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Abstract: All-reflective interferometer configurations have been proposed
for the next generation of gravitational wave detectors, with diffractive
elements replacing transmissive optics. However, an additional phase noise
creates more stringent conditions for alignment stability. A framework for
alignment stability with the use of diffractive elements was required using a
Gaussian model. We successfully create such a framework involving modal
decomposition to replicate small displacements of the beam (or grating)
and show that the modal model does not contain the phase changes seen
in an otherwise geometric planewave approach. The modal decomposition
description is justified by verifying experimentally that the phase of a
diffracted Gaussian beam is independent of the beam shape, achieved
by comparing the phase change between a zero-order and first-order
mode beam. To interpret our findings we employ a rigorous time-domain
simulation to demonstrate that the phase changes resulting from a modal
decomposition are correct, provided that the coordinate system which
measures the phase is moved simultaneously with the effective beam
displacement. This indeed corresponds to the phase change observed in the
geometric planewave model. The change in the coordinate system does not
instinctively occur within the analytical framework, and therefore requires
either a manual change in the coordinate system or an addition of the
geometric planewave phase factor.
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Schnabel, “Pound-Drever-Hall error signals for the length control of three-port grating coupled cavities,” Appl.
Opt. 50, 4340–4346 (2011).

8. D. Friedrich, O. Burmeister, A. Bunkowski, T. Clausnitzer, S. Fahr, E. Kley, A. Tünnermann, K. Danzmann,
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1. Introduction

A network of ground-based laser interferometric observatories, including Advanced LIGO [1],
Advanced VIRGO [2] and GEO HF [3], are in the midst of being upgraded to highly sensitive
second-generation gravitational wave detectors. Scientists are confident of obtaining the first
direct detection of gravitational waves using the modified instruments, based on the experience
gained through the first-generation operation. A simultaneous effort is also underway to devise
new concepts to increase detector sensitivities even further, in an attempt to introduce a new era
of gravitational-wave astronomy.

One promising approach for the next-generation of interferometers is to replace conventional
partly-transmissive optics, such as beam splitters and cavity couplers, by reflective dielectric
diffraction gratings [4]. An all-reflective interferometer setup has the potential to significantly
reduce thermal effects caused by absorption of high-power laser light in the optical substrates.
These thermal distortions are known as a significant challenge limiting the light power that
can be utilized in current and future interferometer gravitational wave detectors. Additionally,
reflective diffractive gratings allow for a broader choice of opaque substrate materials with a
potential for superior mechanical properties.

Since the initial concept of all-reflective interferometry, various groups around the world
have built on the notion and presented experimental proof of their feasibility and compatibility
with standard interferometric techniques. Such work includes replacing conventional cavity
input mirrors and characterising 2-port [5] and 3-port cavity couplers [6, 7], as well as a full
operation of a 4-port reflectively coupled Michelson interferometer [8]. A very recent proposal
also demonstrated reflective coupling without the need of adding a multilayer coating, which
would further reduce thermal effects associated with the coating stack itself [9]. However, due to
the broken symmetry of light deflection, the use of diffraction gratings introduces an additional
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Fig. 1. Left: Diffraction of light into the m-th diffraction order when the grating is displaced
by amount Δx′ relative to the beam. A grating displacement Δx′ corresponds to a parallel
beam displacement h, and induces an output optical path length change of ΔP according to
Eq. (2). Right: A displaced zero-order mode beam can be decomposed into non-displaced
zero-order and first-order mode beams for fixed coordinate systems.

coupling from alignment noise to output phase noise [10, 11].
Figure 1 (left) illustrates how the phase noise arises from a simple misalignment of a beam.

