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ABSTRACT 

Predicting the transport and fate of organic and inorganic contaminants in co-

contaminated soils is challenging, since various complex, inter-related processes are involved. 

In the presence of soil microbes that metabolise organic compounds (e.g., phenol), the chemical 

and the physical properties of the soil may alter and consequently affect the transport of 

inorganic trace metals e.g., Cu, Cd, Ni, Pb. However, the impact of their spatial distributions 

on the co-transport processes are still poorly understood and rarely available in literature. Here, 

we distribute the microbial colonies spatially in uniform and various non-uniform 

configurations and observe that the transport of weakly-sorbed Cd and Ni is greatly influenced 

by the distance of the colonies from the contaminant source rather than the size of the colonies. 

Whereas, for strongly-sorbed Pb and Cu, both the distance and the size are important. The 

spread of phenol in the model domain was substantially restricted by distributing the colonies 

more towards the transverse direction than in the longitudinal direction of the groundwater 

flow. In the context of co-contaminated soil remediation, this study demonstrates that optimum 
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and efficient spatial distribution patterns can be obtained to restrict the spread of both organic 

and inorganic contaminants, with subsequent reduced environmental impacts. 

 

Keywords: Biodegradation, phenol, bacteria, trace metals, partitioning, remediation 

 

1. Introduction  

Waste and wastewater, disposed or discharged from mine tailings, pesticides, 

pharmaceuticals, metal, and plastic industries, contaminate the surrounding environment with 

both inorganic and organic pollutants (Nsanganwimana et al., 2014). Trace metals, e.g., cadmium 

(Cd), nickel (Ni), chromium (Cr), Copper (Cu), lead (Pb), mercury (Hg), arsenic (As), and 

organic pollutants, e.g., petrochemicals, chlorinated solvents, pesticides, herbicides (Sandrin 

and Maier, 2003) can be found in those sites. Environmental impact assessment and remediation 

of co-contaminated sites of such toxic, persistent pollutants is complex and challenging, since 

various inter-related processes are involved (Olaniran et al., 2013; Song et al., 2017) and different 

treatment strategies need to be followed (Sandrin and Maier, 2003). Decontamination of metals 

is primarily based on physico-chemical, electrical and thermal techniques, whereas metabolic 

degradation via soil microbes is preferred for organic pollutants. The interactions between the 

pollutants affect their speciation, solubility as well as bioavailability, which can either inhibit 

or promote the efficiency of their remediation (Jin et al., 2014). This therefore further 

complicates the remediation of co-contaminated soils and the processes are not yet fully 

understood (Ye et al., 2017).     

Microorganisms, such as bacteria, can utilize organic aromatic carbons as sole substrates 

for cell growth and maintenance (Ucun et al., 2010), and can provide a pathway for 

bioremediation. Numerous studies (Said and Lewis, 1991; Kuo and Genthner, 1996; Knight et 

al., 1997; Yoon, 1998; Roane et al., 2001; Li and Davis, 2008; Kret et al., 2015) were conducted 
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to estimate and/ or to enhance biodegradation efficiency of organic pollutants, and exhaustive 

reviews are available in (Nies, 1999; Sandrin and Maier, 2003; Olaniranet al., 2013). Existing 

literature, to a large extent, is focused on the consequences of metal toxicity on biodegradation 

and it is well established that the presence of heavy metals, above threshold concentrations, 

inhibit a wide range of microbial processes including organic biodegradation. In contrast, 

information regarding the effects of biodegradation on metal transport processes is lacking, 

despite its importance in the context of co-contaminated sites. A majority of the reported 

studies were conducted in controlled laboratory experiments where environmental conditions 

were strictly controlled (Ye et al., 2017). For example, the pH of a system is often regulated to 

achieve optimum microbial growth and/or maximum biodegradation. However, studies (Garcia 

et al., 2000; Ucun et al., 2010; Feitkenhauer and Meyer, 2004) that allowed variation or did not 

strictly regulate the conditions, reported changes in pH with biodegradation.  

Ucun et al. (2010) conducted batch experiments in a bioreactor to assess biodegradation 

of phenol. Although a phosphate buffer system was included to control/ stabilize the pH, 

reduction was recorded in each experiment. Similar results were reported by Garcia et al. 

(2000) and Feitkenhauer and Meyer (2004) who investigated removal of phenol and phenolic 

compounds from wastewater via microbial degradation. Davis et al. (2007) and Prommer et al. 

(2007) conducted large-scale column experiments and numerical studies respectively, to 

investigate the effects of increasing acidity on bio-precipitation of trace metals (Cu, Zn and 

selenium). Ethanol was injected into metal-spiked groundwater under controlled conditions to 

reduce sulphates into metal sulphides. Along with the robustness of metal bio-precipitation, 

they observed increased mobility of metals when pH buffering was reduced or exhausted. This 

is of importance for in-situ or field conditions, where suitable pH buffers may not be present 

or favourable pH conditions cannot be maintained. For example, soils with low organic matter, 

cation exchange capacity or clay contents exhibit poor pH buffering.  Retention and release of 
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trace metals in soil, to a large extent, is controlled by the solid-solution partitioning behaviour 

(Tipping et al., 2003) and soil pH can significantly influence this behaviour (Sauvé et al., 2000; 

Sheppard, 2011).  

Studies that reported increasing toxicity on microbial activities with metal concentration 

were based on pure monocultures (Sandrin and Maier, 2003). In contrast, those that used a 

consortium of mixed microbial cultures (Capone et al., 1983; Kuo and Genther, 1996; Kang et 

al., 2016) reported stimulation of microbial activities at low metal concentrations, which 

elevated to a maximum level before decreasing with increasing metal concentrations. This is 

mainly associated with the differential inhibition mechanism and the alleviation of competition 

for resources in a mixed culture of microorganisms (Sandrin and Maier, 2003). Mixed cultures 

can also exhibit higher resistance to pH, and increased growth, than monocultures (Kolmert 

and Johnson, 2001; Kang et al., 2016).  

A few studies that predict transport and biodegradation of organic pollutants are available 

in (MacQuarrie and Sudicky, 1990; Frind et al., 1999; Prommer et al., 2002, 2007), but those focused 

on the transport of both organic contaminants and trace metals coupled with biodegradation 

are limited. In general, laboratory studies and predictive models consider a uniform distribution 

of biomass in the experiments or in the model domain. In reality, microbial biomass exists non-

uniformly, controlled by attachment and detachment mechanisms imparted by prevailing 

favourable or unfavourable environmental conditions, respectively, which can give rise to a 

stochastic distribution (Watnick and Kolter, 2000). The patterns of their distribution can 

potentially impact the co-transport behaviour of both pollutants, and are therefore, important 

for environmental impact assessment as well as remediation of co-contaminated sites. 

However, such studies are rarely available in the literature. 

