Mechanisms of Medicinal Plant Activity on Nitric Oxide (NO) Bioavailability as Prospective Treatments for Atherosclerosis

Khojasteh Malekmohammad¹, Robert D. E. Sewell² and Mahmoud Rafieian-Kopaei³,*

¹Department of Biology, Faculty of Basic Sciences, Shiraz University, Shiraz, Iran; ²Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, U.K; ³Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

Abstract:
Background and objective: Atherosclerosis is one of the leading causes of human morbidity globally and reduced bioavailability of vascular nitric oxide (NO) has a critical role in the progression and development of the atherosclerotic disease. Loss of NO bioavailability, for example via a deficiency of the substrate (L-arginine) or cofactors for endothelial nitric oxide synthase (eNOS), invariably leads to detrimental vascular effects such as impaired endothelial function and increased smooth muscle cell proliferation, deficiency of the substrate (L-arginine) or cofactors for eNOS. Many Various medicinal plants and their bioactive compounds or secondary metabolites with fewer side effects are potentially implicated in preventing cardiovascular disease by increasing NO bioavailability, thereby ameliorating endothelial dysfunction. In this review, we describe the most notable medicinal plants and their bioactive compounds that may be appropriate for enhancing NO bioavailability, and treatment of atherosclerosis.

Method: The material in this article was obtained from noteworthy scientific databases, including Web of Science, PubMed, Science Direct, Scopus and Google Scholar.

Results: Medicinal plants and their bioactive compounds influence NO production through diverse mechanisms including the activation of the nuclear factor kappa B (NF-κB) signaling pathway, activating protein kinase C (PKC)-α, stimulating protein tyrosine kinase (PTK), reducing the conversion of nitrite to NO via nitrate-nitrite reduction pathways, induction of eNOS, activating the phosphatidylinositol 3-kinase (PI3K)/serine threonine protein kinase B (AKT) (PI3K/AKT/eNOS/NO) pathway and decreasing oxidative stress.

Conclusion: Medicinal plants and/or their constituent bioactive compounds may be considered as safe therapeutic options for enhancing NO bioavailability and prospective preventative therapy for atherosclerosis.

Keywords: Nitric oxide, NO, eNOS, atherosclerosis, medicinal plants, bioactive compounds

*Address correspondence to this author at the Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Tel: +98 381 334 6692; Fax: +98 381 3330709; E-mail: rafieian@yahoo.com
1. INTRODUCTION

Atherosclerosis is one of the leading causes of human morbidity globally [1]. Several risk factors (smoking, hypertension, diabetes, hypercholesterolemia and age), in addition to other contributory issues (genetics, nutrition, inflammation/cholesteremia, obesity and early growth) participate in atherosclerosis by influencing nitric oxide (NO) bioavailability, levels of NO and endothelial function [2-5]. In various organisms, nitric oxide bioavailability is determined by the generation and utilization of endothelial NO [3]. Risk factors related to systemic oxidative stress and inflammation, which decrease the bioavailability of endothelial NO, lead to impaired vasodilator function [2-6]. In consequence, reduced NO bioavailability in the vessel wall is a prime characteristic of endothelial dysfunction [2,7]. NO is not only a potent vasodilator but also a multifunctional signaling molecule in the immune, nervous and cardiovascular systems [3, 8]. Originally, Endothelium-derived relaxing factor (EDRF) was discovered in the 1980s and subsequently identified as NO released from the endothelium to induce relaxation of underlying vascular smooth muscle [9-11]. NO is biologically synthesized from its amino acid precursor L-arginine by the L-arginine-nitric oxide pathway through the activity of the NO synthase (NOS) family in endothelial cells, macrophages and neurons [12, 13]. NO production occurs via the formation of an intermediate molecule, which is then oxidized to L-citrulline and nitric oxide. NO diffuses from the endothelium into the underlying smooth muscle cells to activate soluble guanylate cyclase (sGC). Finally, cyclic guanosine monophosphate (cGMP) formation causes vasodilatation by vessel relaxation [4]. The average degree of NO generation in the human body (70 kg) is 1.68 mmol/L NO per day [14, 15].

Three distinct nitric oxide synthase (NOS) isoforms have been identified for NO generation and they are encoded by 3 genes: (1) neuronal NOS (NOS I or nNOS), which acts as a neurotransmitter in non-adrenergic and non-cholinergic neurons and producing low quantities of NO in the picomolar (pM) to nanomolar (nM) range through an intracellular calcium-dependent process. nNOS is located on chromosome 12 [5, 16, 17]. (2) Inducible NOS (NOS II or iNOS) exists in endothelial cells, smooth muscle cells, macrophages and cardiac myocytes. The gene encoding iNOS is located on chromosome 17. It produces high levels of nitric oxide in the micromolar (μM) range for a short time in a calcium-independent manner [5, 16, 18]. (3) Endothelial NOS (NOS III or eNOS) is mainly expressed in the endothelium. It is located on chromosome 7 and it also exists in the kidney, human placenta, cardiomyocytes, platelets, and some neurons. The activity of this isoform is dependent on intracellular calcium and generates NO in the pM to nM range [5, 19, 20]. The dominant NOS isoform in the vasculature is eNOS [21]. Another sub-isoform of the eNOS enzyme exists in mitochondria (mtNOS) where it generates NO [15]. Regulatory cofactors for NOS are: Ca2+/calmodulin (CaM), heat shock protein 90 (hsp90), nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and tetrahydrobiopterin (BH4). These NADPH-dependent enzymes regulate at three levels, namely transcription, substrate availability, and posttranslationally [22].