An incident beam with vacuum wavelength λ is diffracted from a reflective diffraction grating
with period d into the m-th diffraction order (we consider only one diffraction order m). The
angle conventions imply a positive incidence angle α , while the diffraction angles βm can be
both negative and positive. According to the grating equation

sinα + sinβm =
mλ
d

, (1)

it follows that the diffraction angle βm of a certain functional output coupling port will be
different from the incident angle α (except for the zero-order specular order). It is discernible
from a purely geometrical consideration that a slight lateral displacement of either the grating,
Δx′, or the beam, h, induces a shift in the optical path length of ΔP = δ1 + δ2 (where δ2 is
negative). This shift is related to the displacement Δx′ via the grating equation (1) [11]:

ΔP = δ1 +δ2 =−Δx′
mλ
d

. (2)

In other words, when a grating is displaced by an amount Δx = d, a diffracted beam will
undergo a total phase shift of 2π radians, with a dependency on the diffraction order m. Given
this phase noise, the use of gratings imposes more challenging requirements for the suspension
and isolation systems for optical components compared to conventional interferometric settings
with a natural symmetry of light reflection. Recently, we proposed an advanced readout for
the ports of a grating coupler which suppressed phase noise originating from lateral grating
displacement. The result was a factor of 20 relaxation in the lateral displacement suspension
requirement at 10 Hz [12].

There is an urgent need to assess these requirements in further detail with the use of realistic
interferometry simulation tools based on a Gaussian description, such as FINESSE [13]. These
Gaussian-based simulation tools are restricted to fixed coordinate systems, and therefore rely

#187849 - $15.00 USD Received 27 Mar 2013; revised 11 Oct 2013; accepted 16 Oct 2013; published 22 Nov 2013
(C) 2013 OSA 2 December 2013 | Vol. 21,  No. 24 | DOI:10.1364/OE.21.029578 | OPTICS EXPRESS  29580



on the technique of decomposing the laser beam into higher-order modes. Yet, effects due to
grating-related phase noise were solely investigated using geometric planewave considerations
because they allow for a straight-forward computation of the phase shift; these plane-wave
models are not a realistic representation of the Gaussian-based simulation tools.

In this paper, we present a fully analytical Gaussian framework to describe a small beam (or
grating) displacement by means of a first-order modal decomposition of the beam. This modal
model is the standard approach for off-axis beams in Gaussian-based simulation tools, as de-
picted in Fig. 1 (right). We examine the phase behaviour of the displaced beam and compare the
results for the modally decomposed model with those from the geometric planewave approach
(preliminary studies and results can be found in [14]). We justify the use of modal decomposi-
tion within the Gaussian framework through experimental means: we investigate the phase be-
haviour in a zero-order and first-order beam imprinted by diffraction from a grating in order to
determine whether the phase is dependent on the beam shape. The experimental setup consisted
of a table-top Mach-Zehnder interferometer, and a reflective diffraction grating placed in one
of the arms. Using a Gaussian description as the core basis, a rigorous time-domain simulation
tool was developed to firstly verify the phase dependency on the beam shape, thereby further
supporting the experimental findings. Secondly, a direct phase comparison of a diffracted beam
was made between an actual beam displacement and a modally decomposed model. We finally
corroborate the inclusion of the ‘geometric planewave phase factor’ for alignment stability
computations involving diffractive elements when using Gaussian-based simulation tools.

2. A framework for a Gaussian beam displacement

The aim of this section is to establish an analytical framework derived from a Gaussian de-
scription of modal decomposition. Using the phase distribution of a non-displaced beam as
a reference, we then distinguish the phase accumulation of a displaced beam using two ap-
proaches: an actual geometrical translation of the beam or grating, and modal decomposition
by adding a higher-order mode.

To clarify the setup, we refer to Fig. 1 (left), where a non-displaced and displaced beam both
propagate from one reference plane (black dashed line) and undergo grating diffraction before
reaching a second reference plane. The grating is orientated to lie in the x′-y′ plane, with the
grooves parallel to the y′-axis. The beam propagates along the z-axis, and we are concerned with
changes to the beam parameters only in the x-z direction of the beam. Note that the coordinate
system of the beam (x,y,z) is rotated by the angle α relative to the coordinate system of the
grating (x′,y′,z′). The grating displacement Δx′ is expressed in terms of the beam displacement
h and the angle of incidence α using the following relation:

h = Δx′ cosα. (3)

2.1. Beam translation and modal decomposition of a Gaussian beam

We begin by considering the description of a displaced Gaussian beam in terms of both a ge-
ometric translation and a modal decomposition (see Appendix A for a thorough description
of a Gaussian beam). Without loss of generality, we initially consider the beam at the waist
position, z0, where the waist size is ω0. We also assume a displacement of the beam along
the x-axis, rather than a displacement of the grating along the x′-axis, due to the symmetry of
the setup [10]. If we introduce a displacement h to a fundamental beam, the Hermite-Gauss
function of the translated beam, ut