In this study, we use a predictive model (Masum and Thomas, 2018a, b) to investigate 

the transport and fate of co-discharged organic and inorganic pollutants in the vicinity of a 
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contaminant source. We consider four heavy metals, e.g., Cu, Ni, Cd, Pb, and phenol as the 

organic pollutant. Phenol biodegradation is considered to be driven by a microbial community 

of mixed bacterial species. In this paper, we focus on the distribution patterns of the microbes. 

We distribute them non-uniformly, both symmetrically and asymmetrically, as well as 

uniformly throughout the model domain to envisage the extent of their impacts on the co-

transport behaviour of the pollutants. We aim to identify the key factors and features in the 

distribution patterns that perhaps facilitate the remediation of co-contaminated soils effectively 

and minimise overall environmental impacts.  

 

2. Methodology 

Here we present the theoretical basis of the transient model that includes fluid flow, 

contaminants flow, microbial growth kinetics and their coupled interactions. We also present 

the phenol degradation reaction, pH dependent solid-solution partitioning and the adopted 

coupling procedure.  

2.1 Phenol biodegradation  

Phenol, phenolic compounds are often found in industrial wastewater which are 

carcinogenic and imposes sever risk to public health. Due to their persistent, non-degradable 

nature, USEPA has listed phenols as one of the priority pollutants (Ucun et al., 2010).  Phenol 

is an inhibitory substrate; at higher concentration it slows down microbial growth and 

consequently the degradation. Both aerobic and anaerobic microorganisms can be used to 

degrade phenols. Nonetheless, aerobic microbes are more efficient, as they grow rapidly and 

usually convert organic substrates into inorganic compounds, e.g., CO2, cell mass and water ( 

Sandrin and Maier, 2003).  Here, we consider the following biodegradation reaction (Bethke, 

2008) of phenol (C6H5OH). 𝐶6𝐻5𝑂𝐻(𝑎𝑞) + 7𝑂2(𝑎𝑞) +  3𝐻2𝑂 → 6𝐻𝐶𝑂3− + 6𝐻+                                       (R1) 
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The degradation reaction produces acid that may reduce the pH level of a system in absence of 

other chemical processes or suitable pH buffers.  

 

2.2 Solid-solution partitioning coefficient (Kd) and pH  

The partitioning or distribution coefficient correlates the solid phase metal concentrations 

to the liquid phase at equilibrium. A large number of Kd values were compiled and categorised 

with respect to solution pH, organic and total metal concentration (by Sauvé et al. (2000)) or 

clay content (by Sheppard (2011)). They found the best fit to data using linear regressions and 

developed empirical relationships to predict Kd as a function of pH, organic matter content, 

total metal concentration/clay content. Although inclusion of soil organic matter, total metal, 

clay content improved the regression to some extent, both studies reported that the dominant 

variable to predict Kd in soil is pH. In their data, Sauvé et al. (2000) included soil studies only 

and excluded specific clays or oxides and, therefore, we adopt their empirical relationships 

specific to the metals of interest (Table 1) in this study. 

  

Table 1 Solid-solution partitioning of the four heavy metals considered in this study. 

Partitioning coefficient, Kd (l/kg) as a function of pH, reported by Sauvé et al. (2000). 

Heavy metals pH dependent Kd relationships 

Cd log10(Kd) = 0.49pH - 0.60 

Pb log10(Kd) = 0.49pH + 1.37 

Cu log10(Kd) = 0.27pH + 1.49 

Ni log10(Kd) = 0.72pH - 1.75 

 

2.3 Theoretical description 
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We denote 𝑐𝑑(𝐱, 𝑡)  as the concentration of a solute in soil solution at point 𝐱 ∈ 𝛀, where 𝛀 represents the soil domain. Solute transport is governed by the liquid phase 

velocity, hydrodynamic dispersion and retardation at the solid-liquid interface. We express the 

governing equations as:   

𝑅𝐷𝑖 𝜕𝑐𝑑𝑖 (𝐱,𝑡)𝜕𝑡 + 𝐯𝐥(𝐱, 𝑡) ∙ ∇𝑐𝑑𝑖 (𝐱, 𝑡) − ∇ ∙ (𝑫ℎ𝑖 ∇𝑐𝑑𝑖 (𝐱, 𝑡)) = 𝑠𝑑𝑖    
 𝐱 ∈ 𝛀 

 
(1) 

𝐯𝐥(𝐱, 𝑡) = − 𝑘𝑠𝑎𝑡𝑛𝛾𝑙 ∇𝑢𝑙(𝒙, 𝑡) 

 𝐱 ∈ 𝛀 
 
(2) 

𝑅𝐷𝑖 = 1 + 𝜌𝑏𝐾𝑑𝑖𝑛 . 
 
(3) 

Here 𝑅𝑑is the retardation factor, 𝐯𝐥(𝐱, 𝑡) is the seepage velocity for horizontal flow, 𝑫ℎ 

is the matrix of hydrodynamic dispersion coefficients, 𝑠𝑑is the sink/source term (excluding 

sorption). 𝑢𝑙(𝐱, 𝑡) is the liquid pressure field, 𝑘𝑠𝑎𝑡 is the saturated hydraulic conductivity and, 𝛾𝑙 is the unit weight of water. 𝑛 is porosity, 𝜌𝑏is the soil bulk density and 𝐾𝑑is the soil solid-

solution partitioning coefficient. Superscript i represent the ith component in soil solution, i.e., 

one of the four heavy metals or phenol in this case. The hydrodynamic dispersion coefficient 

includes both mechanical dispersion and effective diffusion. Please see section S1.0 in the 

Supporting Information (SI) for details. We consider that the liquid is incompressible and 

therefore, ∇ ∙ 𝐯𝐥 = 0 

In nature, soil microbes exist both in sessile and planktonic states. However, sessile 

communities, or biofilms, are often the dominant state of microorganisms in a range of surface 

and near surface environments compared to the planktonic phases (Flemming and Wuertz, 2019). 

We express the sessile microbial community (or biofilm) zones in the soil domain as 𝛀𝐛, and 𝛀𝐛  ⊂ 𝛀. We write the mass conservation equations for microbes in solid and liquid phases as: 

𝜕𝜕𝑡 𝑐𝑏𝑠(𝐱, 𝑡) = (𝑟+ − 𝑟−)𝑐𝑏𝑠(𝐱, 𝑡)                                                           [sessile] 

 

𝐱 ∈ 𝛀𝒃 (4) 
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𝜕𝑐𝑏𝑙 (𝐱,𝑡)𝜕𝑡 + 𝐯𝐥(𝐱, 𝑡) ∙ ∇𝑐𝑏𝑙 (𝐱, 𝑡) − ∇ ∙ (𝑫ℎ∇𝑐𝑏𝑙 (𝐱, 𝑡)) = (𝑟+ − 𝑟−)𝑐𝑏𝑙 (𝐱, 𝑡) [plnk] 
 𝐱 ∈ 𝛀 

 
(5) 

where 𝑐𝑏𝑙 is the concentration of planktonic microbes in the soil solution, 𝑐𝑏𝑠(𝐱, 𝑡) is the 

concentration of attached/sessile microbes per unit volume of the soil at point 𝐱 ∈ 𝛀𝒃. Please note that a number of microbial species may exist in the sessile state and here 

we consider their total amount. 𝑟+  and 𝑟−  represent microbial growth and decay rates, 

respectively. Microbial growth via substrate metabolism is usually explained by the standard 

Monod Kinetic when it is assumed that the growth is not limited by an oxidiser. The assumption 

limits the application of the model to scenarios where supply of oxygen is abundant and it does 

not limit the growth, such as, in Ucun et al. (2010). The standard Monod kinetics do not include 

substrate inhibition effects. Metabolism of an inhibitory substrate, e.g. phenol, can be 

calculated using the Haldane equation. 

