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SUMMARY

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects
older people. It is common, affecting around one in ten people over 65 years old. In
addition to the autosomal dominant AD genes and Apolipoprotein E (APOE), genome
wide association studies (GWAS) have identified a number of small risk loci. These
can be combined into polygenic risk scores (PRS) which can predict AD relatively
accurately and are associated with a number of neurodegeneration phenotypes.
Pathway analyses of GWAS data have implicated a number of biological processes,
including the immune response and lipid metabolism. How AD pathway specific
genetic burden manifests in brain structure or serum metabolic profiles is not well

understood.

In this thesis, volumetric and diffusion MRI and serum lipid and inflammatory markers
were used to investigate manifestations of AD polygenic risk in two large population
cohorts. Specifically, these analyses sought to determine 1) whether AD polygenic risk
scores were associated with neuroimaging and blood marker phenotypes linked to
neurodegeneration in younger and older adult cohorts; and 2) whether PRS informed
by disease pathways were associated with different patterns of alteration in brain
structure, serum lipids or inflammatory markers. The relationships between PRS and

phenotypes were explored using linear regression.

There were significant associations between pathway specific PRS, grey matter
volumes and white matter microstructure. Although some of these attenuated when
the APOE region was excluded from the score, some were maintained, in particular
cortical thickness in mature adults, which appeared to be independent of APOE.
Increased pathway specific polygenic risk for AD was also associated with serum
markers such as increased blood lipids, particularly low density lipoprotein (LDL)
cholesterol and total cholesterol, and decreased C-Reactive Protein (CRP). However,
these effects seemed to be driven by the APOE locus. Further longitudinal studies,
combining advanced MRI techniques with cerebrospinal fluid and neuroradiology
biomarkers, will be required to confirm these findings and assess their biological

significance.
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CHAPTER 1: INTRODUCTION

This chapter includes some material that was previously published in Harrison JR &
Owen MJ. Alzheimer's disease: the amyloid hypothesis on trial. British J
Psychiatry. 2016 Jan;208(1):1-3. doi: 10.1192/bjp.bp.115.167569.

1.1 What is Alzheimer’s Disease?

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects
older adults. It affects around one in ten people over the age of 65 (Alzheimer’s
Association, 2019).

1.2 The pathology of Alzheimer’s Disease

The classical histological features of AD are a triad of amyloid-B (AB) plaques,
neurofibrillary tangles and neuronal cell loss (Selkoe, 1991). The first of these are
insoluble extracellular plaques consisting of AB, which accumulates in very high levels
in the brains of those with AD. A is derived from a larger molecule, amyloid precursor
protein (APP), which is a trans-membrane protein, with a long extracellular N-terminal
and a shorter intracellular C-terminal. The AB sequence consists of some of the
extracellular portion of APP and part of the trans-membrane domain and is 39-42
amino acids in length. The protein has a 3-pleated sheet structure and demonstrates
Congo red birefringence and resistance to proteolysis (Hardy and Allsop, 1991).1n AD,
AB is deposited in abundant extracellular plaques typically composed of straight fibrils,
6-10 nm in diameter. These structures are also found in normal ageing but in less
profusion and are sometimes referred to as senile plaques. They are associated with
dystrophic neurites and changes in microglia and astrocytes (Selkoe, 1991). Non-
fibrillar, diffuse AP deposits, which are not associated with dystrophic neurites or
reactive glial cells, are also found in AD and these may represent an early stage of
plaque formation. In AD these diffuse plaques are found throughout the central
nervous system, whereas typical AR plagues are not present in regions such as the
spinal cord and cerebellum (Hardy and Allsop, 1991).
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The second pathological structure found in AD is the neurofibrillary tangle, which
consist of dystrophic neurites containing paired helical filaments, 10 nm in diameter.
These paired helical filaments in turn consist of a phosphorylated microtubule-
associated protein, tau (MAPT) (Selkoe, 1991). In the 1980s there was much debate
as to which one of these is the primary driver of AD pathogenesis.

1.3 Genetics

Early molecular genetic studies of AD focused on rare families where the disorder
occurs exceptionally early and follows an autosomal dominant mode of inheritance. It
was discovered that autosomal-dominant AD is caused by mutations either in
the APP gene itself, or in presenilin 1 and 2 (PS7and PS2) that are involved in
cleaving AB from APP (Tanzi, 2012). In addition, AD frequently affects those with
trisomy 21, who have a triplication of the APP gene (Tanzi, 2012).

Sporadic AD, also known as late-onset AD, is common, affecting around 10% of all
those over 65 (Alzheimer's Association, 2019). The heritability of sporadic AD is
estimated to be almost 75% (Gatz et al., 1997). Genome-wide association studies
(GWAS) have identified a number of loci associated with sporadic AD. The largest
genome-wide association study (GWAS) of clinically confirmed AD has identified 25
loci that are associated with increased risk of sporadic AD (Kunkle et al., 2019). These
are common genetic variants, known as single nucleotide polymorphisms (SNPs). The
largest of these genetic risks are SNPs in the Apolipoprotein E (APOE) region. Carriers
of two copies of the APOE Epsilon 4 (APOE EA4) allele have an eight-fold increase in
risk compared to non-carriers (Corder et al., 1993). In comparison to APOE, other
common risk loci have only a modest effect on disease risk. However, their combined
effect can be studied using polygenic risk scores. These are calculated from the
weighted sum of allelic dosages across the genome, and have proven particularly
effective in predicting AD (Escott-Price, Sims, Bannister, et al., 2015). They have
allowed the exploration of how genetic risk for AD is manifest in different populations
(Wray et al., 2014). However, genetic score methodology varies greatly between



studies. The methodology and application of PRS in AD is described in more detail in
Chapter 2.

In addition to common genetic risk captured by GWAS, advances in sequencing
techniques have assessed entire exomes and genomes, identifying rare mutations
with moderate-to-strong effects. For example, TREM?Z2 is a variant that encodes the
trigger receptor expressed on myeloid cells 2 (Guerreiro, Wojtas, Bras, Carrasquillo,
Rogaeva, Majounie, Cruchaga, Sassi, John S K Kauwe, et al., 2013). Other novel
variants are involved in immune response and transcriptional regulation (Bis et al.,
2018).

1.4 Biomarkers

Brain AB deposition in AD can be demonstrated in vivo using biomarkers such as
cerebrospinal fluid (CSF) AB42 and AR positron emission tomography (PET) imaging
(Jack Jr. etal., 2010). Clinical diagnoses of AD and AB pathology at autopsy correlate
with low concentrations of CSF AB42. Most patients with a diagnosis of AD have
increased retention of radioligands for A on PET. Moreover, low CSF AR and positive
AB PET show nearly 100% concordance (Jack Jr. et al., 2010).
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Figure. 1.1 Biomarkers of the AD pathological cascade.

Beta-amyloid (AB) is indicated by low cerebrospinal fluid (CSF) AB42 or positron
emission tomography (PET) AB imaging. Tau neuronal injury and dysfunction is shown
by CSF tau or fluorodeoxyglucose-PET. Cerebral atrophy is measured with structural
magnetic resonance imaging. Acronyms: MCI = mild cognitive impairment. Reprinted
with permission from Elsevier Limited. Jack CR, Knopman DS, Jagust WJ, Shaw LM,
Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the
Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119-28.

1.5 The Amyloid Hypothesis

Hardy & Allsop (Hardy and Allsop, 1991) postulated that APP mismetabolism and A
deposition are the primary events in the disease process with tau phosphorylation and
neurofibrillary tangle formation occurring downstream. This became known as the
amyloid hypothesis. It later transpired that the autosomal-dominant AD genes increase
levels of 42 amino acid AB (AB42) relative to the shorter 40 amino acid protein, and
this form of AB aggregates more readily into plaques (Wurth, Guimard and Hecht,
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2002). Thus, a substantial body of evidence appears to support a causative,
pathogenic link between AR and AD. However, there are a few pieces of the AD jigsaw
that do not quite fit.

AD is not an all-or-none phenomenon even at the neuropathological level. Moreover,
autopsy studies find sufficient numbers of AB plaques and neurofibrillary tangles to
meet criteria for a diagnosis of AD in around a third of cognitively intact elderly people
(Rodrigue et al., 2012). This is corroborated by biomarker studies, which suggest that
20—-40% of elderly people without cognitive impairment show significant brain A3 load,
either on AB PET or CSF AB42 concentrations (Rodrigue et al., 2012).

The topographic distribution of AB plaques differs from neurofibrillary tangle deposition
and neurodegenerative changes. In early AD, neural loss occurs predominantly in the
hippocampus and entorhinal cortex, whereas plaques are first found in frontal regions,
basal ganglia or elsewhere (Heiko Braak and Braak, 1997; Jack Jr. et al,
2010). Clinical symptoms are more closely associated with neurofibrillary tangles than
AB burden. However, cerebral atrophy, representing neuron and synapse loss,
corresponds best with cognitive impairment (Jack et al., 2013).

How distant AR plaques might induce neurofibrillary tangles or damage neurons is
unclear. It has been proposed that soluble oligomers of AR could be neurotoxic.
Although soluble oligomers cannot be seen in vivo or post-mortem, they have been
found to interfere with postsynaptic potentiation in tissue culture studies. However, the
concentration of AB oligomers shown to have this effect is greater than usual
physiological levels (Karran, Mercken and De Strooper, 2011). Another suggestion is
that AR plaques could act as a ‘reservoir’ eluting soluble AB, but AR has a strong
tendency to polymerise and fix fragments to plaques, which makes this less likely
(Karran, Mercken and De Strooper, 2011). Furthermore, many animal models based
on APP and PS1 mutations have not shown progression to synaptic loss,
neurofibrillary tangle formation and neurodegeneration (Sambamurti et al., 2012).

Critics of the amyloid hypothesis also point out that autosomal dominant AD, where
the aetiological link with APP is strong, is rare and might be an atypical form of the
disorder. They point to recent GWAS which have implicated many novel genes as
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containing risk factors for typical AD but not APP or its metabolising enzymes. In
defence of the amyloid hypothesis, GWAS only assess common genetic variation and
failure to find association does not exclude an important role for a protein in disease.
Moreover, some of the genes implicated by GWAS may be involved in A processing.
For example, CLU encodes clusterin, which binds soluble AB in animal models,
forming complexes that can cross the blood-brain barrier, and PICALM encodes
phosphatidylinositol binding clathrin assembly protein, which has been postulated to
increase AD risk through APP processing via endocytic pathways, resulting in
changes in AB levels (Harold et al., 2009). The biggest challenge to the amyloid
hypothesis has come from the failure of phase lll trials of anti-Ap therapies despite
promising results in animal models (Sambamurti et al., 2012; Drachman, 2014).

1.6 Alternative Disease Pathways

As GWAS allows all variants in the genome to be tested for association simultaneously
without any a priori hypothesis, they have implicated a number of biological processes
previously unconnected to AD. Pathway analyses of genome-wide association data
have shown that the disease processes that underpin AD are highly complex, involving
a number of biological processes, including immunity, lipid metabolism, tau binding
proteins, and amyloid precursor protein metabolism (Jones et al., 2010; Kunkle et
al., 2019).

1.7 Neuroimaging
1.1.7 Why use neuroimaging to study genetic risk?

The brain is a comparatively inaccessible organ, making it difficult to study the impact
of genetic risks on its structure and function. Neuroimaging technologies provide an
intermediate phenotype in AD and have an established role in AD diagnosis and
monitoring. It is likely that disease-modifying therapies, when available, will only be
effective if administered early in the disease process, long before the onset of
symptoms. Therefore, it is imperative that advanced imaging techniques are
developed to enable early detection of differences in brain structure and function. Such



information could be combined with genetic profiling, using risk profile scores based
on panels of SNPs that are associated with increased risk (Harold et al., 2009).

1.2.7 Structural Magnetic Resonance Imaging tools for AD

Magnetic resonance imaging (MRI) is a non-invasive neuroimaging method that can
be used to investigate brain structure and function. MRI involves a powerful static
magnetic field, magnetic field gradients and radiofrequency pulses. The spin of the
protons in the tissue interacts with the magnetic field. A receiver coil detects signals
released by protons as they return to their equilibrium state. Detailed information about
brain morphology, microstructure, neurochemical composition and blood flow can be

inferred using different sequences.

Structural MRI relies on the differing relaxation times of protons in different tissues.
This signal encodes spatial and contrast information. Structural MRI uses T1-weighted
images to a) investigate discrete brain structure abnormalities; b) measure the volume
of a collection of voxels within specific areas, known as region-of-interest (ROI)
studies; c) quantify surface structures such as cortical folds and thickness, using
software such as Freesurfer (Fischl, 2012); d) measure volume and density of each
voxel in the entire brain, as in voxel-based morphometry (VBM) (Ashburner and
Friston, 2000).

Diffusion MRI (dMRI) probes the movement of water molecules to assess the
microstructural configuration of tissue (Jones, 2011; Winston, 2012). dMRI measures
indicate how readily water molecules can diffuse in and around structures such as
white matter fibres or cell bodies (Strijkers, Drost and Nicolay, 2011; Johansen-Berg
and Behrens, 2013). In white matter, the rate of diffusion is modulated by multiple
microstructural features including axon diameter, axon density and myelination
(Jones, 2011). In highly ordered white matter, the rate of diffusion is anisotropic, i.e.,
it is strongly dependent on the direction in which it is measured.



1.3.7 What have neuroimaging studies revealed about brain structure in AD?

Conventional MRI measures of atrophy, such as Voxel-Based Morphometry (VBM),
are established markers for AD diagnosis and measurement of progression (Frisoni et
al.,, 2010). Longitudinal imaging studies of cognitively normal people have
demonstrated that those with smaller brain structures at baseline are more likely to
show cognitive decline. Atrophy in the hippocampal formation and temporoparietal
cortical regions are particularly likely to herald dementia symptoms (Kaye et al., 1997,
Den Heijer et al., 2006; C. D. Smith et al., 2007; Apostolova et al., 2010; Martin et al.,
2010). Indeed, subtle changes are often present years before the onset of cognitive
problems (Fox et al., 1996, 2001; Schott et al., 2003). Cortical thickness has also been
shown to be an early marker of AD. Regionally specific cortical thinning relates to
symptom severity in very mild to mild AD dementia and is detectable in asymptomatic
amyloid-positive individuals (Dickerson, Bakkour, et al., 2009; Desikan et al., 2010;
Becker et al., 2011).

More recently, diffusion MRI (dMRI) has allowed the exploration of AD white matter
microstructure, finding extensive changes. A detailed introduction to dMRI
methodology is provided in Chapter 3. To summarise, dMRI uses the movement of
water molecules to provide contrast. Where no structures limit the movement of water
molecules, the rate of diffusion is equal in all directions, known as isotropic diffusion.
The inverse, where diffusion occurs predominantly along one axis, for example in a
dense bundle of axons, is known as anisotropic diffusion (Beaulieu and Allen, 1994;
Pierpaoli and Basser, 1996; Beaulieu, 2009; Winston, 2012). These are often indexed
by fractional anisotropy (FA) (Basser and Pierpaoli, 1996) and mean diffusivity (MD).
An FA of 0 represents diffusion occurring equally in all directions (isotropic diffusion),
and 1 represents diffusion occurring exclusively in one direction (anisotropic diffusion)
(Beaulieu and Allen, 1994; Pierpaoli and Basser, 1996; Beaulieu, 2009; Winston,
2012). Mean diffusivity (MD) represents the rate of diffusion orientationally-averaged.
A meta-analysis of 41 studies found reduced FA and increased MD in AD brains
compared to controls. Differences were marked in frontal and temporal lobes, and the
posterior cingulum, corpus callosum, superior longitudinal fasciculi and uncinate
fasciculi (Sexton et al., 2011). Late-myelinating tracts may be affected primarily by AD
neurodegeneration (Benitez et al., 2014). This has given rise to a ‘last in, first out’
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theory of white matter condition across the life course (Davis et al., 2009). Longitudinal
studies suggest that the pattern of decreased FA and increased MD becomes more
distinct as the disease progresses (Mayo et al, 2017). Changes in the
parahippocampal cingulum have been shown to discriminate between AD and healthy
controls (Mayo et al., 2017). Diffusion measurements in the fornix are another possible
biomarker (Ringman et al., 2007). Perea and colleagues found that AD preferentially
degraded the crus and body of the fornix. The diffusion differences remained after
controlling for fornix volume (Perea et al., 2018). Chapter 3 contains a systematic
review of dMRI changes in relation to AD genetic risk.

1.8 Metabolomics

1.4.8 What are metabolic markers & how are they measured?

As analysis of DNA is genomics and analysis of RNA and differences in mRNA
expression is transcriptomics, the investigation of biologically active molecules,

commonly known as metabolites, is metabolomics.

Metabolites are small molecules, typically with a mass range from 50 to 1500 Daltons.
They can be sampled from cells, blood fluids such as serum, or tissues. Together,
these metabolites and their relationship with a biological system, such as the human
body, are referred to as the metabolome. There are an estimated 3,000 common
metabolites that are endogenous in humans (The Metabolomics Innovation Centre,
2020). The metabolome is altered by genetic and environmental factors.
Metabolomics represents the substrates and products of metabolism. It reveals the
biochemical activity within cells and tissues and is considered the
molecular phenotype.

Metabolomic tests on serum are high throughput processes, involving the collection of
the sample from the participant, sample preparation using solvents, concentrating or
purifying the sample, and analysis using analytical platforms such as mass
spectrometry. Biochemical tests used in clinical practice measure individual metabolite
concentrations to identify disorders. However, analytical techniques only provide a
snapshot of metabolite concentrations in specific conditions. Some reactions occur



continuously, therefore levels of individual molecules change significantly depending

on the time of measurement.

1.5.8 How do metabolic markers relate to Alzheimer’s disease?

Metabolic degeneration on fluorodeoxyglucose positron emission tomography (FDG-
PET) is one of the earliest detectable markers in MCI and early AD (Pagani et al.,
2017). Hypometabolism in the brain appears around two decades before the onset of
symptoms suggesting that metabolic perturbation is strongly linked with AD pathology
(Toledo et al., 2017).

AD genetic risk is also linked to metabolic changes. Young mice with APP/PS1 show
metabolic changes in the liver, kidney, and heart (Zheng et al., 2019). These are
evident even before the accumulation of AB in the brain (Trushina et al., 2012). The
APOE alleles, Epsilon 2, 3 and 4, encode protein isoforms with different lipid
interactions in serum (Liu et al., 2013). APOE E4 is associated with higher low density
lipoprotein (LDL) cholesterol (Lahoz et al., 2001). Genome-wide association studies
have also implicated lipid metabolism in AD pathophysiology (Kunkle et al., 2019).

Epidemiological studies exploring the effect of serum cholesterol levels on AD risk
have reported contradictory findings. AD risk was reportedly associated with both low
and high cholesterol (Li et al., 2005; Reitz et al., 2010; Tynkkynen et al., 2018; Wagner
et al., 2018; Ferguson et al., 2020), although divergence could be attributed in part to
the smaller sample sizes used in older studies.

Metabolomics and lipidomics provide further evidence that lipid metabolites are
involved in AD pathology (Wilkins and Trushina, 2018). For example, changes in levels
of sphingomyelin, a key element of lipid rafts, are associated with preclinical AD
determined by CSF profile (Koal et al., 2015). Plasma and brain tissue from humans
and mice revealed that bile acids, which are important for lipid metabolism, are
perturbed in AD (Pan et al., 2017).

Taken together, genomic and epidemiological studies along with metabolomics and
lipidomics provide convincing evidence that lipid homeostasis is an important

component of the AD pathological processes.
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1.9 Aims and Thesis Outline

This thesis is divided into three parts. The first objective is to examine the current

literature using AD PRS and the current literature examining the effect of AD risk on

white matter microstructure. The aims are to:

1.

Systematically review studies using a PRS approach to investigate phenotypes
associated with AD, summarise PRS methodology and provide a narrative

synthesis of findings (Chapter 2)

. Systematically review studies that apply dMRI techniques to investigate genetic

risk for AD, discuss dMRI techniques and provide a narrative synthesis of
findings (Chapter 3)

The second objective is to determine whether genetic burden for AD, represented by

PRS, is associated with relevant neuroimaging phenotypes in healthy general

population samples. The specific aims are to:

1.

Determine whether AD PRS are associated with volumetric changes
suggestive of AD pathology in healthy younger and older adults from the
general population (Chapter 5)

Determine whether AD PRS are associated with changes in white matter
microstructure suggestive of AD pathology in healthy younger and older adults
from the general population (Chapter 6)

Determine whether pathway-specific PRS for AD are associated with distinct

patterns of changes in the above phenotypes (Chapters 5 and 6)

The third objective is to determine whether AD polygenic risk is associated with

changes in levels of blood lipids and inflammatory markers in a healthy population

sample. The aims are to:

. Determine whether AD PRS are associated with increased or decreased levels

of blood lipids and inflammatory markers in healthy adults (Chapter 7)

. Determine whether pathway-specific PRS for AD are associated with distinct

patterns of changes in the metabolic phenotype (Chapter 7)
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Chapters 2 to 7 begin with a summary section, which condenses the relevant

background and key findings without references, akin to an abstract.

Chapters 2 and 3 comprise the systematic reviews. Chapter 4 will provide a general
description of the two population cohorts used for addressing the above aims.
Chapters 5 and 6 will address the second objective and Chapter 7 will address the
third objective. Chapter 8 concludes the thesis with a discussion of the implications of
the findings, methodological considerations, strengths and limitations and suggestions

for further areas of work.
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CHAPTER 2: FROM POLYGENIC SCORES TO PRECISION MEDICINE IN
ALZHEIMER’S DISEASE: A SYSTEMATIC REVIEW

The chapter includes some material that was previously published Harrison, J. R.et al.
2020. From polygenic scores to precision medicine in Alzheimer’s Disease: A
systematic review. Journal of Alzheimer's Disease 74(4), pp. 1271-1283.
(10.3233/JAD-191233). Dr Sum Mistry and Ms Natalie Muskett assisted with the
assessment of selected studies.

Some information from Chapter 1 is repeated here for convenience.

2.1 Summary

As described in Chapter 1, many common genetic variants, known as single nucleotide
polymorphisms (SNPs), confer risk for AD. These variants are clustered in areas of
biology, notably immunity and inflammation, cholesterol metabolism, endocytosis and
ubiquitination. Polygenic scores (PRS), which weight the sum of an individual’s risk
alleles, have been used to draw inferences about the pathological processes
underpinning AD.

This Chapter systematically reviews how AD PRS are being used to study a range of
outcomes and phenotypes related to neurodegeneration. The literature was searched
from July 2008-July 2018 following Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. 57 studies met criteria. There was evidence
that the AD PRS can distinguish AD cases from controls. The ability of AD PRS to
predict conversion from Mild Cognitive Impairment (MCI) to AD was less clear. There
is strong evidence of association between AD PRS and cognitive impairment. AD PRS
are correlated with a number of biological phenotypes associated with AD pathology,
such as neuroimaging changes and amyloid and tau measures. Pathway-specific

polygenic scores are also associated with AD-related biologically relevant phenotypes.
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The evidence suggests PRS can predict AD and are associated with other phenotypes
relevant to neurodegeneration, particularly cognitive impairment. The associations
between pathway specific polygenic scores and phenotypic changes may allow us to
define the biology of the disease in individuals and indicate who may benefit from
specific treatments. Longitudinal cohort studies are required to test the ability of PRS
to delineate pathway-specific disease activity.

2.2 Introduction

As discussed in Chapter 1, the heritability of late-onset AD is estimated to be almost
75% (Gatz et al., 1997). Genome-wide association studies (GWAS) have identified a
number of loci associated with AD. The largest meta-analysis to date reported 25 loci
associated with increased risk for AD at genome-wide significant level (Kunkle et al.,
2019). These common genetic variants, known as single nucleotide polymorphisms

(SNPs), have only a small effect on disease risk.

Polygenic risk scores (PRS) sum the weighted allelic dosages across the genome,
and have allowed the exploration of how genetic risk for AD is manifest in different
populations (Wray et al., 2014). However, genetic score methodology varies greatly
between studies. For example, Escott-Price et al. analysed over 200,000 SNPs,
including APOE and reported an area under the curve (AUC) value of 0.84 (Escott-
Price, Sims, Bannister, et al., 2015) whereas Tosto et al. used only 21 SNPs excluding
APOQOE resulting in an AUC of 0.57 (Tosto et al., 2017).

As GWAS test all variants in the genome for association with disease without any a
priori hypothesis, they have implicated a number of biological systems previously
unconnected to AD. Pathway analyses of GWAS data have shown that the disease
processes that underpin AD are highly complex, involving a number of biological
processes, including immunity, lipid metabolism, tau binding proteins, and amyloid

precursor protein metabolism (Jones et al., 2010; Kunkle et al., 2019).

Since the PRS approach was first described, many studies have investigated whether

AD PRS are associated with a wide variety of phenotypes. This Chapter presents
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a systematic review of studies that have used a PRS to investigate phenotypes

associated with AD and summarises their results.

2.3 Methods

The review was conducted in accordance with the PRISMA guidelines for systematic
reviews (Moher et al., 2009).

2.3.1 Search strategy

MEDLINE, PSYCHINFO and EMBASE were searched from July 2008-July 2018 using
a list of predetermined search terms listed in Supplementary Materials Table 1.
Reference lists of relevant articles were also manually searched.

Inclusion criteria:
» Longitudinal, cross-sectional or case-control studies including genotyped data
« Validated risk loci for AD identified and combined into a PRS
* Reported associations with AD case/control status or another phenotype
Exclusion criteria:
+ Studies reporting associations with family history only
+ Studies reporting on genetic risk for other conditions or loci that have not been
previously shown to increase risk of AD
+ Studies reporting the effect of only one locus or gene (e.g. APOE), or APOE
combined with non-genetic risk factors
* Non-English publications (in the absence of an existing translation or resources
to make one).

2.3.2 Article selection

All articles selected for inclusion were original research reports written in English. The
design of the studies was cross-sectional, longitudinal or observational. The initial
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search was conducted by NM. Based on the eligibility criteria, two reviewers (JH and
SM) independently selected studies. Any discrepancies were resolved by a third
reviewer (VEP).

2.3.3 Data extraction

The reviewers (JH and SM) extracted data from the studies independently and in
duplicate. The extracts included: 1) the type of study, 2) the discovery sample (study
name, sample size and number of cases), 3) the target sample (study name, sample
size, and case number), 4) the number of SNPs included in the PRS (see data
extraction form in Supplementary Material). Results that were reported in separate
papers were only included once.

2.4 Results
2.4.1 Search results

The initial search produced 4717 articles (see PRISMA flow chart in Figure 1). 1322
were removed as duplicates. A further 3275 were excluded based on their title and
abstract. The reviewers (JH and SM) reviewed the full text of the remaining 120 articles
and applied strict inclusion criteria, excluding a further 63. 57 articles were eligible for
inclusion. The review followed PRISMA systematic review guidelines.
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Figure 2.1 PRISMA flow chart, AD PRS studies
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2.4.2 Study characteristics

There was a variety of study designs. Please see Tables 3 and 4 in Appendix 1 for
further details on the included studies. Most were case-control studies, comparing
those with AD or Mild Cognitive Impairment (MCI) to healthy controls (Rodriguez-
Rodriguez et al., 2013; Dubé et al., 2013; Chouraki et al., 2014; Adams et al., 2015;
Martiskainen et al., 2015; Sleegers et al., 2015; Xiao et al., 2015; Yokoyama, Lee, et
al., 2015; Escott-Price, Sims, Bannister, et al., 2015; Escott-Price, Sims, Harold, et al.,
2015; Laitera et al., 2016; Louwersheimer et al., 2016; Hohman et al., 2017; Lacour et
al., 2017; Polimanti et al., 2017; Su et al., 2017; Tosto et al., 2017; Voyle et al., 2017,
Escott-Price et al., 2017; Ahmad et al., 2018; Patel et al., 2018; Chaudhury et al.,
2018; Cruchaga et al., 2018; Del-Aguila et al., 2018). Others were cross-sectional
(Sabuncu et al., 2012; Verhaaren et al., 2013; Marden et al., 2014, 2016; Papenberg
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etal., 2015; Wollam et al., 2015; Andrews et al., 2016; Hagenaars, Harris, Davies, Hill,
et al., 2016; Hagenaars, Harris, Davies, Marioni, et al., 2016; Lupton et al., 2016;
Mormino et al., 2016; Pilling et al., 2016, 2017; Foley et al., 2016; Habes et al., 2016;
Andrews, Das, et al., 2017; Hayes et al., 2017; Marioni et al., 2017; Morgan et al.,
2017; Andrews, Eramudugolla, et al., 2017; Polimanti et al., 2017; Schultz et al., 2017,
Voyle et al., 2017; Bressler et al., 2017; Darst et al., 2017; Gibson et al., 2017; Li et
al., 2018; Tan et al., 2018; Axelrud et al., 2018; Corlier et al., 2018; Logue et al., 2019)
and some were longitudinal (Harris et al., 2014; Carrasquillo et al., 2015; Hayden et
al., 2015; Harrison and Bookheimer, 2016; Felsky et al., 2018; Sapkota and Dixon,
2018). The majority included participants of European ancestry from Europe, the US
or Australia, although some included Black African American (Marden et al., 2014,
2016; Bressler et al., 2017), Hispanic (Tosto et al., 2017; Axelrud et al., 2018),
Caribbean (Tosto et al., 2017), or Han Chinese participants (Xiao et al., 2015; Su et
al., 2017; Li et al., 2018). Sample size ranged from 66 (Harrison et al., 2016) to over
100,000 (Pilling et al., 2016). The articles examined associations with several

phenotypes. See Table 2.1 for a summary of study characteristics.

Table 2.1 Summary of included studies by type of PRS

N Threshold N GWAS Significant

Correlates/Outcomes N Studies PRS Studies PRS Studies

AD risk prediction 15 5 10

MCI risk prediction or MCI conversion 4 2 2

MRI phenotypes 12 7 5

Cognition 21 5 16

CSF biomarkers 8 3 5

Other diseases/syndromes 4 2 2

Disease pathways 3 1 2

Acronyms: AD = Alzheimer's Disease; MCI = Mild Cognitive Impairment; MRI = Magnetic
Resonance Imaging; CSF = Cerebrospinal Fluid; GWAS = Genome-wide Association Study.

