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Copy number variants (CNVs) at specific loci have been

identified as important risk factors for several neuropsychiatric

disorders, such as schizophrenia, autism spectrum disorder,

intellectual disability (ID) and depression. These CNVs are

individually rare (<0.5% frequency), have high effect sizes, and

show pleiotropic effects for multiple neuropsychiatric

disorders, which implies a shared aetiology. Neuropsychiatric

CNVs are also associated with cognitive impairment and other

medical morbidities, such as heart defects and obesity. As

most neuropsychiatric CNVs are multigenic, it has been

challenging to map their effects onto specific biological

processes, although gene-set analyses have implicated genes

related to the synapse and chromatin regulation. However,

future whole-genome sequencing studies have potential for

identifying novel single-gene CNV associations, which could

provide insights into the pathophysiology underlying

neuropsychiatric disorders.
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Introduction
Copy number variants (CNVs) are structural rearrange-

ments to chromosomes and represent a major source of

genetic variation [1,2��]. CNVs involve gains and losses of

DNA segments, respectively known as duplications and

deletions. Other forms of structural variants include

inversions, which reverse the sequence of a DNA seg-

ment, complex structural variants that involve repeated

chromosomal rearrangements within the same locus (e.g.

inversions within a duplication), and multi-allelic CNVs

[2��]. CNVs are widely distributed across the genome,

collectively accounting for more base-pair changes

between individuals than all SNPs combined [3], and
www.sciencedirect.com 
each event can affect between 1KB and several MB of

DNA. Although common CNVs (e.g. those >1% in fre-

quency) often represent benign polymorphisms, rare

CNVs at specific loci have long been established as

important risk factors for Mendelian disorders and com-

plex neuropsychiatric disorders.

Since 22q11.2 deletions were first associated with

increased risk for schizophrenia [4], large-scale genetic

studies have identified additional CNVs that contribute

to liability for different neuropsychiatric disorders, such

as schizophrenia, autism spectrum disorder (ASD), intel-

lectual disability (ID)/developmental delay (DD), major

depressive disorder (MDD), attention-deficit hyperactiv-

ity disorder (ADHD), Tourette syndrome (TS) and

obsessive compulsive disorder (OCD) (Table 1). More-

over, it has become increasingly apparent that the same

CNV can increase risk for different disorders (i.e. they are

pleiotropic) and that people without a diagnosed psychi-

atric disorder often carry risk CNVs (i.e. their penetrance

is incomplete). However, despite these advances, under-

standing disease biology from CNV associations has been

challenging as most risk CNVs are large and disrupt

multiple genes, and the causal gene(s) underlying each

CNV is not usually known. Nevertheless, animal and

cellular models based on neuropsychiatric CNVs, as well

CNV gene-set analyses, have provided important insights

into the disease mechanisms underlying neuropsychiatric

disorders.

In this review, we discuss the current understanding of

CNVs that contribute to liability for neuropsychiatric

disorders. We will describe the etiologic overlap between

different psychiatric and neurodevelopmental disorders

and recent findings from studies that have investigated

the effects of neuropsychiatric CNVs in large population-

based cohorts. Finally, we will address what these find-

ings imply about the biological underpinnings of neuro-

psychiatric disorders.

Neuropsychiatric CNV loci
A large body of evidence has shown rare CNVs contribute

to the liability of most neuropsychiatric disorders, with

the largest number of specific CNVs currently implicated

in studies of ID/DD, ASD and schizophrenia (Table 1).

In DD, case-control studies have found evidence for up to

70 associated CNVs [18], the majority of which are known

causes of genomic disorders and occur in DNA regions

prone to rearrangement via non-allelic homologous

recombination [19]. In ASD, 15 CNVs across 10 loci have

been implicated [11–13], whereas for schizophrenia

strong statistical evidence has been found for up to 12 risk
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Table 1

Copy number variant studies in neuropsychiatric disorders. The

largest case-control and/or family studies that have analysed

CNVs are presented for different neuropsychiatric disorders.