𝑟+ = 𝑘+ ( 𝑐𝑑𝑝𝐾𝑠′+𝑐𝑑𝑠)                             [Monod kinetic] 

𝑟+ = 𝑘+ ( 𝑐𝑑𝑝𝐾𝑠′+𝑐𝑑𝑝+(𝑐𝑑𝑝)2𝐾𝑖′
)                   [Haldane kinetic] 

(6) 

 

  

(7) 

where 𝑘+ is the specific substrate utilisation rate, 𝑐𝑑𝑝 is the concentration of phenol in soil 

solution, 𝐾𝑠′  is the Monod half-saturaiton constant. 𝐾𝑖′  is the inhibition constant which 

measures the sensitivity to inhibition by an inhibitory compound (Ucun et al., 2010). We 

calculate the loss or removal of the substrate phenol from soil solution using: 𝑠𝑑𝑝 = 𝑟+ 𝑌⁄  (8) 

where 𝑌 is the growth yield, i.e., the amount of biomass created per unit phenol degradation. 𝑠𝑑𝑝 represents the sink term of phenol in Eq.(1).  

We calculate the pH change associated with phenol degradation from reaction R1. We 

use the reaction stoichiometry and Eq.(8) to estimate the amount of proton released into the 

soil solution and feed that into the empirical relationships, listed in Table 1, to obtain the metal 
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specific 𝐾𝑑 values. The transient model solves the (relevant) governing transport equations, 

reaction and sorption in each time-step to calculate the primary variables: chemical 

concentration 𝑐𝑑, planktonic cell concentration 𝑐𝑏𝑙 , sessile cell concentration 𝑐𝑏𝑠,  and porewater 

pressure 𝑢𝑙; and pH, which are then updated for the next time-step. The detailed development 

of the model including theoretical formulation and numerical framework is available in 

(Masum and Thomas, 2018a). 

 

3. Results and discussion 

3.1 Effects of biodegradation on system pH and solid-solution partitioning coefficient 

In this section, firstly, we compare a laboratory phenol biodegradation experiment results 

(which is obtained from the literature) with the model predicted results. Then we calculate the 

impacts of phenol degradation on the system pH and, consequently, on the solid-solution 

partitioning coefficients of the metal contaminants. 

Ucun et al. (2010) conducted biodegradation of phenol under isothermal conditions in a 

batch reactor using activated sludge. The inoculum was a phenol degrading mixed culture 

grown aerobically from activated sludge with phenol as the sole source of carbon. Experiments 

were performed at various initial phenol concentrations ranging from 50 to 1000 mg/l. Each 

batch was prepared with 15-day old sludge and during the tests a sufficient supply of air was 

maintained (to agitate the contents of the reactor) to ensure that the microbial growth was not 

limited by oxygen. Data were collected at pre-defined time intervals until the phenol was 

exhausted in the reactor. To estimate phenol volatilization, air stripping tests were conducted 

during the experiments; however, no volatilization of phenol was detected. 

Here we simulate the following batch-experiment: initial phenol concentration of 250 

mg/l, microbial biomass concentration of 420 mg/l and pH at 6.3. In the experiment, biomass 

was defined as Mixed Liquor Suspended Solids (MLSS) (as inoculum). Here we assume that 
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the MLSS is mainly consists of microorganisms and therefore equals to the biomass 

concentration. The simulation parameters (Ucun et al., 2010): 𝑘+ =3.31×10-5 s-1, 𝑌 =0.45, 𝐾𝑠′=11.13 mg/l, 𝐾𝑖′=250.88 mg/l, 𝑟−=1.67×10-7 s-1. 

The simulation period was 5 h and the results are presented in Fig.1. The model predicted 

results show good agreement with the experimental results when microbial growth kinetics is 

described by the Haldane equation. The result of phenol degradation using standard Monod 

kinetics, which does not account for substrate inhibition, leads to rapid degradation of the 

organic pollutant as indicated by the experimental results.  

 

 

Figure 1. Comparison of experimental data and model predicted results of phenol 

biodegradation in a batch reactor. 

 

In their experiment, Ucun et al. (2010) used phosphate buffers to ensure favourable pH 

conditions for the optimal biomass growth and the maximum phenol degradation. The time 

dependent pH variation data are not available, but they reported that the minimum pH during 

this experiment dropped to 5.5 from the initial 6.3, despite the presence of the buffer in the 

solution. Here, we are interested to observe the pH variation when the condition is not regulated 
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during the simulation, i.e., in absence of a suitable pH buffer. We present the result in Fig.2a, 

which shows a significant drop of pH from 6.3 to 2.2 based on the reaction, R1. pH decreases 

sharply at the beginning, by the [H+] released from phenol degradation and slows down as the 

phenol is depleted. A mixed microbial consortium usually supports a large bio-kinetic pH range 

and, therefore, sustain optimum growth regardless of the pH variation (Kang et al. 2016; 

Kolmert and Johnson, 2001).  

Finally, we calculate the partitioning coefficients of Cu, Pb, Cd and Ni for the predicted 

pH range using the corresponding linear regressions in Table 1 and present in Fig.2b. The 

results show a few orders of magnitude variation in the Kd values for most of the heavy metals. 

Ni shows the most sensitivity while Cu shows the least. The order of sensitivity follows: Ni > 

Cd > Pb > Cu.  

 

  

Figure 2. Evolution of (a) pH in the batch solution, and (b) the corresponding solid-solution 

partitioning coefficient (Kd) following the regression relationships presented in Table 1. 

 

3.2 Co-transport of heavy metals and phenol under simultaneous phenol biodegradation  

In the previous section we have demonstrated the effect of phenol degradation on solution 

pH and estimated metal specific Kd values for that pH variation. Here, we predict the co-

transport behaviour of organic phenol and the heavy metals in soil when discharged 

simultaneously from a contaminant source. Since, microbial colonies in nature usually exist 
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non-uniformly or stochastically, on a number of scales, we evaluate several distribution 

patterns. We run a set of simulations by distributing sessile microbial community zones (𝛀𝒃) 

symmetrically, asymmetrically, as well as uniformly throughout the study area (𝛀). The 

conceptual distribution patterns are presented in Fig.3. We focus on the size of the community 

zones in terms of number colonies and their distances from the contaminant source in the 

configurations. We include the uniform distribution scenario, because conventional models 

often assume this distribution and it aids the comparison with non-uniform distribution 

scenarios. We assume that the soil is homogenous, the microbial community is an assemblage 

of species with differential optimum growth rates and favours a large bio-kinetic pH range 

(e.g., 2.0-8.0) for growth, and metal sorption dominates over any other chemical reaction. 