0(x,z0), is defined at the waist as:

ut
0(x,z0) =

(
2
π

) 1
4 1√

ω0
exp

(
− (x−h)2

ω2
0

)
, (4)
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where the superscript t indicates a geometric translation along the x-axis. Next, we can substi-
tute Eq. (11) into an expansion of Eq. (4) (see Appendix A). Since typical grating displacements
are extremely small compared to the beam waist, we can use the approximation h/ω0 � 1 and
apply a first-order Taylor expansion to obtain the expression

ud
0(x,z0) = u0(x,z0)+

h
ω0

u1(x,z0), (5)

with the superscript d to denote a first-order modal decomposition. Equation (5) validates the
theorem that the properties of a slightly displaced zero-order mode beam can be characterised
by a decomposition into zero-order and first-order modes (as illustrated in Fig. 1 (right)).

2.2. Phase terms

Having established an expression to describe a displaced beam by means of modal decompo-
sition, the phase of the decomposed beam can be examined more closely. The specific phase
terms can be better understood when the beam is propagated away from the waist, and z0 is
replaced by the propagation distance along the optical axis, z. Away from the waist, extra pa-
rameters have to be taken into consideration, such as the radius of curvature of the wavefronts,
RC, the Gouy phase, Ψ(z), and the wave number k (defined as k= 2π/λ ). Equations (8) and (10)
in Appendix A reveal three contributions to the overall phase of a beam: exp(−ikz), exp

(
i 1
2 Ψ

)
and exp

(
−i kx2

2RC

)
. Using the general form, exp(−iθ), the phase of a beam, θ , at any given point

in the x-z plane is specified as

θ f ,t,d = kz− 1
2

Ψ+φ f ,t,d , (6)

where the subscripts f , t and d correspond to the fundamental non-translated, translated and
modally decomposed beams, respectively. The individual terms for φ f ,t,d are detailed in Ap-
pendix B. We now have a Gaussian-based framework to exactly describe the phase of non-
displaced and displaced beams before any grating diffraction. Next, we introduce diffraction
due to a grating and explore the impact on the phase terms.

2.3. Effects from astigmatism upon diffraction

The effect of diffraction into various angles which are different from the angle of incidence
can be accounted for by introducing an astigmatism to the Gaussian beam. As demonstrated
in Fig. 1 (left), a beam incident on the grating will possess different angles of incidence and
reflection, i.e. α �= β . Consequently, the diffracted beam produces an elliptical beam spot, only
the beam parameters along the x-axis change, whilst those along the y-axis remain the same.
This astigmatism results in a different waist size along the x-axis in the diffracted beam, ωx

0r
,

which can be expressed in terms of the waist size of the incident beam, ω0i , using the following
relation

ωx
0r
= ω0i

cosβ
cosα

. (7)

Note that for the incident beam, the waist size ω0i is identical in both x and y-directions,
and for the diffracted beam, the waist size in the y-direction remains unchanged, implying
that ωy

0r
= ω0i . From Eq. (1), we let d = 1666 nm and α = 10◦ to give β1 = 27.7◦. If ω0i =

10 mm, then according to Eq. (7), ωx
0r
= 8.99 mm. Using these specific values and Eqs. (14)

and (15), the phase of each beam after being diffracted by the grating (and at a distance z
away from the waist position) was plotted against x (the radial distance from the central optical
axis), creating the phase distributions seen in Fig. 2. Compared to the non-displaced beam
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(blue solid line), the phase distribution of a geometrically translated beam (green solid line)
displays the same shape and profile, and is shifted by an amount h along the x-axis, clearly
noticeable in Fig. 2. The phase for a modally decomposed beam (red solid line) exhibits the
same distribution profile, also shifted by h, yet an additional shift along the y-axis is evident,
giving rise to ‘negative’ phase. This effect can be clarified by Eq. (15) in Appendix B: the nature
of the equation constricts the phase distribution for the modally decomposed beam such that
the phase equals zero when x = 0 and x = 2h, and hence the reason for the overlap of the red
and blue traces at x = 0 where there is zero phase.

