23.1, 23.7). Relationships amongst 
category fluency and other neurocognitive variables could plausibly change as cognitive 
deterioration occurs. Accordingly, it is hypothesized that category fluency becomes 
more central in neurocognitive network models further along the AD continuum 
(hypothesis 2).
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While impairment on category fluency tasks is often present early in the course 
of AD (Adlam, Bozeat, Arnold, Watson, & Hodges, 2006; Gomez & White, 2006; Vaughan, 
Coen, Kenny, & Lawlor, 2018), it is unclear whether problems with executive access 
and/or semantic integrity underlie this. Some studies suggest that semantic knowledge 
appears to be relatively spared in comparison to episodic memory in the early stages of 
the disease (Balthazar, Cendes, & Damasceno, 2008; Linet al., 2014; Rogers & Friedman, 
2008), especially regarding superordinate concepts (Giffard et al., 2001). However, 
other studies have suggested that significant semantic degradation is present early in 
AD (Adlam et al., 2006; Mårdh, Nägga, & Samuelsson, 2013). Others still have suggested 
that both executive access and the availability of semantically related words are 
damaged (Joubert et al., 2010; Weakley & Schmitter-Edgecombe, 2014). Similarly, it is 
not yet known which processes sampled by the test best account for its high centrality 
in neurocognitive network models of AD. Understanding whether semantic or executive 
functions best account for the centrality of category fluency in these models would help 
to provide a more granular view of the relationships between neurocognitive variables 
along the eAD continuum. It is important for future network research to address this 
question as centrality indices can guide interventions and offer insight on how robust 
networks are to deficits in particular nodes (Costantini et al., 2015).

Further reorganisation of the wider neurocognitive system was observed in the 
clinical groups. In the clinical network models, two putative clusters of variables 
emerged. One consisted of memory, semantic and language-related tasks and the other 
was formed of tasks probing attention, processing speed and working memory. This 
pattern was more pronounced in the eAD network model. Here the study echoed 
findings reported by Tosi et al. (2020), who noted a memory cluster and an executive 
cluster in their AD network model. Together, these findings indicate that neurocognitive 
functioning in the early clinical stages of AD are influenced by the reorganisation of 
neurocognitive functions into two main constellations - in contrast to the more 
fractionated neurocognitive domains observed in groups of CN older adults. Greater 
confidence can be placed in the reliability of this pattern in AD as it has been observed 
in two relatively large samples with differing instruments probing similar 
neurocognitive domains. The consistency between these two network studies 
represents progress in the network psychometrics of neurocognition, as data-driven 
exploratory methods do not necessarily generate results that generalise well to other 
data sets (Fried & Cramer, 2017). Further, the pattern is consistent with previous 
research latent variable model-based research (Brugnolo et al., 2009; Duro et al., 2010). 
Future (dis)confirmatory research should utilise clustering algorithms to determine 
whether the putative clusters that were proposed in this study meet recommended 
criteria for ‘true’ clusters (Hennig, 2015). It is hypothesized that memory-semantic-
language and attention-speed-working memory clusters will characterise 
neurocognitive functioning, at the group level, in eAD and, to a lesser extent, in aMCI 
(hypothesis 3). 

Finally, when the network models were inspected with reference to existing 
evidence, analysis of specific edges suggested a potential compensatory link between 
category fluency and episodic memory. After conditioning on all other nodes in the 
models, a link between category fluency and AVLT Immediate was present in the 
network models for all groups. Moreover, this link was stronger in groups further along 
the eAD continuum, suggesting increasing reliance on semantic processes to support 
the acquisition of word list information with disease progression. It is known that 
semantic knowledge, which is probed by category fluency tasks, can provide scaffolding 
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for the acquisition of episodic memoranda in MTL amnesia as a result of anoxia or 
encephalitis (Kan et al., 2009). While category fluency is impaired in aMCI and eAD 
relative to healthy controls (Weakley & Schmitter-Edgecombe, 2014; see also Table 2), 
and in MTL amnesiacs when the category prompt recruits episodic memory (Greenberg, 
Keane, Ryan, & Verfaellie, 2009), it is possible that semantic abilities compensate for 
impaired episodic memory acquisition in aMCI and eAD. Indeed, one study indicates 
that mildly impaired AD patients (CDR = .5-2.0) exhibit semantic networks that are 
broadly comparable to healthy controls, although they show reduced availability of 
semantically connected words (Weakley & Schmitter-Edgecombe, 2014). Speculatively, 
these semantic networks may provide a source of compensation for aMCI and eAD 
groups during the acquisition of word lists. Alternatively, the links between category 
Kuency and AVLT Immediate in the network models could simply be because patients 
who performed well on the one test also performed well on the other and vice versa. 
Along these lines, the stronger relationship between these nodes in the eAD group, 
which displayed the most severe cognitive impairment in the study, could be because 
there is generally less variability in performance across tests in people with poorer 
overall neurocognitive functioning (Binder et al., 2009). Whether or not the semantic 
processes underlying category Kuency performance aid the acquisition of word list 
memoranda in aMCI and eAD provides a hypothesis for future research to test 
(hypothesis 4).