 

Symmetric Asymmetric 

Case 1 

 

Case 3 

 

Case 2 

 

Case 4 

 
 

Figure 3. Conceptual illustration of symmetric (Case 1, Case 2) and asymmetric (Case 3, Case 

4) distribution in the study domain. The black circular patch represents a community of diverse 

microbial (bacteria) species. Solid-lines and dashed-lines mark the locations where the results 

of metal concentration profiles are taken for Fig.7.  

 

3.2.1 Simulation data 
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 At present, no laboratory or field data, relevant to this study, is available in the literature. 

The simulations are therefore, strictly, part of a conceptual modelling study to understand the 

effects of these spatial distributions of microbial communities that can degrade phenol and, 

perhaps, consequently affect the mobility of the inorganic heavy metals. We have considered 

a representative study domain and simulated various scenarios. For example, concentrations of 

heavy metals and organic pollutants at the source can widely vary. We have considered their 

proportionate concentrations (e.g. equal and double) in the simulations, to investigate how do 

these variations influence co-transport behaviours. Microbial kinetics parameters, such as, 

substrate utilisation rate, substrate inhibition factor, yield, etc. are species dependant and can 

vary from site to site. In the simulations, we have used the microbial kinetics data of Ucun et 

al. (2010). Moreover, we have conducted a sensitivity analysis of these parameters and 

simulated microbial growth kinetics using a number of datasets from the literature on phenol 

biodegradation, to demonstrate the reliability of the data used in the simulations.  

3.2.2 Model domain, initial and boundary conditions  

We consider a 0.33 m by 0.15 m model domain consisting of silty soil with negligible 

clay content. The soil is initially free of any contaminates, i.e., initial concentration of phenol, 

Cd, Cu, Ni, Pb=0.0 mg/l and pH=6.0. Initial concentration of sessile biomass, 𝑐𝑏𝑠=0.001 mg/m3 

of soil. In symmetric (Case 1, Case 2) and asymmetric (Case 1, Case 2) scenarios, the initial 

biomass is contained within the circular community zone (radius=3 cm) presented in Fig.3. 

Concentration of planktonic microbes in the soil is negligible and therefore, 𝑐𝑏𝑙 =0.0. At the left 

boundary, e.g., x=0, we consider fixed concentrations of phenol=2.0 mg/l, Cd=1.0 mg/l, 

Cu=1.0 mg/l, Pb=1.0 mg/l and Ni=1.0 mg/l. Hydraulic head at the left and right boundaries are 

12.2 m and 10.2 m, respectively. Simulation runtime is 30 d or 720 h.  

 

Table 2. Parameter values for co-transport simulations 
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Parameters Values Comments 

Porosity, 𝑛 0.49  

Hydraulic conductivity, 𝑘𝑠𝑎𝑡 7.2×10-6 m/s (Singh and Gupta, 2000) 

Coefficient of longitudinal dispersion, 𝛼𝐿 0.033 m  

Coefficient of transverse dispersion, 𝛼𝑇 0.003 m  

Diffusion coefficient of Cu in water, 𝐷0𝐶𝑢  1.27×10-9 m2/s (Lide, 1994) 

Diffusion coefficient of Pb in water, 𝐷0𝑃𝑏 9.45×10-10 m2/s (Lide, 1994) 

Diffusion coefficient of Cd in water, 𝐷0𝐶𝑑 7.2 ×10-10 m2/s (Lide, 1994) 

Diffusion coefficient of Ni in water, 𝐷0𝑁𝑖 1.15×10-9 m2/s (Lide, 1994) 

Solid-solution partitioning of phenol, 𝐾𝑑𝑝ℎ𝑒𝑛𝑜𝑙
 

2.812 l/kg (Khan and Anjaneyulu, 

2005) 

Soil bulk density, 𝜌𝑏 1330 kg/m3  

Specific growth rate, 𝑘+ 

Yield coefficient, 𝑌 

Monod half-saturation constant, 𝐾𝑠′ 
3.31×10-5 s-1 

0.45 

11.13 mg/l 

(Ucun et al., 2010) 

(Ucun et al., 2010)  

(Ucun et al., 2010) 

Inhibition constant, 𝐾𝑖′ 
Cell death rate, 𝑟− 

250.88 mg/l 

3.18×10-7 s-1 

(Ucun et al., 2010)  

(Taylor and Jaffe, 1990) 

 

3.2.3 Results 

The model parameters are listed in Table 2. We present the results of phenol, pH and 

biomass evolution in Fig.4 and in Fig.5a-5e, respectively. The non-uniform distribution results 

are plotted at the centre of each circle for Case 1-4 (Fig.3). Fig.5f shows the biomass 

concentration profile along the length of the domain for uniform distribution after 30 d or 720 

h. We also present the contour plots of phenol and pH, obtained at the end of the simulation, in 

Fig.6. 
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Figure 4. Phenol and pH evolution during the simulation in symmetric (a) Case 1, (b) Case 2; 

asymmetric (c) Case 3, (d) Case 4; and in (e) uniform distribution scenarios. The results are 

plotted at the centre of the circles for non-uniform distribution (Fig.3) and at x=0.05, 0.165, 

0.28 m for uniform distribution. (L) and (R) in (a) represent the left and right circles of Case 1 

distribution, respectively. The left-vertical-axis scales phenol and the right pH. Please note that 

the pH evolution for uniform distribution in (e) is presented for x=0.05 m only, since negligible 

differences were observed in the results at x=0.165 and 0.28 m. 
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Figure 5. Biomass growth during the simulation in symmetric (a) Case 1, (b) Case 2; 

asymmetric (c) Case 3, (d) Case 4; and in (e) uniform distribution scenarios. (f) Biomass 

concentration along the length of the sample at the end of the 720 h simulation period. The 

results are plotted at the centre of the circles for non-uniform distribution (Fig.3) and at x=0.05, 

0.165, 0.28 m for uniform distribution. (L) and (R) in (a) represent the left and right circles of 

Case 1 distribution, respectively. 

