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ABSTRACT The adoption of metal additive manufacturing into the production of passive microwave compo-
nents is still in its relative infancy. Howeyver, it is of increasing interest due to the offer of geometrical design
freedom and significant weight reduction. The electrical properties of additive manufactured components
are still inferior to traditional manufacturing techniques owing to the poor surface finish, especially on
overhanging surfaces, which are unavoidable in three-dimensional microwave components. In this paper
we present experimental findings on the disparity in microwave surface resistance values between three
common build orientations, as well as findings that establish a connection between increasing downskin
laser power and a reduction in surface resistance for overhanging surfaces. Finally, additive manufactured
rectangular waveguide sections are measured to assess the influence of combined upward and downward

facing surfaces on surface resistance.

INDEX TERMS Additive manufacture, metals, laser power, microwave, surface resistance, waveguide.

I. INTRODUCTION

Additive layer manufacturing (ALM) is of increasing interest
within the aero/space industries due to its unique offering of
unparalleled geometric design freedom. ALM produces parts
with significant weight reduction compared with traditional
manufacturing techniques, whilst maintaining up to 99.8%
density [1]. Powder bed fusion (PBF), one form of ALM,
uses spherical metal powder melted by a high power laser
in successive layers to form three-dimensional components.
A schematic of the PBF process is shown in Fig. 1. Although
PBF adoption is still in relative infancy [2], many studies have
been performed on their application to microwave communi-
cation components [3]-[5]. The electrical properties of PBF
components are still inferior to machined alternatives [6], [7],
however, the overall positive performance is somewhat
surprising given the poor surface finish apparent on
PBF surfaces. In particular, overhanging or downwards fac-
ing surfaces (with respect to the build direction) experience
excessive dross formation and can generate significantly
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higher roughness than in other orientations [8], [9]. This
suggests that some surfaces within a three-dimensional com-
ponent will have better microwave performance than others,
quantified in terms of microwave power loss. The main tech-
niques used in literature to asses microwave PBF structures
take a macro approach by measuring a complete waveguide
component and comparing its performance to a traditional
manufactured equivalent or simulation results [10], [11].
In this study, a more fundamental, experimental approach is
taken; individual surfaces of different build orientations are
assessed for microwave surface resistance (Rs), which are
subsequently optimised through changes in PBF laser power.

Il. BACKGROUND

A. MICROWAVE LOSS

At microwave frequencies, the skin effect causes electrical
current to be carried in only the outermost regions of material
at a depth known as the skin depth
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FIGURE 1. Schematic of the laser powder bed fusion manufacturing
process. ©2019 Gumbleton et al. Reprinted from [12] (CC BY).

where f is the operating frequency (Hz), w is magnetic
permeability (H/m) and o is electrical conductivity (S/m).
For aluminium (of bulk conductivity o = 2.6 x 107 S/m)
at a nominal frequency of 6.4 GHz (used in our char-
acterisation experiments) the skin depth is calculated to
be ~ 1.2 um. Therefore, with the majority of current carried
at the surface of the material, even micro-surface features can
have a significant impact on microwave loss; the relationship
between roughness and microwave loss is well established in
literature [13]. Power dissipation in a conductor at microwave
frequencies is defined by

R
m=§ﬁ%ms @)
S

where S is the surface area on which the current flows (m?),
Hs is the tangential magnetic field at the metal surface (A/m)
and Rg (€2) is the quantifying metric for microwave loss,
which encompasses surface roughness through an effective
conductivity (oefr) as

Tfu
Oeff

Ry = 3
Since the average particle size is ~47 um for AlSilOMg
powder (with a range between 15 and 120 um [14]) and
6 ~ 1.4 pum, it is justified to assume that the majority of
current is flowing in one PBF layer. Therefore particular
attention can be paid to optimising the outermost layers on
each surface, such that the mechanical properties defined by
the core PBF parameters remain unaltered. This is akin to the
normal process of coating base metals such as brass with a
thin layer of silver or gold for use in microwave components.

B. OVERHANG ROUGHNESS
The high degree of surface roughness seen on overhanging
surfaces is, in part, attributed to dross formation, where a frac-
tion of the laser energy penetrates below the desired layer and
partially melts powder to the surface [15]; a representation of
this phenomena is shown in Fig. 2. The adherence of partially
melted powders is explained, at a fundamental level, by the
surface energy of their spherical shapes. A sphere has the
largest surface area for a shape of fixed volume, requiring less
energy to form new bonds with other surfaces than is required
to fully melt the powder [16].