4.1. Limitations
There at least two potential limitations with the methods used in this study. The first 
concerns variable selection, which is a prominent issue in the network psychometric 
literature (Fried & Cramer, 2017). If a variable that is strongly related to other variables 
is not included in the network model, the structure is likely to change. The exclusion of 
variables with restricted variance (e.g., error scores for category fluency) was necessary 
to ensure normality for model estimation (Epskamp & Fried, 2018) and adequate 
variance to produce reliable between subjects results (Hedge et al., 2018). However, 
this is not to say that the excluded variables are not important reflectors of 
neurocognitive functioning across the eAD spectrum. Indeed, some neuropsychologists 
have argued that error scores are highly important for understanding cognitive 
impairment in disease states (Milberg et al., 2009). Ultimately, it is down to the 
researcher to carefully decide which variables to include in a network model (Fried & 
Cramer, 2017).

The second possible limitation concerns the model selection and regularisation 
procedures employed. Simulation studies were conducted to select parameters that 
would likely maximise specificity, potentially at the expense of sensitivity. 
Pragmatically, these procedures were indicated, given the need to place confidence in 
the reliability of the observed edges in an exploratory study. Simulation studies also 
suggested that a detrimental reduction in sensitivity did not occur. Nonetheless, these 
methods may have led to true positive edges not being included in the models. The 
potential loss of sensitivity has interpretive implications as the absence of evidence for 
an edge in a network model is not evidence of absence of the edge in the true network. 
As a result, all interpretations and hypotheses were generated with caution. 

The study also highlights two general limitations with the application of network 
psychometrics to neurocognition. First, the study estimated networks on the basis of 
group-level cross-sectional data. It is problematic to make inferences about the 
neurocognitive functioning of individual patients from group level data, as group 
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averages do not necessarily pertain to individual patients. Second, it is harder to make 
causal inferences from network models based on cross-sectional, as opposed to 
longitudinal, data. These limitations also apply to practically all latent-variable models 
of neurocognition in the neuropsychological literature (Delis et al., 2003). To address 
these limitations, future network research could utilise within-subject longitudinal data 
to investigate individual differences as well as group patterns in neurocognitive 
functioning. Such data might be generated through experience sampling methodology, 
which has recently been validated for investigating relationships between processing 
speed and affect in a non-clinical sample (Verhagen et al., 2019). A further benefit of 
using longitudinal data would be the opportunity to statistically model the temporal 
dynamics of neurocognitive functioning, which are also invoked in descriptions of the 
typical patterns of impairment in eAD worsening over time.

5. Conclusion
In summary, the relationships amongst neurocognitive variables may change in a way 
that is hinted at but not clearly stated in the description of the typical proFle of AD 
onset. While memory is a predominant inKuence on neurocognitive functioning in aMCI 
and eAD (and indeed in CN older adults), there was evidence of wider reorganisation of 
the neurocognitive system in these disease states. Namely, attention/processing speed 
and category Kuency became more inKuential in eAD, and two putative clusters 
(memory-semantic-language and attention-speed-working memory) of neurocognitive 
variables emerged in the aMCI and eAD groups. This pattern was more pronounced in 
the more severely impaired eAD group. The Fndings were broadly consistent with those 
of Tosi et al. (2020). By including an intermediate group (aMCI) between CN and eAD, 
this study provided a granular view of the relationships between neurocognitive 
variables at three points along the eAD continuum. Additionally, it generated 
hypotheses for future (dis)conFrmatory research.

6. Hypotheses
Four hypotheses were generated:

1. Episodic memory variables will be most central in confirmatory neurocognitive 
network models of aMCI.

2. Category fluency becomes increasingly central (i.e., influential) in neurocognitive 
network models of groups with more severe AD. 

3. Memory-semantic-language and attention-speed-working memory clusters will 
emerge in confirmatory neurocognitive network models for aMCI, eAD and AD 
groups. They will be more pronounced for groups with more severe AD. 

4. The semantic networks underlying category fluency performance support the 
acquisition of word list memoranda in aMCI and eAD.
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Appendix A: simulation studies of model selection and regularisation parameters

CN network model simulation study
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Appendix B: edge weight bootstraps

Confidence intervals around regularized edge weights in the CN network model

edge

−0.25 0.00 0.25 0.50

●● ●●Bootstrap mean Sample

C

Confidence intervals around regularized edge weights in the aMCI network model
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edge

−0.2 0.0 0.2 0.4

●● ●●Bootstrap mean Sample

a

Confidence intervals around regularized edge weights in the eAD network model
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e
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Appendix C: centrality estimates

CN network model centrality estimates
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aMCI network model centrality estimates
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eAD network model centrality estimates
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