 

In every scenario (Fig.4), phenol concentration increases rapidly to the boundary concentration 

of 2.0 mg/l, due to the fast advection in the soil. The elevated concentration persists until the 

microbial community is large enough to make any noticeable change via biodegradation. Fig.5 

results show that biomass grows very slowly up until 360 h and, thereafter, exponentially. At 

this point 40 pore volumes have been moved through the domain. Microbial growth is higher 

near the source than away from it. This is due to faster supply and recharge of phenol in the 

vicinity of the source than that of the distant microbes. The maximum biomass growth is 

observed at the source, 267.2 mg/kg, in case of uniform distribution (Fig.5f). Biomass 

concentrations for non-uniform distribution patterns, i.e., case 1 (L), case 1(R), case 2, case 3 

and case 4 are 96.7, 43.7, 75.4, 79.9, 65.0 mg/kg, respectively (Fig.5a-5e). It is obvious that 

the symmetric Case 1(R) result in Fig.5a shows higher accumulation of biomass than the result 

plotted at x=0.28 m for uniform (Fig.5e) scenario, although they represent the same location in 

the domain. This is because of the intermittent presence of the microbial community (in the 

former) rather than their continuous presence (in the later). Microbes near the source hinder the 

supply of phenol to the rest of the domain. Together with Fig.4, Fig.5 results indicate that 

microbial growth continues to the end of the simulation, despite the phenol being exhausted 

within the biomass cells between 555-580 h in all cases. The hypothesis is tested in the Fig.A1 

of the Appendix. Fig.A1 presents the phenol concentration profiles along the length of the 
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sample, and the biomass concentrations across the 6 cm biofilm circles, at various simulation 

periods, for Case 1 distribution. At the early stages (5 d), when the biomass amount is relatively 

small, phenol concentration across the sample remains high. As the biofilm growth continues, 

the phenol concentration within the circular patches reduces sharply, although it remains 

relative higher in the rest of the domain. Despite the continuous biofilm growth, no deviation 

is observed between the 25- and 30-day phenol concentration profiles indicating that the 

biofilms are large enough to metabolise the supplied phenols. This is also noticeable in Fig.6a 

where the phenol is exhausted within the community zones, depleted in the surrounding area 

and flowing with the soil solution. Fig.4 results show that the solution pH evolves conversely 

to the biomass. Phenol biodegradation drives the production of protons, as per reaction R1 and 

reduces the solution pH. The reduction occurs spontaneously, since no buffer or pH-adjustment 

was considered in the simulations. The largest pH drop, from 6.0 to 2.3, is observed (Fig.6b) 

in the uniform scenario and then in Case 1(L) (pH=3.2). These are correlated with the higher 

biomass growth (observed in Fig.5), phenol metabolism and proton release. Although, the 

biomass concentrations in Fig.5a show significant variations between case 1(L) and (R) results, 

variation in pH evolution is negligible (Fig.4a). The protons/ [H+] generated in the left circular 

zone are transported to the right with the flowing water, which elevate the [H+] concentration 

at that point. Case 2 and 3 show a similar trend and magnitude which complements their 

corresponding biomass growth. The lowest pH reduction is observed in Case 4 (Fig.4d & 6b), 

where the distance of the microbial colony from the source is longer than any other cases 

presented here.  
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Figure 6. Contour plots of (a) phenol and (b) pH distribution in the model domain at the end 

of 30 d simulation period 

 

In Fig.7, we present the concentration profiles metal contaminants along the length of the 

model domain. Cu, Ni, Cd and Pb were co-transported in the soil with the organic phenol. The 

profiles are plotted at the end of the simulation along the lines presented in Fig.3. The ‘fix pH’ 

results represent the scenarios where a suitable phenol-degrading community is not available 

and, therefore, the system pH remain unchanged (at 6.0 in this case), i.e., constant Kd. The 

results indicate that metal transport is associated with the aforementioned pH evolution in the 

study area (Fig.4 and 6b). Metals spread the most with the flowing water when the microbial 

community is considered to be distributed uniformly throughout the domain. We observed the 

largest pH drop in this case, suggesting a significant impact on the Kd values. We have seen in 

the previous subsection that the sensitivity of Kd towards pH varies from metal to metal. 

Weakly-sorbed or less retarded metals, e.g., Cd and Ni spread similarly in both Case 1 and in 

uniform distribution scenarios. Transport of these metals are also large in the Case 2 symmetric 
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distribution. The deviation between concentration profiles (the solid- and dashed-lines), are 

negligible in symmetric distribution scenarios, suggesting similar transport behaviour across 

the domain. To further investigate the importance of the locations of the colonies, we have 

presented additional distribution scenarios in Fig.S3 of the SI, namely Case S1 and S2.  

Configuration of the colonies in Case S1 are similar to the Case 2 but located at a longer 

distance from the source (centre of the 𝛀𝒃’s is at x=0.28). Ni transport reduces significantly in 

this case, 0.53 and 0.16 mg/l at x=0.15 and 0.30, respectively (Fig.S3e). Therefore, an increase 

of 11.5 cm in distance results into 44.8% to 80% reduction of Ni transport with respect to Case 

2. The asymmetric distributions (Case 3 and 4) show lower mobility and less spread of the 

metal contaminants. Although the area of microbial colony in Case 3 is half of that of the Case 

2, metals transport similarly, near the source, in these cases. For example, at x=0.15, Cd=0.98 

and 0.95 mg/l, Ni=0.96 and 0.91 mg/l for Case 2 and Case 3, respectively.  However, away 

from the source large deviation is observed. At x=0.30 these values are Cd=0.82 and 0.72 mg/l, 

Ni=0.80 and 0.56 mg/l. Transport of these metals are slowest in Case 4 distribution (at x=0.15, 

Cd=0.80 mg/l and Ni=0.50 mg/l).  Unlike the symmetric distribution cases, where these metals 

transport similarly in the study domain, the asymmetric distributions show clear variations. The 

deviation between the solid- and dashed-lines are noticeable in the Fig.7 results for Cd and Ni. 

We also present the contour plots of Ni as an example in Fig.S1 (of SI), which displays highly 

skewed contours near the microbial community zone in asymmetric distributions (Case 3 and 

Case 4). However, this lessens away from the community zone suggesting differential transport 

behaviour in the model domain. In these simulations, the microbial community zones (𝛀𝒃) 

occupy 11.4% and 5.7% of the total domain for symmetric (Case 1 & 2) and asymmetric (Case 

3 & 4) distributions, respectively. The area of the microbial zone in Case S2, presented in 

Fig.S3, is same as the Case 3 or Case 4, but located closer to the source (the centre of 𝛀𝒃 is at 

x=0.05 which is same as the Case 1L circle presented in Fig.3). Ni transport (Fig.S3e) in this 
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case is same as the uniform and the Case 1 distribution scenarios (Fig.7), which suggests that 

the distance of the colonies from the source has more influence on over the size of the overall 

colonies. Therefore, a microbial colony that occupy only 5.7% of the total area can yield same 

transport and spread of the weakly-sorbed metals as the uniform distributions, depending on 

their locations in the soil sample/ study area.  