Subsequently, we find that increasing values of h leads to further phase deviation of the
modally decomposed beam from the geometrically translated beam. This is simply due to a
violation in the approximation h/ω0 � 1, which was used to obtain Eq. (5) and in turn Eq. (15).

For comparison, the phase distributions for the non-displaced, geometrically translated and
modally decomposed beams before grating diffraction are also included (dashed lines). Notice
that although the phase of the non-diffracted beams present a wider distribution, deviating away
from the solid lines when further away from the optical axis (as one would expect), the general
profile of the dashed traces is similar to the solid traces and displays no phase difference at the
central optical axis of the beams.

Fig. 2. Beam phase (wave front) for a fundamental non-translated beam (solid blue), trans-
lated beam (solid green) and a modally decomposed beam (solid red). For comparison,
the dashed lines represent the corresponding beams before grating diffraction. The fol-
lowing parameters are assumed: h = 0.05 mm, λ = 10−6 m, z = 0.5 m, ω0i = 10 mm and
ωx

0r
= 8.99 mm.

2.4. Analytical results

Although the beam suffers from astigmatism as a result of grating diffraction, this does not
change the overall wave front for a geometrically translated or modally decomposed beam,
relative to a non-displaced beam. Within the Gaussian framework (using Eq. (6)), we find that
when a beam is displaced (either through a geometrical translation or modal decomposition)
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in increments of increasing h, the phase distribution is always the same. For example, for a
geometrically translated beam, the phase at the central optical axis is always zero, regardless
of the value of h. We can therefore verify that our Gaussian-based framework does not include
a change in phase of 2π in the order of the grating period (i.e. Δx′ = d) [11], contrary to the
requirements given in Eq. (2). The absence of the expected phase change is due to the fact that
the geometrical layout in our framework of beam displacement is not interchangeable with that
of a grating displacement.

It should be noted that the use of only one higher-order mode to describe the beam shift
introduces small phase differences and a full expansion into more modes would mitigate this.
However, in this discussion we are aiming at identifying phase terms in the order of 1 radian
and thus the simple approximation of using only the first higher-order mode is sufficient.

We now aim to test the validity of the modal decomposition technique when describing
diffracted displaced beams: we analyse the phase between various orders of beam modes
through experimental means and justify whether adding the higher-order mode to the funda-
mental mode is acceptable.

3. An experimental demonstration of phase and mode independency

The modal expansion is using the fact that different fields in a linear optical system can be com-
puted separately and then superimposed to calculate the total field. In order to further validate
this method in the context of diffraction gratings we use a table-top experiment to establish that
after grating diffraction, the phase of a zero-order (TEM00) beam and a first-order (TEM10)
beam are the same, thus signifying that the phase of a diffracted beam is independent of its
mode and thus independent of the intensity pattern.

3.1. Experimental setup

A grating Mach-Zehnder interferometer was developed and used to distinguish the phase be-
tween zero-order and first-order modes, as depicted in Fig. 3. The laser beam was guided
through a series of modematching lenses and steering mirrors before entering the triangular
mode-cleaner (MC). The MC was tuned by means of a piezoelectric transducer (PZT), the po-
sition of which altered the round-trip distance of the circulating light inside the MC, and thereby
allowing any chosen mode to resonate and pass through. The beam was split into two arms of
equal lengths via an input beamsplitter (BS). A ruled reflective diffraction grating was located
in one arm, with a grating period of d = 1666.7 nm and aligned to reflect in the first diffraction
order. Note that for the purpose of this experiment, the grating was fixed in position and was
not translated in any direction. The other arm contained a second PZT, providing a slight mod-
ulation to the arm-length. Both beams recombined and interfered at the output BS, creating a
pair of output beams. Each output beam consisted of two superimposed beams: grating arm in
transmission plus PZT arm in reflection (denoted as the ‘east port’ in Fig. 3), and grating arm
in reflection plus PZT arm in transmission (designated as the ‘south port’).