2.4.3 PRS Calculation

All studies computed PRS using SNPs that have been associated with AD in large
meta-analyses. Most used the International Genomics of Alzheimer’s Project (IGAP)
(Lambert et al., 2013) or another recent GWAS. There were two approaches to

identifying SNPs for inclusion: 1) selecting SNPs that reached genome-wide
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significance in meta-analysis, or 2) using p-value thresholds, including a greater
number of nominally associated SNPs (please see Tables 3 and 4 in Appendix 1 for a
summary of PRS calculation). Two of the studies in Han Chinese populations chose
to verify that the SNPs were associated with AD in their population before computing
PRS (Xiao et al., 2015; Su et al., 2017). Most studies weighted PRS by effect size,
specifically the logarithm of the odds ratio or beta-coefficient from the regression
analysis model, as described by Purcell and colleagues (Purcell et al., 2009). There
were five exceptions: one study weighted by explained variance (Andrews,
Eramudugolla, et al., 2017); four studies created unweighted scores by summing the
number of risk loci (Dubé et al., 2013; Wollam et al., 2015; Bressler et al., 2017,
Papenberg et al., 2017). APOE was either included as a co-variate, included in the
PRS or excluded (see Tables 3 and 4 in Appendix A).

2.4.4 Prediction of AD Case/Control Status

15 studies used PRS to predict AD case/control status with various statistical
approaches. Some studies used the area under the receiver operating characteristic
(ROC) curve, whereas others used time-to-event analysis, Odds Ratios (OR) or a
combination of methods. All found that PRS was able to discriminate cases from
controls, although prediction accuracy varied.

Of those studies reporting Area Under the Curve (AUC), five included APOE and
achieved AUC ranging from 0.62-0.84 (Escott-Price, Sims, Harold, et al., 2015;
Sleegers et al., 2015; Xiao et al., 2015; Yokoyama, Bonham, et al., 2015; Escott-Price
et al., 2017; Chaudhury et al., 2018). Four studies excluded APOE and achieved AUC
ranging from 0.57-0.75 (Sleegers et al., 2015; Lupton et al., 2016; Tosto et al., 2017;
Cruchaga et al., 2018). Of those studies using time-to-event analysis, all four excluded
APOE and reported Hazard Ratios (HR) ranging from 1.11 — 2.36 (Chouraki et al.,
2016; Ahmad et al., 2018; Tan et al.,, 2018). Of those studies using ORs, two
included APOE in their PRS and reported OR ranging from 2.06— 2.32 (Sabuncu et
al., 2012; Sleegers et al., 2015). Four studies excluded APOE and reported OR
ranging from 1.14-2.85 (Biffi et al., 2010; Lupton et al., 2016; Tosto et al., 2017;

Cruchaga et al., 2018). More detailed information, including the details of the samples
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and outcome measures used by each study, is contained in Tables 3 and 4 in

Appendix A.
2.4.5 Mild Cognitive Impairment to AD conversion

Eight studies assessed the ability of PRS to predict MCI to AD conversion. Three
studies did not report statistically significant results (Rodriguez-Rodriguez et al., 2013;
Andrews, Eramudugolla, et al., 2017; Lacour et al., 2017). Rodriguez-Rodriguez et al.
compared those in the 15tand 3 tertile of PRS (OR: 1.32, 95% CI: 0.57-3.06). Neither
of the hazard models used by Lacour et al. and Andrews et al. produced significant
results (Lacour HR: 1.18, 95% CI: 0.37-2.0; Andrews HR: 1.05, 95% CI:. 0.86-
1.29)(Andrews, Eramudugolla, et al., 2017; Lacour et al., 2017). However, Andrews et
al found their PRS was associated with an increased risk of transitioning from normal
cognition to dementia (HR = 4.19, 95% CI: 1.72-10.20) (Andrews, Eramudugolla, et
al., 2017). Five studies reported statistically significant results (Adams et al., 2015;
Carrasquillo et al., 2015; Mormino et al., 2016; Tan et al., 2018; Logue et al., 2019).
However, when APOE was removed, only one study remained significant (Logue et
al., 2019). An additional study evaluated genetic contributors to the Diagnostic and
Statistical Manual IV (DSM-IV) diagnosis of Cognitive Impairment, No Dementia
(CIND), which is similar to MCI. They found no significant difference in the frequency
of risk alleles between cases and controls (p = 0.710) (Dubé et al., 2013).

2.4.6 Cognitive Measures

Cognition and PRS were examined in 21 studies (Rodriguez-Rodriguez et al., 2013;
Verhaaren et al., 2013; Marden et al., 2014, 2016; Harris et al., 2014; Wollam et al.,
2015; Carrasquillo et al., 2015; Hayden et al., 2015; Mormino et al., 2016; Foley et al.,
2016; Hagenaars, Harris, Davies, Hill, et al., 2016; Andrews, Das, et al., 2017; Hayes
et al., 2017; Marioni et al., 2017; Papenberg et al., 2017; Bressler et al., 2017; Axelrud
et al., 2018; Li et al., 2018; Sapkota and Dixon, 2018; Del-Aguila et al., 2018; Felsky
et al., 2018). Whilst a variety of cognitive measures were used, all but four studies
reported some significant associations with PRS. Most studies were in healthy older
adults, although two studies included participants with established AD/MCI
(Rodriguez-Rodriguez et al., 2013; Del-Aguila et al., 2018), two studies had young
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adult participants (Foley et al., 2016; Li et al., 2018), one study had adolescent
participants (Axelrud et al., 2018) and one included longitudinal data from children
aged 11 (Harris et al., 2014). There were some cross-sectional studies that only
reported associations with AD polygenic risk and cognition at one timepoint
(Verhaaren et al., 2013; Wollam et al., 2015; Foley et al., 2016; Hagenaars, Harris,
Davies, Hill, et al., 2016; Hagenaars, Harris, Davies, Marioni, et al., 2016; Papenberg
et al., 2017; Axelrud et al., 2018; Li et al., 2018), whereas longitudinal studies were
able to report the correlations with change in cognition over time (Rodriguez-
Rodriguez et al., 2013; Marden et al., 2014, 2016; Carrasquillo et al., 2015; Hayden
et al., 2015; Mormino et al., 2016; Andrews, Das, et al., 2017; Hayes et al., 2017;
Marioni et al., 2017; Sapkota and Dixon, 2018; Del-Aguila et al., 2018; Felsky et al.,
2018). As expected, most studies reported that the effects attenuated or were no
longer significant when APOE was excluded from the PRS. Please see Appendix A
Tables 3 and 4 for full details of cohorts and measures used.

2.4.7 MRI phenotypes

12 studies explored correlations between AD PRS and MRI phenotypes. Most studies
looked at subcortical volumes (Foley et al., 2016; Lupton et al., 2016; Mormino et al.,
2016; Su et al., 2017; Axelrud et al., 2018). Some also explored cortical thickness
(Sabuncu et al., 2012; Hayes et al., 2017; Corlier et al., 2018), white matter metrics
(Foley et al., 2016), and functional MRI (Su et al., 2017). One study used a high
dimensional pattern classification algorithm trained to assess the spatial atrophy
patterns in normal aging and in AD (Habes et al., 2016). Most studies sampled healthy
older adults, although some included younger adults (Foley et al., 2016; Li et al., 2018),
adolescents (Axelrud et al., 2018), or a range of age groups (Lupton et al., 2016).
Some studies included some participants with MCI or AD (Lupton et al., 2016;
Mormino et al., 2016; Su et al., 2017) and one study sampled military veterans with
head injuries (Hayes et al., 2017).

Of the six studies that explored subcortical volumes, all reported significant negative
correlations between PRS and hippocampal volume (Hohman, Koran and Thornton-
Wells, 2014; Foley et al., 2016; Harrison and Bookheimer, 2016; Lupton et al., 2016;
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Mormino et al., 2016; Axelrud et al., 2018). One study only found a significant
association in participants who were negative for amyloid on PET (Hohman et al.,
2017). One study reported a significant negative association with amygdala volume
(Lupton et al., 2016) but only in participants with diagnoses of MCI or AD. A separate
study used an algorithm to detect the spatial patterns of healthy brain aging and
atrophy in AD. They found a significant association between AD PRS and the spatial
pattern for AD but not for normal aging (Habes et al., 2016).

Of those studies looking at cortical thickness (Sabuncu et al., 2012; Harrison and
Bookheimer, 2016; Hayes et al., 2017; Corlier et al., 2018; Li et al., 2018), all but one
(Harrison and Bookheimer, 2016) reported significant associations between increased
PRS and cortical thinning. Studies either reported associations with cortical thinning
across multiple regions that are susceptible to AD pathology (Sabuncu et al., 2012;
Hayes et al., 2017; Corlier et al., 2018), or with cortical thinning is specific regions such
as the precuneus (Li et al., 2018).

One study assessed white matter, and identified reduced fractional anisotropy in the
right cingulum with increasing PRS (Foley et al., 2016). Another study explored
changes in the Default Mode Network and reported changes in functional connectivity
in the left medial temporal gyrus and the right hippocampal/parahippocampal gyrus in
those with MCI. However, there were no significant associations in healthy controls
(Suetal., 2017).

2.4.8 Amyloid and Tau Biomarkers

Nine studies explored associations between PRS and amyloid and tau biomarkers
(Martiskainen et al., 2015; Laitera et al., 2016; Louwersheimer et al., 2016; Mormino
et al., 2016; Schultz et al., 2017; Voyle et al., 2017; Cruchaga et al., 2018; Felsky et
al., 2018; Tan et al., 2018). They were all case/control studies. One study sampled
those with autosomal dominant and sporadic AD (Cruchaga et al., 2018). Another
included participants with normal pressure hydrocephalus (Laitera et al., 2016). The
phenotypes included: CSF amyloid and tau measures (Martiskainen et al., 2015;
Mormino et al., 2016; Schultz et al., 2017; Voyle et al., 2017; Cruchaga et al., 2018;
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Tan et al., 2018); post-mortem biomarkers or histology (Martiskainen et al., 2015;
Laitera et al., 2016; Tan et al., 2018); amyloid PET (Mormino et al., 2016; Tan et al.,
2018). A variety of analysis approaches were taken. Some studies assessed each tau
and amyloid biomarker independently (Martiskainen et al., 2015; Louwersheimer et
al., 2016), whereas others created composite variables using CSF, PET or histology
biomarkers (Schultz et al., 2017; Voyle et al., 2017; Cruchaga et al., 2018; Tan et al.,
2018).

There were significant associations reported between AD PRS and the following:
increased CSF tau and phosphorylated tau (Louwersheimer et al., 2016); CSF Ap
(Martiskainen et al., 2015); lower AB42/AB40 (Schultz et al., 2017); higher t-tau/AB42
and higher p-tau/AB42 ratio (Schultz et al., 2017; Cruchaga et al., 2018); positive Aj
PET (Mormino et al., 2016); total PET/CSF amyloid load and tau load (Tan et al.,
2018); post-mortem soluble AB42 and B-secretase activity (Martiskainen et al., 2015);
post-mortem amyloid plaques and neurofibrillary tangles (Felsky et al., 2018). Some
studies did not report significant associations between AD PRS and CSF tau
(Martiskainen et al., 2015; Mormino et al., 2016) or CSF AB (Louwersheimer et al.,
2016; Mormino et al., 2016). There was also no association with microglial density on
post-mortem histology (Felsky et al., 2018) or amyloid deposition in brain biopsies of
Normal Pressure Hydrocephalus patients (Laitera et al., 2016). One study combined
CSF biomarkers with PRS to predict AD, but the PRS did not improve prediction over
and above the CSF amyloid and tau (Voyle et al., 2017).

2.4.9 Other diseases and syndromes

Other studies have explored associations between AD PRS and other disorders or
syndromes. Pilling and colleagues reported significant negative correlations with
longevity (Pilling et al., 2016), and red cell volume, a measure of anaemia (Pilling et
al., 2017). However there were no significant associations reported with depression
(Gibson et al., 2017) or post-concussive syndrome (Polimanti et al., 2017).
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2.4.10 Disease pathways

Four studies explored patterns associations between AD pathway PRS and disease-
related phenotypes. Each study used sets of SNPs based on previous pathway
analyses in AD (Jones et al., 2010; Holmans and Jones, 2012). Some used only
Bonferroni-significant loci (Darst et al., 2017; Ahmad et al., 2018; Corlier et al., 2018),
whereas others used a threshold-based PRS (Morgan et al., 2017). Various
phenotypes were assessed including: MCI risk (Ahmad et al., 2018), MRI phenotypes
(Ahmad et al., 2018; Corlier et al., 2018), cognition (Darst et al., 2017), CSF AB and
tau (Darst et al., 2017), AB PET (Darst et al., 2017) and complement markers (Morgan
et al., 2017).

Using PRS for the immune response, endocytosis, cholesterol transport,
hematopoietic cell lineage, protein ubiquitination, haemostasis, clathrin/AP2 adaptor
complex, and protein folding pathway, Ahmad et al reported the immune response and
clathrin/AP2 adaptor complex pathways showed nominal associations with white
matter lesions, but this did not withstand correction for multiple testing. The
endocytosis risk score was significantly associated with risk of MCI (Ahmad et al.,
2018). Darst et al used PRS for amyloid 3 clearance, cholesterol metabolism, and the
immune response. They found no association between cognition and any PRS, even
when APOE was included (Darst et al., 2017). A higher AR clearance PRS and
cholesterol PRS was associated with lower CSF AB42, a narrower AB42/AB4o ratio, and
greater AR PET deposition. With APOE excluded, the only significant associations
were between the cholesterol PRS and CSF AB42/AB40 and the immune response PRS
and CSF tau, though not when corrected for multiple comparisons (Darst et al., 2017).

Two studies focused on the immune response PRS. Corlier et al found that the
immune response PRS was significantly associated with an overall measure of cortical
thinning (Corlier et al., 2018). Morgan et al reported that clusterin, C1 inhibitor, and C-
Reactive Protein all showed nominal association with the inflammation-specific PRS.
Plasma clusterin levels were associated with the overall AD PRS (Morgan et al., 2017).
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2.4.11 Study quality

Overall, the articles had clear research questions and used adequate methodology.
Some studies used small sample sizes (Wollam et al., 2015; Harrison et al., 2016;
Morgan et al., 2017; Schultz et al., 2017) and many studies failed to describe sample
ascertainment clearly. They used standard outcome measures. Of those looking at AD
prediction, all but two (Xiao et al., 2015; Yokoyama, Lee, et al., 2015) used NINDS-
ADRDA diagnostic criteria for AD. Most studies weighted PRS by effect size or odds
ratio, although in some studies this was not clearly described (Xiao et al., 2015;
Yokoyama, Lee, et al., 2015). Some studies had some overlap between training and
validation datasets which may have inflated their results. Most studies attempted to
assess the contribution of APOE by either excluding it from the PRS or including it as
a co-variate. Some studies included cohorts of non-European ancestry (Marden et al.,
2014, 2016; Xiao et al., 2015; Bressler et al., 2017; Tosto et al., 2017). These studies
acknowledged that: i) they may have had insufficient power in their non-European
samples or ii) PRS based on GWAS conducted in European populations may not
capture AD genetic risk among those of non-European descent.

2.5 Discussion

This Chapter systematically reviews how AD PRS are associated with a range of
phenotypes and outcomes. Previous papers have covered PRS methodology (Wray
et al., 2014) and some have reviewed the use of PRS in AD prediction alone (Stocker
et al., 2018).

Since the advent of large-scale genetics consortia such as the International Genomics
of Alzheimer’s Project (IGAP), our understanding of the genetic underpinnings of AD
has rapidly expanded. GWAS have resulted in the identification of over 20 novel
genetic risk loci in addition to APOE €4 (Lambert et al., 2013; Kunkle et al., 2019).
Most of these SNPs only increase AD risk incrementally. Therefore, combining SNPs
into PRS has proved an important strategy for studying their effects. Some of the
studies included in this review used only the most significant loci in their PRS.
However, more recent studies used liberal threshold-based PRS computed from

thousands of AD risk loci.
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2.5.1 PRS in disease prediction

AD PRS have demonstrated strong predictive ability. Conservative PRS, including
only genome-wide significant SNPs, have achieved reasonable prediction accuracy
(AUC range: 57-72%) (Escott-Price, Sims, Bannister, et al., 2015; Sleegers et al.,
2015; Yokoyama, Bonham, et al., 2015; Tosto et al., 2017; Cruchaga et al., 2018).
Threshold-based PRS, including many more SNPs, have proved superior to both
conservative PRS and to APOE alone (AUC 75%)(Escott-Price, Sims, Bannister, et
al., 2015). Prediction accuracy is even greater using a threshold-based PRS in
histologically confirmed cases and controls (AUC 84%) (Escott-Price et al., 2017). The
findings for MCI conversion prediction are more mixed. Of the three studies reporting
negative results, two had relatively low power (Rodriguez-Rodriguez et al., 2013;
Lacour et al., 2017). Almost all the studies exploring PRS prediction accuracy report
that there is some overlap between cases and controls at high polygenic risk.
Moreover, in the absence of therapeutic consequences, the clinical utility of these

findings remains limited.

2.5.2 Associations between AD PRS, phenotypes and biomarkers

Overall, the evidence from cross-sectional, case-control and longitudinal cohort
studies pointed towards an association between PRS and a range of AD-related
phenotypes. Of these, cognition has been the most widely investigated. Whilst the
methodology and samples were diverse, the vast majority of studies reported
significant associations (Rodriguez-Rodriguez et al., 2013; Verhaaren et al., 2013;
Marden et al., 2014, 2016; Wollam et al., 2015; Yokoyama, Bonham, et al., 2015;
Carrasquillo et al., 2015; Mormino et al., 2016; Hagenaars, Harris, Davies, Hill, et al.,
2016; Andrews, Das, et al., 2017; Papenberg et al., 2017; Hayes et al., 2017; Marioni
et al., 2017; Axelrud et al., 2018; Sapkota and Dixon, 2018; Del-Aguila et al., 2018;
Felsky et al., 2018). Of the negative studies, one used a threshold-based PRS (Harris
et al., 2014) and another used a PRS including 15 Bonferroni-significant risk SNPs
(Bressler et al., 2017) but both excluded APOE entirely. The other two negative studies
both used samples of young adults (Foley et al., 2016; Li et al., 2018), suggesting that
cognitive changes related to AD genetic risk may not manifest until later in life.
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There was consistent evidence to support an association between AD PRS and
changes in brain structure, particularly in decreased hippocampal volume (Hohman,
Koran and Thornton-Wells, 2014; Foley et al., 2016; Harrison and Bookheimer, 2016;
Lupton et al., 2016; Mormino et al., 2016; Axelrud et al., 2018) and reduced cortical
thickness (Sabuncu et al., 2012; Harrison and Bookheimer, 2016; Hayes et al., 2017,
Corlier et al., 2018; Li et al., 2018). This was reported even in samples of young
adults,(Foley et al., 2016; Axelrud et al., 2018) suggesting that AD risk may manifest
in brain structure decades before the onset of disease. These studies also found that
the threshold based PRS yielded better results. For example, Mormino et al found an
association between a threshold PRS and hippocampal volume that was not present
when only genome-wide significant SNPs were used (Mormino et al., 2016).

There were mixed findings for amyloid and tau biomarkers. Of those studies exploring
CSF, PET or histology biomarkers, all but one reported statistically significant
associations. However, findings were not consistent across biomarkers. For example,
one study reported an association between CSF tau and phosphorylated tau but not
AB (Louwersheimer et al., 2016), whereas a different study found the reverse
(Martiskainen et al., 2015). Another study reported a significant association with Aj
PET but not with CSF AB or tau (Mormino et al., 2016). However, studies with post-
mortem samples did find evidence of association between AD PRS and soluble A42
levels, B-secretase activity (Martiskainen et al., 2015), neuritic amyloid plaques and
neurofibrillary tangles (Felsky et al., 2018). PRS for other neuropsychiatric disorders
were not associated (Felsky et al., 2018). Moreover, AD PRS was not associated with
amyloid accumulation in Normal Pressure Hydrocephalus (Laitera et al., 2016). This
suggests that the genetic foundations of amyloid deposition in other conditions may
be distinct from those in AD. In addition, there was no evidence for pleiotropy between
AD and depression (Gibson et al., 2017).

2.5.3 PRS in disease pathways

GWAS have resulted in the identification of novel genetic risk loci in addition to APOE4
(Lambert et al., 2013; Kunkle et al., 2019) which have been associated with a range

of biological pathways including lipid metabolism, immune response, and synaptic
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processes (Jones et al., 2010; Holmans and Jones, 2012). AD is heterogeneous and
multifactorial. Polygenic profiling can allow individual molecular sub-classification, by
identifying the pathways enriched for risk alleles for an individual. Four of the most
recent studies included in this review took this approach, suggesting that the field is
moving in this direction. They found some evidence for association between pathway-
specific polygenic scores and MCI risk (Ahmad et al., 2018), cognition (Darst et al.,
2017), brain structure (Ahmad et al., 2018; Corlier et al., 2018), CSF biomarkers (Darst
etal., 2017), AB PET (Darst et al., 2017) and serum complement markers (Morgan et
al., 2017). The variance that each of these pathways explains is small (Darst et al.,
2017). This will probably increase as discovery sample sizes increase (Dudbridge,
2013), but will be restricted as PRS do not capture the contributions of copy number

variant or rare SNPs.

Pathway-specific polygenic profiling could enable personalised treatment of each
individual with AD. This could allow entrants to clinical trials and biomarker studies to
be stratified based on evidence of involvement of specific disease pathways.
Moreover, if polygenic risk profiles can give prognostic information, they may aid
decision making for individuals and clinicians. For example, a high PRS has been
associated with a more accelerated progression from MCI to AD (Rodriguez-
Rodriguez et al., 2013).

2.5.4 Strengths and limitations

We used a systematic and comprehensive search strategy to avoid missing eligible
studies. Articles were not limited to a particular sampling framework or research design
(e.g. longitudinal studies or clinical samples), or to European ancestry samples. We
also included studies investigating broad ranges of outcomes which enhanced our
ability to assess how AD polygenic risk is manifest. However, results were not reported
consistently across studies, meaning only a narrative review was feasible, and we
were not able to assess for publication bias. In addition, we were not able to include

studies that were not in English-language journals.
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We identified a number of limitations in the studies included in this review. In order to
conduct a polygenic score analysis, two completely independent datasets are
required. Any overlap in the datasets will inflate the associations found. Some studies
appeared to use sub-samples of the discovery sample as target samples and not all
attempted to account for this. Some studies also appeared to be underpowered.
Authors often did not provide a clear description of sample ascertainment, making it
harder to put their findings into the context of the wider literature. Standardized effect
estimates or confidence intervals were also often omitted, which are required to
compare effect sizes across studies. We have previously proposed a reporting
framework for studies which might assist future researchers who synthesize data
across such studies (Mistry et al., 2017).

A number of studies explored similar phenotypes in comparable samples but reported
different results. Heterogeneity may stem from the PRS or the study design. Regarding
the PRS, the exact list of SNPs is likely to differ between studies. Some researchers
selected SNPs that reached genome-wide significance, and others used a p-value
threshold approach, a key distinction. With threshold based PRS, experimenters
exclude SNPs with low imputation quality scores. These vary depending on the array,
imputation platform and pre- and post- imputation quality control steps. In addition,
even small differences in population genetics may lead to distinctive linkage
disequilibrium (LD) structure and allele frequencies (Moskvina et al., 2010). Pruning,
an essential part of PRS calculation, relies on LD structure to retain SNPs that are
most associated with a trait whilst removing others that are closely linked. Where LD
structure diverges, alternative SNPs will be selected. Furthermore, in disease pathway
PRS, the gene sets are determined by the databases used to define the pathways.
Regarding study design, there are other potential causes of heterogeneity. There may
be discrepancies in how phenotypes are defined or measured, and different
approaches to data analysis. Finally, there are possible sources of bias. For example,
disease prediction studies using PRS can be affected by selection bias. If the target
dataset is enriched for AD or MCI cases, this will affect the prediction accuracy.
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2.5.5 Conclusion

The PRS approach is an important method for capturing the contribution of genome
wide common variation of complex diseases. This is the first review attempting to
collate information on how the use of the PRS approach has informed our
understanding of a variety of phenotypes associated with AD genetic risk. PRS can
predict AD and are associated with cognitive impairment. There is also evidence of
association between AD PRS and other phenotypes relevant to neurodegeneration.
The associations between pathway specific PRS and phenotypic changes may allow
us to define the pathophysiology of the disease in individuals, heralding precision
medicine in AD. However, longitudinal cohort studies are required to test the ability of
PRS to delineate pathway-specific disease activity. In the absence of therapeutic
consequences, the clinical utility of PRS is limited.

Appendix A: Supplementary Material

Table 1.1. Search strategy terms used for searching Embase, Medline via Ovid and
PsychINFO.

Table 1.2. List of data extracted from all studies

Table 1.3. Studies examining associations with threshold-based PRS, principle results
Table 1.4. Studies examining associations with Bonferroni-significant SNP PRS,
principal results
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CHAPTER 3: IMAGING ALZHEIMER'S GENETIC RISK USING DIFFUSION MRI:
A SYSTEMATIC REVIEW

The chapter includes some material that was previously published in Harrison, J. R.
et al. 2020. Imaging Alzheimer's genetic risk using Diffusion MRI: a systematic review.
Neurolmage: Clinical 27, article number: 102359. (10.1016/j.nicl.2020.102359). Dr
Zhao Xuan Tan, Ms Sanchita Bhatia, Ms Anastasia Mirza-Davies and Ms Hannah

Benkert assisted with the assessment of selected studies.

Some information from Chapters 1 and 2 is repeated here for convenience.

3.1 Summary

Diffusion magnetic resonance imaging (dMRI) is an imaging technique which probes
the random motion of water molecules in tissues and has been widely applied to
investigate changes in white matter microstructure in AD. This chapter aims to
systematically review studies that examined the effect of Alzheimer’s risk genes on
white matter microstructure. The findings from 37 studies were assimilated and their
diffusion pre-processing and analysis methods were reviewed. Most studies estimate
the diffusion tensor and compare derived quantitative measures such as fractional
anisotropy and mean diffusivity between groups. Those with increased AD genetic risk
are associated with reduced anisotropy and increased diffusivity across the brain,
most notably the temporal and frontal lobes, cingulum and corpus callosum. Structural
abnormalities are most evident amongst those with established AD. Recent studies
employ signal representations and analysis frameworks beyond diffusion tensor MRI
but show that dMRI overall lacks specificity to disease pathology. However, as the
field advances, these techniques may prove useful in pre-symptomatic diagnosis or

staging of Alzheimer’s disease.
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3.2 Introduction

AD is characterised by amyloid plaques, hyperphosphorylated tau and atrophy (Braak
and Braak, 1995), and histopathological studies have also identified AD pathology in
white matter (Englund, Brun and Alling, 1988). In recent years, diffusion Magnetic
Resonance Imaging (dMRI) has been used to examine white matter microstructure in

AD and to study the effect of AD genetic risk on white matter microstructure.

3.2.1 Alzheimer’s Disease genetic risk

As discussed in previous chapters, GWAS of clinically confirmed AD has identified
over 25 loci that are associated with increased risk for sporadic AD (Kunkle et al.,
2019), with the largest in single nucleotide polymorphisms (SNPs) in the
Apolipoprotein E (APOE) region (Corder et al., 1993). As described in Chapter 2, loci
of smaller effect can be combined using polygenic risk scores. These are calculated
from the weighted sum of weighted allelic dosages across the genome, and have
proven particularly effective in predicting AD (Escott-Price, Sims, Bannister, et al.,
2015). Whole exome sequencing techniques have also identified additional rare
mutations with moderate-to-strong effects such as TREM2, a variant that encodes the
trigger receptor expressed on myeloid cells 2 (Guerreiro, Wojtas, Bras, Carrasquillo,
Rogaeva, Majounie, Cruchaga, Sassi, John S K Kauwe, et al., 2013). In contrast to
sporadic AD, autosomal dominant AD is caused by rare mutations either in the amyloid
precursor protein (APP) gene, or in presenilin 1 and 2 (PS1 and PS2) that are involved
in cleaving amyloid 3 and APP. The disease onset is often predictable, depending on
the specific mutation (Tanzi, 2012).

3.2.2 Diffusion MRI

dMRI is a non-invasive imaging method that probes the movement of water molecules
to assess the microstructural configuration of tissue, including white matter tracts
(Jones, 2011; Winston, 2012). dMRI measures indicate how readily water molecules
can diffuse in and around structures such as white matter fibres or cell bodies (Stejskal
and Tanner, 1965; Bihan, 1995; Strijkers, Drost and Nicolay, 2011; Johansen-Berg
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and Behrens, 2013). In white matter, the rate of diffusion is modulated by multiple
microstructural features including axon diameter, axon density and myelination
(Jones, 2011). In highly ordered white matter, the rate of diffusion is anisotropic, i.e.,
it is strongly dependent on the direction in which it is measured. As mentioned in
Chapter 1, the most commonly used index of anisotropy is the fractional anisotropy
(FA) introduced by Basser and Pierpaoli (Basser and Pierpaoli, 1996). An FA of 0
indicates that the rate of diffusion is the same in all directions (isotropic diffusion), and
1 represents the extreme case where diffusion can only occur along one axis
(anisotropic diffusion) (Beaulieu and Allen, 1994; Pierpaoli and Basser, 1996;
Beaulieu, 2009; Winston, 2012). Clinical studies often employ this as a measure of
tissue integrity (Thomason and Thompson, 2011), although at best this interpretation
is an oversimplification (Jones, Kndsche and Turner, 2013). Another widely used
metric is mean diffusivity (MD), which represents the orientationally-averaged rate of
diffusion. Additional commonly used metrics from diffusion tensor imaging are the
‘longitudinal diffusivity’ (LD) and ‘radial diffusivity’ (RD), which in turn represent the
highest and lowest rates of diffusion. In the case of perfectly aligned axonal bundles,
these would represent diffusivity parallel and perpendicular to the main axis of the
bundle, respectively. However, given the ubiquity of multiple fibre populations within
an image voxel, this interpretation carries some risk (see: (Wheeler-Kingshott and
Cercignani, 2009) but also see (Wheeler-Kingshott et al., 2012)). Collectively, FA, MD,
LD and RD can help to characterise changes in diffusion resulting from differences in

white matter microstructure.

