Parallel transmit coil dimensions affect
SAR sensitivity to motion at /T.
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Synopsis: Subject motion in parallel-transmit (pTx) causes channels’ electric field interference
patterns to change, influencing SAR distributions. This can cause safety limits to be exceeded when
SAR-constrained pulses are designed for one position, with reports of local-SAR more than tripling due
to motion in the literature. Here, we investigate the effect of pTx coil geometry by simulating 6
differently sized coil models and testing SAR sensitivity at 19 displaced positions. While our results
agree with those previously reported for the similar-sized coil, we generally observe lower SAR
motion-sensitivity in larger coil models, and much higher sensitivity for the smallest coils.

Introduction:

Parallel transmission (pTx) can overcome B1+ inhomogeneity in 7T head imaging®3, however specific
absorption rate (SAR) hotspots and associated tissue heating can exceed safety limits when head
motion occurs due to constructive interference between channels*®. Motion-induced increases in
peak local-SAR of over 200% have been reported for multi-spoke pTx pulses, along with unpredictable
changes in hotspot location®.

Interference patterns depend on the coil as well as the load, therefore SAR depends on coil geometry”
8 Here, we investigate whether pTx coil element dimensions affect SAR motion-sensitivity. For this,
we compare motion-induced SAR changes using simulations with 6 different coils.

Methods:

6 coil models (A: smallest, to F: largest) consisted of 8-channel loop arrays; the height, width (of loops),
and radius (of array) of which varied +25%, +25%, and +25%, respectively, compared to the base model
C (figure 1). For each coil model, 1 central, and 19 off-centre positions were simulated using the Ella
model® in Sim4Life (ZMT, Zurich, Switzerland), totalling 120 datasets. SAR was reported as most
sensitive to axial displacements?, so we focus on these. Simulation parameters followed those in [4].
Positions were defined with respect to the array origin across coil models.

Pulses were designed to uniformly excite an axial slice in quadrature and pTx (1/2/3/5-spokes) modes
(1-spoke is RF-shimming). Pulses were designed with an adaptation of [10-12] using B1-distributions
at the central position for each coil. Pulses were not SAR-constrained, but RF power was penalized
(along with magnitude excitation error) in the cost function (with Tikhonov regularization = 0.1).
Separate pTx pulses were designed for 6 slices (figure 1), yielding 25 pulses per coil.

Motion-sensitivity was quantified as SAR at each off-centre position normalised by that at the
corresponding central position (SARcentre) for each coil respectively. Whole-head (gSAR) and peak 10-
gram averaged local-SAR (psSAR) were evaluated at all positions using voxelwise and 10-g average Q-
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Figure 1. (i): Dimensions (in mm) of the 6 pTx coil models. A single loop (channel) is shown for each
model. (ii): Sagittal view of Sim4Life setup (coil model C shown). Slice positions -also shown in (i)-
used for pulse design indicated in yellow. Slices remained constant in scanner coordinates across
coil models. (iii): Axial view of simulated positions. The 20 positions were combinations of:
rightward: 0,2,5,10,20mm and posterior: 0,2,5, and 10mm. The two extremes (0,0 — grey) and

(20,10 - yellow) are shown. The origins of all positions are indicated with crosses (with the central
position’s origin circled in red).

matrices?® respectively. Tissue volumes exposed to higher SAR than psSARcentre are also investigated
(named ‘high-SAR tissue’ here). To exclude pulse design effects, eigenvalue-based SAR (eigSAR;
assumes worst-case channel interferences) was also calculated using the 10-g Q-matrices.

Results & Discussion:
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Figure 2. Motion-sensitivity of peak local-SAR (i) and whole-head SAR (ii) for RF-shim pulses designed
using slice 2 at the central position for each coil model A to F. Slices 2-5 showed similar trends. Y-axes
refer to SAR at each evaluated position (left-right [L-R] and anterior-posterior [A-P] displacements), as a
factor of SAR at the central position (i.e. without motion). SARcentre Was comparable across coil models
(not shown).



Coil C has similar dimensions to that in [4] and exhibited similar SAR-sensitivity to motion as expected
F-shimming: 2.7 vs 2.4-fold psSAR increase). For the larger coils, psSAR sensitivity was lower, whereas
for the smallest coil (A) we observed a much higher worst-case local-SAR increase of 3.8-fold. Similarly,
coil C’s eigSAR increased up to 43%, matching previous findings®, however eigSAR was more motion-
sensitive among smaller coil models (especially to posterior shifts) where it increased by 72%.