The strongly-sorbed metals, e.g., Pb and Cu show marginal or unnoticeable variations 

between asymmetric distribution cases and their concentration profiles are either analogous 

(Case 4) or close (Case 3) to the ‘fix pH’ results (Fig.7). We observe the largest spread in the 

uniform distribution scenario (Pb=0.5 mg/l at x=0.061) and then in Case 1 (Pb=0.5 mg/l at 

x=0.028) where the colony is located at a close proximity to the source. For Cu, these values 

are 0.16 and 0.10 m. Although the microbial colonies occupy 11.4% of the total domain and 

located closer to the source in Case 1 scenario, transport of Pb and Cu is significantly less than 

the uniform distribution. Therefore, both the location and the size of the colonies are important 

for the transport of strongly-sorbed metals.  

Further the distance and smaller the size, their impact diminishes, and the metal transport 

is mediated by the advective-dispersive transport (as if) with a constant retardation throughout 

the space. The concentration profiles of these metals do not show any deviation between the 

solid- and dashed-lines (Fig.7) for either symmetric or asymmetric distributions which are 

either due to strong retardation in soil or their less sensitivity to pH variation or both.  
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Figure 7. Concentration profiles of Cd, Pb, Cu and Ni along the length of the sample at the end 

of the 30 d simulation period. The symbols represent (○) Case 1, (□) Case 2, (∆) Case 3, (◇) 

case 4, and (☆) uniform distribution scenarios, presented in both plots. Solid-lines and dashed-

lines represent concentration profiles through the centre of the circles and away from the circles 

(Fig.3), respectively. The symbol (×) represents ‘fix pH’ simulation scenario where pH change 

is ignored, i.e., constant-Kd. 

 

Therefore, no differential transport is observed in the model domain. We have presented the 

contour plots of Cu in Fig.S2 (SI) which shows inconspicuous distortion of the contours. 
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We observe that the phenol degradation in the entire domain occurs when the microbes 

are distributed uniformly across the domain (From Fig.6a). However, this also results into 

accelerated transport and maximum spread of the inorganic contaminants. In context of co-

contaminated site remediation, non-uniform spatial distributions provide few alternatives. 

When the colonies are located in the transverse direction of the groundwater flow, e.g. Case 2 

and S1, substantial reduction of phenol occurs is the wider area, especially beyond the colonies, 

and depending on their distances from the source significant immobilisation of metal can also 

be achieved. If the colonies are located along the groundwater flow direction (Case 1), the 

phenol depletion occurs in specific areas. Therefore, an appropriate configuration can be 

chosen to achieve significant removal of organic contaminant while minimising the co-

transport of inorganic contaminants.  

The results in Fig.4-7 are based on a large hydraulic gradient or seepage velocity that 

amplifies the effect of microbial spatial distribution on the transport of co-contaminants. High 

advection facilitates quick and adequate supply of the growth substrate to the microbial 

colonies. However, in field conditions, the hydraulic gradients can be much lower. Simulation 

results for such a situation are presented in Fig.A1 and A2 of the Appendix. The simulation 

conditions and parameters are same as those presented in Section 3.2.2, except the hydraulic 

head boundaries. In this simulations, the hydraulic head gradients at the left and the right 

boundaries are 10.213m and 10.2m, respectively, which results into a gradient of 0.04 across 

the sample domain. In comparison to Fig. 6a, the results in Fig.A2 shows significantly small 

spread of phenol ever after 30 days of simulation for all patchy distribution cases. Phenol 

depletion and consequent biofilm growth is only visible in the Case 1 scenario where the 

microbial colony is closer to the source. In all other cases, sufficient supply of phenol substrate 

is yet to reach to the microbes. The effect of reduced phenol transport and microbial growth on 

the spread of Cd is presented in Fig.A3. The pH of the sample domain remains unaffected in 
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Case 2-4 scenarios. Although the pH in Case 1 distribution shows noticeable reduction, due to 

the low advective flow, the spread of Cd remains insignificant and follows the predicted 

profiles of the other distribution cases. This also highlights the effect/ contribution of water 

flow rate on the overall co-transport behaviours (microbially influenced) of the contaminants. 

So far, we have simulated the scenarios where phenol concentration at the source is twice 

the concentration of heavy metals at the source. We also investigated the scenarios for an equal 

proportion of organic and inorganic contaminants at the boundary, i.e., at x=0 we considered 

fixed concentrations of phenol, Cd, Cu, Pb and Ni=1.0 mg/l; while the other conditions, 

parameters and simulation runtime remained unchanged. We present the results of Ni in Fig.8 for 

30 d simulation period and compare them with the results presented in Fig.7. The unfilled-symbols 

represent the results of 2.0 mg/l phenol at the boundary (i.e. previous simulation), while the filled-

symbols represent the 1.0 mg/l results (i.e., current simulation). Fig.8a shows the comparison of biomass 

growth between the two different boundary conditions for Case 1(L) distribution..  

 

   

 

Figure 8: Impacts of phenol and heavy metal proportions at the source concentration on the co-transport 

behaviour. Evolution of (a) biomass, (b) phenol and pH for the Case 1(L) symmetric distribution 

scenario. In (b), the symbol (○) scales phenols to the left-vertical axis and ( ) pH to the right-vertical 
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axis. Ni concentration profiles along the samples for (c) Case 1(L) symmetric distribution and (d) Case 

3 asymmetric distribution scenarios. The filled-symbols represent the 1.0 mg/l simulations while the 

unfilled-symbols represent 2.0 mg/l phenol at the source boundary. The remaining definition of the 

graphs in (c) and (d) are same as in Fig.7. Simulation period 30 d. 

 

We observe that when phenol concentration is halved at the source, biomass growth reduces 

significantly, 0.78 mg/kg, during the same period of time. Phenol depletion and pH reduction are 

significantly small in comparison to the previous simulation (Fig.8b). We present the concentration 

profiles of Ni in Fig.8c and Fig.8d for Case 1 and Case 3 distributions, respectively, as well as compare 

them with the results presented in Fig.7. Ni spreads similarly in both set of simulations for uniform 

distribution; however, it retards significantly for Case 1 and Case 3 scenarios. For example, at 0.2 m 

distance from the source a 30% reduction of Ni concentration is observed, in Case 1, when the phenol 

concentration is halved.  In Case 3, the observed reduction is 50% approx. Microbial growth slows 

down with the reduction of substrate concentration and consequently the impacts of biodegradation on 

the heavy metal transport. Likewise the previous set of simulations, the extents of metal spread in this 

set of simulation is larger in Case 1 than in Case 3 which show that the location of the bacterial colony 

and their size remain substantial. However, if the simulation period is extended the growth as well as 

the impacts becomes more apparent. Please see the results presented in Fig.S4 of the SI for a 45 d (1080 

h) simulation period 

The results and analysis presented in this section suggest that both the locations of 

microbial communities and their distribution patterns influence the co-transport processes. 