3.2.3 Structural changes observed in Alzheimer’s Disease

MRI measures of atrophy, such as Voxel-Based Morphometry (VBM), are routinely
used for AD diagnosis and measurement of disease progression (Frisoni et al., 2010).
dMRI have reported widespread changes in white matter microstructure in AD. A
meta-analysis of 41 studies found reduced FA and increased MD in AD brains
compared to controls. Differences were marked in frontal and temporal lobes, and the
posterior cingulum, corpus callosum, superior longitudinal fasciculi and uncinate
fasciculi (Sexton et al., 2011). Late-myelinating tracts may be affected primarily by AD
neurodegeneration (Benitez et al., 2014). Longitudinal studies suggest that the pattern
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of decreased FA and increased MD becomes more distinct as the disease progresses
(Mayo et al., 2017). Changes in the parahippocampal cingulum have been shown to
discriminate between AD and healthy controls (Mayo et al., 2017). Diffusion
measurements in the fornix are another possible biomarker (Ringman et al., 2007).
Perea and colleagues found that AD preferentially degraded the crus and body of the
fornix. The diffusion differences remained after controlling for fornix volume (Perea et
al., 2018).

Mild Cognitive Impairment (MCI) describes a degree of cognitive problems that do not
affect day-to-day living, and are considered to be an AD prodrome (Petersen and
Morris, 2005). A meta-analysis of 41 studies found that compared to healthy controls,
patients with MCI had lower FA in all white matter areas except parietal and occipital
regions, and higher MD except in occipital and frontal regions (Sexton et al., 2011).
More recently, whole brain white matter histogram analysis found that RD, LD and MD
were able to discriminate between AD and controls and between MCI and controls in
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. LD appeared to be the

most sensitive marker (Giulietti et al., 2018).

dMRI metrics in the fornix are markers of cognitive problems, and can distinguish MCI
from AD (Egli et al., 2015; Tang et al., 2017). The volume of the body of the fornix and
LD in the fornix are correlated with decline from normal cognition (Fletcher et al.,
2013). Reduced FA in the fornix can predict conversion both from healthy cognition to
MCI and from MCI to AD with high specificity and >90% accuracy (Mielke et al., 2012;
Oishi et al., 2012). Reduced FA and increased MD in the fornix might even precede
hippocampal atrophy (Zhuang et al., 2012).

3.2.4 Current review

This systematic review aimed to collate studies applying dMRI techniques to
investigate genetic risk for AD. In the narrative synthesis, the goal of this chapter is to
assess the evidence for manifestations of Alzheimer’s genetic risk in white matter
microstructure. The studies were also reviewed in terms of their study design and
diffusion methodology, including pre-processing and analysis.
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3.3 Methods

This systematic review was conducted in accordance with PRISMA guidelines (Moher
et al., 2009).

3.3.1 Study selection

Search terms were defined at the outset (listed in Table 1, Appendix B). MEDLINE,
PSYCHINFO and EMBASE were searched from January 2000-July 2019, and the

reference lists of related articles were hand-searched.

Inclusion criteria:
e Case-control, cross-sectional or longitudinal studies
e Genotyped participants
e Imaged with dMRI sequences
e Associations reported between AD risk genes/SNPs and measures derived
from dMRI
Exclusion criteria:
e Publications in non-English language journals
e Conference proceedings
e Studies of non-Alzheimer’s dementia or unspecified dementia
e Studies using family history and genotype as a composite variable
e Studies using MRI but not including dMRI
e Studies investigating genes/SNPs that are not associated with AD risk
e Studies that co-vary for AD genes (e.g. APOE) but that do not report

associations with AD risk genes/SNPs

3.3.2 Article Selection

The articles included in this review are all English language original research papers.
Study designs included case-control, cross-sectional and longitudinal studies. The

primary search was conducted by SB. Five reviewers (JH, SB, HB, AMD, ZXT) all
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independently selected studies based on the eligibility criteria. Disagreements were

resolved by consensus.

3.3.3 Data Extraction

Reviewers (JH, SB, HB, AMD, ZXT) extracted information from papers independently.
Data were extracted from each study in duplicate to ensure consistency. Key data
included: study design; the number of participants; the AD genetic risk measured; MRI
acquisition parameters; dMRI pre-processing; dMRI analysis techniques; reported

findings. A complete list of the data extracted can be found in Appendix B Table 2.

3.3.4 Quality assessment

The quality of each included study was assessed independently by two reviewers
using the appropriate version of the Newcastle-Ottawa Scale (Stang, 2010) for the
study design (case/control, cross-sectional or cohort study). The NOS assesses the
quality of non-randomized studies in three main areas: the selection of study groups;
the comparability of the groups; and the ascertainment of the exposure or outcome of
interest. This tool was chosen because of the type of studies included. A consensus
meeting between all reviewers established a manual to ensure this was applied
consistently. The assessment tool was adapted to fit the included studies, where the
exposure was defined as genetic risk, and important covariates were age, sex and
APOE4 status. A point was awarded in each category.

3.4 Results
3.4.1 Search results

2931 articles were identified in the initial search (see PRISMA flow diagram in Figure
1). Duplicates, non-English language studies, non-human studies and conference
proceedings were excluded. 2514 articles were screened based on their titles and
abstracts and a further 2394 were excluded. The reviewers (JH, SB, HB, AMD, ZXT)
reviewed the full text of 120 articles and applied the inclusion criteria. 32 studies met
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the criteria for inclusion. A further 4 studies were identified through hand-searches of

reference lists.

Figure 3.1 PRISMA flow chart, dMRI studies
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z !
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4= Full-text articles assessed: Articles excluded n = 84:
w n=121 Methodology did not meet criteria n = 23
— Did not assess AD genetic risk n =17
Did not report effects of genotype on dMRI measures n = 28
Did not report white matter dMRI measures n =13
v Study protocol did not meet criteria n = 2
§ Studies included in No results reported n = 1
3 qualitative synthesis:
£ n=37

3.4.2 Study characteristics: study design, sample, Alzheimer’s genetic risks

The majority of the studies were case/control design, although some were cross-
sectional (Foley et al., 2016) and some longitudinal cohort studies (Lyall et al., 2014).
Some studies were conducted using the same cohorts: three used data from the
Beijing Aging Brain Rejuvenation Initiative (BABRI); two used the Wisconsin Registry
for Alzheimer’s Prevention (WRAP); two used the European Diffusion Tensor Imaging
Study on Dementia (EDSA) and the DZNE database, Rostock, Germany. Only one
article reported data from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Most studies included participants who were pre-symptomatic. Only ten included those
with established AD or MCI.
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3.4.3 Genotypes

Two approaches were used to assess genetic risk for AD. Most studies tested
participants for specific mutations (APP, PS1/2 mutations or APOE alleles). One study
used an array to genotype participants and calculate polygenic risk scores based on
sporadic AD GWAS (Foley et al., 2016).

3.4.4 dMRI pre-processing and analysis methods

Prior to modelling or statistical analysis, it is essential to pre-process the dMRI data,
correcting for artefacts, motion and eddy-current induced distortions (Jones, Kndsche
and Turner, 2013). Once pre-processed, different approaches can be applied to
represent the dMRI signal. Beyond the diffusion tensor framework, two common ways
to represent the orientation dependence of the signal in dMRI are the diffusion
orientation density function (dODF) (Wedeen et al., 2005) and the fibre orientation
density function (fODF) (DellAcqua and Tournier, 2019). The dODF is a spherical
function which characterises the probability of diffusion along a unit direction. On the
other hand, the fODF is a function that characterises the probability of finding a fibre
oriented along a particular axis (Jones, Kndsche and Turner, 2013).

An additional method, known as neurite orientation dispersion and density imaging
(NODDI), aims to provide more specific microstructural information (Zhang et al.,
2012). NODDI assumes there are three biophysical compartments in white matter,
intra-cellular, extra-cellular and cerebrospinal fluid, in a single voxel. By imposing
constraints on some of the parameters that describe these compartments, NODDI
aims to estimate proxies of intracellular volume fraction (IVF), neurite density index
(NDI), orientational dispersion index (NDI) and increased free isotropic water fraction
(FISO) (Zhang et al., 2012).

Quantitative dMRI measures, such as FA, MD, RD and LD (all derived from the
diffusion tensor), can be analysed using tractography or whole-brain voxel-wise
analysis. Tractography involves reconstructing the trajectory of fibres and connection
patterns, using either the principal eigenvector of the diffusion tensor, or peaks in the

dODF or fODF, within successive adjacent voxels (Tournier, Mori and Leemans, 2011;
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Jones, Kndsche and Turner, 2013). These local orientations are used to infer total
fibre trajectories (Jeurissen et al., 2019). Commonly used methods include
deterministic and probabilistic tractography. In deterministic tracking, a path is
propagated along local maxima of the ODF (or, in the case of diffusion tensor imaging,
along the principal eigenvector). However, imaging noise and artifacts can make
estimates of local maxima imprecise and adds some local orientational uncertainty.
Probabilistic tractography techniques illustrate these uncertainties by assigning an
uncertainty, or conversely, a probability to the orientational estimates. As such, each
local maximum in an ODF can generate a collection of possible trajectories (Jeurissen
et al., 2019).

A tractography-based region-of-interest (ROI) approach allows the researcher to
define ‘seeds’ to begin fibre tracking, or to define ‘way-points’ that prescribe regions
through which a reconstructed tract must pass in order to be retained for analysis
(Conturo et al., 1999). These can be drawn manually or automatically. Alternatively,
whole-brain tractography places seeds throughout the whole brain (Soares et al.,
2013), again using ‘way-point’ ROls to filter out target pathways. In tractography, each
tract is segmented in the native space of the individual (rather than requiring that the
individual's data are co-registered to some standardised template space, providing a
representation of tract anatomy for each individual (Bastin et al., 2013)). It is important
to recognise that the reconstructed tracts do not represent nerve fibres or fibre bundles
directly. Rather, they represent pathways or trajectories through the signal, and we
assume that the nerve fibres run approximately in parallel. These pathways can be
translated into qualitative information, e.g., on the tract shape, and into quantitative
information, as measures averaged along the tract (Jones and Pierpaoli, 2005) or in
assessing the extent of connections between brain regions (Kaden, Knosche and
Anwander, 2007).

Whole brain voxel-based techniques, such as Tract Based Spatial Statistics (TBSS)
(Smith et al., 2006; S. M. Smith et al., 2007) or Voxel-Based Analysis (VBA) (Blchel
etal., 2004; Van Hecke et al., 2009), are an alternative approach to tractography. They
typically involve the nonlinear registration of quantitative diffusion tensor imaging
maps, (e.g. FA), from each individual to a standard template space. The aligned FA
images are then averaged, and a skeletonised mean FA structure is created.
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Thresholds are applied to suppress areas of low mean FA or high inter-subject
variation. Each subject's FA image is then projected onto the skeleton, and voxel-wise
statistics can be carried out across subjects. For comprehensive descriptions of these
different dMRI methods and possible pitfalls, please see (Smith et al., 2006; Jones,
Kndsche and Turner, 2013; Soares et al., 2013; Bach et al., 2014)).

Inter-regional connectivity can be assessed by constructing networks of the human
brain using diffusion signals and tractography (Yeh et al., 2020). The resultant
networks can be characterised using graph theoretical approaches. Graph theory is a
mathematical framework for representing complex networks. The brain can be
illustrated using nodes, representing regions or voxels, and edges, representing
connections between nodes (E. Bullmore and Sporns, 2009). A number of network
metrics can be produced such as small-world and network efficiency. Please see
(Boccaletti et al., 2006) for a detailed summary of graph theory.

The studies that met the inclusion criteria used a range of dMRI analysis methods. 15
used TBSS, seven used a tractography-based ROI approach, eight used VBA, three
combined TBSS and VBA, one combined TBSS and ROI, and three calculated

structural connectivity matrices.

3.4.5 Studies of white matter structure and APOE status

The majority of the papers which met our inclusion criteria explored the effects of
APOE (27 articles). Most used a case-control design, although some were longitudinal
studies. There was a wide range of sample sizes (N range = 14 - 885). The literature
predominantly examined samples of cognitively healthy older adults (age > 60). Five
studies included participants with diagnoses of AD or MCI (Bagepally et al., 2012;
Kljajevic et al., 2014; Wai et al., 2014; Ma et al., 2017; Slattery et al., 2017). Studies
of younger age groups included adolescents (Dell’Acqua et al., 2015), adults in their
20’s (Heise et al., 2011; O’'Dwyer, Lamberton, Matura, Scheibe, et al., 2012; Dowell et
al., 2013), 40’s and 50’s (Westlye et al., 2012; Operto et al., 2018). Some studies were
able to compare groups with different combinations of APOE alleles (Lyall et al., 2014),

although most simply compared APOE E4 carriers (homozygotes and heterozygotes)
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to those without an E4 allele. Diffusion methodology included: TBSS (12 studies);
tractography-based ROI (6 studies); VBA (4 studies); TBSS and VBA (3 studies);
TBSS and ROI (1 study); structural connectivity (3 studies). Table 3.1 provides a
summary of studies exploring white matter metrics and APOE genotype.

Five studies reported no significant differences in white matter microstructure between
carriers and non-carriers (Honea et al., 2009; Bendlin et al., 2012; Nyberg and Salami,
2014; Dell’Acqua et al., 2015; R. Wang et al., 2015). All other studies reported some
significant changes in diffusion metrics associated with APOE4. The pattern of
alteration in affected tracts or regions was similar to studies of autosomal-dominant
AD genes: reduced FA was commonly reported, often in tandem with increased MD,
RD or LD. Reduced neurite density index (NDI) and increased free isotropic water
fraction (FISO) are also reported. The white matter regions found to be associated
with APOE status (summarised in Table 3.1) included: the genu (Newlander et al.,
2014; Zhang et al., 2015; Cai et al., 2017; Cavedo et al., 2017), body (Persson et al.,
2006; Zhang et al., 2015) and splenium of the corpus callosum (Ryan et al., 2011;
Slattery et al., 2017) and the corpus callosum overall (Heise et al., 2011; Westlye et
al., 2012; Cavedo et al., 2017); the parahippocampal cingulum (Nierenberg et al.,
2005; Bagepally et al., 2012; Kljajevic et al., 2014; Zhang et al., 2015) and the
cingulum overall (Adluru et al., 2014; Lyall et al., 2014; Cavedo et al., 2017); the
intracalcarine sulcus (Bagepally et al., 2012; Westlye et al., 2012); the brain stem
(Westlye et al., 2012; Newlander et al., 2014); the corona radiata (Heise et al., 2011,
Smith et al., 2016; Cai et al., 2017; Cavedo et al., 2017; Slattery et al., 2017; Operto
et al., 2018); the external capsule (Heise et al., 2011; Cavedo et al., 2017) and internal
capsule (Heise et al., 2011; Westlye et al., 2012; Smith et al., 2016; Cavedo et al.,
2017); the superior longitudinal fasciculus (Adluru et al., 2014; Lyall et al., 2014;
Cavedo et al., 2017; Operto et al., 2018) and inferior longitudinal fasciculus (Dowell et
al., 2013; Cavedo et al., 2017); the fronto-occipital fasciculus (Cavedo et al., 2017,
Operto et al., 2018); the fornix (Zhang et al., 2015); the cerebral peduncles (Zhang et
al., 2015); the cortico-spinal tract (Laukka et al., 2015); the uncinate fasciculus
(Salminen et al., 2013); the forceps major (Laukka et al., 2015) and forceps minor
(Operto et al., 2018).
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Three papers used measures of structural connectivity based on graph theory. Brown
et al found that APOE4 carriers had age-related loss of mean local interconnectivity
and regional local interconnectivity in the precuneus, medial orbitofrontal cortex, and
lateral parietal cortex (Brown et al., 2011). Ma et al studied participants with MCI and
with normal cognition. They found that healthy APOE E4 carriers had increased
clustering coefficient and local efficiency compared to healthy non-carriers. In those
with MCI, carriers showed decreased clustering coefficient and local efficiency relative
to MCI non-carriers. When all carriers were compared to all non-carriers, they showed
decreased nodal efficiency in the inferior frontal gyrus, the left superior frontal gyrus,
and the left middle occipital gyrus. Carriers also showed increased nodal efficiency in
the left cuneus, the left inferior parietal, supramarginal and angular gyri (Ma et al.,
2017). A further study reported that E4 carriers had lower global efficiency but no
significant differences in local efficiency. Decreased nodal efficiency in left anterior
cingulate, left paracingulate gyrus, right dorsolateral superior frontal gyrus, and left
inferior occipital gyrus was reported in carriers relative to non-carriers. In addition, they
used structural connectivity measures to predict AD with Receiver-Operator Curves
(ROC). Using global efficiency, they produced an Area Under Curve (AUC) of 0.74.
Using mean nodal efficiency of significant decreasing regions, this improved to 0.81
(Chen et al., 2015).
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3.4.6 Studies of white matter and autosomal-dominant AD genes

Six studies explored white matter metrics in participants with autosomal-dominant AD
genes: three studied PS1 carriers, two studied APP and PS1 carriers and one studied
PS1, PS2 and APP carriers. All used a case/control design. They compared pre-
symptomatic and symptomatic gene carriers to non-carriers. Sample sizes reflect the
rarity of the genes (N range = 20-109, of which 10-64 were carriers). Three studies
used VBA, three used TBSS.

Of the three studies of PS1 carriers, one study identified reduced MD and LD in the
right cingulum among pre-symptomatic carriers (Ryan et al., 2013), and the other two
studies reported no significant differences between pre-symptomatic PS7 and non-
carriers (Parra et al., 2015; Sanchez-Valle et al., 2016). In symptomatic PS1 carriers,
changes included: increased MD, RD and LD and reduced FA in all the fornix,
cingulum and corpus callosum (Ryan et al., 2013); higher MD in the left inferolateral
frontal white matter, right parahippocampal cingulum bundle, splenium left of the mid-
line and genu symmetrically around the mid-line of the callosum (Parra et al., 2015);
decreased FA in the genu and body of corpus callosum and corona radiata bilaterally
and increased MD, LD, and RD in the splenium of corpus callosum relative to age
(Sanchez-Valle et al., 2016).

Two studies with mixed cohorts of PS1 or APP carriers reported a number of changes
in pre-symptomatic carriers: reduced FA in the fornix and frontal white matter
(Ringman et al. 2007); increased MD in the left inferior longitudinal fasciculus, left
forceps major, left cingulum and bilateral superior longitudinal fasciculus (X Li et al.,
2015). In the same PS1/APP studies, symptomatic carriers showed: decreased mean
FA across the whole brain, especially in the left frontal white matter, and right and left
perforant paths (Ringman et al. 2007); increased MD in the inferior longitudinal
fasciculus, forceps major, cingulum and bilateral superior longitudinal fasciculus (X Li
et al., 2015). The effects seen in the symptomatic APP/PS1 carriers were greater and
more widespread than in pre-symptomatic carriers (Ringman et al., 2007; X Li et al.,
2015). Caballero et al studied a large mixed cohort of PS1/2 and APP carriers. They
found increased MD in the forceps minor, forceps major and long projecting fibres 5-
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10 years before the estimated onset of symptoms (Caballero et al., 2018). See Table
3.2 for a summary of these studies.
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3.4.7 Studies of white matter and AD risk loci from GWAS

Three studies correlated white matter metrics with AD risk loci identified through
GWAS. One was cross-sectional and two were case/control studies. They all included
healthy participants (Mean age range 23.6 - 72.7; N range 197 - 645). Two studies
used an ROI approach, one used VBA.

Braskie et al. imaged healthy young adults and found that each C allele copy of the
CLU allele was associated with lower FA in the splenium of the corpus callosum, the
fornix, cingulum, and superior and inferior longitudinal fasciculi bilaterally (Braskie et
al., 2011). The Lothian Birth cohort study identified lower FA associated with different
length genotypes of the poly-T repeat in TOMMA40. Shorter genotypes were
significantly associated with lower FA in the right rostral cingulum and left ventral
cingulum. This effect was independent of APOE genotype (Lyall et al., 2014). Foley et
al used an Alzheimer’s polygenic score, the weighted sum of the risk loci from GWAS,
as a continuous variable. They identified an association between increased AD
polygenic score and decreased FA in the right cingulum in young adults (Foley et al.,
2016).

Elliot et al undertook a GWAS of brain imaging phenotypes in the UK Biobank cohort
(Elliott et al., 2018). They used imaging data from around 15,000 participants. All
results are available on the Oxford Brain Imaging Genetics (BIG) web browser
(http://big.stats.ox.ac.uk/). The BIG website can be browsed for associations by
phenotype, gene or SNP. The associations between AD risk loci identified in the
Kunkle at al GWAS (Kunkle et al., 2019) and FA/MD derived from TBSS in UK Biobank
were explored and Appendix B Table 4 summarises these results. Broadly, the results
corroborate the findings of other studies included in this review. APOE and CR1
showed particular evidence of association with reduced fractional anisotropy and
increased mean diffusivity. However, these results are not corrected for multiple

comparisons.
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3.4.8 Study quality overview

Most studies scored highly on the Newcastle Ottawa Scale. Generally, the
comparability of the groups was clearly explained. As the exposure was gene status,
there was little possibility of ascertainment bias. Some studies had one point deducted
for failing to describe the selection of study groups, particularly of control subjects. The
outcomes of interest (white matter metrics) were defined, although the methodology
employed to measure these was variable. It was often difficult to assess the quality of
the diffusion methodology, as authors often did not provide sufficient information. Most
studies gave some details of their pre-processing, although one acknowledged they
had not corrected for Gibbs ringing, a common artefact (Gibbs, 1898). The papers
generally did not give details of their model estimation technique (for example
nonlinear least squares (NLLS), weighted linear least squares (WLLS) or ordinary
least squares (OLS)), which can lead to different outcomes (Koay et al., 2006). The
majority of studies, 27 of 37, used TBSS or VBA. Of those papers that used
tractography, only some described or referenced the specific methods (such as
deterministic or probabilistic).

3.5 Discussion

This chapter establishes that the literature reports AD genetic risk is related to altered
white matter microstructure, as indexed by increased diffusivity and decreased
anisotropy. By synthesising results across studies, this review demonstrates that AD
risk genes were associated with widespread white matter changes, rather than
discrete microstructural abnormalities in medial temporal structures such as the fornix.
This review also found evidence of changes related to AD risk even in studies of
young, healthy adults.

3.5.1 White matter changes associated with AD risk genes

AD genetic risk is associated with reduced anisotropy and increased diffusivity across
the brain, most notably in temporal and frontal lobes, cingulum and corpus callosum.

Table 3.3 contains a summary of the five tracts that were implicated in the most
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studies. Although some studies reported no differences between pre-symptomatic
gene carriers and non-carriers, many of these studies were limited by small sample
sizes. Differences between symptomatic carriers and non-carriers frequently
paralleled the differences between pre-symptomatic carriers and non-carriers, but in
the pre-symptomatic group often fewer regions reached statistical significance or

effect sizes were smaller.
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The literature included in this review reported widespread increasing diffusivity and
decreased anisotropy and changes in global structural connectivity. These reflect the
changes across regions and hemispheres that underpin emergent AD. There was
significant overlap between the regions implicated by studies of APOE, autosomal-
dominant AD genes and GWAS loci. This suggests that although these genes are
involved in different biological processes, these pathways may converge on a common
final pathway resulting in a corresponding pattern of neurodegeneration. This is in
keeping with the literature on AD pathology (Naj and Schellenberg, 2017). However,
there was no evidence that microstructural changes were related to any individual

microstructure component, as abnormalities were evident across white matter metrics.

3.5.2 Methodological considerations

The field has some key limitations (Jones and Cercignani, 2010; Jones, Kndsche and
Turner, 2013). Firstly, water diffusion is not a direct measure of neuroanatomy.
Secondly, dMRl is an intrinsically noise-sensitive and low-resolution technique (Jones,
Kndsche and Turner, 2013). Several dMRI models assume fibre bundles to run parallel
in a tract. However, fibres cross within voxels in many brain regions, which reduces
the FA. The percentage of voxels containing crossing fibres is estimated to be ~90%
(Jeurissen et al., 2013). It is also difficult to separate tracts that are closely aligned and
then diverge (Tournier, Mori and Leemans, 2011). DTl also demonstrates
‘degeneracy’: the same change in the diffusion tensor can be explained by multiple
processes e.g., differently oriented fibre populations (‘crossing fibres’), or the ratio
intra/extra-axonal space (see Figure 2). Therefore dMRI is sensitive but lacks
specificity (Jelescu, Veraart, et al., 2016) and cannot provide an interpretable marker
other than a vague concept of ‘tissue integrity’ (Wheeler-Kingshott and Cercignani,
20009).
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Figure 3.2 The change in the diffusion signal (isotropic to anisotropic diffusion) can
result from multiple different pathologies. States that can produce the same signal

change include axonal loss, demyelination, axonal growth or oedema.
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3.5.3 Interpretation of dMRI signal change in AD

In additional to neurodegeneration, a number of different pathological processes can
result in the same changes in diffusion signals. However, the presence of abnormal
dMRI measures in AD correlates with other AD biomarkers, such as amyloid PET
(Kantarci et al., 2014), CSF amyloid-beta and phosphorylated tau (Amlien et al., 2013;
Gold et al., 2014; X Li et al., 2015). Among those with AD, lower Mini-Mental State
(MMSE) scores are associated with a greater effect size for FA in several brain areas,

particularly the parietal region.

There is still much debate about the pathophysiology underpinning white matter
changes in AD. For example, it is not clear whether white matter alterations are related
to, or independent of, gray matter degeneration in AD. One hypothesis is that changes
in white matter microstructure result from Wallerian degeneration (Coleman, 2005).
According to this hypothesis, patterns of white matter alterations should correspond to
grey matter pathology, occurring first in the hippocampal and entorhinal areas, before
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extending to wider temporal and parietal regions (Braak & Braak, 1997). Conversely,
the theory of retrogenesis suggests that those tracts which are last to myelinate are
the first to degenerate (Reisberg et al., 2002; Bartzokis, 2004). In this case, late-
myelinating tracts would be affected first. It was striking that in the results of this
systematic review there were no longitudinal dMRI studies comparing those at high
and low genetic risk at different time points. Such debates cannot be resolved without

serial imaging to assess dynamic changes in white matter signal.

Caution is required when interpreting diffusion metrics in AD. Some AD dMRI studies
have concluded their findings showed disruption of myelin rather than axon damage
based on the effect on LD relative to RD (Operto et al. 2018). Indeed, authors of ex-
vivo studies in rats (Nevo et al., 2001) and mice (Song et al., 2002) as well as a small
study of cervical spondylosis patients (Ries et al, 2000) have suggested that a
decrease in LD and increase in RD could potentially be used to differentiate
demyelination from axonal injury. However, it may not be safe to generalize findings
from controlled animal experiments and spinal cord studies to the human brain, which
has complex white matter architecture. Microstructural dMRI models (Assaf and
Basser, 2005; Panagiotaki et al., 2012; Zhang et al., 2012), which aim to be more
specific than dMRI by describing the signal as arising from a sum of tissue
compartments, hold great promise, but the nonlinear fitting suffers from poor precision
(Jelescu, Veraart, et al., 2016). Furthermore, microstructural dMRI models do not
account for water in myelin because it cannot be detected with common dMRI
acquisitions. Measuring myelin content is relevant for monitoring pathologies where
demyelination, dysmyelination and remyelination are implicated. Thus, despite dMRI
signals being modulated by changes in myelin content through changes in intra/extra-
axonal space (Jelescu, Zurek, et al., 2016), it can only reveal 'part of the picture'.

3.5.4 Strengths and limitations of this review

We followed PRISMA guidelines and used a comprehensive systematic search
strategy to avoid missing relevant studies. We did not narrow our eligibility criteria to
studies using particular research designs (e.g. case/control studies), samples (e.g.
only clinical or healthy) or only young or older participants. We also included studies
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using any dMRI technique (e.g. TBSS, VBA or tractography-based ROI) or analysis
(e.g. structural connectivity) to enhance our ability to evaluate how AD genetic risk is
manifest in white matter. Unfortunately, any eligible studies in non-English language
journals would have been overlooked. The methodology was heterogeneous, and
even when the same techniques are applied there can be differences between
scanners (Vollmar et al., 2010). Furthermore, although some standardisation exists
for dMRI acquisition, other designs are largely ad hoc and can vary between centres.
This meant that we were unable to perform a meta-analysis, could not establish the
magnitude of effect sizes or assess for publication bias. The studies included in this
review had a number of limitations. Some of the studies were probably underpowered.
Authors often failed to describe sample ascertainment, making it more difficult to
contextualise their results. The majority of studies included used either TBSS or VBA,
which have a number of limitations, such as the requirement for spatial smoothing in
VBA (Jones et al., 2005; Jones and Cercignani, 2010; Edden and Jones, 2011).

3.5.5 Potential clinical applications

As this review demonstrates, there is evidence that AMRI markers can detect changes
in white matter microstructure in those with increased genetic risk of AD. The evidence
suggests that some white matter tracts may be more sensitive than others, offering a
possible marker of incipient disease. dMRI may also prove to be a useful tool for
monitoring disease progression. However, dMRI presents a number of methodological
challenges, and the biological changes that underpin alterations in dMRI signal are
uncertain. However, with continuous improvements in imaging technology (McNab et
al., 2013; Jones et al., 2018), and biophysical modelling (Novikov, Kiselev and
Jespersen, 2018), we are likely to deepen our understanding of those biological
underpinnings. Conventional T1- and T2- weighted images give established diagnostic
markers and are widely used in clinical practice (Frisoni et al., 2010). The utility of
dMRI as an adjunct to traditional structural assessment is as yet unproven. Beyond
that, there are also practical challenges, such as the length of acquisition protocols,

and a lack of standardisation of models, acquisition and analysis.
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3.5.6 Conclusions

Despite some methodological limitations, the majority of the studies presented in this
review demonstrate significant associations between AD genetic risk and diffusivity in
white matter tracts. Specifically, lower FA and increased MD, RD and LD were found
in a number of white matter tracts. This review emphasises the need for longitudinal
studies of AD genetic risk to fully characterise white matter changes related to
neurodegeneration across the lifespan. It is probable that very early pathology will be
more amenable to therapeutic intervention. Therefore, early detection and pre-
symptomatic treatment are vital. As acquisition and analysis techniques develop, dMRI
is able to provide increasingly detailed information about the structure of white matter

and brain connections and may develop useful biomarkers for AD pathology in future.

Appendix B. Supplementary Material

Table 1. List of pre-defined search terms

Table 2. List of data extracted

Table 3. PRISMA checklist

Table 4. Associations with TBSS phenotypes in UK Biobank
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CHAPTER 4: GENERAL METHODOLOGY

An overview of the methods relevant to the subsequent experimental chapters is
outlined in this section. Detailed information about the neuroimaging analysis pipelines
and the subsets of participants included in each analysis are described separately in
each experimental chapter.