The most important physiological actions of NO and its antiatherogenic properties in vitro stem from: Inhibiting cell-mediated LDL oxidation and Ox-LDL cytotoxicity, enhancement of vasodilatation and endothelial repair, inhibiting inflammatory cell activation, reducing thrombosis, inhibiting platelet adhesion and aggregation, reducing monocyte and leukocyte adhesion to the endothelium, inhibiting MCP-1 expression, inhibiting NF-κB activation/DNA binding through S-nitrosylation of the Cys 62 residue of the p50 subunit, inhibiting proliferation of vascular smooth muscle cells (VSMCs) through a cGMP (cyclic guanosine monophosphate) dependent mechanism, inhibiting superoxide anion production via a direct action on NADPH oxidase, inactivating xanthine oxidase (XO) and NADPH oxidase, preservation of the normal vessel wall structure and maintenance of metabolic and cardiovascular homeostasis [3, 4, 7, 16, 23-27]. NO induces in vivo
anti-atherogenic properties through modulation of endothelium-leukocyte interaction, modulation of intimal thickening, EDRF/NO and eNOS transfection [4, 28-33].

Endothelial dysfunction, a critical early event during atherogenesis, decreases the capacity of the endothelium to produce NO and its bioavailability [34]. Loss of NO bioavailability is implicated in many cardiovascular disorders such as atherosclerosis and hypertension [5, 20, 35]. The reduction of endothelial NO bioavailability is related to its reactions with reactive oxygen species (ROS), reduction in NO enzymatic synthesis [36], decrease in expression of eNOS, deficiency of substrate (L-arginine) or cofactors for eNOS, reduced capacity of endothelial cells (ECs) to synthesize and/or release NO and inactivation of generated NO by ROS [37, 38]. Furthermore, the use of NO synthesis inhibitors increases the oxidation of LDL and inhibits NO generation [39].

For these reasons, application of safe and effective strategies to raise NO activity and/or synthesis, and in order to restore normal NO homeostasis or to provide an exogenous source of NO, are regarded as beneficial in the treatment of atherosclerosis and its related diseases. Therefore, in recent years, medicinal plants and their valuable natural components have been utilized worldwide because of their therapeutic effects, low cost and fewer side effects compared to more expensive conventional drugs with adverse effects [40]. Despite widespread reports about the effects of NO on the prevention of cardiovascular diseases such as atherosclerosis along with an abundance of medicinal plants and bioactive compounds for the enhancement of NO bioavailability and treatment of atherosclerosis, there is no comprehensive literature review on this topical issue.

So consequently, this article aims to summarize effective medicinal plants and bioactive compounds that are currently available for the enhancement and improvement of NO production or availability in the human body for the treatment or prevention of atherosclerosis.

2. MATERIALS AND METHOD

The material information in this article was obtained from noteworthy scientific databases such as Web of Science, PubMed, Science Direct, Scopus and Google Scholar. The main keywords used as searched terms were: “atherosclerosis”, “nitric oxide”, “NO bioavailability”, “reactive nitrogen species”, “medicinal plants”, and “bioactive compounds”.

3. RESULTS

3.1. Atherosclerosis and Nitric Oxide

The monolayer vascular endothelium is located between vascular smooth muscle cells and the vessel lumen [5]. Endothelial dysfunction has an important role in many cardiovascular diseases such as atherosclerosis, heart failure and hypertension [41, 42]. One of the most the important features of endothelial dysfunction is depression of the NO: sGC (nitric oxide; soluble guanylate cyclase) pathway at different levels including down-regulation of eNOS expression and activity, uncoupling of NOS, NO scavenging by oxygen-centered free radicals and reduced sensitivity of VSMCs to vasodilators [43]. Endothelial cell injury can occur by several mechanisms including oxidative stress (low density lipoprotein (LDL) oxidation and Ox-LDL formation), low shear stress within the vessel (reduction of NO synthase stimulation and NO generation) [5, 34], production of endothelium-derived constricting factors and impaired endothelial cell signal transduction [23].

In the first mechanism, a disequilibrium between excessive generation of ROS and/or RNS [e.g. hydroxyl ions (OH•), superoxide anions (O2. –), hydrogen peroxide (H2O2)] and the antioxidant defense system [e.g. glutathione peroxidases (GPX), superoxide dismutases (SOD)] induces oxidative stress [44]. The sources of ROS and RNS production such as cyclooxygenase derived prostaglandins, lipoxygenase, myeloperoxidase (MPO), NAD(P)H oxidase and xanthine oxidase
(XO) contribute to atherosclerosis, reduced NO availability, uncoupling of eNOS and endothelial dysfunction [36].