In the context of PBF, ‘downskin’ is used to refer to
a scan path which is not directly on top of a previously
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FIGURE 2. Schematic of dross formation on the downward facing
surfaces during powder bed fusion manufacturing.

processed layer. The downskin applies to any downwards
facing surface at an angle below the set activation angle,
60° in this case, relative to the build plate. Conversely,
an ‘upskin’ refers to any laser path that does not have a
proceeding layer directly above; each case has a different set
of process parameters for manufacture. The downskin process
parameters are set so that the laser raster passes several times
over the dross region, melting more of the adhered powder
with each pass. Studies have identified that for parts built in
a 45° orientation, high laser energy density on the downskin
layers can lead to a reduction in surface roughness [17], which
may correlate to a reduction in surface resistance.

Ill. EXPERIMENTAL SETUP

Samples are prepared in AlSilOMg using a Renishaw
RenAMS500 additive manufacturing system, which utilises
a 500 W, ytterbium fibre laser of 1080 nm wavelength and
70 pum focal diameter. The samples have been built in hor-
izontal, vertical and 45° orientations, as shown in Fig. 3,
with varying laser power setups for vertical and 45° plates.
The populated build plate is shown in Fig. 4. The default
laser power for 45° upskin and downskin is 100 W, while the
default laser power for the border scan on vertical built parts
is 350 W, which are identified by (D) in Table. 1; these sam-
ples are used to quantify disparity in Rs between the different
build orientations. The remaining samples are subjected to

Vertical
Build Upskin
direction
Downskin
Horizontal
[ l 45°
[ Build plate B

FIGURE 3. Schematic of the three build orientations used for sample
manufacture.

TABLE 1. Laser power levels of 45° upskin and downskin and vertical
built sample plates.

45°
Upskin & Downskin
0, 60, 80, 100 (D),
120, 140, 160,

Vertical

250, 270, 290, 310, 350 (D),

Power (W) 370, 410, 430, 450, 470,
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FIGURE 4. Photograph of the sample populated Renishaw
RenAM500 additive manufacturing build plate.

variations in laser power levels, also shown in Table. 1, and
are centered around the default values. All microwave charac-
terisation measurements have been performed using a parallel
plate resonator (PPR) setup, described in full in [18], where
directional currents are induced in the study sample by the
excitation of orthogonal resonant modes. The results reported
here are measured at 6.4 GHz in the TEMj( resonant mode;
a drawing of the PPR and simulations of its electric and
magnetic fields, as well as induced current flow for this mode,
are shown in Fig. 5. The reference plate is common to all
measurements and its dimensions set the resonant frequency
of the cavity, while the sample under test rests atop an indium
gasket and is secured by bolts at each corner.

The operating principle of the PPR setup relies on the
accurate measurement of quality (Q) factor while using a cal-
ibration sample before solving Eq. 4 to leave the sample Rg;
as the only unknown variable to be analysed when measuring
a sample.

i J
— = G,Rs; + Z GmeSwm + Zpedptansp (4)
r m=1 p=1
where Qr is the total Q factor of the system, all measured
Q factors are loaded values, including the effects of the
coupling coefficients, and are corrected to produce unloaded
values before calculation of surface resistance; the method is
described in detail in [19]. Rss and G, Rsy and Gy, are the
surface resistances and geometric values associated with the
sample and the summation of i remaining conductive walls
of the cavity, respectively, while peq is the dielectric filling
fraction for j dielectric volumes present in the fixture. The
geometric factors and dielectric filling fractions are defined
as
%
G L _JH Hids (5a)
o [ woH - H*dv

edE - E*dv
Ded = ML (3b)

JJ[, evE - E*dv
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FIGURE 5. Parallel plate resonator fixture. a) Exploded CAD image and
simulated electromagnetic properties for TEMg;o mode at 6.4 GHz b)
magnetic field (black arrows), magnetic field magnitude (color scale) and
induced surface current (red arrows), c) electric field magnitude.
Simulations are performed using COMSOL Multiphysics software with an
arbitrary input power of 1 W. ©2021 IEEE. Reprinted, with permission,
from IEEE [18].

where s is the surface integral for the conductive surface,
vq is the volume integral for the dielectric volume and v is
the volume integral for the host cavity. w¢ is the permeability
of free space, and g4 and ¢ are the permittivity of the compo-
nent material and the material filling the cavity, respectfully.
All microwave measurements were performed using a high
precision Keysight N5232A vector network analyser.