4.1 Participants and procedures
4.1.1 The Avon Longitudinal Study of Parents and Children (ALSPAC)

The Avon Longitudinal Study of Parents and Children (ALSPAC) also known as
‘Children of the 90’s’, is a transgenerational prospective observational study. It
explores influences on development and health throughout life. It investigates
numerous exposures including genetic, epigenetic, biological, psychological, social
and other environmental factors. The outcomes include a broad spectrum of health,
social and developmental states (A. Fraser et al., 2013; Boyd et al., 2013). Initially
conceived to investigate modifiable factors affecting child health and development,
ALSPAC recruited N = 14,541 pregnant women living in the Avon area of South-west
England in 1990-92. All the women were expected to deliver between the 15t of April
1991, and the 315t of December 1992. Of these pregnant women, N = 13,988 had
babies alive at one year of age. 713 additional children who were not enrolled during
pregnancy but who were eligible were included at the age of seven. This resulted in a
total sample of N = 14,701 children. A sub-sample of 10% of the original offspring
cohort, the Children in Focus (CiF) groups, attended research clinics at intervals
between 4 and 61 months of age. The CiF cohort were randomly selected from the
last six months of births. 1432 families attended at least one follow-up clinic. All of the
mothers were invited to attend follow-up clinics, known as Follow-up Mothers or FOM.
4834 attended the first assessment, FOM1. Mothers were excluded if they had moved
away from the area or were lost to follow-up, and those taking part in another local

study of child development.
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Participants provided rich phenotypic data. For the children, follow-up included 59
questionnaires (4 weeks—18 years old) and nine clinic assessment visits (7—17 years
old). The resource comprises a wide range of environmental measures in addition to
biological samples and genetic data (genome-wide data for >8000 children; complete
genome sequencing on 2000 children) (Abigail Fraser et al., 2013). The mothers have
completed up to 20 questionnaires and have had comprehensive information linked
from medical records including data on any cancer diagnoses and deaths. Follow-up
assessments were completed 17-18 years after the birth of their children. These
included anthropometry, blood pressure, fat measurements, bone mass, carotid intima
media thickness, and a fasting blood sample. Further follow-up clinics also measured
cognitive function, physical fitness, physical activity and wrist bone architecture. A
comprehensive biobank contains DNA (genome-wide data available on >10 000
participants) and repeat samples of serum and plasma that have been stored. MRI
data was also obtained for subsets of participants (A. Fraser et al., 2013). Details of
all the data available through ALSPAC can be found on the data dictionary on the
study website (http://www.bris.ac.uk/alspac/researchers/data-access/data-
dictionary/). Ethical approval for the research was granted by the ALSPAC Ethics and
Law Committee and the local Research Ethics Committees. The analyses reported in
this thesis were permitted by the ALSPAC Executive Committee (project reference
B2399).

The 1991 census was used to compare the population of mothers with infants in
ALSPAC to the average British population and the Avon population. Whilst ALSPAC
mothers were more likely to be homeowners and car owners than other mothers in
Avon or Britain, they were also more likely to be in overcrowded accommodation
(Abigail Fraser et al., 2013).

4.1.2 UK Biobank

UK Biobank was established to improve the prevention, diagnosis and treatment of
serious diseases that occur in later life such as cancers, heart disease, stroke,
diabetes, arthritis, osteoporosis, eye disorders, depression and forms of dementia
(Sudlow et al., 2015).
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It is a national cohort that has recruited 500,000 participants in midlife. Participants
were aged 40-69 at recruitment between 2006 and 2010. At baseline assessment,
detailed information was gathered about health status including cognitive health,
physical condition, physical activity, and environmental exposures including diet and
lifestyle. Venesection was also performed. A subset of 100,000 participants wore an
activity monitor 24 hours-a-day for a week, and 20,000 provided repeated measures
of a number of variables. A series of online questionnaires has provided further
information on phenotypes and exposures such as diet, cognitive function and work
history. 100,000 participants are being scanned using MRI. The acquisition includes
brain, heart, abdomen, bones & carotid artery imaging. Blood and serum samples
have been analysed to provide rich biochemistry data. Genotyping has been

undertaken on all 500,000 participants.

Participants also agreed to have their health followed through their medical records
for cancer, death and general practice. Hospital Episodes Statistics and data from
repeat assessment is also available for 20,000 participants in the North West of
England. Details of the data available from UK Biobank can be found on the data
dictionary on the project website http://biobank.ndph.ox.ac.uk/showcase/. UK Biobank
had independent ethical approval from a number of bodies (UK Biobank, 2007). UK
Biobank granted approval for the analyses reported in this thesis
(UK Biobank Application 15175).

Of note, the UK Biobank sample is not representative of the general population. There
is evidence of ‘healthy volunteer’ selection bias. Sociodemographic information,
lifestyle and health-related characteristics are particularly divergent from the general

population (Fry et al., 2017).

4.2 Brain imaging
4.21 MRI data in ALSPAC

A number of studies have recalled sub-samples of ALSPAC offspring for further
assessments, some of which undertook brain imaging (Sharp et al., 2020). This thesis
uses data from two of these sub-studies, summarised in Table 4.1. The first explored
the effects of testosterone on brain structure (ALSPAC project ID B648) and the
second investigated psychotic experiences (ALSPAC project ID B709). Ethical
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approval for the neuroimaging sub-studies was given by the ALSPAC Ethics and Law
Committee and Local Research Ethics Committees (North Somerset and South Bristol
Research Ethics Committee: 08/H0106/96). Participants provided written informed

consent.

The ALSPAC Testosterone study recruited 513 male participants. The inclusion
criteria were the availability of multiple blood samples collected during puberty and
proximity to Cardiff, Wales, the scanning centre. Those participants who responded to
the invitation first were included. The ALSPAC psychotic experience study was based
on a subset of 4,323 ALSPAC participants who were assessed for psychotic-like
experiences using a semi-structured interview. Of these, 152 agreed to undergo

scanning.

The same acquisition protocol was used for both studies, further details of which are
given in each experimental chapter. Both scanned participants when they were
approximately 20 years old. The present study excluded participants if they did not
report white British and Irish descent or if they had asked to have their data removed
from ALSPAC.

Table 4.1 Sample demographics by neuroimaging sub-study
Testosterone Study Psychotic Experiences Study Core ALSPAC Sample

Sample size 513 252 14220

Selection criteria Healthy males (513, Subjects with PE (126, 50%), Pragnant women in

(N, %) 100%) healthy controls (126, 50%) Avon, due 1991/1992

No PE PE

Age: years Mean (SD) 19.62 (0.04) 201  (0.002) 20.05 (0.002)

Sex: N (%) Male 513 (100) 49 (38.89) 39 (30.95) 7356 (51.73)
Female 0 (0) 77 (61.11) 87 (69.05) 6864 (48.27)

Ethnicity: N (%) White 456 (96.41) 109 (95.61) 107  (97.27) 11186 (94.19)
Non-white 17 (3.59) 5 (4.39) 3 (2.73) 690 (5.81)

Handedness: N (%) Right 295 (63.17) 75 (68.18) 81 (71.68) 6507 (65.23)
Left 54 (11.56) 1 (10) 5 (4.42) 1102 (11.05)
Mixad 118 (25.27) 24 (21.82) 27 (23.89) 2367 (23.73)

1Q score Mean (SD) 98.8 (0.56) 9951 (1.1) 9512 (1.18) 94.36 (0.18)

Adapted from Sharp, Tamsin H et al. “Population neuroimaging: generation of a comprehensive data resource within
the ALSPAC pragnancy and birth cohort.” Wellcome open research vol. 5 203. 28 Aug. 2020,
doi:10.12688/welicomeopenres.16060.1.

Acronyms: PE = psychotic expenences; 1Q = Inteligence Quotient.
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4.2.2 MRI data in UK Biobank

UK Biobank is currently imaging 100,000 participants for brain imaging. Data from
those who have already been imaged is released in batches. The analyses presented
in this thesis include the first 20,000 datasets that were released. Structural T1/2
weighted images, diffusion MRI (dMRI) and functional MRI (fMRI) data were acquired.
As with ALSPAC, further details of the acquisition protocol and parameters are given
in the experimental chapters. UK Biobank undertook some pre-processing of the MRI
data, and has published Imaging Derived Phenotypes (IDPs) based on their analysis.
Further information about the pre-processing is included in the experimental chapters.

4.3 Genotyping

Participants from the ALSPAC study were genotyped with the lllumina HumanHap550
quad genome-wide single nucleotide polymorphism (SNP) genotyping platform
(lumina Inc., San Diego, California, USA) by 23andMe, subcontracting the Wellcome
Trust Sanger Institute (Cambridge, UK) and the Laboratory Corporation of America
(Burlington, North Carolina, USA).

In UK Biobank, genome wide genotype data is available for all 500,000
participants. UK Biobank sample processing is described in their documentation
(https://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_sample_workflow.pdf).  The
first 50,000 participants were genotyped using the Affymetrix UK BiLEVE Axiom array.
Subsequent participants were genotyped with the Affymetrix UK Biobank Axiom array,
which genotyped around 850,000 variants. The two arrays have over 95% of their
variants in common. A collaborative group, headed by the Wellcome Trust Centre for
Human Genetics, performed quality control and imputation to more than 90 million
SNPs, indels and large structural variants. Further details can be found on the UK
Biobank website (https://www.ukbiobank.ac.uk/scientists-3/genetic-data/).

In ALSPAC, Dr Katherine Tansey assisted with the quality control of the genotype
data. PLINK was used for quality control (Purcell et al., 2007). Exclusions were made
for the following in ALSPAC: i) ambiguous sex (phenotypic and genotypic sex
discrepancy); ii) cryptic relatedness (first, second or third-degree relatives, ascertained
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with identity-by-descent; iii) less than 97% genotyping completeness; and iv) non-
British or Irish ethnicity. Ethnicity admixture outliers were identified using an
EIGENSTRAT analysis of the dataset pruned for linkage disequilibrium (Price et al.,
2006). In UK Biobank, exclusions were made for i) less than 97% genotyping
completeness; and ii) non-British or Irish ethnicity. For both datasets, SNPs were
selected using the following criteria: i) imputed on the Haplotype Reference
Consortium (McCarthy et al., 2016); i) minor allele frequency (MAF) > 1%; ii) SNP call
rate > 98%; iii) INFO score >=0.4; iv) posterior probability >= 0.4; v) x? test for Hardy-
Weinberg equilibriump > 1 x 107 Imputation was performed using the
prephasing/imputation approach in IMPUTE2/SHAPEIT (Howie, Marchini and
Stephens, 2011; Delaneau, Marchini and Zagury, 2012) with 1000 Genomes
(December 2013, release 1000 Genomes haplotypes Phase | integrated variant set)
(1000 Genomes Project Consortium et al., 2015) as the reference dataset.

4.4 Metabolomics
4.4.1 Metabolomic data in ALSPAC

ALSPAC has measured a wide range of biochemical markers from the blood and urine
samples. ALSPAC developed a panel of biomarkers with a view to studying a wide
range of diseases, established disease risk factors for disease, diagnostic measures,
and biomarkers that characterise organ function such as renal profiles and liver
function tests. Data is available for mothers and offspring for blood lipids (triglycerides,
very Low Density Lipoprotein (vLDL), Low Density Lipoprotein (LDL), High Density
Lipoprotein (HDL)) and inflammatory markers (C-Reactive Protein (CRP) and
interleukin 6 (IL-6)).

4.5 Data analysis
4.5.1 Data cleaning and pre-processing in ALSPAC

Quality controlled genotype information and metabolomic data was supplied by Bristol
University ALSPAC Team. Structural MRI data were downloaded from CUBRIC
servers. Data were pre-processed using in-house MATLAB scripts (MATLAB and
Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts,
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United States; https://www.mathworks.com/products/matlab.html), and
ExploreDTI_4.8.3 (http://www.exploredti.com/generalinfo.htm) (Leemans et al., 2009).

Neuroimaging data were cleaned and pre-processed with assistance from Ms Sonya
Foley and Dr Xavier Caseras, who used the same data for a separate project (Foley
et al., 2018). A detailed description of ALSPAC MRI data pre-processing pipelines and
analysis is provided in Chapters 5 and 6.

4.5.2 Data cleaning and pre-processing in UK Biobank

The UK Biobank team provided access to all variables through a secure portal. Quality
controlled genotype data was supplied. For the imaging analysis, we received the raw
DICOM files and UK Biobank’s Imaging Derived Phenotypes (IDPs) for dMRI
measures. Dr Xavier Caseras wused Freesurfer v.5.3 (Fischl, 2012)
(https://surfer.nmr.mgh.harvard.edu) running in UNIX to process T1-weighted brain
images, as these data were being used for a separate analysis (Caseras et al., 2020).
Details of UK Biobank neuroimaging pre-processing pipelines and analysis is provided

in Chapters 5 and 6.

Data pertaining to all chapters were cleaned, scored and exported to R Studio (version
1.1383 for Mac, www.rstudio.com). Statistical analysis of genetic, metabolomic and

neuroimaging data was performed in R Studio.

4.5.3 Polygenic score calculation

PRS computation was performed according to the International Schizophrenia
Consortium procedure (Purcell et al., 2009). The discovery sample, used to select
SNPs relevant for polygenic analysis, was the summary statistics from the largest
Genome-wide Association Study (GWAS) of late onset AD to date (Kunkle et al.,
2019). This meta-analysis of previous case-control studies comprised 63,926
individuals. This data is publicly available at
https://www.niagads.org/datasets/ng00075. Although other recent AD GWAS exist

(Marioni et al., 2018; Jansen et al., 2019), Kunkle and colleagues used clinically
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diagnosed cases and controls, whereas the other GWAS used family history of AD as
a proxy. First, SNPs with a low minor allele frequency (< .01) were removed from the
analysis. Secondly, the data was pruned for linkage disequilibrium. This was done in
PLINK (Purcell et al., 2007) using the clumping function (--clump). Parameters were
set to remove SNPs within r> > 0.2 (--clump-r2) and 500 kilobase (--clump-kb) of a
SNP that was more significantly associated with AD. PRS were calculated using the -
-score command in PLINK (Purcell et al., 2007). A PT of 0.001 was used to select
relevant SNPs for the primary analysis, as an AD PRS using this threshold was found
to explain the most variance in neuroimaging phenotypes (Foley et al., 2016). For the
secondary analysis, we applied seven progressive thresholds (p= 0.5, 0.3, 0.1, 0.01,
0.0001, 0.00001, 0.000001). The lower PT conservatively selected only SNPs that
were more significantly associated with AD case status in the discovery dataset. In
contrast, the higher PT liberally selected SNPs, including those only nominally
associated with disease, thereby including a greater amount of genetic information. In
AD, a liberal PT of 0.5 has been shown to be the best predictor of case-control status

(Escott-Price, Sims, Bannister, et al., 2015).

In order to calculate pathway-specific PRS, relevant disease pathways were taken
from the paper by Kunkle and colleagues (Kunkle et al., 2019). They conducted a
pathways analysis of AD GWAS data using MAGMA (Multi-marker Analysis of
GenoMic Annotation) (de Leeuw et al., 2015). MAGMA uses a multiple regression
model, to perform gene analysis and gene-set analysis. They detected a number of
functional clusters that were significantly enriched for common variants. These are
summarised in Table 4.2. Each PRS was computed including and excluding SNPs in
the APOE region (chromosome 19 between 44.4Mb and 46.5Mb). Non-coding variants
within the APOE locus have been shown to contribute to AD risk (Zhou et al., 2019),
therefore this process was followed even for those pathways which did not include the
APOE gene.

Polygenic score calculation was completed using the HAWK Linux supercomputer
(https://portal.supercomputing.wales/index.php/about-hawk/) and PLINK version 1.07
(https://www.cog-genomics.org/plink) (Purcell et al, 2007). Pathway specific
polygenic scores were calculated using a list of SNPs based on the pathway analysis
included in Kunkle et al (Kunkle et al., 2019).
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In UK Biobank, the quality control of genetic data and computation of polygenic scores
was performed by Dr Emily Baker using the Raven Linux supercomputer and PLINK
version 1.07 (https://www.cog-genomics.org/plink) (Purcell et al., 2007).
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4.5.4 Statistical analyses

The data distributions for each variable were checked for normality using Shapiro-Wilk
normality test in R Studio. Differences for normally-distributed continuous data were
analysed using parametric statistical tests e.g. Pearson correlation (r). Non-normally-
distributed data were analysed using non-parametric statistical tests e.g. Spearman

correlation (p).

Linear regression was used to explore the relationships between PRS, brain imaging
measures and metabolomic measures and to investigate the effects of covariates. The
regression models included brain imaging and metabolomic variables as dependent
variables while PRS were included in the models as independent variables. The PRS
were normalised before inclusion in the regression models. For the primary analysis,
a p value threshold of 0.001 was used to select SNPs for the PRS. A further seven p
value thresholds were also included in a secondary analysis to assess the effect of
more or less conservative scores. The variables that were included as covariates were
age, gender and ancestry principal components, and imaging variables where
appropriate. Results which were significant after correction were re-analysed using
polygenic risk scores which excluded APOE SNPs, thereby assessing whether APOE
explained the signal. Further analysis of SNPs in the APOE region was performed to

compare how much of the variance was explained by APOE compared to the PRS.

Correction for multiple comparisons of phenotype and PRS using the False Discovery
Rate (FDR) in the R statistical computing package (R Development Core Team 3.0.1.,
2013). This was applied for 21 scores (nine pathway polygenic scores and the
genome-wide polygenic score including the APOE region, nine pathway polygenic
scores excluding the APOE region and the genome-wide score excluding the APOE
region plus the APOE region SNPs score) and for the number of phenotypes tested in
each analysis.
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CHAPTER 5: ALZHEIMER’S POLYGENIC RISK SCORES & GREY MATTER
VOLUMES

The chapter includes some material that was previously published as an abstract
Harrison J, Caseras X, Foley S, Baker E, Williams J, Linden D, Holmans P, Escott-
Price V, Jones D. Pathway-specific polygenic scores for Alzheimer’s disease are
associated with multi-modal structural brain imaging markers in young adults.
Proceedings of the 28th ISMRM Annual Scientific Meeting & Exhibition, 2020 August.

Dr Xavier Caseras, Ms Sonya Foley and Dr Matthew Bracher-Smith assisted with the
initial curation of imaging data, pre-processing and quality control, as this data was
also used for other projects. Dr Emily Baker provided the lists of SNPs in the Kunkle
et al 2019 disease pathways and calculated the polygenic scores in the UK Biobank
data, as they were used for separate analyses. Dr Katherine Tansey assisted with
genotyping quality control in ALSPAC.

Some information from Chapters 1, 2 and 3 is repeated here for convenience.

5.1 Summary

Grey matter atrophy, particularly in medical temporal areas, is an established
diagnostic marker of AD pathology. It is evident in pre-symptomatic carriers of
autosomal dominant AD genes and has also been associated with the AD risk gene
APOE Epsilon 4 (APOE4).

Genome-wide association studies (GWAS) have identified multiple AD risk loci of
small effect. As discussed in Chapter 2, these variants can be combined in polygenic
risk scores (PRS) to quantify polygenic burden for AD. PRS have also been associated
with changes in grey matter measurements. Previous studies have found significant
negative correlations between PRS, hippocampal volume and cortical thickness in
healthy participants. A few previous studies have used gene sets based on disease
pathways to inform the PRS, however these have only used Bonferroni-significant loci,

thereby excluding many variants likely to be involved in the disease.
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The chapter explored associations between disease pathway specific PRS and grey
matter volumes in areas preferentially affected by AD pathology in young and mature
adults.

Data from two population cohorts were used, the Avon Longitudinal Study of Parents
and Children (ALSPAC) and UK Biobank, with a combined n of over 18,000. PRS were
computed in PLINK using the largest genome-wide association study (GWAS) of
clinically assessed AD to date, published by Kunkle and colleagues. Pathway-specific
polygenic scores were generated using lists of SNPs from a recent pathway analysis.
T1-weighted MRI data were processed using the surface-based method Freesurfer to
calculate subcortical volumes, cortical thickness and cortical surface area.
Relationships between imaging phenotypes, genome-wide and pathway specific PRS

were assessed with linear regression.

Increased PRS across pathway groups were associated with increased subcortical
volume in the younger group, and decreased subcortical volumes in the older cohort,
particularly in the left hemisphere. Increased pathway specific PRS were also
associated with cortical thinning in younger and older cohorts. There was little
evidence of association between cortical surface area and any PRS. The disease
pathway PRS had broadly similar patterns of association but showed greater evidence
of association with grey matter phenotypes than the genome-wide score, suggesting
that this may be a helpful way to reduce noise inherent within polygenic scores.

5.2 Introduction

Morphometric MRI is a safe, non-invasive and reliable method used in the diagnosis
of AD and monitoring disease progression (McKhann et al., 1984; Frisoni et al., 2010).
AD pathology is evident decades before symptoms are detectable (Jack et al., 2013).
Morphometric changes in the medial temporal lobe are widely reported in early AD
(Busatto, Diniz and Zanetti, 2008). Atrophy in this region, particularly in the
hippocampus, can predict progression from MCI, considered an AD prodrome, to
dementia (Korf et al., 2004; Jack et al., 2005). Medial temporal atrophy is also
associated with a number of pre-clinical risk groups (Mak et al., 2017). However, grey
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matter atrophy is also reported in other regions in early AD, particularly the cortex and
subcortical volumes such as the amygdala (Busatto, Diniz and Zanetti, 2008).

The relationship of AD genetic risk to grey matter structure has been widely studied.
Pre-symptomatic carriers of autosomal dominant AD genes have associated changes
in brain structure. As discussed in previous chapters, autosomal-dominant AD is
caused by mutations either in the amyloid precursor protein gene (APP), or in
presenilin 1 and 2 (PS1 and PS2) that are involved in cleaving amyloid 8 and APP
(Tanzi, 2012). Cognitively normal PS1 carriers have been found to have reduced
cortical thickness (Reiman et al., 2012; Quiroz et al., 2013). Pre-symptomatic carriers
also have hippocampal atrophy (Bateman et al., 2012; Fleisher et al., 2015). However,
not all studies report significant findings (Mak et al., 2017). One study only reported
trends toward decreased volumes in regions such as the thalamus in those closer to
the expected age of disease onset (Cash et al., 2013). The discordance in findings
may be partly explained by small sample sizes, reflecting the rarity of the autosomal
dominant genes. Another study reported an increase in grey matter in the cortex and
subcortical regions in children carrying autosomal dominant mutations (Fortea et al.,
2010; Quiroz et al., 2015). These changes may result from gene effects on grey matter
development. For example, in animal models it has been demonstrated that PS7 is

involved in neural and vascular development (Saura et al., 2004; Xia et al., 2015).

The most significant common genetic risk for AD, Apolipoprotein Epsilon 4 (APOE4),
has been reported to be associated with decreased grey matter volume in a number
of regions in pre-symptomatic individuals (Mak et al., 2017). Several studies found
generalised volume loss and reduced cortical thickness in APOEA4 carriers in later life
(Lemaitre et al., 2005; Hashimoto et al., 2009; Crivello et al., 2010; Fan et al., 2010)
even among younger samples (Wishart et al., 2006; Burggren et al., 2008). In
particular, studies report volume loss in the entorhinal cortex and medial temporal lobe
in APOE4 carriers compared to non-carriers (Wishart et al., 2006; Burggren et al.,
2008; Fan et al., 2010). Longitudinal studies have shown accelerated cortical thinning

with age among APOE carriers (Espeseth et al., 2008).

The literature on heterozygous APOE4 carriers is more discrepant. A number of

studies have found changes in subcortical and cortical volumes in homozygous but
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not heterozygous carriers (Lemaitre et al., 2005; Chen et al., 2007; Dufouil et al.,
2007). Some of this disagreement could be explained by lack of statistical power when
participants are divided into sub-groups. However some studies that combined
homozygous and heterozygous carriers also reported no significant differences
(Cherbuin et al., 2008). Studies of infant APOE4 carriers have reported intriguing
results. One study of babies (n = 162) found carriers had reduced grey matter volume
in the precuneus, posterior and middle cingulate, lateral temporal, and medial
occipitotemporal areas. However, it also reported carriers also had significantly
greater frontal grey matter volumes (Dean et al., 2014). A further study of neonates (n
= 272) reported reduced cortical grey matter volumes in the temporal region of APOE4

carriers (Knickmeyer et al., 2014).

A variable poly-T length polymorphism in the translocase of the outer mitochondrial
membrane (TOMM40) gene affects AD age of onset. Short poly-T length is associated
with later onset and very long poly-T length with earlier onset (Roses et al., 2010). A
few studies have examined the effect of poly-T length in TOMM40 on brain volumes
in healthy individuals. Johnson et al found that very long poly-T TOMM40
polymorphism carriers have lower grey matter volume in the medial ventral precuneus
and ventral posterior cingulate, regions affected early in AD (Johnson et al., 2011).
Burggren et al also reported an association between very long poly-T and cortical
thinning in healthy older people (Burggren et al., 2011). However, Ferencz at al
reported no association between TOMM40 polymorphisms and hippocampal volume
(Ferencz et al., 2013).

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is widely distributed
throughout the central nervous system. Itis involved in synaptic plasticity and neuronal
survival (Diniz and Teixeira, 2011), The BDNF variant produces an amino acid
substitution (valine to methionine, Val66Met) that affects BDNF intracellular packaging
and activity-dependent secretion (Chen et al., 2004). This is associated with changes
in human memory function (Egan et al., 2003) and hippocampal morphology (Bueller
et al., 2006). It is implicated in the pathogenesis of a number of neurodegenerative
diseases (Zuccato and Cattaneo, 2009). In a longitudinal study, Met-BDNF carriers
showed increased rate of atrophy in the bilateral posterior cingulate cortex and
cingulate gyrus compared to homozygotes for Val-BDNF allele (Hashimoto et al.,
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2009). Knickmeyer explored the effect of BDNF variants on brain structure in
neonates. They found lower volume in the right occipital and temporal cortex among
Met carriers, but also noted reduced volume in Val/Val homozygotes (Knickmeyer et
al., 2014). The inconsistency may result from differences in the effect of BDNF

genotype at different ages.

As described in Chapter 2, genome-wide association studies (GWAS) have
highlighted multiple AD risk loci of small effect in addition to APOE (Marioni et al.,
2018; Jansen et al., 2019; Kunkle et al., 2019) which can be combined in polygenic
risk scores (PRS) (Wray et al., 2014). PRS have been shown to be associated with
changes in grey matter measurements. In particular, studies have reported significant
negative correlations between PRS and hippocampal volume in healthy participants
(Foley et al., 2016; Harrison and Bookheimer, 2016; Mormino et al., 2016; Axelrud et
al., 2018; Walhovd et al., 2020), even in children (Walhovd et al., 2020). Lupton et al
reported significant negative association with hippocampal volume (Lupton et al.,
2016) but only when participants with MCI or AD were included. Xiao et al did not find
any significant associations between PRS and subcortical volumes (Xiao et al., 2017).

The effect of AD polygenic risk on cortical thickness has also been examined
(Sabuncu et al., 2012; Harrison and Bookheimer, 2016; Hayes et al., 2017; Corlier et
al., 2018; Li et al., 2018). All but two studies (Harrison and Bookheimer, 2016; Xiao et
al.,, 2017) reported significant associations between increased PRS and cortical
thinning. Studies either reported associations with cortical thinning across multiple
regions that are susceptible to AD pathology (Sabuncu et al., 2012; Hayes et al., 2017,
Corlier et al., 2018), or with cortical thinning in specific regions such as the precuneus
(Li et al., 2018).

Three studies used a gene set based on disease pathways to inform the PRS.
However, their PRS comprised only Bonferroni significant SNPs identified in earlier
GWAS (Lambert et al., 2013), therefore relevant genetic information that was below
the stringent threshold for genome-wide significance was excluded. Corlier et al found
that the immune response PRS (n SNPs = 11) was significantly associated with an
overall measure of cortical thinning (Corlier et al., 2018). Ahmad and colleagues found
no significant associations between seven different pathway polygenic scores (n SNPs
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= 20), hippocampal volume and whole brain volume (Ahmad et al., 2018). The most
recent study reported distinct patterns of cortical thinning associated with different
pathway specific polygenic scores (n SNPs = 20) (Caspers et al., 2020).

There are a number of methods to assess grey matter volume using MRI. The most
frequently used techniques, beyond visual rating of regional atrophy, are voxel-based
morphometry (VBM) (Ashburner and Friston, 2000) and surface-based analysis (SBA)
(Greve, 2011; Fischl, 2012). For both methods, input is a high-resolution T1-weighted
image, pre-processed to segment brain from non-brain tissue. Briefly, standard VBM
analysis involves: 1) spatial normalisation of an individual’s T1-weighted image to a
group template, e.g. the Montreal Neurological Institute (MCI) International
Consortium of Brain Mapping (ICBM) 152 template; 2) segmenting into grey matter,
white matter, and cerebrospinal fluid (CSF)); next, the normalized data are smoothed
using an 8-mm full-width at half-maximum (FWHM) isotropic Gaussian kernel to create
a mean image (Good et al., 2001; Greve, 2011). Spatial normalisation can cause some
brain regions to expand, and others to become smaller. A modulation step has been
added to maintain the volume of a particular region which involves multiplying the
values of voxel in segmented images by the Jacobian determinants produced by the
spatial normalization step (Good et al., 2001).

SBA derives values from geometric models. SBA methods can be summarised as
follows: 1) extraction of the grey matter surface, such as the cortex. The surface
boundaries between white matter and grey matter, and between grey matter and CSF
are delineated; 2) the grey matter is modelled using a mesh of triangles and the
corners of the triangles, known as vertices, are assigned coordinates; 3) morphometric
measures are computed based on the coordinates. In addition, the image can be
manipulated to inflate the surface of the cortex to display grey matter normally hidden
within sulci and 4) surface-based spatial normalization, by aligning the sulci and gyri
between subjects using a non-linear registration. The results for each individual can
be tabulated and compared, or volumetric data can be mapped to a common space,
allowing volumes to be compared in homologous places between subjects (Greve,
2011). FreeSurfer, a free to use platform (surfer.nmr.mgh.harvard.edu), is an example
of SBA implementation (Fischl, 2012).
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5.2.1 Rationale and Aims

Evidence from histological and MRI studies in humans demonstrates that grey matter
atrophy is a core feature of AD neurodegeneration and a marker of progression
(Busatto, Diniz and Zanetti, 2008; Harrison and Owen, 2016). The literature
summarised above provides evidence of the effect of AD risk genes on grey matter
volumes in healthy, pre-clinical individuals. Chapter 3 systematically reviewed and
summarised literature that demonstrated significant associations between AD genetic
risk and diffusivity in white matter tracts.