3.2. Dual-mode locking system

The MC operates using feedback control based on the Pound-Drever-Hall scheme [15]. The
zero-order and first-order modes resonating within the MC were isolated and enhanced using
a combination of steering mirrors. The distance between the resonant peaks of the two modes
determined the amplitude of a square-wave signal (which in this case was 2.1 V), which in
turn was injected into the MC. The square-wave signal caused the PZT to jump back and forth
between two very specific positions, coinciding with the zero-order and first-order mode reso-
nances, as revealed by the green trace in Fig. 4 (set at a frequency of 3 Hz). As a result, a stable

#187849 - $15.00 USD Received 27 Mar 2013; revised 11 Oct 2013; accepted 16 Oct 2013; published 22 Nov 2013
(C) 2013 OSA 2 December 2013 | Vol. 21,  No. 24 | DOI:10.1364/OE.21.029578 | OPTICS EXPRESS  29584



Fig. 3. Layout of a grating Mach-Zehnder interferometer. A square-wave signal is injected
into the mode-cleaner, allowing the instrument to lock to zero-order and first-order mode
resonances alternately. One arm of the interferometer accommodates the diffraction grating,
whilst the length of the other arm is subjected to tiny fluctuations to create interfering fringe
signals at the output.

lock to the two alternating modes was successfully achieved, signified by the emission of a high
and constant level of light power from the MC (blue trace in Fig. 4).

In response to the PZT modulation in the Mach-Zehnder arm (purple trace in Fig. 4), the
superimposed output beams undergo constructive and destructive interference periodically, and
photodetectors (PDs) situated at each output port detect a fringe pattern of light and dark bands.
Note that when the east port PD senses constructive interference, the south port PD observes
destructive interference, and vice versa. The red trace in Fig. 4 is the resulting wave formed
from the interference fringes as detected by the south port PD.

A number of breaks within the fringe waveform are clearly noticeable in Fig. 4, correspond-
ing with the vertical dashed lines. We identified that these disruptions coincide precisely with
the moment when the square-wave signal jumps between the modes. Small additional distor-
tions can also be seen at these times, and are caused by the temporary disruption of the servo
control due to the jump. The breaks in fringe symmetry are due to the change in direction by
the PZT mirror in the Mach-Zehnder arm, hence the correlation with the peaks and troughs of
the triangular wave, indicated by the vertical dotted lines in Fig. 4.

3.3. Experimental results

If the phase in the zero-order and first-order modes were different, one would expect a notice-
able shift in the phase of the fringe signal when the modes switched, i.e., at the instant when the
square-wave ramp stepped either up or down. Instead, the results in Fig. 4 (red trace) show a
continuous and unbroken fringe signal during mode-switching, with no obvious deviation from
the general waveform. The absence of a shift in phase in the fringe signal confirms the absence
of a significant phase difference between both the zero-order and first-order modes after grating
diffraction. This supports the assumption that the phase of a diffracted beam is independent of
the beam shape.
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Fig. 4. Interference fringe signal during mode-switching. From top to bottom: PZT mod-
ulation signal in one of the Mach-Zehnder arms (purple); fringe signal due to interference
at the east port (red); output signal from the MC (blue); square-wave signal applied to the
MC to ramp between modes (green), where the maximum and minimum part of the signal
correspond to the zero-order and first-order mode resonances respectively. As the system
switches between the modes, the waveform of the fringe signal continues undisturbed -
this effect is only achieved when the phase of each mode is the same. Note that the slight
fluctuations visible in the fringe signal (and simultaneously in the output of the MC) are
due to the stabilisation effects of the electronics when locking to each mode.

4. A rigorous simulation tool for beam diffraction

Through the use of simulation techniques, we verify with greater certainty whether or not the
phase of a diffracted beam is independent of its shape, and we subsequently aim to compare
the phase profile of a diffracted beam when applying the modal decomposition method with
the phase profile of an actual beam displacement. The simulation relies on a comprehensive
technique known as a Finite-Difference Time-Domain (FDTD) analysis, which can be utilised
to create a powerful two-dimensional simulation tool to solve Maxwell’s equations rigorously
in the time-domain [16,17]. For our purposes, an FDTD implementation was developed [18] to
investigate how beam/grating displacements coupled into the phase of diffraction orders. A key
element is that the FDTD analysis allows for the simulation of Gaussian beams, which is not the
case for other significant approaches, such as the Rigorous Coupled-Wave Analysis (RCWA),
based on the planewave approximation. The FDTD analysis enabled us to simulate a diffraction
grating and propagate beams with orders of various mode, and thereby study the phase changes
created when the beam or grating is displaced. The main objective is to understand why the
periodic change in phase of 2π radians (a definitive outcome for a displaced beam in a geometric
sense) is absent from the analytical model for a modally decomposed beam in Section 2.
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4.1. Main parameters and optical layout