IV. RESULTS AND DISCUSSION

A. BUILD ORIENTATION

Samples produced using default build parameters in different
orientations have been measured for Rg and the results are
shown in Fig. 6. The standard error reported on Fig. 6 is
very small due to the high precision frequency measure-
ment equipment used (Keysight N5232A network analyser),
with less than 0.1% random error and the described cav-
ity resonator fixture providing approximately 1% system-
atic error from the removal and replacement of samples.
The 45° downskin surface, perhaps predictably, performs
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FIGURE 6. Measured surface resistance values for samples of different
build orientation using default process parameters. Standard error is
shown via error bars.

significantly worse in terms of microwave loss than other
build orientations. Horizontal built plates exhibit the low-
est loss of all samples, a result that supports previous
measurements by this author [20], while there is only a
marginal difference between vertical and 45° upskin surfaces.
RMS surface roughness (R;) measurements have been per-
formed using a Taly Surf Series 2 drag profiler fitted with
a tip of 2 um radius and analysed with a 0.8mm cutoff low
pass filter. Rq for the default values (~6 um for horizontal,
~12 pm for vertical, ~13 pum for 45° upskin and ~20 um
for 45° downskin orientations) correspond well with mea-
sured Rs, which increases with increasing surface roughness.
From these results, it is evident that a macro approach to
testing microwave components produced by PBF is missing
important information regarding the specific locations where
loss contributions are occurring and hence overall perfor-
mance will be heavily dependent on the build orientation of
the part.

B. LASER POWER
Fig. 7 shows the measured Rs values and Ry of 45° upskin
and downskin surfaces and for samples built in a vertical
orientation, against varying process laser power. In all cases
Rs correlates well with observed changes in Rg. Fig. 7a and b
correspond Rg values for vertical and 45° upskin surfaces,
respectively; no significant pattern is observed relating Rs to
changes in laser power. This may be explained for the upskin
through the core build process having sufficiently melted the
layer prior to the upskin parameters being implemented. Sim-
ilarly, for the vertical built samples, border scans are repeated
over successive layers, allowing for heat transfer through
multiple layers such that a stable melt pool is generated, thus
avoiding splutter and an excess of partially adhered powders.
Interestingly, the 45° downskin surfaces do exhibit a sig-
nificant improvement with increasing laser power, shown
in Fig. 7c. This is quantified by low values of Rg and cor-
relates with lower values of Ry. Fig. 8 shows microscope
images of the downskin surfaces for the worst (60 W) and
best (180 W) performing samples. The 60 W sample (Fig. 8a)
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FIGURE 7. Graphs of measured surface resistance at different laser
powers for a) vertical, b) 45° upskin and c) 45° downskin build
orientations.

consists of an abundance of isolated satellites adhered only
to the underlying surface. These partially melted powder
spheres or satellites neither form a smooth surface or a suffi-
cient electrical connection, and so are a major microwave loss
contributor. In the 180 W sample (Fig. 8b), however, these
satellites appears to have formed into larger agglomerates
with surrounding particles, creating a more effective network
of electrical connection and a more coherent layer. This is
explained by the additional energy density penetrating deeper
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FIGURE 8. Microscope images of 45° downskin surfaces manufactured
with laser powers of a) 60 W and b) 180 W. Scale bar is set at 1 mm.

into this layer and more fully melting a greater proportion of
the particles.