Chapter 2 comprises a systematic review that found evidence that AD PRS could
predict AD case/control status and were associated with phenotypes relevant to
neurodegeneration. As discussed in Chapter 2, GWAS have resulted in the
identification of novel genetic risk loci in addition to APOE €4 (APOE4) (Lambert et al.,
2013; Kunkle et al., 2019) which have been associated with a range of biological
pathways including lipid metabolism, immune response, and synaptic processes
(Jones et al., 2010; Holmans and Jones, 2012). Few studies have used AD pathway
polygenic scores to assess brain structure. Those studies that did attempt it used only
Bonferroni significant SNPs (Ahmad et al., 2018; Corlier et al., 2018), omitting
potentially relevant SNPs that fell below the stringent threshold. The variance that
each of these pathways explains is small (Darst et al., 2017), therefore large discovery
and target sample sizes are required (Dudbridge, 2013).

The primary aim of this chapter is to explore associations between disease pathway
specific PRS and grey matter volumes in areas preferentially affected by AD pathology
in healthy adults, both young and in mid-later life. This will be achieved using large
population cohorts and the SBA method Freesurfer. The secondary aim is to compare
the associations between phenotypes and PRS using more and less conservative
thresholds to assess which p value cut off achieves the best correlation with the
phenotype.
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5.2.2 Hypothesis

It is hypothesised that increasing genetic burden for AD, measured in increasing PRS,
will be associated with i) decreasing volume in subcortical regions, particularly the
hippocampus, ii) decreased cortical thickness in temporal and parietal regions of
cortex. It is further hypothesised that different disease pathways will show different
patterns of brain structure changes.

5.3 Methods
5.3.1 Participants

Participants were recruited by the Avon Longitudinal Study of Parents and Children
(ALSPAC) and UK Biobank. Please see Chapter 4 for a detailed description of

recruitment methods and sample characteristics.

To summarise, the ALSPAC data were gathered for two population neuroimaging
studies (Sharp et al., 2020). As described, the first explored the effects of testosterone
on brain structure (ALSPAC project ID B648; n = 513) and the second investigated
psychotic experiences (ALSPAC project ID B709, n = 152). Ethical approval for the
neuroimaging sub-studies was given by the ALSPAC Ethics and Law Committee and
Local Research Ethics Committees (North Somerset and South Bristol Research
Ethics Committee: 08/H0106/96). Participants provided written informed consent.
Please see Chapter 4 for a description of the inclusion criteria for these sub-studies.

A subset of 100,000 UK Biobank participants are being recalled for multimodal imaging
(Sudlow et al., 2015). As detailed in Chapter 4, the first 20,000 datasets released by
UK Biobank are analysed here. UK Biobank granted approval for the analyses
reported in this thesis (UK Biobank Application 15175). UK Biobank obtained approval
from a number of external bodies (UK Biobank, 2007). All participants gave informed

consent.

The present study excluded UK Biobank participants if they self-reported a history of
neurological or major psychiatric disorders, such as dementia, cerebrovascular

disease, intellectual disability, at an assessment visit or during online follow-up, or had
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a hospital admission ICD-10 code for a relevant disorder. Participants were excluded
from ALSPAC and UK Biobank if they did not report white British and Irish descent or
if they had asked to have their data removed. Data was retained if it successfully
reconstructed and passed quality control.

After genotyping and imaging data quality control procedures, 517 individuals with
structural T1 data remained (19.3% female, 80.7% male) in ALSPAC and 18172 in UK
Biobank (52.7% female, 47.3% male). At the time of inclusion, the average ages of
ALSPAC and UK Biobank participants were 19.81 years (SD 0.02) and 64.2 (SD 7.75)
respectively.

5.3.2 MRI Acquisition

For ALSPAC, data were acquired on a 3 Tesla General Electric HDx (GE Medical
Systems) at Cardiff University Brain Research Imaging Centre (CUBRIC) with an 8
channel head coil. As far as possible, acquisition parameters were harmonised
between ALSPAC sub-studies. Coronal T1-weighted structural images were acquired
using the following parameters: 3D fast spoiled gradient echo (FSPGR) using 168—
182 oblique-axial anterior commissure-posterior commissure (AC-PC) slices; 1mm
isotropic resolution; flip angle = 20°; repetition time (TR) = 7.9ms and 7.8ms in the
Testosterone and psychotic experiences studies respectively; echo time (TE) = 3.0ms;
inverse time (TI) = 450ms; voxel size = 1mm x 1Tmm x 1mm); slice thickness 1mm; field
of view (FOV) 256mm x 192mm matrix; acquisition time approximately 6-10 minutes
(Sharp et al., 2020).

For UK Biobank, data was acquired using three identical Siemens Skyra 3T scanners
at the UK Biobank recruitment centres in Stockport, Newcastle and Reading, UK, with
a standard Siemens 32 channel head coil. Sagittal T1-weighted structural images
were acquired using the following parameters: 3D Magnetization Prepared - RApid
Gradient Echo (MPRAGE); R = 2, Tl = 880ms; TR = 2000ms; voxel size 1 x 1 x 1Tmm,;
FOV 208 mm x 256mm x 256mm matrix; acquisition time approximately 5 minutes
(Alfaro-Almagro et al., 2018).
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5.3.3 Analysis Pipeline

Subcortical volumes, cortical thickness in temporal and parietal regions, and
intracranial volume (ICV) were assessed using the SBA tool FreeSurfer version 5.3

(surfer.nmr.mgh.harvard.edu) (Fischl, 2012). Freesurfer has been validated as an
appropriate method to segment grey matter volumes in large samples (Cherbuin et
al., 2009). The output was quality controlled using a freely available protocol devised
by ENIGMA (http://enigma.ini.usc.edu/). Briefly, this comprised: 1) Outlier detection,

using an R statistical computing script (R Development Core Team 3.0.1., 2013) to
identify participants with divergent values; 2) The internal surface method; and 3) The
external surface method, which used a function in Matlab to generate a webpage
showing *.png external views of segmentation from different angles. When a region-
of-interest was determined to be inadequately segmented, its value was designated

as missing, excluding it from analysis.

For each subcortical ROI, the final numbers included in the ALSPAC analysis were:
left and right thalamus, left and right caudate, left accumbens, left and right putamen,
right pallidum: n = 516; left pallidum and right accumbens: n = 515; right amygdala: n
= 509; right hippocampus: n = 504, left amygdala: n = 502; left hippocampus: n = 497.
For the cortical ROI, final numbers in the ALSPAC analysis ranged from: the entorhinal
cortex, n = 486, to the right superior parietal and right supramarginal, n = 517.

For subcortical ROls in UK Biobank, the final number was n = 18172. For cortical ROI,
final numbers in the ALSPAC analysis ranged from the left parahippocampal region,
n = 18165, to the left superior parietal and other regions, n = 18171. Metrics were
curated and stored in files compatible with R.

5.3.4 Genotyping

As described in Chapter 4, ALSPAC participants were genotyped with the Illlumina
HumanHap550 quad genome-wide SNP genotyping platform (lllumina Inc., San
Diego, California, USA). In UK Biobank, the first 500 participants were genotyped
using the Affymetrix UK BILEVE Axiom array and the remainder on the Affymetrix UK
Biobank Axiom array. Quality control was completed in PLINK (Purcell et al., 2007).
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As detailed, exclusions were made for: i) ambiguous sex; ii) cryptic relatedness; iii) <
97% genotyping completeness; and iv) non-British or Irish ancestry in ALSPAC and i)
< 97% genotyping completeness and ii) non-British or Irish ancestry in UK Biobank.
For both datasets, SNPs were further filtered by: i) minor allele frequency (MAF) < 1%;
ii) SNP call rate < 98%; iii) x? test for Hardy-Weinberg equilibrium p < 1 x 107™. Please
see Chapter 4 for further details of genotyping procedures.

5.3.5 Polygenic Risk Score Calculations

PRS computation was performed according to the International Schizophrenia
Consortium procedure, described in Chapter 4 (Purcell et al., 2009). Briefly, the
discovery sample, used to select relevant SNPs, was the Genome-wide Association
Study (GWAS) conducted by Kunkle et al (Kunkle et al., 2019). Although other recent
AD GWAS exist (Marioni et al., 2018; Jansen et al., 2019), Kunkle and colleagues
used clinically diagnosed cases and controls, whereas the other GWAS used family
history of AD as a proxy. SNPs with a low minor allele frequency (< .01) were excluded.
The data was pruned for linkage disequilibrium using the clumping function (--clump)
in PLINK (Purcell et al., 2007) (parameters were r?> > 0.2 (--clump-r2) and 500 kilobase
(--clump-kb)). PRS were calculated using the PLINK --score command (Purcell et al.,
2007). A previous study (Foley et al., 2016) found that a PRS computed with p-value
threshold (P") of 0.001 explained the most variance in structural neuroimaging
phenotypes. Therefore, the primary analysis used P" 0.001 to select relevant SNPs
from the discovery sample. Seven progressive thresholds were applied for the
secondary analysis (p= 0.5, 0.3, 0.1, 0.01, 0.0001, 0.00001, 0.000001).

Disease pathways implicated by Kunkle and colleagues were used to compute
pathway specific PRS (Kunkle et al., 2019). Pathway gene sets were used to create
lists of SNPs that were matched to the discovery sample. Polygenic scores were then
calculated using the method described above. Please see Chapter 4 for a more
detailed description of the polygenic score calculations and disease pathways.
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5.3.6 Statistical Analysis

Statistical analyses were conducted using R Studio version 1.1.383 for Mac,
www.rstudio.com (R Development Core Team 3.0.1., 2013). The relationships
between T1-weighted phenotypes and PRS were tested using hierarchical linear
multiple regression, co-varying for age, gender, intracranial volume, and for UK
Biobank scanning site and genotyping array. Initially, analyses were performed on the
overall genome-wide AD PRS and the pathway-specific PRS separately. As described
in Chapter 4, the resulting p-values were corrected for multiple comparisons of
phenotype and PRS using the False Discovery Rate (FDR) in the R statistical
computing package (R Development Core Team 3.0.1., 2013). Results were re-
analysed using a polygenic risk score which excluded APOE SNPs (chromosome 19
between 44.4Mb and 46.5Mb), thereby assessing whether APOE explained the signal.
Further analysis of SNPs in the APOE region was performed to compare how much
of the variance was explained by APOE compared to the PRS. Regression analyses
adjusted for population structure using 10 principal components for ALSPAC and 15
for UK Biobank as covariates. Additional covariates were gender and intracranial
volume in ALSPAC and gender, intracranial volume, age, scanning site and
genotyping array in UK Biobank.

5.4 Results

P values reported correspond only to the PRS variable in the regression model. The
primary analysis, reported below, used a P of 0.001.

5.4.1 Subcortical Volumes in ALSPAC

In the ALSPAC cohort, there were no significant associations between the genome
wide PRS and any subcortical volumes (p >0.05). The direction of the effect suggested
a trend towards a positive association between increased genome wide PRS and

volume in subcortical regions.

There were significant positive associations between the protein-lipid complex subunit
organisation PRS, the left amygdala (p = 0.007, R?= 1.06 x 102) and the left caudate
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(p =0.007, R?=9.11 x 10-3). There was also a significant positive association between
the left caudate, the protein lipid complex PRS (p = 0.002, R>=1.19 x 10-?) and reverse
cholesterol transport PRS (p = 0.003, R? = 1.09 x 107?). Similar trends toward
association with the left amygdala and left caudate were observed in the PRS for
protein—lipid complex assembly, regulation of AR formation, regulation of amyloid
precursor protein catabolic process, tau protein binding, and plasma lipoprotein
particle assembly pathways. However, none of these associations withstood
correction for multiple comparisons. There was also some evidence of association
between some pathway PRS and increased left hippocampal volume, but again this
was no longer significant when corrected for multiple testing using FDR. There were
no significant association between the immune response pathway PRS and
subcortical volume in any region. None of the PRS showed statistically significant
associations with the APOE region excluded. SNPs in the APOE region alone were
positively associated with volume in the left caudate (p = 0.002, R? = 1.18 x 102) and
there was trend toward association with the right caudate, although not with FDR

correction applied. See Tables 5.1-5.4 for a summary of results for each PRS.

Secondary analysis of ALSPAC subcortical volumes and PRS across a range of PT
showed that the association between AD PRS and increased grey matter volumes
persisted, particularly with more inclusive PT. Associations between subcortical grey

matter and PRS at all thresholds is shown in Figure 5.1 and Figure 5.2.
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Figure 5.1 Associations between genome-wide PRS and subcortical volumes in

ALSPAC. Imaging phenotypes are shown on the X axis, the beta coefficients (positive
and negative) are shown on the Y axis. The heights of the bars indicate the amount of

variance explained (R?), and any nominally significant results are labelled with their p
value. Each bar represents a version of the polygenic risk score. The bars are colour

coded by the p value threshold used in the training data, shown on the legend.
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Figure 5.2 Associations between protein-lipid complex PRS and subcortical volumes
in ALSPAC. Imaging phenotypes are shown on the X axis, the beta coefficients
(positive and negative) are shown on the Y axis. The heights of the bars indicate the

amount of variance explained (R?), and any nominally significant results are labelled
with their p value. Each bar represents a version of the PRS. The bars are colour

coded by the p value threshold used in the training data, shown on the legend.
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Figure 5.3 Scatterplot showing normalised genome wide PRS and normalised left
caudate volume in ALSPAC. White circles indicate individual data points. Density

represents the number of data points in each area.
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5.4.2 Subcortical Volumes in UK Biobank

In UK Biobank, there were negative associations between genome-wide PRS and
volume in the left and right nucleus accumbens (p = 4.31 x 104, R?=5.79 x 10 and
p =0.001, R?=5.26 x 10 respectively), and the left hippocampus (p = 3.57 x 104, R?
= 9.49 x 10°) which withstood FDR correction for multiple comparisons (see Tables
5.5 to 5.8). There was also a nominally significant association with the left and right
thalamus (p = 0.021, R2= 1.74 x 10 and p = 0.046, R?= 1.8 x 10" respectively).
There were no significant positive associations. However, all of these associations
attenuated when the APOE region was removed from the PRS (p > 0.05).

The protein-lipid complex assembly PRS had a similar pattern of association as the
genome-wide PRS, with negative associations between pathway PRS and volume in
the left and right accumbens (p = 6.64 x 10%, R2=9.49 x 10 and p = 0.01, R?=2.97
x 10 respectively), the left and right hippocampus (p = 8.57 x 10-°, R?=5.93 x 10*
and p = 0.01, R?=2.44 x 10 respectively) which remained after correction for multiple
testing. Without the APOE region, the results remained significant in those regions
with comparable p values (see Tables 5.6 and 5.8). Similar results were observed in
the regulation of AR formation, protein—-lipid complex, regulation of amyloid precursor
protein catabolic process, tau protein binding, protein—lipid complex subunit
organization and plasma lipoprotein particle assembly pathways. There were
significant negative associations in the left and right accumbens and left and right
hippocampus (p range 6.69 x 10 to 0.001), even when the APOE region was
removed. Slightly different results were observed for the immune response PRS,
which was negatively associated with volume in the left hippocampus (p = 0.003, R?=
3.32 x 10*) and right accumbens (p = 0.005, R? = 3.64 x 10*). However, when the
APOE region was excluded from the score, these results did not withstand correction

for multiple testing.

SNPs in the APOE region were significantly negatively associated with the volume of
the left and right accumbens (p =4.91 x 10 R2=9.76 x 10* and p =4.6 x 10*%, R?=
5.53 x 10 respectively), left and right hippocampus (p = 4.78 x 104, R2=4.78 x 10*
and p = 0.011, R? = 2.41 x 10* respectively), left and right thalamus (p = 0.021, R?=
1.73 x 10* and p = 0.006, R? = 1.73 x 10 respectively) and right caudate (p = 0.012,
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R? = 2.43 x 10#). There was also a trend towards a negative association in the left
caudate although this did not survive correction for multiple testing. The results are
summarised in Tables 5.5 to 5.8, and those surviving FDR correction for multiple
comparisons of PRS and phenotype are indicated. Secondary analysis of subcortical
volumes and PRS across a range of PT, with and without the APOE region, showed
that the association between AD PRS and decreased grey matter volumes persisted,
particularly with more inclusive PT. Associations between subcortical grey matter and

genome wide PRS at all thresholds is shown in Figure 5.1.
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Figure 5.4 Associations between genome-wide PRS and subcortical volumes in UK

Biobank. Imaging phenotypes are shown on the X axis, the beta co-efficients (positive

and negative) are shown on the Y axis. The height of the bars indicate the amount of

variance explained (R?), and any nominally significant results are labelled with their p
value. Each bar represents a version of the polygenic risk score. The bars are colour

coded by the p value threshold used in the training data, shown on the legend.
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Figure 5.5 Associations between protein-lipid complex assembly PRS and subcortical
volumes in UK Biobank. Imaging phenotypes are shown on the X axis, the beta
coefficients (positive and negative) are shown on the Y axis. The heights of the bars

indicate the amount of variance explained (R?), and any nominally significant results
are labelled with their p value. Each bar represents a version of the PRS. The bars

are colour coded by the p value threshold used in the training data, shown on the

legend.
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Figure 5.6 Scatterplot showing normalised genome-wide PRS and normalised left

accumbens volume. White circles indicate individual data points. Density represents

the number of data points in each area.
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5.4.3 Cortical Thickness in ALSPAC

In ALSPAC, the genome wide PRS showed evidence of association with reduced
cortical thickness in the following regions: left inferior parietal (p = 0.008, R? = 1.36 x
102), left superior parietal (p = 0.005, R? = 1.55 x 10?), left supramarginal (p = 0.022,
R? = 1.02 x 10?), left inferior temporal (p = 0.026, R? = 9.64 x 10-3), right precuneus (p
=0.001, R? =2.02 x 102), and right superior parietal (p = 0.024, R? =9.90 x 10-3). Only
the association with the right precuneus remained significant when corrected for
multiple comparisons and there were no significant associations when the APOE
region was excluded from the PRS.

The pathway specific PRS were associated with reduced cortical thickness in similar
regions. For example, the reverse cholesterol transport pathway PRS was negatively
associated with cortical thickness in the following areas: left inferior parietal (p = 0.007,
R? = 1.43 x 107?), left precuneus (p = 0.022, R? = 1.01 x 10-?), left superior parietal (p
= 1.83 x 104, R? = 2.69 x 10?), left supramarginal (p = 0.022, R? = 1.01 x 10?), left
inferior temporal (p = 0.007, R? = 1.43 x 10?), left middle temporal (p = 0.034, R? =
8.65 x 10?), right inferior parietal (p = 0.008, R? = 1.39 x 10-?), right precuneus (p =
0.001, R?2 = 2.30 x 10?) and right superior parietal (p = 0.003, R? = 1.68 x 10-?). The
majority of these associations withstood correction for multiple testing. However, many
attenuated when the APOE region was removed from the score. The immune
response pathway PRS was associated with reduced cortical thickness in the right
posterior cingulate only (p = 0.034, R? = 8.73 x 10-%) but this did not persist either with

FDR correction or with the APOE region removed.

SNPs in the APOE region were associated with cortical thinning in the left inferior
parietal (p = 0.018, R>=1.08 x 10?), left precuneus (p = 0.012, R2=1.21 x 107?), left
superior parietal (p = 0.001, R?= 2.0 x 102), left supramarginal (p = 0.009, R>=1.34
x 102), left inferior temporal (p = 0.001, R2 = 2.22 x 10?), left middle temporal (p =
0.004, R? = 1.62 x 10?), right inferior parietal (p = 0.013, R? = 1.22 x 107?), right
precuneus (p = 2.78 x 104, R?= 2.55 x 10?), right superior parietal (p = 0.003, R?=
1.68 x 102). Only the left inferior parietal association was no longer significant after
FDR correction. The regions showing nominally significant associations with PRS,
including and excluding the APOE region, are shown in Figures 5.7 and 5.8. The
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results are summarised in Tables 5.9 to 5.16, and those surviving FDR correction for
multiple comparisons of PRS and phenotype are indicated.
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Figure 5.7. Associations between PRS (PT = 0.001) and thickness in cortical
and temporal regions of cortex in ALSPAC, p <0.05

Protein-Lipid Complex Regulation of AB Formation
Assembly PRS PRS Protein-Lipid Complex PRS

Regulation of AB Precursor Reverse Cholesterol
Protein Catabolism PRS Tau Protein Binding PRS Transport PRS

Protein-Lipid Complex Plasma Lipoprotein Particle Activation of the Immune
Subunit Organization PRS Assembly PRS Response PRS

APOE SNPs PRS

5E-2
L
Images created using Connectome Workbench (Marcus et al., 2011),

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant

negative correlations shown in blue. There were no positive correlations.
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Figure 5.8. Associations between PRS (PT = 0.001) excluding APOE and
thickness in cortical and temporal regions of cortex in ALSPAC, p <0.05

Protein-Lipid Complex Regulation of AB Formation Protein-Lipid Complex -
Assembly -APOE -APOE APOE

Regulation of AB Precursor Reverse Cholesterol
Protein Catabolism -APOE Tau Protein Binding -APOE Transport -APOE

Protein-Lipid Complex Plasma Lipoprotein Particle Activation of the Immune
Subunit Org. -APOE Assembly -APOE Response -APOE

P 5E-4 5E-2

Images created using Connectome Workbench (Marcus et al., 2011),
https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant

negative correlations shown in blue. There were no positive correlations.
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5.4.4 Cortical thickness in UK Biobank

In UK Biobank, the genome-wide PRS was negatively associated with cortical
thickness in the left and right entorhinal cortex (p = 0.019, R?=2.95 x 10% and p =
0.006, R?=3.94 x 10* respectively), and the left parahippocampal cortex (p = 0.024,
R?=2.67 x 10*). When FDR correction was applied, none of these results remained
significant. When the APOE region was excluded from the score, only the right
entorhinal cortex remained significantly associated with the PRS (p = 0.005, R?=4.32
x 104).

The pathway specific PRS were negatively associated with cortical thickness in similar
regions. For example, the protein-lipid complex pathway was associated with reduced
cortical thickness in the following regions: right inferior temporal (p = 0.003, R? = 4.61
x 104), right middle temporal (p = 0.008, R? = 3.48 x 10), right and left supra-marginal
(p =0.013, R?=2.86 x 10* and p = 0.016, R? = 2.69 x 10 respectively), right inferior
parietal (p = 0.025, R? = 2.14 x 10*%), right and left parahippocampal (p = 0.03, R? =
2.42 x 10*and p = 0.04, R2 = 2.22 x 10 respectively) and right temporal pole regions
(p = 0.041, R? = 2.15 x 10%). These results where unchanged when the APOE region
was excluded from the score, although they did not withstand correction for multiple
comparisons. The immune response PRS showed a different pattern of association. It
was negatively associated with the right posterior cingulate only (p = 0.011, R?=3.29
x 10*), and with the right posterior cingulate and left inferior temporal regions with the
APOE region removed (p = 0.010, R? = 3.37 x 10* and 0.043, R> = 2.12 x 10*

respectively).

APOE region SNPs were associated with reduced thickness in the left entorhinal (p =
0.018, R? = 3.04 x 10"*) and right parahippocampal regions (p = 0.023, R>=2.67 x 10-
4). The regions showing nominally significant associations with PRS, including and
excluding the APOE region, are shown in Figures 5.2 and 5.3. The results are
summarised in Table 5.2, and those surviving FDR correction for multiple comparisons
of PRS and phenotype are indicated.
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Figure 5.9. Associations between PRS (PT = 0.001) and thickness in cortical

and temporal regions of cortex in UK Biobank, p <0.05

Protein-Lipid Complex Regulation of AB Formation
Assembly PRS PRS Protein-Lipid Complex PRS

Regulation of AB Precursor Reverse Cholesterol
Protein Catabolism PRS Tau Protein Binding PRS Transport PRS

Protein-Lipid Complex Plasma Lipoprotein Particle Activation of the Immune
Subunit Organization PRS Assembly PRS Response PRS

Images created using Connectome Workbench (Marcus et al., 2011),

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant

negative correlations shown in blue. There were no positive correlations.
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Figure 5.10. Associations between PRS (PT = 0.001) excluding APOE and
thickness in cortical and temporal regions of cortex in UK Biobank, p < 0.05

Protein-Lipid Complex Regulation of AB Formation Protein-Lipid Complex -
Assembly -APOE -APOE APOE

Regulation of AB Precursor Reverse Cholesterol
Protein Catabolism -APOE Tau Protein Binding -APOE Transport -APOE

Protein-Lipid Complex Plasma Lipoprotein Particle Activation of the Immune
Subunit Org. -APOE Assembly -APOE Response -APOE

P 5E-4 5E-2
[
Images created using Connectome Workbench (Marcus et al, 2011),

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant

negative correlations shown in blue. There were no positive correlations.
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5.4.5 Cortical Surface Area in ALSPAC

There were no significant associations between cortical surface area and the genome-
wide PRS, pathway specific PRS or the APOE region. When the APOE region was
excluded from the PRS, there were some nominally significant results. However, they
did not withstand correction for multiple testing, and there was no consistent pattern
between the scores. For example, the protein-lipid complex PRS without the APOE
region was nominally associated with increased surface area in the left and right
supramarginal regions (p = 0.015, R? = 6.27 x 10 and p = 0.021, R? = 5.44 x 1073
respectively). The regulation of AB formation PRS without the APOE region was
nominally associated with decreased surface area in the right inferior parietal (p =
0.011, R2 = 7.17 x 10%) and right posterior cingulate regions (p = 0.034, R? = 5.91 x
103). The results are summarised in Tables 5.25 to 5.32, and those surviving FDR
correction for multiple comparisons of PRS and phenotype are indicated. The regions
showing nominally significant associations with the PRS excluding the APOE region
are shown in Figure 5.11.
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Figure 5.11. Associations between PRS (PT = 0.001) excluding APOE and
surface area in cortical and temporal regions of cortex in ALSPAC, p < 0.05.

Protein-Lipid Complex Regulation of AB Formation Protein-Lipid Complex -
Assembly -APOE -APOE APOE

Regulation of AB Precursor Reverse Cholesterol

Protein Catabolism -APOE Transport -APOE

Protein-Lipid Complex Plasma Lipoprotein Particle Activation of the Immune
Subunit Org. -APOE Assembly -APOE Response -APOE

P 5E-4 5E-2

Images created using Connectome  Workbench (Marcus et al, 2011),
https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant

negative correlations shown in blue and positive in red.
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5.4.6 Cortical Surface Area in UK Biobank

In UK Biobank, there were a number of associations with cortical surface area that
were beneath the FDR corrected significance threshold. The genome wide PRS was
negatively associated with cortical surface area in the left and right inferior temporal
regions (p = 0.002, R?=3.14 x 10* and p = 0.046, R2 = 1.29 x 10 respectively). When
the APOE region was removed, the genome wide PRS correlated with those regions
(p =0.009, R? =2.25 x 10* and p = 0.019, R? = 1.78 x 10" respectively) and the left
posterior cingulate (p = 0.026, R?=1.96 x 104).

The pathway specific PRS were positively associated with cortical surface area in the
left supramarginal and left precuneus with very similar results (approximately p =
0.005, R? =2.43 x 10* and p = 0.035, R? = 1.32 x 10 respectively). The left inferior
temporal region showed a negative association with the pathway PRS (p = 0.035, R?
= 1.48 x 10#). These results were unchanged when the APOE region was removed
from the score (p range 0.005 — 0.035). The results for the immune response PRS
were distinct, with negative associations with cortical surface area in the left and right
inferior temporal regions (p = 0.009, R? =2.22 x 10“ and p = 0.011, R? = 2.07 x 10
respectively), and was negatively associated with surface area in the left inferior
parietal area (p = 0.038, R? = 1.43 x 10#). This was maintained when the APOE region
was excluded from the score (p range 0.014 — 0.044). SNPs in the APOE region
showed no associations with cortical surface area.

The regions showing nominally significant associations with PRS, including and
excluding the APOE region, are shown in Figures 5.12 and 5.13. The results are
summarised in Tables 5.33 and 5.40. Those surviving FDR correction for multiple
comparisons of PRS and phenotype are indicated.
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Figure 5.12. Associations between PRS (PT = 0.001) and surface area in cortical
and temporal regions of cortex in UK Biobank, p < 0.05.

Protein-Lipid Complex Regulation of AB Formation
Assembly PRS PRS Protein-Lipid Complex PRS

Regulation of AB Precursor Reverse Cholesterol
Protein Catabolism PRS Tau Protein Binding PRS Transport PRS

Protein-Lipid Complex Plasma Lipoprotein Particle Activation of the Immune
Subunit Organization PRS Assembly PRS Response PRS

Images  created using Connectome  Workbench (Marcus et al, 2011),

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant

negative correlations shown in blue and positive in red.
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Figure 5.13. Associations between PRS (PT = 0.001) excluding APOE and
surface area in cortical and temporal regions of cortex in UK Biobank, p < 0.05.

Protein-Lipid Complex Regulation of AB Formation Protein-Lipid Complex -
Assembly -APOE -APOE APOE

Regulation of AB Precursor Reverse Cholesterol
Protein Catabolism -APOE Tau Protein Binding -APOE Transport -APOE

Protein-Lipid Complex Plasma Lipoprotein Particle Activation of the Immune
Subunit Org. -APOE Assembly -APOE Response -APOE

Images created using Connectome Workbench (Marcus et al, 2011),

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant

negative correlations shown in blue and positive in red.
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5.5 Discussion

As predicted, increased genetic burden for AD, measured by PRS, was associated
with lower subcortical volumes and reduced cortical thickness in older adults who are
cognitively healthy. In younger adults, increased polygenic risk was also associated
with lower cortical thickness, but it was associated with greater volumes in subcortical
structures. The strongest evidence of association with AD polygenic risk was found in
the subcortical regions in the left hemisphere, with many of the pathway specific PRS
associations remaining significant after the APOE region was removed in the older
cohort.