The properties of the modelled optical layout and diffraction grating are shown in Table 1.
The cell size, Δ, determines the resolution of the simulation space - a smaller cell size results
in a higher resolution. For our purpose, the simulation considers only the m = 0 and m =
±1 diffraction orders, and the diffraction angle is set at ±45◦ so as to minimise anisotropic
dispersion.

Table 1. Parameter values used to simulate Gaussian beam diffraction by a grating.

Parameter name Parameter value
Cell size, Δ 25 nm

Simulation dimension 1300Δ × 1800Δ = 32.5 μm × 45 μm
Wavelength, λ 1064 nm

Grating period, d 60Δ = 1500 nm
Beam propagation distance, z 1200Δ = 30 μm

Radius of beam waist, ω0 100Δ = 2500 nm

The concept of the simulation is as follows: a Gaussian beam is propagated through a diffrac-
tion grating to create m= 0 and m=±1 diffraction orders. For simplicity, a transmission grating
is used instead of a reflection grating - this avoids the need to model a reflective coating, while
the results regarding the phase changes remain the same.

Figure 5 presents an instantaneous image of a diffraction pattern for a TEM00 beam (left),
and a TEM10 beam (right). The beam travels in the direction indicated by the red arrow, and the
stationary grating is shown by the dashed grey lines.

Fig. 5. Diffraction patterns formed by a TEM00 beam (left) and a TEM10 (right). The
beams propagate through the diffraction grating (dashed grey lines), and the phase for each
diffraction order, m = 0 and m =±1, is measured at the reference planes (solid pink lines).

After diffraction, each beam continues to propagate until they encounter reference planes,
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visible as straight, solid pink lines in Fig. 5. Along each reference plane, a probe sits at the
point of maximum intensity and measures the phase of the passing beam. Since a TEM10 beam
consists of two intensity spots (or lobes), each reference plane contains two probes for phase
measurement, as indicated in Fig. 5 (right). We positioned the reference planes to coincide with
the beam waist in all diffraction orders so as to avoid any extra Gouy phase effects in beams
of higher order modes. For measurements involving grating displacements, the distance of the
grating period d was divided into 40 steps, and the grating was translated incrementally by
a distance of d/40 each time. The total displacement of the incident beam (or grating) was
therefore equivalent to a distance of one grating period (1.5 μm), i.e., Δx′ = d. At each grating
position, the probes recorded the phase and the simulation was run for some time to allow for
better averaging. The simulation was executed in order to explore two different scenarios:

1. Displacing the incident beam (or grating) vertically using a TEM00 beam. Note that the
context of beam displacement and grating displacement are interchangeable if the ge-
ometrical layout is the same. However, when the beam is displaced in the simulation,
the reference planes do not follow suit and remain static (see Fig. 5). For this reason, it
is necessary to also translate the reference planes vertically, simultaneously with beam
displacement, ensuring that the geometry of the layout with respect to the grating is con-
sistent.

2. Modal decomposition, adding a TEM10 beam gradually to a TEM00 beam (thereby re-
producing a vertical beam displacement, in accordance with Eq. (5)). This scenario in-
troduces two possibilities: (a) moving the reference planes simultaneously in a vertical
direction, for reasons of consistency as described in the first scenario, and (b) without
moving the reference planes. The latter raises an interesting issue: given the fact that
simulations based on modal decomposition are unable to automatically change coordi-
nate systems, it follows that the reference planes (along which the phase is measured)
also remain static during beam displacement. We therefore wish to investigate both pos-
sibilities (a) and (b).