The number of specific CNVs implicated across these studies

is presented. SCZ = schizophrenia, ASD = autism spectrum dis-

order, ID = intellectual disability, DD = developmental delay,

MDD = major depressive disorder, ADHD = attention-deficit

hyperactivity disorder, TS = Tourette syndrome, OCD = obses-

sive compulsive disorder, BD = bipolar disorder

Phenotype Cases Controls Trios/

Quads

N implicated

CNVs

Key

references

SCZ 21 094 26 628 662 12 [5–7]

BD 9129 63 068 1 [8]

ADHD 8883 180 776 305 8 [9�,10]
ASD 4315 70 739 5574 15 [11,12,13]

MDD 23 979 383 095 3 [14�]
OCD 1613 1789 174 1 [15,16]

TS 2434 4093 2 [17]

ID/DD 29 085 19 584 70 [18]
CNVs [5,6,20]. CNV burden analyses suggest that addi-

tional risk loci for schizophrenia will be discovered when

larger samples become available [5], but their frequencies

are likely to be lower than those observed for currently

implicated CNVs. The frequencies and association sta-

tistics for selected neuropsychiatric CNVs and disorders

as taken from published case-control studies are pre-

sented in Supplementary Table S1.

More recently, a role for rare CNVs in ADHD liability was

confirmed in a large case-control sample from Iceland and

Norway, where an excess burden of 19 known neuropsy-

chiatric CNVs was found in cases (odds ratio (OR) (95%

CI) = 2.43 (2.05, 2.87)), as well as significant association

for 8 specific loci (Supplementary Table S1) [9�]. The rate

of de novo CNVs in ADHD also appears to be greater than

that observed in controls [10], with similar observations

previously made for de novo CNVs in studies of schizo-

phrenia [7,21] and ASD [13].

Rare pathogenic CNVs have also been shown to increase

liability to more common mental health disorders, such as

MDD. Here, short deletions (<100 kb) and known neuro-

psychiatric CNVs are enriched in people with depression

[14�,22], and significant association has been found for

3 specific CNVs (1q21.1 duplication, PWS/AS duplication,

and 16p11.2 duplication) (Supplementary Table S1) [14�].

The contribution of CNVs to BD liability is less clear;

early reports implicated 1q21.1 duplications, 3q29 dele-

tions and 16p11.2 duplications, but no significant differ-

ence was found for the genome-wide rate of CNVs in BD

compared with controls [8]. Although current statistical

evidence for specific risk CNVs in BD is weak, some

CNVs have similar effect sizes to those observed in MDD

(Supplementary Table S1), suggesting that larger samples
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may identify robust associations. However, the lack of

robust CNV associations in BD could also, in part, be due

to the less severe impairments in cognitive function that

are found in BD patients when compared with other

psychiatric disorders, such as schizophrenia [23,24], given

neuropsychiatric CNVs have been associated with

reduced cognitive function in the general population

[25]. In support of this hypothesis, a recent study evalu-

ated CNVs across different BD subphenotypes and found

a significant enrichment of CNVs only in schizoaffective

bipolar (SAB) cases compared to controls [26�], and

patients diagnosed with SAB have greater cognitive

impairments compared with patients with a diagnosis

of BD type I or II [23]. Studies of common alleles in

BD have also found evidence for genetic heterogeneity

across BD subphenotypes, where significant elevations of

schizophrenia PRS are found in SAB compared with other

BD subphenotypes [27,28]. These findings highlight the

importance of considering different genetic architectures

across psychiatric subphenotypes when examining CNV

associations.

Current CNV studies of TS and OCD are smaller than

those conducted for DD, ASD and schizophrenia,

although CNVs have also been shown to increase risk

for these disorders [15–17,29], with deletions of NRXN1
and duplications of CNTN6 currently implicated in TS

[17] and 16p13.11 deletions in OCD [15]. When tested as

a group, the rate of neuropsychiatric CNVs is higher in

TS/OCD compared with controls [15,17], which again

suggests that additional specific neuropsychiatric CNVs

will be associated with TS/OCD when evaluated in larger

samples.

Shared and unique effects of neuropsychiatric
CNVs
As the number of established CNV loci for psychiatric and

neurodevelopmental disorders has grown, it has become

increasingly apparent that most neuropsychiatric CNVs

confer risks for multiple disorders (Supplementary

Table S1 and Figure 1). All known schizophrenia risk

CNVs have been implicated in ID [6], and most CNVs

implicated in ASD overlap those found in schizophrenia

[30]. However, the penetrance of neuropsychiatric CNVs

differs across different disorders, with carriers more likely

to develop early-onset neurodevelopmental disorders

such as ID/DD and ASD [31].