As discussed above, reduced hippocampal volume in AD is a robust finding (Serra et
al., 2009; Clerx et al., 2012) and hippocampal atrophy can predict progression from
MCI to AD (Korf et al., 2004; Jack et al., 2005). Previous studies exploring the effect
of AD genetic risk on hippocampal volume across the lifespan report mixed results.
While studies of older adults commonly report reduced hippocampal volume among
APOE carriers, findings in young participants are varied. Some studies report an
association between APOE and decreased hippocampal volume in samples with
mean ages ranging from 23.9 to 39.7 years (Alexopoulos et al., 2011; O’Dwyer,
Lamberton, Matura, Tanner, et al., 2012; Foley et al., 2016) whereas others observe
no significant differences in samples aged 14.4 to 28.8 years (Filippini et al., 2009b;
Heise et al., 2011; Khan et al., 2013). Increased hippocampal volume, as observed in
the present study in the young adult sample, has also been reported in samples of
children who are APOEA4 carriers (Chang et al., 2016) and in some studies of healthy
adult APOEA4 carriers (Striepens et al., 2011). Greater frontal grey matter volumes
have been observed in infant APOE4 carriers (Dean et al., 2014), and increased
temporal grey matter volumes have been reported in children with autosomal
dominant AD genes (Quiroz et al., 2015). Young APOE4 carriers also show increased
activation in the hippocampus on fMRI (Filippini et al., 2009a).

In the older adult cohort, this experiment found significant associations between
increased PRS and decreased volume in the nucleus accumbens, which has also
been associated with AD. In a study of striatal morphology in AD cases compared to

controls, AD patients showed significant reductions in nucleus accumbens volumes
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bilaterally (Pievani et al., 2013). Other studies have identified sub-regional structural
changes in the nucleus accumbens and the hippocampus in MCI and AD which
correlated with the cognitive impairment (Nie et al., 2017). Further studies have
reported evidence of functional changes in the accumbens. For example, using
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, Kazemifar et al found that
activity shown on resting state MRI was significantly lower in the accumbens of AD
cases compared to healthy controls (Kazemifar et al., 2017). A study using an
APP/PS1 mouse model identified significant intracellular AR accumulation, increased
excitability and synaptic alterations in the nucleus accumbens of transgenic mice
compared to wild type (Fernandez-Pérez et al., 2020).

In the present study, there was a preponderance of associations in subcortical regions
in the left hemisphere. This is broadly consistent with the findings of previous studies.
Although one group reported reduced hippocampal volume in APOE4 compared to
APOES3 carriers on the right only (Lind et al., 2006), the literature predominantly
observed greater evidence of changes in the left hemisphere, especially in preclinical
or early stage AD (Shi et al., 2009), which corresponds with the findings of the present
study.

Cortical thinning, particularly in medial temporal regions, may be an early
morphometric biomarker. Normal aging has little effect on cortical thickness in medial
temporal regions (Salat et al., 2004; Dickerson, Feczko, et al., 2009). This is thought
to correspond to laminar thinning observed in these areas early in the disease
(Dickerson, Feczko, et al., 2009). In the older cohort, we found the genome-wide PRS
and SNPs in the APOE region were associated with cortical thinning in the entorhinal
and parahippocampal regions. This is consistent with previous studies which have
implicated the entorhinal (Kohler et al., 1998; Killiany et al., 2002; Burggren et al.,
2008) and parahippocampal cortex (Shaw et al., 2007; Dowell et al., 2016). Results
for the genome-wide PRS attenuated partly when the APOE region was excluded, with

only the right entorhinal cortex remaining significant.

There was little evidence of association between entorhinal cortex thickness and any
PRS in the younger cohort. Neither were the pathway specific PRS in the older cohort

associated with entorhinal thinning. However, there were negative associations with
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several other areas in the temporal and parietal cortex. Many of these regions show
the most marked cortical thinning in incipient AD compared to healthy older adults
(Sabuncu et al., 2011). Furthermore, a previous study reported that AD PRS is
associated with cortical thinning in these regions (Sabuncu et al., 2012). Cortical
thinning has also been demonstrated even in APOE carriers in children and
adolescents (Shaw et al., 2007). Unlike the genome-wide PRS, the results were
maintained even when APOE was excluded from the score. The immune response
PRS was only associated with cortical thinning in the right posterior cingulate gyrus in
older and younger adults. Both AD genetic risk and established AD have been
associated with reduced thickness in the posterior cingulate (Knight et al., 2009;
Lehmann et al., 2010).

Whilst these results concur with the findings of previous studies, many results were
no longer significant when corrected for multiple comparisons. Interestingly, whilst the
cortical results in the younger adult cohort attenuated when APOE was excluded, the
associations in the older adult cohort were maintained. This suggests that beyond
APOE, polygenic burden for AD may not manifest in brain structure changes until later

in life.

Few studies have reported associations between cortical surface area and manifest
AD or pre-clinical AD. One study, which primarily explored networks based on cortical
morphometry, reported a mixture of positive and negative associations with cortical
surface area in AD and Frontotemporal dementia patients (Vuksanovic et al., 2019).
Another reported difference in entorhinal and posterior parahippocampal cingulate
surface area between established AD and controls, although the overall loss of volume
in AD was driven by significant cortical thinning rather than surface area change
(Dickerson, Feczko, et al., 2009). The present study observed similar results to
Vuksanovi¢ and colleagues, although none of the cortical surface area results
remained after correction for multiple comparisons. Compared to thinning, cortical
surface area is less clearly linked with AD pathophysiology, and it does not correlate
with cognitive function (Dickerson, Feczko, et al., 2009). Measurements of cortical
thinning in AD appear to relate more closely to neuronal loss, degeneration of
synapses and dendritic branching than surface area, factors which probably underpin
cognitive decline in AD (Dickerson, Feczko, et al., 2009).
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Whilst it was hypothesised that genetic burden in different disease pathways might be
associated with distinct patterns of association in the grey matter, as suggested by
Caspers and colleagues (Caspers et al., 2020), the results did not support this. There
was close correspondence between the genome-wide and pathway specific PRS in
terms of the regions implicated, variance explained and associated p values. This is
probably explained by the significant overlap in the SNPs included in each pathway,
and by the APOE gene which is included in the full genome PRS and in the majority
of the pathways (all apart from the immune response pathway). See Table 4.2 in
Chapter 4 for a breakdown of genes and SNPs included in each pathway PRS. The
full genome wide PRS, constructed from SNPs with p-values <0.001, contained a
relatively small number of SNPs (n = 404) and it is likely that APOE effect dominated
the genome wide PRS. The immune response PRS, which was associated with fewer
morphological changes, contains a much greater number of genes than the other
pathway PRS, which might have introduced more noise into the score.

The findings are broadly in line with three previous studies that have used PRS specific
to disease pathways to explore neuroimaging phenotypes relevant to AD. All studied
dementia-free population samples of older adults. Corlier et al (sample n = 355) found
that an immune response PRS (n SNPs = 11) was significantly associated with a
general measure of cortical thinning (Corlier et al., 2018). Ahmad and colleagues
(sample n = 4521) found no significant associations between seven different pathway
polygenic scores (n SNPs = 20), hippocampal volume and whole brain volume (Ahmad
et al., 2018). Caspers et al (sample n = 544) reported that cortical thinning associated
with PRS (n SNPs = 20) for specific biological processes. The pathway-specific effects
showed a more bilateral pattern and two unique pathway-specific patterns were
reported, involving the superior parietal and mid/anterior cingulate regions (Caspers
et al., 2020). All of these studies used PRS that only included Bonferroni significant
loci, thereby excluding relevant genetic information that is below the stringent
threshold for genome-wide significance. The present study, using threshold-based
PRS, may have seen significant effects where previous studies have observed mixed

results.
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5.5.1 Strength and limitations

This study benefited from using results from the largest AD GWAS performed to date
as our discovery data (Kunkle et al., 2019). Consequently, estimates of SNP effects
on disease risk used in this analysis are the most accurate available, with improved
power compared to previous estimates. It has been demonstrated that PRS
and R? are highly sensitive to the size of discovery dataset (Schizophrenia Working
Group of the Psychiatric Genomics, 2014). It also benefitted from large target sample
sizes in population cohorts, which resulted in greater statistical power than previous
studies.

There are disadvantages of studying the ALSPAC and UK Biobank cohorts. Due to
the inclusion criteria of ALSPAC imaging sub-studies, males were over-represented,
and a minority of participants reported psychotic experiences which might have
represented incipient psychiatric disorders. However, sex was included as a co-variate
in the analysis, and the number of participants reporting experiences which may have
met criteria for a neuropsychiatric disorder was very small. In both ALSPAC and UK
Biobank analyses have shown participants to be generally healthier and from higher
socio-economic backgrounds (Abigail Fraser et al., 2013; Fry et al., 2017). This may
affect the generalisability of the results.

Although we attempted to dissect the PRS signal into disease pathway groups (see
Table 4.2 in Chapter 4), as PRS inherently pools risk variants, it remains difficult to
draw firm conclusions regarding the exact molecular mechanisms underpinning the
observed differences in brain structure. It is also difficult to interpret the biological or
functional significance of changes seen in the younger cohort. Neurofibrillary tangles
have been found in subcortical regions in young adults (Braak and Del Tredici, 2011),
and according to the Braak staging model, areas of cortex such as the entorhinal
region can be affected even earlier by this process (Braak and Braak, 1991). Amyloid
deposition has been reported in young carriers of autosomal dominant AD genes
(Fleisher et al., 2012) and in trisomy 21 (Braak and Del Tredici, 2011), however the

ALSPAC sample was probably not old enough to show detectable amyloid burden.
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Further studies will be required to confirm these findings and assess their biological
significance. Longitudinal studies will be necessary to determine the effects of genetic
burden for AD across the life course. Combining advanced MRI techniques with CSF
and neuroradiology biomarkers can advance our understanding of how early changes
in brain structure relate to subsequent biomarker derangement. However, future
pathway-based analyses will need large samples and ways to address the problem of

multiple comparisons.

5.5.2 Conclusion

This Chapter explores the associations between polygenic risk scores for disease
pathways implicated in AD, subcortical volumes, cortical thickness and cortical surface
area. Increased genetic burden across pathway groups was associated with increased
subcortical volume in the younger group, and decreased subcortical volumes in the
older cohort, particularly in the left hemisphere. Increased pathway specific polygenic
risk was also associated with cortical thinning in younger and older cohorts. Although
there was no evidence of distinct patterns of changes associated with each disease
pathway, the pathway specific scores showed greater evidence of association with
grey matter phenotypes than the genome-wide score, suggesting that this may be a
helpful way to reduce noise inherent within polygenic scores. Chapter 6 will explore
associations between polygenic risk for AD and white matter microstructure assessed
using diffusion MRI.

144



CHAPTER 6: ALZHEIMER’S POLYGENIC RISK SCORES & WHITE MATTER
MICROSTRUCTURE

The chapter includes some material that was previously published as an abstract
Harrison J, Caseras X, Foley S, Baker E, Williams J, Linden D, Holmans P, Escott-
Price V, Jones D. Pathway-specific polygenic scores for Alzheimer’s disease are
associated with multi-modal structural brain imaging markers in young adults.
Proceedings of the 28th ISMRM Annual Scientific Meeting & Exhibition, 2020 August.

Dr Xavier Caseras, Ms Sonya Foley and Dr Matthew Bracher-Smith assisted with the
initial curation of imaging data, pre-processing and quality control, as this dataset was
also used for other projects. Dr Emily Baker provided the lists of SNPs in the Kunkle
et al 2019 disease pathways and calculated the polygenic scores in the UK Biobank
data, as they were used for separate analyses. Dr Katherine Tansey assisted with
genotyping quality control in ALSPAC.

Some information from previous chapters is repeated here for convenience,
particularly background from Chapter 3 and some methods descriptions from Chapter
5.

6.1 Summary

Diffusion MRI (dMRI) allows the investigation of tissue microstructure. Extensive
changes have been identified in AD, particularly in the frontal and temporal lobes,
cingulum, corpus callosum, superior longitudinal fasciculi and uncinate fasciculi.
Longitudinal studies report increasing diffusivity and decreasing anisotropy in parallel
with increasing cognitive impairment and worsening grey matter atrophy. White matter
microstructural changes are also evident in AD prodromes, such as Mild Cognitive
Impairment (MCI). Changes in areas such as the parahippocampal cingulum and the
fornix have been suggested as early AD biomarkers. Increasing diffusivity and
decreasing anisotropy are evident in pre-symptomatic carriers of autosomal dominant

AD genes and in healthy carriers of the AD risk gene APOE4. One previous study
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found that increased polygenic risk for AD was associated with decreased anisotropy
in the cingulum in a cohort of young adults.

Pathway analyses of data from genome-wide association studies (GWAS) have
implicated various physiological processes in AD pathogenesis. Few studies have
investigated neuroimaging phenotypes using pathway specific polygenic profiles.
Those that have used only Bonferroni significant SNPs in their PRS, and only explored

grey matter changes.

This study aimed to investigate white matter microstructure in healthy adults and AD
polygenic risk, using genome-wide and AD pathway specific polygenic scores, a novel
analysis. Data from two population cohorts were used: the Avon Longitudinal Study of
Parents and Children (ALSPAC) and UK Biobank, with respective samples of over 500
young adults and over 18,000 mature adults. PRS were computed in PLINK using
summary statistics from the largest GWAS of AD to date. Pathway-specific polygenic
scores were generated using lists of SNPs from a recent pathway analysis. In
ALSPAC, dMRI data were analysed using ExploreDTI and whole-brain tractography
was implemented using the damped Richardson Lucy pipeline. In UK Biobank, a
skeleton-based analysis was conducted, with distinct regions of interest (ROISs)
defined from the Johns Hopkins University tract atlas. Relationships between imaging
phenotypes, genome-wide and pathway specific PRS were assessed with linear

regression.

Increasing PRS was associated with increased diffusivity and decreased anisotropy
in the older adult cohort. The strongest associations were between the pathway
specific PRS and increased mean diffusivity (MD) in the parahippocampal cingulum
and cingulate gyrus. There were also significant negative correlations between the
pathway specific PRS and fractional anisotropy (FA) in the parahippocampal
cingulum. We saw no association with diffusion metrics in the fornix in the UK Biobank
cohort using a p value threshold (PT) of 0.001, although there was some evidence of
association on secondary analysis with more liberal PT. The results were maintained
when APOE was removed from the PRS, and APOE SNPs alone were slightly less
strongly associated with the same phenotypes. The genome-wide PRS showed less

evidence of association than the pathway specific PRS, with no significant results
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withstanding correction for multiple comparisons. In the younger cohort there were no
statistically significant findings. Whilst there was some evidence of association
between increased PRS and increased MD in the younger cohort, particularly in the
left cingulum, the results were no longer significant after correction for multiple
comparisons. Further longitudinal studies, using multimodal imaging and biomarker
techniques, as well as functional genomic studies of individual variants will be needed

to understand the biological significance of these findings.

6.2 Introduction

Diffusion MRI (dMRI) is an imaging technique that uses the movement of water
molecules to infer the microstructural configuration of tissue (Jones, 2011; Winston,
2012). Chapter 3 discussed dMRI methodology in detail. To summarise, dMRI
measures represent how easily water molecules can diffuse within and around tissues.
Structures, such as cell bodies or axons, limit diffusion (Stejskal and Tanner, 1965;
Bihan, 1995; Strijkers, Drost and Nicolay, 2011; Johansen-Berg and Behrens, 2013).
In white matter tracts, several microstructural characteristics affect the rate of
diffusion, including the density, diameter and myelination of axons (Jones, 2011). In
large, coherently aligned and densely packed fibre bundles, diffusion is anisotropic.
As mentioned in previous Chapters, this is commonly indexed by FA (Basser and
Pierpaoli, 1996). An FA of 0 represents isotropic diffusion, in which rates of diffusion
are the same in all directions. FA of 1 represents anisotropic diffusion, where diffusion
is limited to one axis (Beaulieu and Allen, 1994; Pierpaoli and Basser, 1996; Beaulieu,
2009; Winston, 2012). Changes in anisotropy are often interpreted as a measure of
tissue integrity (Thomason and Thompson, 2011), but as explained in Chapter 3, this
should be treated with caution (Jones, Knosche and Turner, 2013). MD is another
commonly reported metric. MD denotes the orientationally-averaged rate of diffusion.
Detailed descriptions of dMRI techniques and associated pitfalls are in Chapter 3.

The advent of dMRI has allowed the investigation of white matter microstructure in
AD. Extensive changes have been identified. For example, Sexton et al conducted a
meta-analysis of 41 studies comparing AD cases to controls. They observed reduced
FA and increased MD in AD patients, particularly in the frontal and temporal lobes,

147



posterior cingulum, corpus callosum, superior longitudinal fasciculi and uncinate
fasciculi (Sexton et al., 2011). Patients with MCI also had lower FA in all white matter
areas except parietal and occipital regions, and higher MD except in occipital and

frontal regions (Sexton et al., 2011).

Diffusivity changes in some regions have been proposed as early biomarkers of AD.
There is some evidence that AD pathology preferentially affects late-myelinating tracts
(Benitez et al., 2014), as discussed in Chapter 3. The parahippocampal cingulum
(Mayo et al., 2017), and the fornix (Ringman et al., 2007; Perea et al., 2018) are both
suggested to be preferentially degraded in AD. As with conventional markers of
atrophy, longitudinal studies report that increased diffusivity and decreased anisotropy
are more evident with increasing cognitive impairment (Mayo et al., 2017). dMRI
metrics in the fornix are associated with cognitive decline (Fletcher et al., 2013). They
can distinguish MCI from AD (Egli et al., 2015; Tang et al., 2017), and can predict
conversion from healthy cognition to MCI and from MCI to AD (Mielke et al., 2012;
Oishi et al., 2012). Subtle fornix changes may even precede hippocampal
atrophy (Zhuang et al., 2012).

As described in Chapter 3, the effect of AD genetic risks on white matter microstructure
has been widely investigated (Harrison et al., 2020). Most previous studies compared
APOE EA4 carriers (homozygotes and heterozygotes) with those without an E4 allele,
although some were able to assess the effect of APOE gene dosage (Lyall et al.,
2014), but the findings are discrepant. Although most studies reported some
significant changes in diffusion metrics in APOE4 carriers, five studies reported no
significant differences (Honea et al., 2009; Bendlin et al., 2012; Nyberg and Salami,
2014; Dell’Acqua et al., 2015; R. Wang et al., 2015). Of the positive results, reduced
FA was commonly reported, often with increased MD, RD or LD. Please see the Table
3.1 in Chapter 3 for a breakdown of the white matter regions implicated in APOE

studies.

How autosomal dominant AD risk manifests in the white matter microstructure of pre-
symptomatic individuals is less widely studied. As discussed in Chapter 3, sample
sizes are modest, reflecting the rarity of these genes. Three studies have addressed
this in PS1 carriers (Ryan et al., 2013; Parra et al., 2015; Sanchez-Valle et al., 2016)
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and three in mixed cohorts of PS1/2 and APP carriers (Ringman et al., 2007; X. Li et
al., 2015; Caballero et al., 2018). Whilst there were widespread changes in
symptomatic carriers, only one study identified significant changes in pre-symptomatic
PS1 carriers: reduced MD and LD in the right cingulum (Ryan et al., 2013). Two
studies with mixed cohorts of PS1 or APP carriers reported a number of changes in
pre-symptomatic carriers: reduced FA in the fornix and frontal white matter (Ringman
et al. 2007); increased MD in the left inferior longitudinal fasciculus, left forceps major,
left cingulum and bilateral superior longitudinal fasciculus (X Li et al., 2015). A further
study of PS1/2 and APP carriers found increased MD in the forceps minor, forceps
major and long projecting fibres 5-10 years before cognitive problems were anticipated
(Caballero et al., 2018). Please see Table 3.2 in Chapter 3 for a summary of dMRI

studies in autosomal dominant AD.

Few studies have been able to assess the effect of AD risk loci with small effect sizes
identified through GWAS. Braskie et al. observed that each C allele copy of the CLU
allele was associated with lower FA in the splenium of the corpus callosum, the fornix,
cingulum, and superior and inferior longitudinal fasciculi in healthy young adults
(Braskie et al., 2011). Shorter genotypes of the poly-T repeat in TOMM40 are
associated with FA in the cingulum, irrespective of APOE genotype (Lyall et al., 2014).

As described in Chapter 2, GWAS risk variants can be combined in polygenic risk
score (PRS), the weighted sum of the risk loci from GWAS, computed for each
individual in a dataset (Wray et al., 2014). Only one previous study explored
associations between PRS and white matter phenotypes. Foley et al studied healthy
young adults (aged approximately 24 years, dMRI data n= 197). They used a
threshold-based genome-wide PRS using the International Genomics of Alzheimer’s
Project GWAS (Lambert et al., 2013) as training data. They identified an association
between increased AD PRS and decreased FA in the right cingulum (Foley et al.,
2016).
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6.2.1 Rationale and Aims

dMRI studies in humans have demonstrated that changes in white matter
microstructure are evident in AD neurodegeneration and are associated with cognitive
impairment. Chapter 3 systematically reviewed the literature and found evidence of
significant associations between AD genetic risk and diffusivity in white matter tracts,
specifically, lower anisotropy and increased diffusivity, and provides evidence of the
effect of AD risk genes on white matter microstructure in healthy, pre-clinical

individuals.

Chapter 2 found evidence that AD PRS can predict AD case/control status. It also
described the evidence that AD PRS are associated with neurodegeneration
phenotypes such as cognition and biomarkers. As discussed in Chapters 1 and 2, loci
identified by GWAS are enriched for SNPs involved in certain biological pathways
including lipid metabolism, immune response, and synaptic processes (Jones ef al.,
2010; Holmans and Jones, 2012; Kunkle et al., 2019). As discussed in previous
Chapters, polygenic scores can be informed by these pathway analyses, to allow
genetic burden associated with disease pathway groups to be delineated. Each of
these disease pathway groups explains only a small amount of the variance (Darst et
al., 2017), consequently large discovery and target sample sizes are necessary
(Dudbridge, 2013).

Few studies have applied this pathway specific PRS technique to neuroimaging data
(Ahmad et al., 2018; Corlier et al., 2018; Caspers et al., 2020). These previous studies
only explored grey matter, and included only Bonferroni significant SNPs in their PRS,
excluding loci of smaller effect sizes that may be involved in the disease.

In Chapter 5, it was demonstrated that AD pathway specific PRS are associated with
decreased volume in subcortical structures and cortical thinning in cognitively healthy
participants. The primary aim of this chapter is to explore associations between
disease pathway specific PRS and white matter microstructure in areas preferentially
affected by AD pathology. This will be achieved using the same large population
cohorts of younger and older adults. A secondary objective is to apply a range of
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different p value thresholds, used to select relevant SNPs for the polygenic analysis,
to assess which explains the most variance in the phenotype.

6.2.2 Hypothesis

It is hypothesised that increasing genetic burden for AD, indexed by PRS, will be
associated with i) decreasing anisotropy (measured with FA) in the fornix, cingulum
and hippocampal cingulum, in tandem with ii) increasing diffusivity (measured with
MD) in the same regions. It is further hypothesised that PRS for different disease

pathway groups will show distinct patterns of changes in white matter microstructure.

6.3 Methods
6.3.1 Participants

As described in Chapters 4 and 5, participants were recruited by the Avon Longitudinal
Study of Parents and Children (ALSPAC) and UK Biobank. Chapter 4 contains a
detailed description of recruitment methods and sample characteristics which are

summarised here for convenience.

This experiment uses data from two population neuroimaging studies conducted by
ALSPAC (Sharp et al., 2020). As discussed in Chapter 4 and Chapter 5, the first
investigated the effect of testosterone on the structure of the brain (ALSPAC project
ID B648; n = 513) (Bjornholm et al., 2017). The second explored psychotic
experiences and brain structure (ALSPAC project ID B709, n = 152) (Drakesmith et
al., 2016). Ethical approval for the neuroimaging sub-studies was given by the
ALSPAC Ethics and Law Committee and Local Research Ethics Committees (North
Somerset and South Bristol Research Ethics Committee: 08/H0106/96) and
participants provided written informed consent. Chapter 4 includes details of the

inclusion criteria for the sub-studies.

As described in Chapters 4 and 5, the first 20,000 datasets released by UK Biobank
are analysed here (Sudlow et al., 2015). UK Biobank granted approval for the analyses

reported in this thesis (UK Biobank Application 15175). UK Biobank obtained approval
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from a number of external bodies (UK Biobank, 2007) and participants gave informed
consent. As discussed in Chapter 5, this study excluded UK Biobank participants if
they self-reported a history of neurological or major psychiatric disorders, such as
dementia, cerebrovascular disease, intellectual disability, at an assessment visit or
during online follow-up, or had a hospital admission ICD-10 code for a relevant
disorder. Further participants were removed from ALSPAC and UK Biobank if they
had non-white British or Irish ancestry or if they had asked to have their data removed
from the cohorts. Data was retained if it successfully reconstructed and passed quality

control.

After genotyping and imaging data quality control procedures, 517 individuals with
dMRI and structural T1-weighted data remained (19.3% female, 80.7% male) in
ALSPAC and 18172 in UK Biobank (52.7% female, 47.3% male). At the time of
inclusion, the average ages of ALSPAC and UK Biobank participants were 19.81 years
(SD 0.02) and 64.2 (SD 7.75) respectively.

6.3.2 MRI Acquisition

As described in Chapter 5, neuroimaging data were acquired for ALSPAC at Cardiff
University Brain Research Imaging Centre (CUBRIC). A 3 Tesla General Electric HDx
(GE Medical Systems) scanner was used with an 8 channel head coil. Acquisition

parameters were harmonised between ALSPAC sub-studies as far as practicable.

dMRI data were acquired with a dual spin-echo (SE), single shot echo-planar imaging
(EPI) sequence. 30 gradient orientations and 3 non-diffusion weighted images were
obtained using the following parameters: isotropic resolution = 2.4mm x 2.4mm x
2.4mm; FOV = 230mm x 230mm; acquisition matrix = 96 x 96; slice thickness =
2.4mm; 60 oblique-axial AC-PC slices; TR/TE = cardiac gated/87ms; b = 0, 1200
s/mm?, T1 = 0; flip angle = 90°; number of excitations (NEX) = 1; acquisition time
approximately 15-20 minutes.

For UK Biobank, as discussed in Chapter 5, data was gathered at three recruitment
centres in Stockport, Newcastle and Reading using identical Siemens Skyra 3T

scanners with a standard Siemens 32 channel head coil. Multi-shell dMRI data was
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acquired using a monopolar Stejskal-Tanner pulse sequence with SE-EPI. 50

diffusion-encoding directions were acquired with the following parameters: resolution:
2 mm x 2mm x 2mm; FOV: 104mm x 104mm x 72mm matrix; 5xb =0 s/mm?2 (plus 3

x b = 0 s/mm? blip-reversed), 50 x b=1000 s/mm?2, 50 x b=2000 s/mm?2; gradient
timings & = 21.4ms, A = 45.5ms; echo time (TE) = 92ms. Acquisition time
approximately 7-8 minutes (Alfaro-Almagro et al., 2018).

6.3.3 Analysis Pipeline

For ALSPAC, neuroimaging data was analysed in-house using ROI-based
probabilistic tractography in ExploreDTI (Leemans et al., 2009) version 4.8.6. Eddy
current distortions and subject motion were corrected with affine registration to T1-
weighted images, with reorienting of the encoding vectors (Leemans and Jones,
2009). An echo planar imaging (EPI) correction was used to warp the dMRI data to
the fast, spoiled gradient recalled images (Wu et al., 2008). This produced an output
with a resolution of 1 x 1 x 1 mm3. Corrections were run, including: RESTORE (Chang,
Jones and Pierpaoli, 2005) and RESDORE (Parker et al., 2013), aiming to reduce the
influence of outliers on the eventual model estimates; and free water corrections
(Pasternak et al., 2009), aiming to separate the diffusion properties of brain tissue from

surrounding free water.

Whole-brain tractography was implemented using the damped Richardson Lucy
pipeline (Dell’Acqua et al., 2010). Streamline termination criteria were: a decline in the
magnitude of minimally subtending fibre orientation density function peak amplitude
(below 0.05); fractional anisotropy < 0.2; or an angle threshold greater than 45°. In-
house automated tractography software was used to obtain tracts (Parker et al.,
2013b). Automated tractography models for the cingulum, parahippocampal cingulum
and fornix were based on manual tractography. Anatomical regions of interest (ROls)
were placed to determine which streamlines are included in the analysis. These are
based on Boolean logical operations, e.g. selecting fibres that traverse ROI-1 AND
ROI-2 but NOT ROI-3. Therefore, inclusive ROls, that a tract must pass through to be
included, are known as ‘AND’ gates, and exclusive ROIs, that a tract must not pass
through, are ‘NOT’ gates (Conturo et al.,, 1999; Jones et al., 2013). Tracts are
segmented in the native space of the individual, providing a representation of tract
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anatomy for each person (Bastin et al., 2013). Automated tracts were quality controlled
by visual inspection. Where tracts had not successfully reconstructed, they were

excluded.

The fornix was segmented as described by Metzler-Baddeley and colleagues
(Metzler-Baddeley et al., 2011). AND ROls were placed on a coronal slice on the fornix
at point where the fornix anterior pillars enter the body, and on an axial slice at the
level of the lower border of the splenium. NOT gates aimed to exclude streamlines in
the corpus callosum and corticospinal tract. The fornix can be difficult to reconstruct
because it runs in close to other white matter tracts, such as the anterior commissure,
and may be especially susceptible to signal contamination from the cerebrospinal fluid
(CSF) in the ventricles nearby (Concha, Gross and Beaulieu, 2005; Jones and
Cercignani, 2010). The fornix was not always successfully reconstructed by the
automated models used in the present study, with a relatively high number failing
quality control (n = 18). The cingulum was segmented using the standard method
outlined by Jones and colleagues (Jones et al., 2013), with two AND gates placed
above the body of the corpus callosum, around 18 millimetres apart in the rostral—
caudal plane. The parahippocampal cingulum was segmented using the ‘restricted’
method. Two AND gates placed just behind and below the splenium, and a NOT gate
was placed above the body of the corpus callosum to exclude tracts projecting forward
into the frontal cortex (Jones et al., 2013). Examples of the segmented tracts are
shown in Figure 6.1. Diffusion metrics were extracted with custom MATLAB scripts
(The MathWorks, Inc., Natick, MA).