4.2. Simulation results

The change in phase for the three separate cases outlined above in 1, 2(a) and 2(b) are presented
in Fig. 6. Each diffraction order is indicated by the following trace colours: green (m = 0), red
(m = +1) and blue (m = −1). The various line styles represent each scenario: beam/grating
displacement (solid), modally decomposed with vertical movement of reference planes (dotted)
and modally decomposed without movement of reference planes (dashed).

4.2.1. Beam/grating displacement

During displacement of the grating (or beam) using a TEM00 mode beam, the phase remains
constant for m = 0 (solid green). For m =+1 (solid red), the phase gradually increases, and for
m =−1 (solid blue), the phase decreases. In each case, the phase undergoes a linear change of
2π radians over a total displacement of d. The opposite sign of the slopes are accounted for by
the direction of the grating or beam translation; the optical path length increases in one of the
first diffraction orders and decreases in the other. The profile of these traces are as predicted by
Eq. (2).

4.2.2. Modal decomposition - reference planes translated vertically

When a TEM10 mode is added to a TEM00 mode beam, the result is a TEM00 beam displaced
along the vertical axis (parallel to the grating). As a higher portion of TEM10 is added, the re-
sulting beam experiences a further displacement. Repositioning the reference planes along the
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Fig. 6. Phase changes for a displaced beam after grating diffraction, as measured in the m=
0 and m = ±1 diffractive orders. Three cases are considered: beam/grating displacement
(solid), modal decomposition with reference planes adjusted vertically (dotted), and modal
decomposition with fixed reference planes (dashed). Note that the green dashed line is
coincident with the green solid line.

vertical axis simultaneously with the resulting beam displacement ensures a consistent geomet-
ric layout with respect to the grating.

During the addition of the higher-order mode, the phase is seen to be unchanging for m = 0
(dotted green), and the phase in the m = +1 (dotted red) and m = −1 (dotted blue) either in-
crease or decrease, respectively. The phase profiles exhibited in this scenario are highly compa-
rable with the profiles from the first scenario, and we can confidently conclude that the addition
of a first-order mode to a zero-order mode beam is an accurate description for small beam or
grating displacements in terms of the phase changes produced.

4.2.3. Modal decomposition - stationary reference planes

A TEM10 mode beam was added to a TEM00 mode beam and produced a TEM00 beam dis-
placed along the vertical axis, as described before. However, since the reference planes re-
mained static, after each addition of the higher-order mode (equivalent to each step of a beam
or grating translation), the total optical path length between the grating and the reference plane
increased in one of the first diffractive orders and decreased in the other (depending on the di-
rection of the resulting beam displacement). In fact, fixing the reference planes in one position
exactly compensates for the previously seen linear phase profile, hence we obtain flat lines for
m = 0 (dashed green, which is not visible because it exactly coincides with the solid green
trace), m =+1 (dashed red) and m =−1 (dashed blue).

It is important to note that optical simulation tools used to study alignment issues, such as
FINESSE, are restricted in that computations can only be carried out in one coordinate system.
It is for this reason that these simulation tools rely on the modal decomposition method for
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replicating beam displacements. However, the single coordinate system also means that the
reference planes are also forced to remain stationary, as described in the scenario 2(b). We
have shown here that in this situation the phase change due to beam translation on a diffraction
grating is not contained in the usual model and we recommend a manual injection of this phase
into the analytical model and into existing Gaussian-based simulation tools in order to obtain
an accurate description of the beam when interacting with diffractive elements.