C. APPLICATION TO WAVEGUIDE COMPONENTS

To test the influence of the above laser power optimisation,
a series of 45° orientated waveguide sections have been
manufactured, as shown in Fig. 9a. The build orientations is
such that two internal surfaces of each waveguide are upwards
facing and use the default parameter setup, while the remain-
ing downward facing surfaces are swept for each waveguide
section using the following laser powers; ALM1 = 100 W
(default), ALM2 = 0 W and ALM3 = 180 W. Fig. 9b
shows one of these waveguide sections connected to a vector
network analyser, through magnetic coupling loops, by using
blank end flanges; this converts the waveguide transmission
line section into a waveguide resonant cavity, allowing loss
to be measured more reliably through Q factor than the atten-
uation from the measurement of transmitted power. Q factor
and hence Rg are measured through the forward transmission
S parameter S71. These traces are shown as an inset to Fig. 10.
The resonant frequency of the dominant TEg; mode of this
air filled cavity is 6.62 GHz, a similar frequency to the
PPR measurements for consistency of results and dictated
by the internal geometry of the cavity; 22.864+0.06 mm X
10.16£0.1 mm x 154+£0.1 mm. Rg for the cavity geometry
is found by

(6)
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b)

FIGURE 9. Additive manufactured AlSi10Mg waveguide sections, a) post
build and b) connected as a cavity resonator to a vector network analyser.

where G is found through simulation using COMSOL
Multi-physics software. The measured Rs values for each
waveguide section are shown in Fig. 10. There is a clear
reduction in Rs for sample ALM3, arising from the use
of 180 W for the downskin laser power, when compared
to the default value (ALM1: 100 W) and the absence of a
downskin layer (ALM2: 0 W). These results are promising
for the optimisation of PBF produced parts for microwave
applications.

To asses how the reduction in Rg will translate into a
waveguide transmission line system, attenuation has been
calculated using the measured resonator Rg (Rs;) values over
the X-band frequency range. Conductor attenuation (¢.) due
to the surface conduction losses of a uniform, rectangular
waveguide in the TE|g mode is assessed by [21]

Rs:(f) [1 n 2bx2] )

o, =
T b1 — 22 a

where a and b are the long and short internal dimensions of
the waveguide, respectively, and 7 is wave impedance of free
space. The dimensionless parameter x is defined as the ratio
x = fo/f, where f. = c¢/2a is the cut-off frequency of the
TE 10 mode and f is the frequency of single mode operation
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FIGURE 10. Measured surface resistance values for additive

manufactured rectangular waveguide resonators produced using various
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FIGURE 11. Calculated attenuation for TE;o mode of three rectangular
waveguides produced by additive manufacturing using various downskin
laser powers. Also included is a calculated value for an equivalent
waveguide consisting of vertical surfaces. Inset is a magnified view of the
calculated attenuation.

(i.e. in the range c/2a < f < ¢/2b). For calculation of o,
over the X-band frequency range, Rs; is scaled from the cavity
resonator measured value by

Rsr(f) = Rsr L 3
for

Fig. 11 shows the calculated o, values for each waveguide
section over the X-band frequency range. The reduced Rs
value for ALM3 provided a modest ~0.05 dB/m improve-
ment in conductor loss. For completeness, and to show the
effect of build orientation on attenuation, a calculated value
for an equivalent rectangular waveguide built in a vertical
orientation is included on Fig. 11; the Rg value for this is taken
from Fig. 6. Attenuation is significantly lower (~0.13 dB/m)
in the absence of downward facing surfaces.
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V. CONCLUSION

In this study, additive manufactured sample plates orientated
in three common build angles and several X-band waveguide
sections have been manufactured from AlSil0Mg and evalu-
ated for microwave loss. Sweeps of laser power on different
parameter settings have been performed the following con-
clusions can been drawn:

1) The traditional macro approach to testing additive man-
ufactured waveguide components has a significant flaw
in that it does not take into account the notably higher
loss contributions arising from downwards facing sur-
faces. Knowledge of the microwave surface resistance
for each surface orientation should form part of the
design-for-additive process.

2) A correlation has been established between increasing
laser processing power and reduction of microwave
surface resistance as well as average surface roughness
for downwards facing surfaces.

Furthermore, this study has shown that it is possible
to optimise additive manufactured components to improve
microwave performance through the adaptation of build
process parameters affecting the surface finish. However,
the influence that increased laser power may be having on
the mechanical properties of the surfaces has not been inves-
tigated here and would be a useful further study in the drive
for increased industry uptake.

The results presented here are promising for the contin-
ued improvement in performance, and subsequent indus-
trial uptake, of PBF components for microwave applications,
where the design of three-dimensional parts will inevitably
necessitate for one or more downward facing surfaces.
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