Laboratory experiments that aim to measure such transport behaviour in soils, usually consider 

spiking the samples with bacterial culture to generate a pseudo uniform distribution. But soil 

heterogeneities might prevent their uniform presence throughout the laboratory samples, and 

/or, more obviously, in the field conditions. The findings of this study provide useful insight to 

the extents to which this uncertainty matters, i.e., the discrepancies between the batch test data 

and the field/ calibrated model data. 
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3.2.4 Limitations, uncertainty, and sensitivity of the model data/ parameters  

Growing biofilms occupy the pore spaces in a porous medium and alleviate the available 

flow channels. This can eventually affect the hydraulic conductivity of the medium. In this 

study, the impacts of biofilm growth on the saturated hydraulic conductivity has been neglected 

which perhaps resulted into an overestimation of advective transport of the contaminants. The 

limitation will be addressed in future investigations.  

For field scale applications, reliable data on site-specific Kd values are essential, since 

the precision of model predicted metal transport results depends on the accuracy of the 

correlative/ regression relationships, presented in Table 1. Sites, where soil is partially saturated 

(rather than fully saturated), reduced fluid flow may hinder supply and recharge of organic 

substrates and affect microbial growth as well as contaminant transport. Quantity of organic 

and inorganic pollutants at the source may often vary from site to site. We demonstrated that 

the higher the concentration of organic compound, the faster the microbial growth and the 

larger the spread of metal contaminants, and vice-versa. This is expected in soils with weak pH 

buffer where microbial degradation of organic compounds can alter the pH. Soils that are strong 

in buffering pH are expected to be less sensitive to pH change due to microbial processes and 

in such cases reactive transport of heavy metals can be predicted with a fixed solid-solution 

partitioning approach, given that sorption is dominant over other chemical reactions. 

We have mentioned previously that the microbial kinetics data is species dependent. To 

demonstrate the reliability of the data used in the simulations we compared them with existing 

data in the literature on phenol degradation and presented the results in Table S1 and Fig.S5 of 

the Supporting Information. The results show that the parameter data and the microbial growth 

kinetics lies well within the range available for several bacterial cultures. Biomass growth and 

pH evolution (associated with phenol degradation) occurs rapidly when the values of substrate 

utilisation rate are higher and/ or the half-saturation constants are lower. We also conducted a 
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sensitivity analysis of the microbial growth parameters and observed their impact on the spread 

of heavy metals (e.g. Ni). The results are presented in Fig.S6 of the Supporting Information. 

The results show that substrate utilisation rate is the most sensitive parameter and then the half-

saturation constant, therefore, they should be estimated with great care. The inhibition constant 

and the yield are found to be least sensitive. We observed that the Ni spread reduces 

significantly for an order of magnitude reduction in substrate utilisation rates (from 𝒪(10−1) 

to 𝒪(10−2)) and/ or half-saturation constants (from 𝒪(101) to 𝒪(100)). 

From the aforementioned discussion, we suggest that the site-specific information and 

accuracy of data will eventually improve the quantitative aspect of the presented results. 

However, the qualitative aspects and analyses of microbial spatial distribution impacts on the 

transport behaviour of co-contaminants, observed (and reported) in this study, will remain 

unchanged.  

 

4.0 Conclusions 

In this study, we observed that the co-transport behaviour of organic and inorganic pollutants 

is influenced by the spatial distribution of microbes capable of degrading the organic pollutant. 

Biodegradation of phenol affected the retardation and consequently the transport of Cd, Pb, Cu 

and Ni by altering their solid-solution partitioning, which was considered to be a function of 

soil pH. Partitioning of Cd and Ni showed more sensitivity to pH variation than Cu and Pb 

based on the linear-regression relationships considered in this paper. Due to its low retardation, 

phenol transported faster than the metal contaminants in the soil and the elevated concentration 

level persisted until the growth of soil microbes was significant.  

Biodegradation depleted phenol in the entire study area when the microbes were 

distributed uniformly throughout the domain. However, this also resulted in the largest spread 

of the metal contaminants. When non-uniform distributions were considered, the spread of 
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weakly-sorbed metals (Cd, Ni) was primarily influenced by the distance between the microbial 

colonies and the contaminant source, and then by the size of the area occupied by these colonies 

in the study domain. Even a microbial colony that occupies a small percentage of the total area, 

can accelerate the spread of these metals as large as the uniform distribution given that the 

colony is located at a close proximity to the source.  Further away from the source, their impact 

on the transport reduces. However, the spread of strongly-sorbed, slow moving metals (Cu, Pb) 

depended on both the distance and the size of these colonies.  

Phenol spread in the model domain was substantially restricted by distributing the 

colonies more towards the transverse direction than the longitudinal direction of the 

groundwater flow. When located along the longitudinal direction, phenol spread was larger and 

depleted at specific locations of the domain.  

We also observed that the proportion of organic contaminant at the source could 

influence the co-transport behaviours of inorganic contaminants by either retarding or 

accelerating the relevant processes. However, the impacts of microbial spatial distributions on 

the transport remain evident. In the context of co-contaminated soil remediation, this study 

demonstrates that optimum and efficient distribution patterns can be obtained to restrict the 

spread of both organic and inorganic contaminants or to remediate them. Therefore, risk 

assessments or remediation strategies should consider the locations of native microbial pools 

or the spatial distributions of applied external/ engineered microbes. However, to upscale or to 

apply the results of this study in the field, given the associated complexities, including 

heterogeneity, biomass effect on hydraulic conductivity, mobile and sessile biomass 

interaction, dispersion etc. is challenging. 

 

Appendix 
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Figure A1: Phenol and biomass concentration profiles along the length of the sample after 5, 

20, 22, 25 and 30 days for Case 1 distribution scenario. The shaded areas represent the 

locations of the circular microbial colonies in the model domain.  

  

(a)  

(b)  
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Figure A2: Contour plots of (a) phenol and (b) pH distribution in the model domain at the end 

of 30 d simulation period. The initial and boundary conditions, and model parameters are same 

as in the Section 3.2.2 except the hydraulic head values at the boundaries. The hydraulic heads 

at the left and right boundary are respectively 10.213m and 10.2 m, which is equivalent to a 

hydraulic gradient of 0.04 across the sample. 

 

 

Figure A3. Concentration profiles of Cd along the length of the sample at the end of the 30 d 

simulation period for various distribution scenarios. The plots refer to the simulations 

conducted for a hydraulic gradient of 0.04 across the sample. 

 

Acknowledgment 

Shakil A. Masum is funded by the Welsh European Funding Office through the Flexible 

Integrated System (FLEXIS) project. This financial support is gratefully acknowledged. 

 

Reference cited 

Angle JS, Chaney RL. 1989. Cadmium resistance screening in nitrilotriacetate-buffered minimal media. 

Appl. Environ. Microbiol. 55:2101–2104. 



30 

 

Bethke CM. 2008. Geochemical and Biogeochemical Reaction Modelling, 2nd Edition, Cambridge 

University Press: New York, NY. 

Capone DG, Reese DD, Kiene RP. 1983. Effects of metals on methanogenesis, sulfate reduction, carbon 

dioxide evolution, and microbial biomass in anoxic salt marsh sediments. Appl. Environ. 