Moreover, rapid interaction and combination of NO with O2 - (superoxide) forms peroxynitrite (ONOO-) and then initiates lipid peroxidation [34]. In essence, oxidative stress leads to the formation of reactive nitrogen/oxygen species, induction of protein nitration, reduction of NO bioavailability and a decrease in NO levels through eNOS uncoupling [3, 35, 45-47]. eNOS uncoupling induces the production of superoxide instead of NO by NOS enzymes in the absence of substrate, L-arginine, or the eNOS cofactor tetrahydrobiopterin (BH4) [48-50]. In this condition, oxidative stress and LDL oxidation increase within endothelial walls. Then, Ox-LDL damages endothelial cells by impairing eNOS bioactivity [51]. Ox-LDLs accumulate in the endothelial cells, intima, and smooth muscle cells (SMCs). Ox-LDL and cytokines induce the expression of VCAM-1 and ICAM-1 on endothelial cells (ECs) as a result of a reaction of ECs and SMCs by secreting monocyte MCP-1 and production of cytokines and growth factors. Macrophages migrate into the EC, intima and SMC layers and Ox-LDL uptake occurs, leading to the development of fatty streaks and foam cells [52]. Macrophages and foam cells contribute to the production of ROS, which can oxidize BH4 into dihydrobiopterin (BH2). BH4 is a prominent cofactor for eNOS function and maintaining eNOS dimerization. This cofactor transfers electrons from eNOS reductase to the oxygenase domain, which has a binding site for L-arginine and BH4. Electron transference converts the substrate, L-arginine, to NO and L-citrulline. Thus, the generation of NO leads to SMC relaxation, vasodilation, control of vascular tone plus platelet function and atheroprotection through soluble guanylate cyclase (sGC) and guanosine-3’,5-monophosphate (cGMP) signaling. In contrast, BH4 oxidation to dihydrobiopterin (BH2) and bioppterin by peroxynitrite and other reactive oxygen species along with a reduction of BH4 bioavailability cause eNOS to be unstable and uncoupled. So BH2 is competitively replaced with eNOS-bound BH4 and this form of eNOS synthesizes superoxide instead of NO [53]. Also, L-arginine is converted to superoxide instead, and its conversion subsequently causes LDL oxidation and endothelial dysfunction [35, 54-56]. Finally, atherosclerotic plaque formation and thrombosis occur in the late stage of atherosclerosis [52].

Shear stress is a key activator of eNOS in normal physiological conditions [44] and it participates in the modulation of eNOS expression. Shear stress can induce both eNOS transcription and stabilization of eNOS mRNA. Arterial shear stress (> 15 dyne/cm2 or long-term laminar shear stress in endothelial cells) can increase eNOS expression, NO availability, and produce atheroprotective effects. Alternatively, low shear stress (< 4 dyne/cm2) or short term shear stress decreases eNOS expression and increases NAD(P)H oxidase-dependent superoxide production in human aortic endothelial cells so on the whole, it has proatherosclerotic properties [36, 57, 59]. The action mechanisms of shear stress in releasing NO involve ion channel activation (opening chloride, potassium and calcium ion channels) and activating signaling pathways such as phosphorylation of eNOS protein or serine/threonine protein kinase B (Akt) and enhanced expression of eNOS mRNA and protein to maintain long term production of nitric oxide [5].

3.2. NO Signaling Pathways

Different NO signaling pathways including eNOS/NO, iNOS/NO and nNOS/NO can impact NO synthesis to ameliorate atherosclerosis. The eNOS/NO signaling pathway consists of the phosphatidylinositol 3-kinase (PI3K)/serine threonine protein kinase B(AKT)/eNOS pathway, the Ca(2+)/calmodulin-dependent kinase II (CaMKII) or calmodulin-dependent protein kinase (Ca(2+))/CaMKII or CaM KK/AMPK/AKT/eNOS) pathway, nuclear factor erythroid 2-related factor 2/ Heme oxygenase-1/ endothelial nitric oxide synthase (Nrf2/HO-1/eNOS) pathway and signal transducer and activator of transcription 3/Dimethyl Arginine Dimethyl Amino Hydrolase/Asymmetric Dimethyl Arginine/ eNOS pathway (STAT3/DDAH/ADMA/eNOS pathway). The iNOS/NO signaling pathway consists of the nuclear factor kappa B (NF-kB)/iNOS pathway, the IkB kinase complex/Inhibitory subunit of NF-Kb/ NF-kB/iNOS pathway (IKK/IkBα/NF-kB/iNOS pathway), the janus Kinase 2/ Signal Transducer and Activator of Transcription 3/iNOS pathway (JAK2/STAT3-iNOS pathway), mitogen-activated protein kinase, extracellular regulated protein1/2,
c-JunNterminalkinase 1/2 and the p38 (MAPK, ERK1/2, JNK1/2 and p38) iNOS pathway and the nuclear factor erythroid 2-related factor 2/Heme oxygenase-1/ Inducible nitric oxide synthase (Nrf2/HO-1/iNOS) pathway. Extracellular regulated protein (ERK)1/2/nNOS is the main nNOS/NO signaling pathway (Fig. 1) [1].