UK Biobank undertook pre-processing and dMRI analysis using automated pipelines
(Smith, Alfaro-Almagro and Miller, 2015; Alfaro-Almagro et al., 2018). First, the data
were corrected for head motion and eddy currents and had outlier-slices corrected
with the FSL Eddy tool http:/fsl.fmrib.ox.ac.uk/fsl/fslwikiEDDY (Andersson and
Sotiropoulos, 2015, 2016). Gradient distortion correction was implemented to produce
a 4D output file. Subsequently, the dMRI FA image was processed using TBSS (Tract-
Based Spatial Statistics (Smith et al., 2006). TBSS uses a non-linear registration to a
template using the FMRIB's non-linear image registration tool (FNIRT), followed by
projection on to a tract representation of mean FA, known as the white matter skeleton.
High-dimensional warping based on the Oxford Centre for Functional MRI of the Brain

154



(FMRIB) linear image registration tool (FNIRT) (De Groot et al., 2013) was used to
improve alignment. The Johns Hopkins University standard-space tract masks were
overlaid on skeleton-projected data (Mori et al., 2005; Wakana et al., 2007). UK
Biobank provided these imaging derived phenotypes (IDPs) for distinct ROls defined
from Johns Hopkins University tract atlas. IDPs for FA and MD in the cingulum, the
parahippocampal cingulum and the fornix were downloaded from UK Biobank. IDPs
received from UK Biobank were checked and cleaned.

For each region of interest, the final numbers included in the ALSPAC analysis were:
the fornix (n = 499), parahippocampal cingulum right and left (n = 517), the cingulum
right and left (n = 516). For UK Biobank, the final numbers were: the fornix and left
and right cingulum (n = 16529), the parahippocampal cingulum right and left (n =
16527). Metrics were curated and stored in files compatible with R.

Figure 6.1 Showing the dMRI regions of interest defined for ALSPAC. Left

image: the fornix; Centre image: the cingulum; Right image: the

parahippocampal cingulum.

6.3.4 Genotyping

The genotyping procedures in ALSPAC and UK Biobank are described in detail in
Chapter 4 and were summarised in Chapter 5. Briefly, ALSPAC genotyped
participants with the lllumina HumanHap550 quad genome-wide SNP genotyping
platform (lllumina Inc., San Diego, California, USA). UK Biobank used the Affymetrix
UK BILEVE Axiom array for the first 500 participants followed by the Affymetrix UK
Biobank Axiom array. Quality control was undertaken in PLINK (Purcell et al., 2007).
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As described in Chapter 4, participants were excluded for the following reasons: i)
ambiguous sex; ii) cryptic relatedness; iii) < 97% genotyping completeness; and iv)
non-British or Irish ancestry in ALSPAC and i) < 97% genotyping completeness and
if) non-British or Irish ancestry in UK Biobank. For both datasets, SNPs were filtered
by: i) minor allele frequency (MAF) < 1%; ii) SNP call rate < 98%; iii) x? test for Hardy-
Weinberg equilibrium p < 1 x 107,

6.3.5 Polygenic Score (PRS) Calculations

PRS computation was performed using the International Schizophrenia Consortium
procedure (Purcell et al., 2009). Please see Chapter 4 for a detailed description. To
summarise, the discovery sample was the Genome-wide Association Study (GWAS)
conducted by Kunkle et al (Kunkle et al., 2019). SNPs with a low MAF (< .01) were
excluded. The data were pruned for linkage disequilibrium using clumping (--clump) in
PLINK (Purcell et al., 2007) (parameters: r? > 0.2 (--clump-r2) and 500 kilobase (--
clump-kb)). PRS were calculated using PLINK --score (Purcell et al., 2007). The
primary analysis used a p value threshold (PT) of 0.001 to select relevant SNPs as a
previous study (Foley et al., 2016) found that this explained the most variance in
structural neuroimaging phenotypes. Seven progressive thresholds were applied for
the secondary analysis (p = 0.5, 0.3, 0.1, 0.01, 0.0001, 0.00001, 0.000001). Lists of
SNPs in disease pathways implicated by Kunkle and colleagues were used to compute
pathway specific PRS (Kunkle et al., 2019). Please see Chapter 4 for further
information on the polygenic score calculations and disease pathways.

6.3.6 Statistical Analysis

As with the analyses presented in Chapter 5, statistical analyses were conducted
using R Studio version 1.1.383 for Mac, www.rstudio.com (R Development Core Team
3.0.1., 2013). The relationships between dMRI phenotypes and PRS were tested
using linear multiple regression. Analyses were performed on the overall genome-wide
AD PRS and the pathway-specific PRS separately. The analysis was repeated using
a polygenic risk score which excluded the APOE region SNPs (chromosome 19
between 44.4Mb and 46.5Mb), thereby assessing the extent that the APOE region
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explained the signal. As described in Chapter 4 and Chapter 5, the resulting p values
were corrected for multiple comparisons of phenotype and PRS using the False
Discovery Rate (FDR) in the R (R Development Core Team 3.0.1., 2013). SNPs in the
APOE region (chromosome 19 between 44.4Mb and 46.5Mb) were also analysed
separately so the variance explained by the PRS could be compared to the APOE
region. Regression analyses adjusted for population structure using 10 principal
components for ALSPAC and 15 for UK Biobank as covariates. Additional covariates
were gender and intracranial volume in ALSPAC and gender, intracranial volume, age,
scanning site and genotyping array in UK Biobank. Although dMRI studies often do
not correct for the volume of the cranium, some studies have shown an effect of
intracranial volume on FA and MD (Takao et al., 2011) and therefore it was included

as a covariate.

6.4 Results

P values reported correspond only to the PRS variable in the regression model. The
primary analysis, reported below, used a P of 0.001.

6.4.1 Fornix dMRI metrics

In the ALSPAC cohort, there were no statistically significant associations between any
PRS and either FA or MD in the fornix. There were some apparent trends towards
association. For example, the protein lipid complex PRS (excluding the APOE region)
was nominally associated with lower FA in the fornix (p = 0.049, R? = 6.36 x 103).
However, the genome-wide PRS (excluding the APOE region) was also nominally
associated with increased FA in the fornix (p = 0.021, R? = 8.73 x 103). There were
no associations between any PRS and fornix MD.

In UK Biobank, there were also no significant associations between FA or MD in the
fornix. However, the genome-wide PRS, immune response PRS and the APOE region
SNPs showed trends towards decreased FA and increased MD in the fornix at PT =
0.001, however these were not significant (R? < 1.2-1.5 x 10, p > 0.05). There were
no significant associations with the pathway specific PRS for protein—lipid complex

assembly, regulation of AR formation, protein—lipid complex, regulation of amyloid
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precursor protein catabolic process, tau protein binding, reverse cholesterol transport,
protein-lipid complex subunit organization or plasma lipoprotein particle assembly (R?
<1.5x10°, p>0.05).

Secondary analysis of UK Biobank results at more liberal PT showed nominally
significant associations between the genome-wide PRS and decreased FA (p = 0.03-
0.04 at PT 0.05-0.5) and increased MD in the fornix (p = 0.007-0.02 at P™ 0.01-0.5),
although these attenuated slightly when the APOE region was removed from the PRS.
There were also nominal associations between the immune response PRS and
decreased FA (p = 0.03 at P" 0.05; p = 0.02 & at PT 0.5) and increased MD (p = 0.03
at PT 0.05; p = 0.01 at PT 0.5), however these were no longer significant when APOE
was excluded. SNPs in the APOE region also showed a nominally significant
association with increased MD in the fornix at two more liberal thresholds (p = 0.045
at PT 0.05; p = 0.04 at PT 0.01).

6.4.2 Cingulum dMRI metrics

In ALSPAC, there were trends toward association with increased MD in the left
cingulum for the regulation of Ap formation PRS, the regulation of amyloid precursor
protein catabolic process and the protein—-lipid complex subunit organization PRS (p
= 0.042-0.043, R? = 7.84-7.94 x 10?) although these did not withstand correction for
multiple comparisons and were not maintained when the APOE region was excluded.

Secondary analysis in ALSPAC of other PT showed further trends of association
between increased MD and lower FA in the right and left cingulum with more liberal
PT. This pattern was particularly evident with the tau protein binding PRS without
APOE (see Figure 6.3), although these associations would not have survived

correction for multiple testing (p values 1.4-3.9 x 102).

In UK Biobank, neither the genome-wide PRS, pathway specific PRS or the APOE
region SNPs showed evidence of association with reduced FA in the cingulum (right
or left, R < 2.1 x 105, p > 0.05). Secondary analysis at more liberal PT did not reveal
any associations with FA.
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The genome-wide PRS was positively associated with MD in the left cingulum (R? =
2.48 x 104, p = 0.03) but not the right (R?> = 1.36 x 104, p = 0.12). However, the result
for the left cingulum did not survive correction for multiple testing. The pathway
specific PRS for protein-lipid complex assembly, regulation of AB formation,
protein—lipid complex, regulation of amyloid precursor protein catabolic process, tau
protein binding, reverse cholesterol transport, protein—lipid complex subunit
organization and plasma lipoprotein particle assembly were all significantly positively
associated with MD in the right and the left cingulum (R? range 7.3 - 8.2 x 10", p range
1.6 — 3.9 x 10%). These results survived multiple testing correction and were
maintained when the APOE region was removed from the score. Activation of immune
response did not show evidence of association with MD in either the right or left
cingulum (R? < 1.3 x 104, p > 0.05). SNPs in the APOE region were also significantly
positively associated with MD in the right (R> = 4.9 x 104, p = 0.004) and left (R? = 7.1
x 104, p = 0.001) cingulum.

6.4.3 Parahippocampal dMRI metrics

There were no statistically significant associations between any PRS and
parahippocampal FA or MD in ALSPAC. The only nominally significant association
was with the protein-lipid subunit organisation PRS (excluding the APOE region) and
higher FA in the parahippocampal cingulum (R? = 8.53 x 10-3, p = 0.03), however there
was no corresponding change in MD (R?2 = 5.69 x 104, p = 0.24).

In UK Biobank, the genome-wide PRS was negatively associated with FA in the right
parahippocampal cingulum (R? = 3.4 x 104, p = 0.01) but not the left (R> = 1.2 x 10%,
p = 0.14). However, the result for the right parahippocampal cingulum did not survive
correction for multiple testing. The pathway specific PRS for protein—lipid complex
assembly, regulation of AR formation, protein—lipid complex, regulation of amyloid
precursor protein catabolic process, tau protein binding, reverse cholesterol transport,
protein—lipid complex subunit organization and plasma lipoprotein particle assembly
were all significantly negatively associated with FA in the right and the left
parahippocampal cingulum (R? range 5.8 — 9.4 x 104, p range 1.0 x 10— 3.9 x 10°%).
These results withstood correction for multiple testing and remained significant when
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the APOE region was excluded from the PRS. Activation of immune response PRS
did not show evidence of association with FA in either the right or left parahippocampal
cingulum (R? < 1.3 x 10°%, p > 0.05). SNPs in the APOE region were significantly
negatively associated with FA in the right (R> =6.7 x 104, p = 0.001) and left (R? = 5.0
x 104, p = 0.003) parahippocampal cingulum.

There was no association between the genome-wide PRS and MD in the right or left
hippocampal cingulum (R? < 7.2 x 10, p > 0.05). The pathway specific PRS were
significantly positively correlated with hippocampal cingulum MD (R? range 5.8 — 9.4
x 10, p range 1.0 x 103 — 3.9 x 10°%). SNPs in the APOE region only showed trends
towards association with increased MD in the left parahippocampal cingulum (R? = 2.1
x 10°%, p = 0.06). In the right parahippocampal cingulum, the APOE region were only
nominally associated with increased MD (R? = 2.9 x 10%, p = 0.049).

For ALSPAC, results for all regions of interest are summarised in Tables 6.1 - 6.4 and
Figures 6.2 — 6.4. For UK Biobank, results are summarised in Tables 6.5 — 6.8 and
Figures 6.5 — 6.7. Those surviving FDR correction for multiple comparisons of PRS
and phenotype are indicated on the tables.
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Figure 6.2 ALSPAC Genome-wide PRS and dMRI metrics, showing no significant
results. Imaging phenotypes are shown on the X axis, the beta coefficients (positive
and negative) are shown on the Y axis. The heights of the bars indicate the amount of

variance explained (R?), and any nominally significant results are labelled with their p
value. Each bar represents a version of the polygenic risk score. The bars are colour

coded by the p value threshold used in the training data, shown on the legend.
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Figure 6.3 ALSPAC tau protein binding PRS (excluding the APOE region) and
diffusion metrics, showing trends towards significance in more liberal PT in the
cingulum. Imaging phenotypes are shown on the X axis, the beta coefficients (positive
and negative) are shown on the Y axis. The heights of the bars indicate the amount of
variance explained (R?), and any nominally significant results are labelled with their p
value. Each bar represents a version of the polygenic risk score. The bars are colour

coded by the p value threshold used in the training data, shown on the legend.
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Figure 6.4 Scatter plot showing ALSPAC non-significant association between
normalised genome-wide PRS and normalised MD in the left cingulum. White circles
indicate individual data points. Density represents the number of data points in each

area.

Genomewide PRS & MD in Cingulum L
Cor-0.019

density

0.15
0.10
0.05

Mean Diffusivity mm2.s-1

-2 -1 0 . 1 2
PRS (PT 0.001)

163



jedwesoddiyesed

= ‘ddiyeied Adonosiue [BUCHOB) = W4 |88l JUBA0asIp 8518} = ¥4 'JUbu = Y ‘Y8 = 7 '3 wejaudodyody = 30dY plousaiy} 2uebljod = 1 d ‘BJ0OS ¥siy auebfjod = SYHd swhuony

"G0’'0> SUCHE0SSE PBjIBu0d ¥ ..

(G0" > enjea d) suonenosse Juedpubis Ajeunuoy ,

‘ses00s auebfjod

BU) MOUS SBUWEU MOJ BU} BYM ‘jS8Iejul Jo UsiBBa) BUY) SMOUS SBWEU UWINCO BYL "LOD0 JO ,d B J& 21005 Juebijod yore pue ereydsiuey Jybu ey) ur SBWN(OA [EXUCOGNS 10} SenjeA d pue 2y

(€00°0'¥0-35Z +) LGL'0

€0-362°€

(Loo'0'zZ00°07) LGH 0
$0-3LL°6

(Loo0'zoo' o) €€9°0
y0-35L°€

(Loo0'zoo' o) L8ZD
vo-3LeL

(Loo'0'zo0"0) LE¥ D
vOo-3L6°6

(Loo'0'Z00'07) G9€0
£0-3G€°L

(zooo'too' 0} Z8g'0
y0-39L°2

(Looo'zooo) 2220
€0-3¥6°L

(zooo'too'0-) Z89'0
yo-39L°2

(Loo0'zoo 0} 969°0

(+00°0'Z00°0) #8840
$0-359'8

(€00°0'€00°07) L¥6'0
90-3LLL

(zoo'o'v00°0-) 98%°0
¥0-385°'8

(e00'0'€00°0) 0BL°0
y0-392°L

(zooo'vo0'0) LLOD
yO-3LGY

(zoo'0'v00°'07) 81570
$0-39¢° L

(zoo'o'v00'0-) €99°0
¥0-35€°€

(zooo'vo0' 0} L¥S0
¥0-365°9

(zoo'o'v00'0-) £99°0
¥0-35€°€

(eoo'0'c0007) BSL'0

(€00°0°Z00°07) 2280
G0-39¢°6

(Loo'0'v00°07) 9Z€0
£0-38L°L

(zoo'o'co0'0-) ¥S8°0
§0-352'9

(e00'0'Z00'0-) GLE'D
so-3LLe

(zoo'0'co0'0) L8E'D
90-380°L

(€00°0'Z00°07) 9¥6°0
90-39¢'8

(eo0'0'zo0"07) €68°0
S0-39¢€°€

(eoo'0'zoo o) €€6°0
S0-3€€°L

(eoo'0'zo0'0-) €68°0
S0-39¢€°€

(e00'0'zo0"0-) 6860

(€00°0°Z00°0) 9€L0
¥0-3G6°L

(€00°0'Z00°07) £L6L0
o3l L

(£00°0'€00°0-) BOB'0
§0-39z°¢

(£00°0'€00°0-) 996°0
90-360°€

(€00°0'c00'0-) 2060
S0-365°2

(eoo'0'c00'0-) 0260
S0-3€L°L

(£00°0'€00°0-) BBB'0
60-39€°L

(e00°0'€00°07) £66°0
80-38v'¢C

(£00°0'€00°0-) BBB'0
60-39€°L

(£00°0'€00'0-) 9€6°0

(¥00°0'Z00°0) €240
£0-340°L

(eoo'0'zoo'0-) 0290
¥0-386°€

(zooo'v00'0-) S¥¥'0
vo-32v'6

(zoo'o'voo'0-) €250
¥0-309°9

(zoo0'co0'0-) ¥L8°0
S0-3v6'8

(zoo'0'c00'0) 2650
$0-369°¢

(zooo'v00'0-) SBE'D
€0-3LLL

(zooo'co0'07) L2970
y0-396°€

(zooo'v00'0-) SBE'0
€0-3LLL

(zoo'0'c00'0-) 5650

S¥d epim-awouss

asuodsal aunuwiw| JO UORBARIY

Alquasse
ajoiped uiajosdod)) ewse|d

uopeziuebio
yungns xadwoo pidi-uiajoid

podsues) [018)S8|0Yd asIaAldy

Buipuiq uisjoud ney

ssasoud ajjoqejes uiajoud
Josinosaud projAwe jo uonenbay

xa|dwod pidij-uiajoid

uonew.o} gy jo uonenbay

Alquesse xadwoo pidij-uiajoid

¥0-305°Z $0-399°L L0-3£€°E G0-3Z1L°L ¥0-385 ¥
(12 %s6) d (12 %s6) d (12 %se) d (12 %se) d (12 %s6) d

A -] - A A 81098 jsu owabhjog
X|u104 v4 Wby wnnbuip "ddiyesed y4  ye wnnbui) “ddiyesed v4

Wby wnnbui) vy

yo wnnbui) v4

100°0 ,d 18 30dV Bupn|oul S¥d pue esie AdosOSIUE [EUOHOEL DY ASTY 40} SHNSSY |9 9|qe L

164



jedwesoddiyesed

= ‘ddiyeied :Adonosiue |BEUCHOBY = W4 ‘8]l UeAcosip BsS1B) = ¥4 ubu = Y ‘Y8 = 1 !3 wejardedyody = 30dY ‘ploysaiy) 2uebljod = ,d 184008 sy auebfjod = SHd swAuony

‘G0°0> SUCHEROSSE PBOBLCY H(A ..

(60" > enjea d) suohenosse Juedyubis fgeunuoy ,

‘sa100s suebfijod

BU) MOYS SBWIEU MOJ B BIYM ‘jSBIB)UI JO UCiBal B} SMOYS SBWEU UWNICO BYJ “LDO'0 JO ,d B J& 21005 2uabfjod yoee pue ereydsiuey jybu uy) ui sewnjon [E2U0OGNS o) SBNEA d PUE 2

(L00'D'Z00°0) 66Z'0
€0-3LL°L

J[€00°0'v0-31L8°2) LZOD
€0-3eL'8

(zoo'0'Lo0'0-) 8850
v0-328° ¥

(Looo'zooo) €L O
€0-30L°L

(zoo'0'zoo'0) 6260
S0-32E°L

(Loo0'zoo'o) L8L°0
vo-3ieL

(¥0-3Z9'¥'c00°07) 8910
€0-32L’e

(eoo'0'v0-3L5°27) ZOLD
£0-38€°Y

{S0-36Z°L-'€00°0) 6400
£0-39¢°9

(eoo0'v0-315°27) ZOLD
€0-38€°Y

(Loo'0'zooo) €9¢°0

(Loo'0's00°07) €020
€0-398°¢

(soo0'Lo0'07) 80L°0
€0-395°

(y00°0'Z000) LLY O
y0-391°6

(eoo'0'c00'07) ¥2L0
yO-39¢°L

J[L00°0'v0-326°€) 8200
£0-3€5°'8

(voo'0'zZ00'07) €6E°0
€0-362°L

(eoo'0'c00°07) 8980
S0-306'

(voo'0'zoo'o) GLZD
¥0-35€°2

(£00°0'€00°0") ¥6L°0
y0-3L2°L

(voo'0'zoo'o) GLZD
y0-35€°2

(soo'0'L00'07) 6620

(zoo'0'c00°0) 86¥°0
yO-3Lv'8

(e00°0'Z00°07) 9640
¥0-385°'8

(Loo'0'v00°07) G6L'D
€0-3LL’E

(zoo'o'c00'0’) 2LS 0
P0-396°L

(eoo'0'zoo'o) £L9D
yo-3L9Y

(zoo'0'c00'07) £95°0
¥0-38L°9

(zoo'0'c00'07) 2¥6°0
90-30L°6

(eoo'0'zoo'0) ¥¥9°0
y0-356°€

(e00'0'z00'07) £G6°0
90-3€€°S

(eoo'0'zoo o) ¥¥9°0
y0-356°€

(zoo'o'co0'0) LOSD

(£00°0°€00°0) 8060
S0-382°¢

(eo00'zZo007) vrLO
y0-3€8°L

(zooo'co0'0) LELO
YO-3V6°L

(voo'0'L00'07) 6920
€0-36€°L

(voo'0‘'L00°07) L8220
€0-30v'e

(voo'0'Lo0'07) ¥SZ'0
e0-3vee

(zoo'o'co0'0) LZ8D
S0-38L'8

(eo0'0'zo0'07) 0650
y0-386°Y

(eoo'0'zoo'o) LOZD
vo-3vse

(eo0'0'zo0 07} 0650
y0-386'V

(soo0'L00°07) #SLD

(€00°0°Z00°07) 8590
y0-38L°€

(vo0'0'zZ00'0) 86¢°0
yO-32¥°L

(zoo'0'c00'0) G940
yo-3vyL

(voo'0'zoo o) 69%'0
y0-381'8

(voo'0'L00°07) 6220
€0-306°L

(voo'0'L00°07) ZLZD
€0-3iv'e

(zoo'o'vo0'07) LOS D
y0-32€°L

(e0o'0'c00'07) G260
SO-3vyL

(zoo'o'c00'07) 8080
S0-395°6

(eoo'0'c00'07) G260
So-3vyL

(voo'0‘'L00°07) ZLZD

S¥d SdNS 30dVY

(30dv-) Sud epim-awousn

(30dv)
asuodsas aunwuwi JO UORBARDY

(30dv-) Alquesse
ajoted uiajosdod)| ewse|d

(30dv-) uoneziuebio
yungns xajdwoo pidi-uiajoid

(30dv)
podsues) [018)S8|0Y2 BSIaAaY

(30dv-) Buipuiq uisjoud ney

(30dv-) ssedoud ajj0qejea ujajoud
Josinaaud projAwe jo uonenbay

(30dv-) xajdwos pidij-uisjold

(30dv)
uoneuuo} gy jo uonenbay

(30dv-)

y0-3ve'8 €0-3€6°L yo-38L°L €0-364'C €0-39¥°¢C Alquesse xajdwoo pidij-uiajoid
(10 %56) d (10 %s6) d (12 %56) d (12 %56) d (10 %s6) d

A .- A A A 81098 jsu owabkjog
X1u104 v4 Wby wnnBuy "ddiyesed y4 Yo wnnbui) "ddiyesed vy Wby wnnBu) v4 ya wninbui) v4

100°0 1 d 38 3OV Buipnjoxa Sid pue ease Adosjosiue [euoijoely JYdSTV 10§ S)NsSay Z°9 d|qeL

165



jedwesoddiyesed = ‘ddiyeied Apusnypp uesw = QW ‘8181 Leacosip 8518} = ¥O4 'ybu = Y ‘Y8 = 7 '3 wejaudodyody = 304V :piousaiy) auebijod = ,d ‘84008 sy auebljod = SHd swAuony

8U) MOYS SBWEU MCJ BU) BiyMm ‘jseiejur jo uciBes By} SMOYS SBWEU UWNGS 84l L000 JO

"GO’ 0> SUCHEDOSSE PBRBNCO YOS ..

(50" > enjen d) sucqenosse jueayubis feuon ,

‘se100s nuebijod

,d € e e100s suebijod yoee pue eieydsiuay Jybu By} Ul SBLNIOA |EXP0OGNS 10} SBNEA d PUE 2

(90-3€2°€'90-3.8't) G6L0
y0-30€°L

(90-38Z'6'90-36¢€°¢) 299°0
¥0-3.9°€

(90-3¥5°9'90-350°2-) L0€'0
€0-300°¢

(90-321°2'90-38¢€°L-) ¥8L°0
€0-3.€°¢€

(90-329'9'90-368°L-) G420
e€0-362°¢

(90-399°9'90-3.6°L-) 88Z'0
€0-39L°¢

(90-38€°2'90-3LE°L) ZLL'0
£0-346°E

(90-326'9'90-369°L-) GEZ'0
€0-30L°¢

(90-38¢°2'90-3LE°L-) 2LL°D
£0-346°€

(90-310°2'90-3€5°L-) 60Z'0

(90-3¥0°Z'90-39¢°¢-) ££9°0
v0-3E€° Y

(90-36Z°¢'90-3¥L°2) £29°0
y0-362°€

(90-3€1°€'90-382°2-) 0920
vo-3LL'L

(90-319°2'90-38L°2-) LGB0
90-3¥L L

(90-366'2'90-30¢°27) Z€8'0
§0-355°8

(90-390°¢'90-38¢€°2-) 908°0
¥0-3SL°L

(90-3€£°2'90-3¥L°27) 866°0
80-39Z°L

(90-3v1°€'90-362°2-) 09L°0
vo-3LL'L

(90-3££°2'90-3¥L°2-) 866°0
80-39Z°L

(90-312°2'90-329°2) 986°0

(90-364°L'90-369°Z-) GOL0
0382

(90-325°2'90-388°L-) 294°0
vo-3L8°L

(90-356'2'90-36¢°L-) 8LG'D
vo-3.2'8

(90-32£°2'90-30L°L-) €690
#0-300°¥

(90-3£6'2'90-306°L-) £25°0
yO-3L6°L

(90-3v0'e'90-3€¢°L-) 08Y'0
¥0-398°6

(90-321°€'90-32€° L) BLY'0
£0-36Z°L

(90-350°¢'90-30¢° L) L9¢°0
€0-3v0’L

(90-321°¢'90-32¢°L-) 6LV O
£0-36Z°L

(90-322°2'90-3¥9°L) GL9'0

(90-385°2'90-3.6°L-) ££9°0
-3y v

(90-39¢°2'90-3LL°L-) €2L°0
vO-3Ivy

(90-31v'e'20-352° L) €020
€0-3vL’e

(90-3Zv'¢'L0-366°9) 961°0
£0-3vze

(90-3z£'€'20-380'8) ¥EZ0
€0-35L°¢

(90-3ev'e'20-362° L) 2020
€0-35L°€

(90-391°€'90-3€0°L-) 0ZE°0
£0-326°L

(90-3ev'e'20-38L° L) LOZ'O
€0-38L°€

(90-391°€'90-3€0°L-) 0ZE'0
£0-326°L

(90-31£°€'20-366°L) LEZ'D

(90-382°'2'90-316°L-) ¥98°0
G0-3.9°G

(90-30Z°2'90-31L0°2) 2€6°0
S0-36E°L

(90-381°+'80-366°2) ¥50°0
€0-391L°L

[90-39Z +'80-31¥6°9) €400
£0-368°L

(90-382°€'20-30¢°+) 0ZL'0
€0-3.9'¢

(90-326°€'20-30£4°2-) 880°0
€0-3L9°S

[(90-3re v'80-352'8) Z¥0'0
€0-3veL

(90-366°¢'20-3L¥'2-) €80°0
€0-36L°S

[{90-3rev'80-352'8) Z¥0'0
€0-3veL

(90-3€1°¥'80-328°G) £50°0

S¥d epIm-awous

asuodsal aunwiwy| JO UOREBARIY

Alquesse
ajoiued uiajosdod| ewse|d

uoneziuebio
jungns xajdwoo pidij-uiajoid

podsues) [018)S8|0Y2 8SIaAdY

Buipuiq urajoud ney

ssasoud ajjoqejes ujajosd
Josunoaud projAwe jo uopenbay

xa|dwoo pidij-ulajoid

uonew.o} gy jo uonenbay

Alquesse xajdwoo pidij-uiajoid

£0-320°¢ L0-385°S y0-3L0°G £0-38L°¢C £0-396°9
(12 %se) d (12 %s6) d (12 %s6) d (12 %s6) d (12 %s6) d

A A A A A 8109s jsu ouabhjog
Xjulo4 AN Wby wnnbBuip "ddiyesed aw Yo wnnbui) "ddiyesed g W6y wnnBuid aw yo wninbuid an

lllllll ——

100°0 ,d e 30dV Buipnjaul S¥d pue AJIAISNyIp uesw DY dSTY 10} S)NSayY €'9 djqel

166



jedweseddiyesed = ddiyeied Apnusnypp uesw = QW ‘8181 UBAcosIp 8s1B) = Y4 'Ybu = Y 'y8) = 7 '3 wejaudedyody = 304V plouysaiy) auebijod = ,d 'BI03G ysiy auebljod = §yd swhuony

"G0’'0> SUCHEDO0SSE PBlOBUed HAS ..