5. Conclusion

It has been proposed to use diffraction gratings in high-precision laser interferometers such as
modern gravitational wave detectors. However, further research has identified an additional,
possibly critical, alignment induced phase noise related to diffraction gratings. In this paper
we report our investigation towards a mathematical framework which allows implementing this
noise effect in commonly used analytical and numerical models for laser interferometers. We
have successfully developed a framework for describing the phase effects due to beam transla-
tions on diffractive elements, incorporating a Gaussian model. We analysed the modal model
for a diffracted Gaussian beam and determined that the usual modal model does not account for
the phase change for translated or misaligned beams. Using an experimental setup we demon-
strated the absence of phase changes between a diffracted zero-order beam and first-order beam.
Consequently, we confirmed that the phase of a diffracted Gaussian beam is completely inde-
pendent of the beam shape, and that the inclusion of higher-order modes has no effect on the
overall phase. Using a dedicated simulation tool, we examined the phase changes in the first
diffraction order for two scenarios: firstly during beam/grating displacement for a zero-order
beam and secondly by modal decomposition. We confirmed that the phase changes resulting
from grating displacement were in agreement with a pure geometric planewave consideration.
It is essential that the reference planes, and therefore the coordinate system, can be moved in or-
der to obtain the correct phase measurements when reproducing beam displacements. In a fixed
coordinate system required for the common application of modal models, this can accounted for
most easily by adding the extra phase change relating to the change in the geometric path length
when a beam is displaced. This is valid for analytical and numerical models, and we suggest
implementing this procedure to Gaussian-based simulations relying on modal decomposition,
such as FINESSE.

Appendix A: Mathematical derivation of a Gaussian beam

We present a mathematical description of Gaussian beams in more detail here. Hermite-Gauss
modes have the general form:

E(x,y,z) = ∑
nm

anm(x,y,z)unm(x,y,z)e
−ikz. (8)

The normalised Hermite-Gauss function unm(x,y,z) describes the transverse spatial distribu-
tion of the beam as it varies slowly with z and is defined as:

unm(x,y,z) =
(
2n+m−1n!m!π

) 1
2 1

ω(z)
exp

(
i(n+m+1)Ψ(z)

)
Hn

(√
2x

ω(z)

)

× Hm

(√
2y

ω(z)

)
exp

(
−i

k(x2 + y2)

2RC(z)
− x2 + y2

ω2(z)

)
, (9)

where Hn and Hm are Hermite polynomials, ω(z) is the beam size, RC(z) is the radius of curva-
ture of the beam wavefronts. The Gouy phase is specified as Ψ(z) = arctan[(z− z0)/zR], with
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zR being the Rayleigh range. Unless otherwise specified, the beam waist, ω0, will always be
located at the grating, i.e. where z = z0.

In general, an offset beam is displaced in both the x and y directions. Due to the symmetry
of the system, we consider the displacement of the beam for only one degree of freedom, along
the x-axis. The normalised Hermite-Gauss function, un(x,z) in x becomes:

un(x,z) =

(
2
π

) 1
4
(

exp
(
i(2n+1)Ψ(z)

)
2nn!ω(z)

) 1
2

Hn

(√
2x

ω(z)

)
exp

(
−i

kx2

2RC(z)
− x2

ω2(z)

)
. (10)

At the waist, the Gouy phase is zero. In addition, RC → ∞ and therefore the RC term in
Eq. (10) can be ignored. Since H0 = 1, a zero-order mode where n = 0 can be described at the
waist position in the following form:

u0(x,z0) =

(
2
π

) 1
4 1√

ω0
exp

(
− x2

ω2
0

)
. (11)

A first-order mode with n = 1 at the waist position is given as:

u1(x,z0) =

(
2
π

) 1
4 1√

2ω0

(
2
√

2x
ω0

)
exp

(
− x2

ω2
0

)
. (12)

Using Eqs. (11) and (12), we obtain a simple relationship between the zero-order and first-
order modes at the beam waist:

u1(x,z0) =
2x
ω0

u0(x,z0). (13)

Appendix B: Derivation of phase terms

In Section 2.2, the phase, θ , is described for a stationary fundamental beam (f), a translated
beam (t) and a modally decomposed beam (d). The common factor of kz− 1

2 Ψ in Eq. (6) can
be omitted to leave φ f ,t,d , defined for each individual beam as follows:

φ f =
kx2

2RC
, φt =

k(x−h)2

2RC
, φd =

kx2

2RC
−ϕ. (14)

The ϕ term in Eq. (14) arises from the fact that the beam in Eq. (5) is a superposition of
modes. By expanding and simplifying Eq. (5), we find that the remaining factor consists of a
sum of terms, which is subsequently treated as a complex number. We use the relation eiϕ =
(cosϕ + isinϕ) to reach the expression:

ϕ = arctan

(
sinΨ

cosΨ+
(ω ω0

2xh

)
)
. (15)
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