3.3. NO Inhibitors or NO Reducers

Many elements including the following factors are implicated in the reduction of NO production, eNOS uncoupling, and the development of atherosclerosis: - Deficiency in L-arginine: Local deficit of L-arginine may derange eNOS, resulting in overproduction of superoxide radical instead of NO production [35, 60, 61].

- Presence of endogenous competitive inhibitors of NOS, such as asymmetric dimethyl-l-arginine (ADMA), NGmonomethyl- L-arginine (L-NMMA) and symmetric dimethylarginine (SDMA) [62, 63]. All three inhibitors are synthesized via ethylation of L-arginine through protein arginine methyltransferases (PRMT) [64]. The action mechanisms of ADMA entail: competing with arginine
for the binding site of NOS to reduce NO formation, inhibiting eNOS and NO production and decreasing vascular compliance to enhance vascular resistance and limit blood flow [65]. SDMA acts by preventing L-arginine from entering cells [64] and L-NMMA competes with arginine for the binding site of NOS to decrease NO generation [64].

- Angiotensin II and enhancement or upregulation of arginase activity. Angiotensin II (Ang II) increases the activity of arginase via angiotensin II receptor type 1 (AT1) and reduces NO bioavailability [66]. Arginase (Arg) is an important enzyme in L-arginine catabolism and Arg I and Arg II directly compete with eNOS for the common substrate, L-arginine, in order to catalyze its conversion to ornithine and urea. It leads to the uncoupling of NOS and generation of ROS instead of NO production by consuming L-arginine and oxidizing BH4 cofactors [26, 67]. The small G protein RhoA and its effector Rho kinase (ROCK) play an important role in regulating arginase activity [15]. Thus, activation of pro-inflammatory pathways by Rho kinase (ROCK) activity in the endothelial cells leads to eNOS mRNA stability and decreases eNOS phosphorylation as well as catalytic activity [68, 69].

- Higher levels of homocysteine (Hcy) cause NO pathway dysfunction and endothelial dysfunction through mechanisms such as oxidative stress, eNOS inhibition, NF-κB activation and inflammation. Hcy also increases ADMA generation and eNOS uncoupling by reducing the production of intracellular BH4 and thus decreases NO bioavailability [70].

3.4. Therapeutic possibilities of atherosclerosis and increasing NO bioavailability

The following represent some possibilities:
- Supplementation of the nitric oxide substrate, L-arginine
- Inhalation of nitric oxide
- Usage of NO donors and enhancers
- Vascular gene therapy of eNOS [5]
- Usage of antioxidants such as vitamins A and C, and medicinal plants [45].

3.4.1. Enhancers of NO Bioavailability and NO Donors

3.4.1.1. NO Donors

NO donors are pro-drugs that can exert their pharmacological and therapeutic effects after metabolism to nitric oxide.

3.4.1.2. Nitrovasodilators/Nitric Oxide Donors

Nitrovasodilators include sodium nitroprusside, amyl nitrite, glyceryl trinitrate, molsidomine and nitrsgothiols. Nitric oxide donors include S-Nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine (SIN-1), nitroglycerin (NTG), sodium nitroprusside (SNP), isosorbide dinitrate (ISDN), amyl nitrite, isosorbide mononitrate (IS-5N), nicorandil and sydnonimines [5, 45, 71]. NO donors decrease the progression of lesion formation and platelet aggregating, LDL-oxygenation and endothelial dysfunction [72].

3.4.1.3. NO Enhancers

Statins, L-arginine and tetrahydrobiopterin (BH4) are the most important NO enhancers. They increase the stability of eNOS messenger RNA. These enhancers reduce thrombosis, platelet aggregation, and expression of NAD(P)H oxidase subunits. Inhibition of superoxide anion generation by the endothelium and a shift in the balance between free radicals and NO are the other functions of NO enhancers [72]. NOS activators (including tetrahydrobiopterin, statins, eNOS transcriptional enhancers (AVE9488 and AVE3085), the protein kinase C inhibitor midostaurin,
trans-resveratrol, vanadate, betulinic acid and pentacyclic triteroenoids ursolic acid) have therapeutic properties in the treatment of arteriosclerotic vascular disease by increasing NOS expression and activity or decreasing NOS uncoupling via reduction of vascular and BH4 oxidation [15, 73].

3.4.2. Medicinal Plants and NO Bioavailability

Various medicinal plants and bioactive compounds including their secondary metabolites such as phenolic compounds, flavonoids, saponins, terpenoids and alkaloids are widely used for the enhancement of NO bioavailability and the treatment of atherosclerosis [74]. Different antioxidants increase NO production by protecting necessary cofactors such as BH4 from oxidation and they preserve NO activity and bioavailability [14]. Some medicinal plants enhance NO bioactivity and bioavailability via the nitrate-nitrite reduction pathway [14]. Also, antioxidants and polyphenols effectively reduce nitrite to NO conversion [14]. Data concerning the effective medicinal plants on the enhancement of NO production and bioavailability are summarized in Table 1.