These shared CNVs point towards pleiotropic effects,

which suggests that different neuropsychiatric disorders

have overlapping disease biology; however, for multi-

genic CNVs it is not yet known whether the same genes

are associated with different disorders [32], although the

most parsimonious explanation is that any brain

expressed gene in the CNV will have some effect on

all neuropsychiatric disorders. Large-scale sequencing
www.sciencedirect.com
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Figure 1
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Odds ratios for selected neuropsychiatric CNVs across different

disorders. To allow for a meaningful comparison of odds ratios across

disorders, the CNV rate for each disorder was compared with the

control rate reported in Kendall et al., which has the largest number of

controls [14�] (Supplementary Table S1).
efforts may enable the causal gene(s) for multigenic

CNVs to be identified, as genes associated with rare

coding variants in neurodevelopmental disorders are

enriched within neuropsychiatric CNV loci [33]. The

only single gene CNV that is unequivocally associated

with multiple neuropsychiatric disorders involve non-

recurrent exonic deletions of NRXN1, indicating this gene

has true pleiotropic effects. The most common pheno-

type associated with NRXN1 deletions in clinical samples

is ID [34], although schizophrenia, ASD and TS are also

associated. Deletions affecting the promotor or exons at

the 5’ end of NRXN1 show higher penetrance for ID/DD

compared with deletions only affecting the 3’ end [35],

suggesting the size and location of NRXN1 deletions

might influence the highly variable phenotypic outcomes.

Accumulating evidence indicates that additional genetic

variation modulates the phenotype expressed in carriers

of specific neuropsychiatric CNVs. For example, individ-

uals with a neuropsychiatric CNV and schizophrenia have

an elevated burden of common schizophrenia risk alleles

compared with controls [36,37]. Moreover, for individuals

with a 22q11.2 deletion, higher schizophrenia polygenic

risk scores and an elevated burden of rare loss-of-function

variants in synaptic genes are found for carriers who have

psychosis [38], whereas carriers who have ID have a
www.sciencedirect.com 
higher burden of additional rare CNVs [39]. Similar

findings have also been reported for individuals with

ASD, where patients carrying multiple neuropsychiatric

CNVs, or a specific neuropsychiatric CNV in addition to

rare deleterious coding variants, have more severe neu-

rodevelopmental phenotypes or comorbid ID [40�].

Identifying CNVs that discriminate between neuropsy-

chiatric disorders is challenging due to differences in

sample size across studies. However, one clear distinction

is found for 22q11.2 duplications, which are known risk

factors for ID/DD/ASD but have a significantly lower rate

in schizophrenia compared with controls [5,30,41,42]

(Supplementary Table S1 and Figure 1). Overall, the

current evidence suggests that most, if not all, neuropsy-

chiatric CNVs identified to date increase risk for multiple

disorders.

Neuropsychiatric CNVs in the general
population
The development of large population based genetic

cohorts, such as the UK Biobank, has enabled the effects

of neuropsychiatric CNVs to be studied in individuals

without a diagnosed neuropsychiatric disorder. The find-

ings from these studies have shown that neuropsychiatric

CNVs impact a wide range of cognitive, physical and

medical traits. For example, data from the UK Biobank

has indicated that nearly all neuropsychiatric CNVs are

associated with reduced cognitive performance in people

unaffected by psychiatric or neurodevelopmental pheno-

types [43]. Here, the impact of specific CNVs on cogni-

tion was strongly correlated with their penetrance for

developing a neurodevelopmental disorder (Pearson’s

correlation = 0.74) [43]. These findings support a previous

Icelandic study that found cognitive performance scores

in unaffected CNV carriers were between those observed

in schizophrenia patients and the general population [25].

Neuropsychiatric CNVs have also been shown to increase

risk for a large number of non-psychiatric medical mor-

bidities, such as diabetes, hypertension, cardiac, respira-

tory and renal disorders [44�], as well as physical traits

(e.g. BMI, waist/hip ratio) [45]. However, some of these

associations are likely to result from secondary effects

(e.g. obesity leading to hypertension).

Large population-based cohorts have enabled the preva-

lence and penetrance estimates of neuropsychiatric

CNVs to be refined, as they can sometimes overcome

ascertainment biases that are inherent in case-control

studies. For example, a recent study found 31 neuropsy-

chiatric CNVs had a prevalence rate of 0.8% in a health

care system–based population (90 595 individuals), and

that carriers of these CNVs had increased rates of neuro-

psychiatric disorders (including common conditions such

as depression and anxiety) and congenital malformations

(the most common of which were cardiac defects) [46��].
Current Opinion in Genetics & Development 2021, 68:57–63
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Only 5.8% of individuals that carried a neuropsychiatric

CNV had a documented genetic diagnosis, which sup-

ports the inclusion of neuropsychiatric disorders in future

genomic screening programs [46��].