Microbiol. 45:1586–1591. 

Davis AC, Patterson BM, Grassi ME, Robertson BS, Prommer H, Mckinley AJ. 2007. Effects of 

increasing acidity on metal(loid) bioprecipitation in groundwater: column studies. Environ. Sci. 

Technol. 41:7131-7137.  

Feitkenhauer H, Meyer U. 2004. Software sensors based on titrimetric techniques for the monitoring 

and control of aerobic and anaerobic bioreactors. Biochem. Eng. J. 17:147–151. 

Flemming HC, Wuertz S. 2019. Bacteria and archaea on earth and their abundance in biofilms. Nat. 

Rev. Microbiol. 17(4):247-260. 

Frind EO, Molson JM, Schirmer M. 1999. Dissolution and mass transfer of multiple organics under 

field conditions: the Borden emplaced source. Water Resour. Res. 35:683-694. 

Garcia IG, Pena PRJ, Venceslada JLB, Martin AM, Santos MAM, Gomez ER. 2000. Removal of phenol 

compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, 

Aspergillus terreus and Geotrichum candidum. Process Biochem. 35:751–758. 

Jin J, Sun K, Wu F, Gao B, Wang Z, Kang M, Bai Y, Zhao Y, Liu X, Xing B. 2014. Single-solute and 

bi-solute sorption of phenanthrene and dibutyl phthalate by plant- and manure-derived biochars. 

Sci Total Environ. 473–474:308–316. 

Kang C-H, Kwon Y-J, So J-S. 2016. Bioremediation of heavy metals by using bacterial mixtures. Ecol. 

Eng. 89:64-69. 

Khan Z. Anjaneyulu Y. 2005. Analysis of the distribution coefficients and mobility characteristics of 

phenols in different soil types. Environ. Geol. 48:1-5. 

Knight BP, Mcgrath SP, Chaudri AM. 1997. Biomass carbon measurements and substrate utilization 

patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl. 

Environ. Microbiol. 63:39–43. 



31 

 

Kolmert A, Johnson DB. 2001. Remediation of acidic waste waters using immobilised, acidophilic 

sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 76(8):836-843. 

Kret E, Kiecak A, Malina G, Nijenhuis I, Postawa A. 2015. Identification of TCE and PCE sorption 

and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and 

column studies. Environ. Sci. Pollut. Res. 22:9877-9888. 

Kuo CW, Genthner BRS. 1996. Effect of added heavy metal ions on biotransformation and 

biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl. 

Environ. Microbiol. 62:2317–2323. 

Li H, Davis AP. 2008. Heavy metal capture and accumulation in bioretention media. Environ. Sci. 

Technol. 42:5247-5253. 

Lide DR. 1994. Kehiaian H.V. CRC Handbook of Thermophysical and Thermochemical Data. 1st 

Edition, CRC Press: Boca Raton, FL.  

 Nsanganwimana F, Pourrut B, Mench M, Douay F. 2014. Suitability of miscanthus species for 

managing inorganic and organic contaminated land and restoring ecosystem services. A review. 

J. Environ. Manage 143:123-134. 

MacQuarrie KTB, Sudicky EA. 1990. Simulation of biodegradable organic contaminants in 

groundwater 2. Plume behaviour in uniform and random flow fields. Water Resour. Res. 

26(2):223-239. 

Masum SA, Thomas HR. 2018a. Modelling coupled microbial processes in the subsurface: Model 

development, verification, evaluation and application. Adv. Water Resour. 116:1-173 

Masum SA, Thomas HR. 2018b. Modelling the effects of pH on subsurface microbial growth processes. 

In Lau TC, Kelso RM (ed), Proceedings of the 21st Australasian Fluid Mechanics Conference. 

Australasian Fluid Mechanics Society (AFMS), Adelaide, Australia. ISBN 978-0-646-59784-3. 

Nies DH. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51:730-750. 

Olaniran AO, Balgobind A, Pillay B. 2013. Bioavailability of heavy metals in soil: Impact on microbial 

biodegradation of organic compounds and possible improvement strategies. Int. J. Mol.  Sci. 

14:10197-10228.  



32 

 

Prommer H, Barry DA, Davis GB. 2002. Modelling of physical and reactive processes during 

biodegradation of a hydrocarbon plume under transient groundwater flow conditions. J. Contam. 

Hydrol. 59(1-2):113-131. 

Prommer H, Grassi ME, Davis AC, Patterson BM. 2007. Modelling of microbial dynamics and 

geochemical changes in a metal bioprecipitation experiment. Environ. Sci. Technol. 41:8433-

8438.  

Roane TM, Josephson KL, Pepper IL. 2001. Microbial cadmium detoxification allows remediation of 

co-contaminated soil. Appl. Environ. Microbiol. 67:3208–3215. 

Said WA, Lewis DL. 1991. Quantitative assessment of the effects of metals on microbial degradation 

of organic chemicals. Appl. Environ. Microbiol. 57:1498–1503. 

Sauvé S, Hendershot W, Allen H. 2000. Solid-solution partitioning of metals in contaminated soils: 

dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 34(7):1125-

1131 

Sandrin TR, Maier RM. 2003. Impact of metals on the biodegradation of organic pollutants. Environ. 

Health Perspec 111(8):1093-1101.  

Sheppard SC. 2011. Robust prediction of Kd from soil properties for environmental assessment. Hum. 

Ecol. Risk Assess. 17:263-279. 

Singh DN, Gupta AK. 2000. Modelling hydraulic conductivity in a small centrifuge. Can. Geotech. J. 

37(5):1150-1155. 

Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S, Yi H, Ren 

X. 2017. Evaluation methods for assessing effectiveness of in situ remediation of soil and 

sediment contaminated with organic pollutants and heavy metals. Environ. Int. 105:43-55. 

Taylor SW, Jaffe PR. 1990. Substrate and biomass transport in porous medium.  Water Resour. 

Res. 26(9): 2161-2169. 

Tipping E, Rieuwerts J, Pan G, Ashmore MR, Lofts S, Hill MTR, Farago ME, Thornton I. 2003. The 

solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. 

Environ. Pollut. 125:213-225. 



33 

 

Ucun H, Yildiz E, Nuhoglu A. 2010. Phenol biodegradation in a batch jet loop bioreactor (JLB): kinetics 

study and pH variation. Bioresour. Technol. 101:2965-2971. 

Watnick P, Kolter R. 2000. Biofilm, city of microbes. J. Bacteriol. 182(10):2675-2679. 

Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C. 2017. Biological 

technologies for the remediation of co-contaminated soil. Crit. Rev. Biotechnol. 37(8):1062-

1076. 

Yoon KP. 1998. Isolation and characterization of Pseudomonas sp. KM10, a cadmium and mercury-

resistant and phenol-degrading bacterium. J. Microbiol. Biotechnol. 8:388-398. 