Sida cordifolia induces the release of NO through activation of the cardiac muscarinic system via the vagus nerve and stimulation of endothelial vascular M3 receptors [75]. *Euonymus alatus*, in combination with recombinant interferon-γ (rIFN-γ) induces NO production by peritoneal macrophages via the NF-κB signaling pathway and it synergistically increases the expression of iNOS protein [76]. *Ilexis denteate* and *Oldenlandia diffusa* in combination with recombinant interferon-γ (rIFN-γ) induces the production of NO and tumor necrosis factor-α (TNF-α) by macrophages through activation of the nuclear factor kappa B (NF-κB) signaling pathway. rIFN-γ and *Oldenlandia diffusa* on the other hand, synergistically increase the expression of iNOS protein [77, 78]. *Centella asiatica* and *Rhinacanthus nasutus* in conjunction with LPS increase NO production and TNF-α by macrophages via gene expression and activation of the NF-κB signaling pathway [79]. *Cynara cardunculus* and *Thymus pulegioides* increase NO production by stimulating endothelial cells and cerebral cell membrane homogenates [80]. Inulin, an active component of *Chicorium intybus* root, with IFN-γ synergistically induces NO synthesis by RAW 264.7 cells through activation of protein kinase C (PKC)-α and protein tyrosine kinase (PTK) resulting in NF-κB activation [81]. *Echinacea purpurea* increases NO release from alveolar macrophages through the stimulation of lipopolysaccharides (LPS) [82, 83].

Acidic polysaccharides from *Phellinus linteus* induce NO and TNF-α production in peritoneal macrophages due to their immunomodulatory and anti-tumouricidal activities [84]. *Eucommia ulmoides* brings about the release of endothelium-derived hyperpolarizing factor (EDHF) and NO in smaller muscular vessels and endothelial cells. It can also inhibit adenosine 3′,5′-cyclic monophosphate (cAMP) phosphodiesterase in vascular endothelial cells. Therefore, due to the accumulation of cAMP, the release of NO increases from the endothelium [85, 86]. *Trigonella foenum-graecum*, *Nigella sativa*, *Allium sativum*, and *Cannabis sativa* increase NO production because of the presence of diosgenin (25R-spirost-5-en-3β-ol) in their extracts in the form of glucoside [87]. Methanol extracts of *Phyllanthus fraternus*, *Triumfetta rhomboidea* and *Casuarina littorea* have nitric oxide scavenging activity due to the presence of tannins and flavonoids [88].

Fructus trichosanthis, *Resina olibani*, *Radix paeonia* rubra and *Borneolum synthetica*um have robust NO bioactivity by virtue of their ability to reduce nitrite to NO (NO generation from nitrite) and to restore NO homeostasis via nitrate–nitrite reduction pathways [89]. *Runex acetosa* increases NO levels through the phosphorylation of eNOS by induction of the PI3K/AKT/eNOS pathway [90]. *Prunella vulgaris* induces eNOS and increases NO generation by activating the PI3K/AKT-mediated Nrf2 pathway [91].
Table 1. Effective medicinal plants on the enhancement of nitric oxide (NO) bioavailability.

<table>
<thead>
<tr>
<th>Medicinal plants</th>
<th>Action mechanisms</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sida cordifolia</td>
<td>Cardiac muscarinic activation, direct activation of endothelial vascular muscarinic of M<sub>3</sub> receptors</td>
<td>75</td>
</tr>
<tr>
<td>Euonymus alatus</td>
<td>Nuclear factor kappa B (NF-κB) signaling pathway activation</td>
<td>76</td>
</tr>
<tr>
<td>Ixeris dentate</td>
<td></td>
<td>77, 78</td>
</tr>
<tr>
<td>Oldenlandia diffusa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centella asiatica</td>
<td>gene expression and NF-κB signaling pathway activation</td>
<td>79</td>
</tr>
<tr>
<td>Rhinacanthus nasutus</td>
<td>Stimulation of endothelial cells and brain homogenate</td>
<td>80</td>
</tr>
<tr>
<td>Cynara cardunculus</td>
<td>Activation of protein kinase C (PKC)-α and protein tyrosine kinase (PTK)</td>
<td>81</td>
</tr>
<tr>
<td>Thymus pulegioides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicorium intybus</td>
<td>Immunomodulatory activity, induction of macrophages to NO generation, stimulation of LPS</td>
<td>82, 83</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>Echinacea purpurea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phellinus linteus</td>
<td>Immunomodulatory and antitumoricidal activities, induction of macrophages to NO generation</td>
<td>84</td>
</tr>
<tr>
<td>Eucommia ulmoides</td>
<td>Inhibition cAMP phosphodiesterase and release of EDHF</td>
<td>85, 86</td>
</tr>
<tr>
<td>Trigonella foenum-graecum</td>
<td>Potent inhibition of lipid peroxidation, inhibition of superoxide production</td>
<td>87</td>
</tr>
<tr>
<td>Nigella sativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium sativum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannabis sativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllunthus freternus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triumfetta rhomboidae</td>
<td>Nitric oxide scavenging activity</td>
<td>88</td>
</tr>
<tr>
<td>Casuarina littorea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fructus trichosanthis</td>
<td>Reduction nitrite to NO via nitrate–nitrite reduction pathways and restoration of NO homeostasis</td>
<td>89</td>
</tr>
<tr>
<td>Borneolum Syntheticum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radix Paeonia Rubra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resina Olibani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumex acetosa</td>
<td>Phosphorylation of eNOS by induction of PI3K/AKT/eNOS pathway</td>
<td>90</td>
</tr>
<tr>
<td>Prunella vulgaris</td>
<td>Induction of eNOS and activation of the PI3K/AKT-mediated Nrf2 pathway</td>
<td>91</td>
</tr>
<tr>
<td>Camelia japonica</td>
<td>Activation of eNOS via phosphorylation at Ser1179 and prevention of VSMCs proliferation and</td>
<td>92</td>
</tr>
</tbody>
</table>
Camelia japonica stimulates NO production through the Akt pathway in endothelial cells and activation of eNOS via phosphorylation at Ser1177. **Camelia japonica** prevents VSMC proliferation and migration [92]. A polyphenolic-rich extract of **Cocos nucifera** can induce NO production by macrophages [93]. Effective components of **Nigella sativa** are thymoquinone and polyphenols that are NO production inducers [74, 87, 94].