Biological insights
One of the main goals of psychiatric genetics research is

to advance our understanding of disease mechanisms and

enable the development of new and more effective

treatments. Indeed, early trials that tailored therapies

towards biological systems hypothesised to be perturbed

by specific CNVs in patients with psychotic disorders

have shown promise for improving clinical symptoms

[47]. However, it has been challenging to directly derive

biological insights from large neuropsychiatric CNVs, as

multiple genes within the locus are likely to have role

[11,40�], and which specific genes are associated remains

unknown. The exception is for single-gene CNVs that

disrupt NRXN1, which encodes a synaptic neuronal

adhesion molecule that is essential for synaptic forma-

tion, organisation and plasticity [48]. Association

between non-recurrent NRXN1 deletions and numerous

psychiatric disorders (Supplementary Table S1) indeed

implies shared disease mechanisms; however there are

over 100 NRXN1 isoforms, and heterogeneity in deletion

size and location across patients [35,49] may contribute

to variation in disease mechanisms associated with this

locus.

CNV gene-set analyses have identified specific biological

processes disrupted in neuropsychiatric disorders. For

example, genes related to the activity-regulated cytoskel-

eton-associated protein and N-Methyl-D-aspartic acid

synaptic complexes, as well as GABAergic and glutama-

tergic signalling and voltage-gated calcium channels, are

associated with CNVs in schizophrenia [5,7,50,51]. Small

de novo CNVs in ASD have also implicated networks of

genes involved in chromatin regulation or synaptic pro-

teins [13], showing convergence with findings from stud-

ies of schizophrenia.

Insights into the underlying pathology of neuropsychiat-

ric disorders have also been gained from animal models of

CNVs, which have recapitulated phenotypes observed in

psychiatric disorders, such as impairments in cognition

and social behaviour [52]. Neuronal phenotypes observed

in CNV models include abnormal dopamine cell firing

activity for 1q21.1 deletions [53], reduced excitatory

synaptic transmission and synapse number for NRXN1
deletions [54,55], and altered synaptic plasticity for

22q11.2 deletions [52]. Although different neuropsychi-

atric CNVs will directly impact distinct sets of genes,

transcriptomic data from 15q13.3 deletion, 22q11.2 dele-

tion, and 1q21.1 deletion mouse models has provided

evidence that common modules of co-expressed genes

are dysregulated by all three CNVs, suggesting the effects

from different CNVs can converge on similar biological
Current Opinion in Genetics & Development 2021, 68:57–63 
processes [56]. Additionally, studies involving human-

induced pluripotent stem cells (iPSCs) derived from

patients carrying neuropsychiatric CNVs have pointed

towards abnormalities in dendritic morphology, reduced

neuronal size and reduced synaptic density (see Ref. [57]

for a detailed review on iPSCs and CNVs).

Conclusion
Rare CNVs have been shown to be important risk factors

for schizophrenia, ASD and ID. Through the develop-

ment of large case-control and population based genetic

datasets, CNVs have also more recently been shown to

contribute to risk for ADHD and MDD. All established

neuropsychiatric CNVs have substantial pleiotropic

effects, which implies that some disorders in part have

overlapping aetiologies. Longitudinal and systematic

studies of specific neuropsychiatric CNVs have enabled

a better understanding of the full spectrum of associated

phenotypes, as well as their effects on individuals who

have not developed a psychiatric or neurodevelopmental

disorder. As most known neuropsychiatric CNVs disrupt

multiple genes, it has been challenging to map these

genetic associations to specific biological processes. How-

ever, a large population-based reference map of structural

variants recently generated from whole-genome sequenc-

ing data, known as gnomAD-SV, has shown most struc-

tural variants carried by individuals are far too small to be

reliably detected from conventional microarray data [2��].
Therefore, there are major gaps in our understanding of

the contribution of small structural variants to the liability

of psychiatric disorders. This is an important gap in

knowledge to address, as smaller structural variants are

more likely to disrupt individual genes, which may pro-

vide clearer mechanistic insights into disease biology. As

previously shown in psychiatric CNV studies based on

microarray data, extremely large whole-genome sequenc-

ing datasets will be required to identify robust statistical

associations. Nevertheless, the gnomAD-SV data set will

long serve as a critical resource for facilitating the discov-

ery and interpretation of smaller neuropsychiatric struc-

tural variants in future studies.
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62 Molecular and genetic basis of disease
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disorder was not clear, as only one locus had been robustly implicated.
Here, the authors investigated whether CNVs had a more significant role
in the liability of bipolar disorders subphenotypes (e.g. bipolar I disorder,
bipolar II disorder and schizoaffective disorder bipolar type). The study
found that compared with controls, only cases diagnosed with schizoaf-
fective disorder bipolar type were enriched for CNVs. This finding implies
that different genetic architectures may exist within heterogeneous psy-
chiatric disorders.
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