For pTx pulses, gSAR increased by up to 38% and 49% for RF-shim and multi-spoke pulses, respectively
(both coil A). psSAR for RF-shimming was the most motion-sensitive metric, and was especially
sensitive among smaller coils. psSAR increased by 3.8-fold, 2.7-fold, and 1.3-fold in the worst RF-shim
case for coils A, C, and F, respectively. Figure 2 shows RF-shim SAR-sensitivity for a representative slice
(slices 2-5 showed similar patterns, while 1 and 6 did not - discussed later). Figure 3 shows coils’ worst
cases across all pTx (including RF-shim) pulses. psSAR sensitivity and high-SAR tissue was lowest for
the taller coil models, where psSAR increased by a maximum of 96% and 59% for coils D and F,
respectively. As the number of spokes in pulses increases, SAR-sensitivity generally reduced and
became more similar across coil models (figure 4.i), however the three largest coil models’ worst-cases
were multi-spoke pulses.

For quadrature pulses, gSAR was relatively stable, increasing by up to 5% (coil A). psSAR was most
sensitive for coil C where it almost doubled, while psSAR for coils A and E increased by 18% and 5%,
respectively (figure 5). Unlike pTx, in all quadrature worst-cases, the local-hotspot shifted from the
front to back of the head. Even without motion, coil A experienced small, intense local-hotspots,
meaning relative psSAR change was low when the hotspot shifted to a different location, but similar
intensity. For large coils, fields were smoother throughout the head, leading to less intense hotspots
even after motion. Coil C did not exhibit either behaviour, hence the largest relative increase.

For 14% of pulses, worst-case psSAR occurred at intermediate positions (ie. not the extremes). These
pulses were for larger coils and/or slices 5 and 6, where psSAR sensitivity was lower. Coils D-F generally
yielded less high-SAR tissue than smaller coils, with the biggest differences between coils seen for mid-
axial slices (figure 4.ii).

SARcentre (N0t shown) was higher when pulses were designed using slices 1 and 6. This is less concerning
than motion-sensitivity of SAR, as SARcentre Can be constrained during pulse design. For coil B, these
slices fell beyond the loops’ vertical extent, and motion-sensitivity was notably lower than other slices
(though psSARcentre Was around threefold).

SAR for smaller pTx coils was generally more motion-sensitive than larger coils (wider or taller loops,
and/or larger array radius). Maximum observed local-SAR increases due to motion were 3.8-fold and
1.6-fold for the smallest and largest coil models respectively. This is independent of pulse design, since
eigenvalue-based SAR (which depends only on transmit fields) followed this pattern; however pTx
pulses with small coils elicit the most concerning local-SAR increases.
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Figure 3. Worst-case local-SAR following motion for pTx pulses. (i): psSAR for worst-cases as a factor of
PSSARcentre (SamMe pulse without motion). Tissue volume exposed to higher SAR than psSARcentre Shown in
orange. (ii): SAR profiles for corresponding worst-cases (bottom row) compared to their SARcentre (top row).
Colorbar shows psSAR as a factor of psSARcentre (normalised per coil). The number of spokes in each coil’s
worst-case pulse is indicated with asterisks. (iii): The positions at which these worst-case psSAR were
observed. All worst-cases were observed at slice 1 or 2.
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Figure 4. (i): Local (psSAR; left) and global (gSAR; right) SAR for 1-spoke (top) and 3-spoke (bottom) pTx
pulses for coil models A to F. Tissue volume exposed to >psSARcentre also shown. Worst-cases are defined
by the largest increase in psSAR or gSAR for left and right figures respectively (i.e. the worst-case psSAR
pulse was not necessarily the worst-case gSAR pulse). (ii): Tissue volumes exposed to higher SAR than
PSSARcentre by >100% (all colours), >150% (orange), >200% (red) and >300% (purple) for worst-case psSAR

pTx pulses separated by slice (slices 1 to 6 shown in separate subplots).
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Figure 5. Worst-case local-SAR following motion for quadrature pulses. (i): psSAR for worst-cases as a
factor of psSAR entre (Same pulse without motion). Tissue volume exposed to higher SAR than psSAR centre
shown in orange. (ii): SAR profiles for corresponding worst-cases (bottom row) compared to their SAR centre
(top row). Colorbar shows psSAR as a factor of psSARcentre (nOrmalised per coil). (iii): The positions at which
these worst-case psSAR were observed. Relative psSAR across quadrature evaluations is independent of

slice location.
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