Sanchi (radix notoginseng), **Danshen Root** (radix salvia miltiorrhizae) and **Hongshen** (radix ginseng) can relax blood vessels through the production of NO from nitrite [89]. Danshen can decrease cellular damage from ischemia and scavenge free radicals in ischemic diseases [95]. Salvianolic acid B (Sal B) and Tanshinone IIA (Tan IIA) in danshen mediate vasodilatation and stimulate eNOS phosphorylation [14]. **Radix ginseng** has reductase activity [89], whilst **Radix puerariae** and its major component puerarin increase serum nitrite concentrations by inducing protein expression and activating eNOS via Akt/PKB phosphorylation [96]. **Ginkgo biloba** causes endothelial nitric oxide (NO) production by enhancing endothelial nitric oxide synthase (eNOS) activity and eNOS gene expression. Phosphorylation of eNOS occurs at Ser 1177 via the phosphoinositide 3-kinase- (PI3K-) AKT pathway and decreasing AMPK dephosphorylation [97, 98]. Its extract decreases adenosine monophosphate activated protein kinase (AMPK) dephosphorylation and increases subsequently activated protein kinase C (PKC)-induced membrane subunits gp91 and p22 (phox) protein expression [98].

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Function and Pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radix Ginseng</td>
<td>Reduction nitrite to NO via nitrate–nitrite reduction pathways</td>
</tr>
<tr>
<td>Radix Notoginseng</td>
<td>eNOS gene expression, Phosphorylation of eNOS occurs at Ser 1177 through the phosphoinositide 3-kinase- (PI3K-) AKT pathway and decreasing AMPK dephosphorylation</td>
</tr>
<tr>
<td>Radix Salviae Miltiorrhizae</td>
<td>NO production via activation of K⁺ channels</td>
</tr>
<tr>
<td>Ginkgo biloba</td>
<td>Induction of protein expression and activation of eNOS and through Akt/PKB phosphorylation</td>
</tr>
<tr>
<td>Angelica gigas</td>
<td>Direct phosphorylation of eNOS by the protein kinase Akt downstream of PI3K</td>
</tr>
<tr>
<td>Paeonia lactiflora</td>
<td>Induction of protein expression and activation of eNOS and through Akt/PKB phosphorylation</td>
</tr>
<tr>
<td>Lindera strichnifolia</td>
<td>Induction of protein expression and activation of eNOS and through Akt/PKB phosphorylation</td>
</tr>
<tr>
<td>Caesalpinia sappan</td>
<td>Induction of protein expression and activation of eNOS and through Akt/PKB phosphorylation</td>
</tr>
<tr>
<td>Cyperus rotundus</td>
<td>Induction of protein expression and activation of eNOS and through Akt/PKB phosphorylation</td>
</tr>
<tr>
<td>Carthamus tinctorius</td>
<td>Induction of protein expression and activation of eNOS and through Akt/PKB phosphorylation</td>
</tr>
<tr>
<td>Prunus persica</td>
<td>Induction of protein expression and activation of eNOS and through Akt/PKB phosphorylation</td>
</tr>
<tr>
<td>Cinnamomum cassia</td>
<td>Scavenging of free radicals, potent inhibition of lipid peroxidation, inhibition of superoxide production</td>
</tr>
<tr>
<td>Glycyrrhiza uralensis</td>
<td>Scavenging of free radicals, potent inhibition of lipid peroxidation, inhibition of superoxide production</td>
</tr>
<tr>
<td>Panax ginseng radix</td>
<td>Scavenging of free radicals, potent inhibition of lipid peroxidation, inhibition of superoxide production</td>
</tr>
<tr>
<td>Lindera strichnifolia</td>
<td>Scavenging of free radicals, potent inhibition of lipid peroxidation, inhibition of superoxide production</td>
</tr>
</tbody>
</table>

Camelia japonica stimulates NO production through the Akt pathway in endothelial cells and activation of eNOS via phosphorylation at Ser1177. *Camelia japonica* prevents VSMC proliferation and migration [92]. A polyphenolic-rich extract of *Cocos nucifera* can induce NO production by macrophages [93]. Effective components of *Nigella sativa* are thymoquinone and polyphenols that are NO production inducers [74, 87, 94].

Sanchi (radix notoginseng), Danshen Root (radix salvia miltiorrhizae) and Hongshen (radix ginseng) can relax blood vessels through the production of NO from nitrite [89]. Danshen can decrease cellular damage from ischemia and scavenge free radicals in ischemic diseases [95]. Salvianolic acid B (Sal B) and Tanshinone IIA (Tan IIA) in danshen mediate vasodilatation and stimulate eNOS phosphorylation [14]. **Radix ginseng** has reductase activity [89], whilst **Radix puerariae** and its major component puerarin increase serum nitrite concentrations by inducing protein expression and activating eNOS via Akt/PKB phosphorylation [96]. **Ginkgo biloba** causes endothelial nitric oxide (NO) production by enhancing endothelial nitric oxide synthase (eNOS) activity and eNOS gene expression. Phosphorylation of eNOS occurs at Ser 1177 via the phosphoinositide 3-kinase- (PI3K-) AKT pathway [97, 98]. Its extract decreases adenosine monophosphate activated protein kinase (AMPK) dephosphorylation and increases subsequently activated protein kinase C (PKC)-induced membrane subunits gp91 and p22 (phox) protein expression [98].
Dangkwisoo-San includes nine species of herbal plants (Angelica gigas, Paeonia lactiflora, Lindera strichnifolia, Caesalpinia sappan, Cyperus rotundus, Carthamus tinctorius, Prunus persica, Cinnamomum cassia, and Glycyrrhiza uralensis). All of these medicinal plants can produce NO via direct eNOS phosphorylation by protein kinase Akt downstream of PI3K such that eNOS improves cerebral blood flow [99, 100].

Mu-Fang-Ji-Tang contains four natural medicinal plants (Sinomenium acutum, Cinnamomum cassia, Panax ginseng radix and Gypsum fibrosum) that have protective effects against myocardial injury and heart failure via NO production and activation of K⁺ channels [14].

Allium sativum (garlic) has antioxidant properties and enhances the production of nitric oxide along with free radical scavenging activity. It is a potent inhibitor not only of lipid peroxidation and superoxide production, but also xanthine oxidase, a source of superoxide important in vascular beds, which is all reflective of antiatherosclerotic activity [101, 102].

3.4.3. Bioactive Compounds

Data concerning the effective natural and bioactive compounds on the enhancement of NO production and bioavailability are summarized in Table 2. Flavonoids (a large group of polyphenols) are important plant-derived compounds involved in cardiovascular prevention by reducing oxidative stress and increasing NO bioavailability [44]. Flavonoids are subclassified as flavonols such as quercitin (in tea, wine, red onions, cranberries, buckwheat, apples and beans), flavones such as apigenin (in bilberry, raspberry, strawberry, plum, cherry, blackberry, red pepper, and tomato skin) flavanols or flavan-3-ols such as catechins, epicatechins and their oligomers such as proanthocyanidins (in wine, apple juice, tea and cocoa), isoflavones such as genistein (in soy, legumes), and anthocyanins [103, 104].

Polyphenols induce NO formation through the activation of the phosphatidylinositol 3-kinase/Akt pathway leading to eNOS activation [44]. Dietary polyphenol consumption (from wine, cocoa, or tea, flavonoid-rich cocoa and beverage) protects NO against oxidants and increases NO bioavailability in human plasma [44]. Polyphenols of black tea increase eNOS activity via p38 MAPK dependent phosphorylation in aortic endothelial cells [105].

Stilbenoids such as resveratrol induce platelet NO production through inhibition of p38 MAPK, NADPH oxidases, and superoxide formation. It attenuates eNOS uncoupling via reduction of Larginine levels, oxidative stress and enhances levels of BH4 [106, 107]. Catechins in green tea activate eNOS by phosphorylation at Ser1179 and dephosphorylation at Thr495 in a PKA-Akt dependent manner [108, 109]. Quercitin induces NO production via inhibition/downregulation of NADPH oxidase (down-regulation of aortic p47phox, a regulatory subunit of NADPH oxidase) and restoration of NOS regulation [110,111]. Genistein (a soy isoflavone) enhances eNOS activity via inhibition of NADPH oxidase and reduction of superoxide formation [112]. Apigenin and curcumin increase NO bioavailability by decreasing oxidative stress [15]. Saponins (plant glycosides) from Ginseng stimulate NO release from vascular endothelial cells via activation of K⁺ channels [113, 114]. Bromelain increases inflammatory mediators such as IFN-γ-mediated nitric oxide (NO) and TNF-α production in macrophages [115]. Myricitrin, Epigallocatechin Gallate (EGCG) and Salidroside (Rhodiola rosea) decrease atherosclerotic plaques by activating the PI3K/AKT/eNOS/NO pathway via phosphorylation of threonine 308 and serine 473 and AKT activation in order to promote eNOS for NO production [116-118]. B-carotene and Betulinic acid induce NO production via AMPK, eNOS phosphorylation and Ca (2⁺) /CaMKII / eNOS (+) or the CaMKK/AMPK/AKT/eNOS/NO signaling pathway [119, 120].
Table 2. Effective natural and bioactive compounds on enhancement of nitric oxide (NO).

<table>
<thead>
<tr>
<th>Active compounds</th>
<th>Action mechanisms</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resveratrol</td>
<td>Inhibition of p38 MAPK, NADPH oxidases, and superoxide formation, enhancement levels of BH₄, inhibition of eNOS uncoupling</td>
<td>106, 107</td>
</tr>
<tr>
<td>Catechin</td>
<td>Activation of eNOS by phosphorylation at Ser1179 and dephosphorylation at Thr495 in a PKA-Akt dependent manner</td>
<td>108, 109</td>
</tr>
<tr>
<td>Quercitin</td>
<td>Inhibition/downregulation of NADPH oxidase</td>
<td>110, 111</td>
</tr>
<tr>
<td>Genistein</td>
<td>Enhancement of eNOS activity via inhibition of NADPH oxidase and reduction of superoxide formation</td>
<td>112</td>
</tr>
<tr>
<td>Apigenin</td>
<td>Decreasing oxidative stress</td>
<td>15</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Activation of K⁺ channels</td>
<td>113, 114</td>
</tr>
<tr>
<td>Saponin</td>
<td>Increasing inflammatory mediators such as IFN-γ-mediated nitric oxide (NO) and TNF-α production</td>
<td>115</td>
</tr>
<tr>
<td>Bromelain</td>
<td>Activation of protein kinase C (PKC)-α and protein tyrosine kinase (PTK)</td>
<td>81</td>
</tr>
<tr>
<td>Inulin</td>
<td>PI3K/AKT/eNOS/NO pathway via phosphorylation on threonine 308 and serine 473, and AKT activation</td>
<td>116</td>
</tr>
<tr>
<td>Myricitrin</td>
<td>Activating eNOS phosphorylation and Ca (2⁺)/CaMKII/ eNOS (+) or CaMKK/AMPK/AKT/eNOS/NO signaling pathway</td>
<td>117</td>
</tr>
<tr>
<td>Salidroside</td>
<td>Activating PI3K/AKT/eNOS/NO pathway via phosphorylation on threonine 308 and serine 473, and AKT activation</td>
<td>118</td>
</tr>
<tr>
<td>Epigallocatechin Gallate (EGCG)</td>
<td>Activating eNOS phosphorylation and Ca (2⁺)/CaMKII/ eNOS (+) or CaMKK/AMPK/AKT/eNOS/NO signaling pathway</td>
<td>119</td>
</tr>
<tr>
<td>B-carotene</td>
<td>Activating eNOS phosphorylation and Ca (2⁺)/CaMKII/ eNOS (+) or CaMKK/AMPK/AKT/eNOS/NO signaling pathway</td>
<td>120</td>
</tr>
<tr>
<td>Betulinic acid</td>
<td>Activating eNOS phosphorylation and Ca (2⁺)/CaMKII/ eNOS (+) or CaMKK/AMPK/AKT/eNOS/NO signaling pathway</td>
<td>120</td>
</tr>
</tbody>
</table>

CONCLUSION

Atherosclerosis is a leading cause of mortality and morbidity globally. NO has vasculoprotective actions such as inhibition of leukocyte adhesion, platelet aggregation and prevention of VSMC proliferation. Reduced NO bioavailability and endothelial dysfunction are the early markers of atherosclerosis. Loss of NO activity and its bioavailability may lead to detrimental vascular effects such as impairment of endothelial function, increased activity and adherence of platelets, enhanced smooth muscle cell proliferation and atheromatous plaque formation, inflammatory cells, myocardial infarction, stroke and peripheral ischaemia, increased adhesion of leukocytes, increased generation
of O2- radicals, oxidation of LDL along with subsequent foam cell formation and atherosclerosis progression. The strategies to increase NO bioavailability are beneficial in the treatment of atherosclerosis. Medicinal plants and their secondary metabolites are good therapeutic options for the enhancement of NO bioavailability through increasing endothelial production of NO, activation of protein kinase C (PKC)-α and protein tyrosine kinase (PTK), Nuclear factor kappa B (NF-κB) signaling pathway activation and decreasing of oxidative stress. Therefore, they might be considered as prospective safe candidates for atherosclerosis preventative therapy.

CONSENT FOR PUBLICATION
Not applicable.

FUNDING
None.

CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES

[56] Pong T, Huang PL. Effects of Nitric Oxide on Atherosclerosis. Atherosclerosis 2015: 355-64.