(50" > enjea d) suonenocsse Juesyiubis fjeuwoy ,

‘s8100s nuebfijod

BU} MOUS SBWEU MOJ BU) BIYM ‘jS@I8jUl Jo uciBal BU} SMOYS SBWEU LUWNICS BYY “L0O'0 JO ,d & & e100s auebfjod yoee pue eisydsiwuey jybu ey ur sawnjon |eaioogns Joj senjea d pue 2y

(90-362°9'90-328°L-) 0920
€0-3ev'e

(90-321°2'90-325°9) 8LED
€0-3L6°L

(90-3€L°¢'90-38€ ") GG6'0
90-3¥L'9

(90-3¥¥'€'90-322°5) L8O
yo-3€T°€

(90-329'8'20-3¢¥'L-) 850°0
€0-3v8°9

(90-3€L°¥'90-3v0°t) L18°0
G0-3L9Y

(90-300°+'90-39.°t-) G98°0
G0-395°G

(90-3¥0°9'90-38¢°'2-) €LY O
£0-362Z°L

(90-3£8°6'90-326°'2-) GLG'0
y0-3€L°8

(90-3¥0°9'90-38%°'2-) €LY O
£0-362Z°L

(90-391°9'90-399°'2-) LE¥'0

(90-32¢'¢'L0-369'67) OLZ 0
€0-386'¢C

(£0-359'8'90-395°+-) Z8L°0
€0-3.€°¢€

(90-362°'2'90-390°¢) 6440
yO-364°L

(90-315°€'90-346°L-) ¥85°0
y0-369°G

(90-301°L'90-35¢'t-) 8€Z'0
£0-3¥9°Z

(90-3z0°¢'90-364°2-) 258°0
G0-385°9

(90-36¢°£'90-320°2-) LO9' O
¥0-361°G

(90-390°2'90-30¢€°¢-) 0590
¥0-306°¢

(90-32L°¢'90-38L°L-) 680
Y0-3L0°6

(90-390°2'90-30¢£°€-) 059°0
¥0-306°¢

(90-3vv'Zz'90-3LLe) €180

(90-368°€'L0-3££°G) 8EL'0
€0-3GE°Y

(Z0-318°9'90-382°¢7) #ZL°0
€0-359°€

(90-3¥€°2'90-350°2-) G680
S0-3S¥'E

(90-312°2'90-364°L-) £89°0
vo-3Lce

(90-3.¢£°L'90-302°¢7) LEY O
€0-32¢°L

(90-3¥8°2'90-369°L-) 6190
0-388"¢

(90-31LL°€'L0-380°8) 6020
£0-3ZL°E

(90-368°2'90-315°L-) 8€5°0
#0-306°L

(90-36£°€'90-321L°L-) GZED
£0-3L6°L

(90-368°2'90-315°L-) 8€5°0
¥0-306°L

(90-3¥1°2'90-31+°2) G060

(90-3€4°2'90-3LL°L-) ¥ELO
vo-3ve'e

(90-39¢'z'90-3LL L) €2L0
yo-3vye

(90-3¥5°€' L0-365°G) GGL°0
£0-3€6°E

(90-39¢'1L'90-392°Z7) 9¥5'0
y0-360°L

(90-3.6°L'90-31£°27) 8480
G036V

(90-3z8°L'90-30¢°'2-) L8L°0
0-32¥°L

(90-39Z°2'90-396°L-) 988°0
S0-300'%

(90-3¢¢°L'90-389°2-) £65°0
#0-358°9

(90-3££°2'90-306°L-) 6£8°0
GO-3L6°L

(90-3¢¢°1'90-389°2-) £65°0
#0-358°9

(90-306°L'90-3624°2-) £95°0

(90-31€°2'90-316°L-) ¥G8°0
S0-315°9

(90-31L2°'2'90-310°2-) 8260
S0-385°L

(90-306°€' L0-3Ly'9) LLLD
£0-325°€

(90-35£°L'90-306°Z7) LL¥'0
yO-3LL6

(90-325°2'90-36L'L-) €¥L°0
¥0-380°2

(90-30£°1'90-346°27) LB9'D
¥0-390°¢

(90-3£9°2'90-3€9°L-) 9¥9°0
0-380°¢

(90-3¥y'Z'90-3LL L) 62L0
y0-32£°2

(90-3££°2'90-3€5°L-) €850
¥0-3€8°G

(90-3¥v'Z'90-3LL L) 62L0
y0-32£°2

(90-32£°1'90-346°2-) 6690

S¥d SdNS 30dY

(30dV-) Sud epim-awousn

(304dv")

asuodsal aunwiwi Jo UOREAROY

(30dv-) Alquesse
ajoiued ujajoudod)| ewse|d

(30dv-) uonezuebio

yungns xajdwos pidij-uiajoid

(304v)

podsues} [018)S8|0Y2 8SIaAaYy

(30dv-) Buipuiq urejoud ney

(30dv-) ssesoud ajoqejen ujajoud
Josinoaaud projAwe jo uongenBay

(30dv-) xe|dwoa pidil-uiajoid

(304v-)
uonewuo} gy jo uonenbay

(304v)

£0-391°L #0-390°L S0-31L8°2 #0-305°9 0-388°2 Alquasse xajdwo pidi|-uiajoid
(12 %s6) d (12 %s6) d (12 %56) d (12 %s6) d (12 %s6) d

pe- pe-} A A A 81098 jsu owebklog
xiuio4 N Wby wnnBuip "ddiyeseg g Yo wnnbu) ddiyesed aw Wby wninBuiy aw ye wninbuiy aw

10070 ,d e 30dV Buipnjaxa S¥d pue AjIAISNjIp uesw QY dSTV 40} S)NSaY $'9 djqel

167



Figure 6.5 UK Biobank genome-wide PRS and dMRI metrics, showing associations
with reduced FA and increased MD. Imaging phenotypes are shown on the X axis, the
beta coefficients (positive and negative) are shown on the Y axis. The heights of the
bars indicate the amount of variance explained (R?), and any nominally significant
results are labelled with their p value. Each bar represents a version of the polygenic
risk score. The bars are colour coded by the p value threshold used in the training
data, shown on the legend.
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Figure 6.6 UK Biobank protein lipid complex subunit PRS and dMRI metrics, showing
associations with decreased FA and increased MD. Imaging phenotypes are shown
on the X axis, the beta coefficients (positive and negative) are shown on the Y axis.
The heights of the bars indicate the amount of variance explained (R?), and any
nominally significant results are labelled with their p value. Each bar represents a
version of the polygenic risk score. The bars are colour coded by the p value threshold

used in the training data, shown on the legend.
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Figure 6.7 Scatter plot showing UK Biobank association between normalised
genome-wide PRS and normalised MD in the right parahippocampal cingulum. White
circles indicate individual data points. Density represents the number of data points in

each area.
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6.5 Discussion

In line with the hypothesis, increasing PRS was associated with increased diffusivity,
measured with MD, and decreased anisotropy, measured with FA, in the older adult
cohort. The strongest associations were between the pathway specific PRS and
increased MD in the parahippocampal cingulum and cingulate gyrus, although there
were also significant negative correlations between the pathway specific PRS and FA
in the parahippocampal cingulum. We saw no association with either FA or MD in the
fornix in the UK Biobank cohort at PT = 0.001, although there was some evidence of
association on secondary analysis with more generous P'. These results were not
driven by the APOE locus, and SNPs in the APOE region alone were slightly less
strongly associated with the same phenotypes. The genome-wide polygenic scores
showed less evidence of association than the pathway specific PRS, with no
significant results withstanding multiple comparisons correction with FDR. In the
younger cohort there were no statistically significant findings. Whilst there was some
evidence of association between increased PRS and increased MD in the younger
cohort, particularly in the left cingulum, these results did not withstand correction for

multiple comparisons.

As discussed in previous chapters, other studies have applied PRS based on AD
pathways to investigate associations with subcortical brain volumes (Ahmad et al.,
2018) and cortical thinning (Corlier et al., 2018; Caspers et al., 2020). The present
study was the first to apply this approach to investigate white matter microstructure.
Furthermore, this experiment has used a threshold-based PRS, allowing us to include
a much greater amount of genetic information than previous studies which used only
Bonferroni significant loci (Ahmad et al., 2018; Corlier et al., 2018; Caspers et al.,
2020).

Findings from UK Biobank are consistent with the previous literature. As discussed in
Chapter 3, changes in the left parahippocampal cingulum (Honea et al., 2009), and
cingulum (Douaud et al., 2011) have previously been identified in AD patients and in
MCI (Sexton et al., 2011). Decreased FA in medial temporal areas is evident in healthy
APOE carriers (Persson et al., 2006; Bagepally et al., 2012) and in pre-symptomatic
autosomal dominant AD (Ringman et al., 2007).
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Contrary to the hypothesis, there was little evidence of association between white
matter metrics and PRS in the younger adult cohort. This was unexpected, as a
number of previous studies with samples of comparable age have observed
associations between AD genetic risk and changes in white matter microstructure.
One study of healthy young participants (n = 73, mean age 28.6 years, SD 4.20)
observed extensive decreases in FA among APOE carriers (Heise et al.,, 2011). A
study of young and healthy carriers of a clusterin risk locus (n = 398, mean age 23.6,
SD 2.2) also reported decreased FA in a number of areas, including in the cingulum
and the fornix (Braskie et al., 2011). Similarly, Foley at al used an AD PRS in a cohort
of young adults (n = 197, mean age 23.9, SD 5.1) and found reduced FA in the right
cingulum (Foley et al., 2016). Associations have even been reported in infant carriers
of APOE4. Dean and colleagues reported changes in white matter myelin water
fraction in the precuneus, cingulum, lateral temporal, and medial occipitotemporal
areas among a cohort of infants (n = 162, 2-25 months old) (Dean et al., 2014). The
same group demonstrated longitudinal differences between infant APOE4 carriers
compared to non-carriers (n = 233, aged 2-68 months), with differences in myelin
water fraction in the uncinate fasciculus, temporal lobe, internal capsule and occipital
lobe in the APOE4 group (Remer et al., 2020). Little is known about the effect of
polygenic risk for AD on brain structure across the life course, particularly during
neurodevelopment. However, it is clear that white matter structural maturation
progresses during adolescence and continues in early adulthood. This is evident in
age-related changes in white matter volume and microstructure (Paus, 2010). It is
possible that the effect of polygenic risk for AD in brain structure at age 20 are masked
by concurrent neurodevelopmental white matter changes. It is also possible that
measures of specific white matter microstructure components, such as myelin water
fraction, may be more sensitive to AD-related changes in childhood and early
adulthood, as the development myelin from precursory lipids may be affected by lipid
dysregulation associated with AD risk loci (Deoni et al., 2012; Dean et al., 2014).

Contrary to expectations, there were no significant associations observed between the
PRS and changes in the fornix in the older age cohort at P™ = 0.001. This is surprising
considering previous studies reported changes in the fornix in healthy carriers of
APOE (Zhang et al., 2015). This might be explained by the neuroanatomy of the fornix,
which is narrow, highly curved and close to the ventricles. The tract specificity of the
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TBSS projection step is unclear, and TBSS may have particular difficulty in
differentiating the fornix (Smith et al., 2006; Bach et al., 2014).

It was hypothesised that distinct patterns of signal would be observed with genetic
burden in different disease pathways, as reported in some previous studies (Corlier et
al., 2018; Caspers et al., 2020). As with grey matter volumes, described in Chapter 5,
the results did not support this. For tracts which showed changes, the variance
explained and associated p values were similar between the pathway specific PRS.
This mirrored patterns of cortical thinning and subcortical volumes described in
Chapter 5 and may reflect the significant overlap in the SNPs included in each

pathway.

The associations observed in UK Biobank between PRS and white matter metrics
were not driven by the APOE locus. The associations remained when APOE was
removed from each PRS. The APOE region alone explained a smaller amount of
variance in the phenotype than the pathway PRS. This also corroborates the findings
of the only previous study to use an AD PRS to explore white matter microstructure
which also reported that the signal was independent of APOE genotype (Foley et al.,
2016). The genome-wide PRS and the immune response PRS showed less evidence
of association with alterations in white matter microstructure. Each of these PRS
included a much greater number of genes (Kunkle et al., 2019), which may have

resulted in more noise in the PRS.

It is unclear whether FA or MD is the more sensitive marker of AD related changes.
Increasing diffusivity and decreasing anisotropy occur in tandem. In the present study
we found more evidence of association between MD and polygenic burden than FA.
A number of studies have only reported significant decreases in FA, although some
have reported only significant increases in MD (Adluru et al., 2014; Kljajevic et al.,
2014; Cai et al., 2017). Foley and colleagues identified an association between AD
PRS and FA in the right cingulum (Foley et al., 2016), whereas the present study found
AD PRS to be associated with MD in the right and left cingulum in older adults.
Furthermore, interpreting decreased FA or increased MD is not straight forward.
Unlike grey matter morphology, water diffusion does not measure neuroanatomy
directly. As discussed in Chapter 3, there is degeneracy in dMRI signal changes, and
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decreased anisotropy and increased diffusivity can represent a number of structural
and pathological ground-truths. Lower anisotropy can reflect fibres running at different
orientations. Pathological states such as demyelination, oedema, axonal loss or
axonal growth can also affect dMRI signals, as explained in Chapter 3. Therefore, it is
a mistake to indiscriminately interpret changes in diffusion signal as evidence of
neurodegeneration. However, other biomarkers of neurodegeneration correlate with
reduced FA and increased MD in AD, such as amyloid on PET (Kantarci et al., 2014),
and CSF amyloid and tau (Amlien et al., 2013; Gold et al., 2014; X Li et al., 2015).
Furthermore, cognitive function has been shown to be associated with FA and MD
changes (Fletcher et al., 2013). For further dMRI methodological considerations,
please see Chapter 3.

6.5.1 Strength and limitations

A number of strengths and limitations of Chapter 5 also apply to this analysis. The
present study had superior statistical power compared to previous studies for two
reasons. First, it also used the largest and most recent GWAS of clinically assessed
AD, Kunkle et al (Kunkle et al., 2019), as the discovery dataset. Effect size estimates
for each SNP are therefore the most accurate available, with greater power than
previous estimates. PRS and R? have been shown to be highly sensitive to the size
of discovery dataset (Schizophrenia Working Group of the Psychiatric Genomics,

2014). Second, it used population cohorts which provided large target sample sizes.

As explained in Chapter 5, the use of large population imaging cohorts has some
disadvantages. For example, the ALSPAC imaging sub-studies has specific inclusion
criteria (see Chapter 4) meaning the sample over-represents males, and a small
number of participants reported psychotic experiences. However, the regression
analysis co-varied for sex, and only a minority of the number of individuals reporting
experiences could have met criteria for a neuropsychiatric disorder. As described in
Chapters 4 and 5, a criticism of both ALSPAC and UK Biobank is that participants tend
to be healthier and from higher socio-economic backgrounds (Abigail Fraser et al.,

2013; Fry et al., 2017) which could affect the generalisability of the results.
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Whilst the polygenic scoring methods applied to ALSPAC and UK Biobank were the
same, the dMRI methodology was significantly different, and thus likely to lead to
different results. Therefore, it is difficult to be sure whether differences in results were
due to differences in the sample or were due to measurement bias. As described in
Chapter 5, even though the present study delineated pathway specific polygenic
profiles, it is not possible to determine the exact molecular mechanisms responsible
for changes in phenotype because PRS combine the effect of risk variants. Elucidating
that will require further functional genomic studies of individual variants. Further
longitudinal genetic imaging studies, including even younger samples than the present
study, will be needed to improve our understanding of how AD polygenic risk is
manifest throughout development. Similarly, longitudinal studies combining
neuroradiology and CSF biomarkers with advanced MRI and genetics can put these
findings into context of biomarker abnormalities seen in incipient AD. As discussed in
Chapter 5, future pathway-based studies will also require large samples and would
benefit from new approaches to correcting for multiple comparisons.

6.5.2 Conclusion

Increasing PRS was associated with increased diffusivity and decreased anisotropy,
in the older adult cohort. The strongest associations were between the pathway
specific PRS and increased MD in the parahippocampal cingulum and cingulate gyrus.
There were also significant negative correlations between the pathway specific PRS
and FA in the parahippocampal cingulum. There were no significant associations in
the younger cohort. Further longitudinal studies, using multimodal imaging and
biomarker techniques, as well as functional genomic studies of individual variants will

be needed to understand the biological significance of these findings.
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CHAPTER 7: ALZHEIMER’S POLYGENIC RISK SCORES, BLOOD LIPID &
INFLAMMATORY MARKERS

Dr Emily Baker provided the lists of SNPs in the Kunkle et al 2019 disease pathways,
as they were used for separate analyses. Dr Katherine Tansey assisted with

genotyping quality control in ALSPAC.

Some information from previous Chapters is repeated here for convenience,

particularly information on polygenic scoring methods from Chapters 4, 5 and 6.

7.1 Summary

There is significant evidence of a link between dyslipidaemia, inflammatory
dysregulation and AD. Epidemiological studies have found associations between
blood lipid levels, inflammatory markers and dementia. Raised lipids and inflammatory
markers are also risk factors for cardiovascular disease, and tools designed to
measure cardiovascular risk are associated with neurodegenerative phenotypes.
There is pleiotropy between late onset AD and cardiovascular risk loci. The APOE4
allele confers significant increased risk for both AD and cardiovascular disease. AD
genome-wide association studies (GWAS) have established associations with SNPs
involved in lipid metabolism, such as ABCA7 and CLU, and those implicated in
inflammatory processes, such as HLA-DRBS5 and CR1. A recently identified rare
variant in TREM-2 with anti-inflammatory functions also confers increased risk for AD.
Pathway analysis using data from GWAS have further implicated lipid metabolism and

the innate immune system in AD pathophysiology.

Previous studies have investigated pleiotropic genetic enrichment in AD as a function
of blood lipid profiles, and a small preliminary study identified associations between
genome-wide and immune specific AD polygenic risk scores (PRS) and inflammatory
markers. To date, no studies have yet applied AD pathway specific PRS to investigate

blood lipid phenotypes.
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This study aimed to investigate associations between disease pathway specific PRS
and blood lipid and inflammatory markers in adults using a large population cohort. As
a secondary aim, it compared the associations using more and less liberal p value

thresholds.

Increased polygenic risk for AD was associated with increased blood lipids, particularly
LDL and total cholesterol. These results were reflected across the genome-wide PRS
and most of the pathway-specific PRS, and withstood corrections for multiple
comparisons. CRP was negatively associated with increased genome-wide PRS and
with most of the pathway PRS. The results attenuated when SNPs in the APOE region
were excluded from the PRS. This is in keeping with the findings of previous
investigations. Although none of the PRS were significant when APOE was omitted,
some of the PRS including the APOE region explained greater variance in phenotypes
than APOE alone. The contribution of the polygenic component of AD to these
phenotypes (besides the APOE region) will need to be confirmed by further studies.
Further investigation is needed into the exact biological mechanisms by which loci
within PRS contribute to AD pathophysiology.

7.2 Introduction

Growing evidence points to an association between AD and metabolic processes,
such as lipid metabolism and inflammation. Dyslipidaemia and systematic
inflammatory dysregulation are overlapping risk factors for cardiovascular disease and
AD (Stampfer, 2006).

Some epidemiological studies have found that increased serum cholesterol is
associated with an increased risk of AD, although the findings of other studies
contradict this (Li et al., 2005; Reitz et al., 2010; Tynkkynen et al., 2018; Wagner et
al., 2018; Ferguson et al., 2020). This discrepancy in findings could be partly attributed
to the smaller sample sizes in the earlier studies. Recent evidence from a lipidomic
analysis found a combination of 24 lipid molecules could distinguish AD cases from
controls with >70% accuracy. Specific lipid profiles could also predict disease

progression and brain atrophy (Proitsi et al., 2017).
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Further evidence of overlapping AD and cardiovascular risk comes from studies using
tools designed to predict cardiovascular morbidity, such as the Framingham
Cardiovascular Risk Profile (FCRP). The FCRP has been shown to be associated with
cortical thinning (Cardenas et al.,, 2012) and cognitive decline in both cognitively
healthy individuals and those with Mild Cognitive Impairment (MCI) (Jefferson et al.,
2015). High FCRP scores can also predict progression from MCI to AD (Viticchi et al.,
2015). Observational studies of older adults suggest that elevated levels of serum
inflammatory markers are linked to worsening cognitive abilities (Dik et al., 2005) and
may be associated with incident dementia (Tan et al., 2007).

Molecular and biomarker studies suggest a role for phospholipids in AD pathogenesis
(Di Paolo and Kim, 2011; Mapstone et al., 2014). Cholesterol is essential for synapse
maturation and maintaining synaptic plasticity (Koudinov and Koudinova, 2001; Mauch
et al., 2001). Levels of cholesterol also modulate AB clearance and neurofibrillary
tangles formation via lipid rafts present in neurone membranes (Rushworth and
Hooper, 2011). Complement factors and activated microglia are established
histopathological features in AD (Eikelenboom et al., 2012).

There is genetic overlap between late-onset AD and cardiovascular risk loci. The
APOE alleles, Epsilon 2, 3 and 4, encode protein isoforms with different lipid
interactions in serum (Liu et al., 2013). APOE4 homozygotes have an eight-fold
increase in risk of AD compared to non-carriers (Corder et al., 1993). APOE4 is
associated with higher low density lipoprotein (LDL) cholesterol and significantly
increased cardiovascular risk (Lahoz et al., 2001). APOE4 carriers with cardiovascular
disease often have comorbid AD (Hofman et al., 1997; Eichner et al., 2002). APOE is
involved in cholesterol transport and catabolism of lipoprotein components rich in

triglycerides (Kalaria, Akinyemi and lhara, 2012).

Late-onset AD GWAS have established associations with SNPs involved in lipid
metabolism, such as ABCA7 and CLU, andthose implicated in inflammatory
processes, such as HLA-DRBS and CR1 (Jones et al., 2010; Karch, Cruchaga and
Goate, 2014). Recently, a rare variant in TREM-2 has been shown to confer increased
risk for AD. Itis also implicated in anti-inflammatory functions (Guerreiro, Wojtas, Bras,
Carrasquillo, Rogaeva, Majounie, Cruchaga, Sassi, John S.K. Kauwe, et al., 2013;
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Jonsson et al., 2013). As discussed in previous Chapters, pathway analysis using data
from genome-wide association studies have further implicated lipid metabolism and
the innate immune system in AD pathophysiology (Jones et al., 2010; Kunkle et al.,
2019).

There are polygenic contributions to inflammatory markers and lipid levels. For
example, a meta-analysis of GWAS including more than 80,000 participants identified
multiple SNPs for C-Reactive Protein (CRP) levels. Loci were linked to pathways
involved in metabolic syndrome or the immune system, and regions not previously
implicated in chronic inflammation (Dehghan et al., 2011). A GWAS of plasma lipids
in over 100,000 subjects reported significant associations with 95 loci. These included
SNPs near genes known to function as lipid regulators and a number of loci that had
not been previously implicated in lipid metabolism (Teslovic, 2013). There is evidence
of genetic pleiotropy between risk loci for AD, CRP and lipoprotein metabolism.
Desikan and colleagues used the summary statistics from three large GWAS to
investigate overlap between SNPs associated with AD, CRP, triglycerides, high-
density lipoprotein (HDL) and low-density lipoprotein (LDL) levels. They found that AD
SNPs were enriched for SNPs associated with HDL, LDL, triglyceride and CRP
SNPs up to 50-fold. By conditioning on SNPs associated with these phenotypes,
they observed enhanced statistical power in gene discovery analyses, identifying 55
novel AD risk loci (Desikan et al., 2015). A small preliminary study (n = 93 AD cases)
tested a range of inflammatory markers for association with a threshold-based PRS
and found that CRP was associated with an increased PRS specific for the immune

response (Morgan et al., 2017).

As blood lipids and inflammatory markers are established biomarkers used in clinical
practice, standardised methods exist to measure these at scale. For lipids, enzymatic
assays are commonly used in automated analysers. These techniques involve
hydrolyzing esterified cholesterol to free cholesterol, then oxidizing to cholest-4-en-3-
one. The hydrogen peroxide produced during the oxidation is then measured using
fluorometric probes (Li et al, 2019). CRP is commonly measured by
immunoturbidimetric assays in clinical laboratories. These involve microparticle latex
reagents, non-immunopurified antibodies to assay against CRP (Price et al.,

1987). This method is reproducible and fully automated.
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7.2.1 Rationale and Aims

Taken together, findings from epidemiological studies, molecular and genetic research
suggest that processes involved with lipid metabolism and inflammation also affect AD
pathogenesis. Recent literature provides evidence of the effect of AD risk genes on
blood lipids and inflammatory markers.

In Chapter 2, existing studies exploring the use of AD polygenic scores (PRS) were
systematically reviewed and summarised. There was evidence of association between
AD PRS and a variety of phenotypes, including cognitive health, neuroimaging and
CSF biomarkers. Although studies have explored the effect of APOE on metabolic
markers (Ferguson et al., 2020), how the polygenic component of AD risk is manifest
in blood lipids and inflammatory markers is not well understood.

As discussed in previous chapters, GWAS have identified further susceptibility loci in
addition to APOE4 (Lambert et al., 2013; Kunkle et al., 2019). These novel loci are
associated with a number of biological pathways, such as lipid metabolism, the innate
immune response, and synaptic processes (Jones et al., 2010; Holmans and Jones,
2012). By detecting pathways enriched for risk alleles, PRS can allow molecular sub-
classification. Only one study has used AD pathway polygenic scores to assess
inflammatory blood markers. It was limited by a small sample size, therefore the
findings can only be considered preliminary (Morgan et al., 2017). As mentioned in
previous Chapters, the variance explained by each pathway is small (Darst et al.,
2017), consequently large ‘discovery’ GWAS and large target sample sizes are
necessary (Dudbridge, 2013).

The primary aim of this chapter is to investigate associations between disease
pathway specific PRS and blood lipid and inflammatory markers in adults using a large
population cohort. As a secondary aim, it will compare the associations using more
and less liberal p value thresholds to assess which cut off explains the most variance
in the phenotype.

184



7.2.2 Hypothesis

It is hypothesised that increasing genetic burden for AD, measured in increasing PRS,
will be associated with i) increased very Low Density Lipoprotein (vLDL) and Low
Density Lipoprotein (LDL) cholesterol, ii) decreased High Density Lipoprotein (HDL)
cholesterol and iii) increased C-Reactive Protein (CRP). Additionally, it is
hypothesised that lipid-related disease pathways PRS will show greater association
with lipid biomarkers, and that CRP will be associated with the immune response
pathway PRS.

7.3 Methods
7.3.1 Participants

Participants were enrolled through the Avon Longitudinal Study of Parents and
Children (ALSPAC). Chapter 4 contains a detailed description of ALSPAC’s
recruitment methods and sample characteristics. Briefly, it recruited pregnant women
living in a specific area of South West England who were expected to deliver their
babies in the period between 1st April 1991 - 31st December 1992. A total of 13,761
women were recruited. Follow-up assessment clinics took place at 17—18 years later.
4834 women attended and provided fasting blood samples.

This experiment excluded participants if: they reported non-British/Irish ancestry; if
they were recruited into ALSPAC twice during the study period; if they had missing
data for the variables of interest; or if they had asked to have their data removed from
the cohort. After blood assay and genotyping quality control procedures, 2776
participants with serum lipid and CRP data remained (100% female). At the time of
inclusion, their average age was 47.97 years (SD 4.28).

7.3.2 Blood marker processing

Participants were asked to fast overnight or for a minimum of six hours before their
clinic visit. Blood samples were taken using standard procedures, and the blood was

centrifuged immediately and frozen at a temperature of —-80 °C. The measurements
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were assayed between three and nine months later, with no previous freeze-thaw
cycles during this period. Plasma lipids (total cholesterol, triglycerides, and LDL and
HDL cholesterol) were assayed using the Lipid Research Clinics Protocol with
enzymatic reagents (Technicon RAS500). LDL cholesterol concentration was
calculated using the Friedewald equation: LDL=TC -HDL - (TG/2.2) (Friedewald,
Levy and Fredrickson, 1972). CRP was measured using an automated particle-
enhanced immunoturbidimetric assay (Roche UK, Welwyn Garden City, UK). Assay

coefficients of variation were less than 5%.

CRP is an acute phase reactant, increasing in response to systemic insults, such as
infection (Osei-Bimpong, Meek and Lewis, 2007). Participants with CRP values
>10mg/l (n = 104), which may have been a response to intercurrent illness, were
removed from the analysis. There are a number of single gene disorders that cause
dyslipidaemias, known as Familial Hypercholesterolaemia. These are common
autosomal dominant conditions, with a frequency of around 1 in 200-500 in European
populations (Nordestgaard et al., 2013). A number of gene carriers have been
identified among the ALSPAC offspring (Futema et al., 2017). According to the Simon
Broome criteria for Familial Hypercholesterolaemia, possible single gene disorders are
indicated by LDL cholesterol of greater than 4.9mmol/L or total cholesterol greater
than 7.5mmol/L in an adult, either untreated or the highest on treatment (Marks et al.,
2003). Participants who met these criteria (n = 12) were excluded from the analysis.
Metrics were curated and stored in files compatible with R.

7.3.3 Genotyping

The genotyping procedures for ALSPAC have been described in detail in Chapter 4
and summarised in previous experimental chapters. Briefly, participants were
genotyped using the Illumina HumanHap550 quad genome-wide SNP genotyping
platform (lllumina Inc., San Diego, California, USA). Quality control was executed in
PLINK (Purcell et al., 2007). As described in Chapter 4, participants were excluded
for: i) ambiguous sex; ii) cryptic relatedness; iii) suboptimal genotyping completeness;
and iv) non-British or Irish ancestry. SNPs were excluded based on the following
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criteria: i) minor allele frequency (MAF) < 1%; ii) SNP call rate < 98%; iii) x° test for
Hardy-Weinberg equilibrium p < 1 x 1074,

7.3.4 Polygenic Score Calculations

As described in Chapters 4, 5 and 6, PRS were calculated using the procedure
developed by the International Schizophrenia Consortium (Purcell et al., 2009). SNPs
were selected from the discovery sample, the largest Genome-wide Association Study
(GWAS) of late onset AD to date (Kunkle et al., 2019). First, SNPs with a low MAF (<
.01) were excluded. Second, the data were pruned for linkage disequilibrium in PLINK
(Purcell et al., 2007) using the clumping function (--clump; parameters r> > 0.2 (--
clump-r2) and 500 kilobases (--clump-kb)). Finally, PRS were computed in PLINK (--
score) (Purcell et al., 2007). As in previous experiments, a PT of 0.001 was applied for
the primary analysis, and seven graduated thresholds were used (p = 0.5, 0.3, 0.1,
0.01, 0.0001, 0.00001, 0.000001) for a secondary analysis. Pathway gene sets
reported by Kunkle and colleagues (Kunkle et al., 2019) were used to produce lists of
SNPs which were then matched to the discovery sample. Polygenic scores were
computed using the methods described above. These are summarised in Table 4.2 in
Chapter 4.

7.3.5 Statistical Analysis

As for the experiments described in Chapters 5 and 6, statistical analyses were
conducted in R Studio version 1.1.383 for Mac, www.rstudio.com (R Development
Core Team 3.0.1., 2013). Linear multiple regression was used to investigate
associations between PRS and blood marker phenotypes, co-varying for age and ten
principal components to adjust for population structure. As for previous experiments,
the False Discovery Rate (FDR) was used to correct for multiple comparisons of
phenotype and PRS in the R statistical computing package (R Development Core
Team 3.0.1., 2013). To determine how much of the signal was explained by APOE
alone, results were re-analysed using genome-wide and pathway PRS that excluded
the APOE region (chromosome 19 between 44.4Mb and 46.5Mb) and using a PRS
comprising only SNPs in the APOE region.
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7.4 Results

P values reported correspond only to the PRS variable in the regression model. The
primary analysis, reported below, used a P of 0.001.

7.4.1 C-Reactive Protein

There were significant associations between increased genome wide PRS and
decreased CRP in the PRS for protein—-lipid complex assembly (p = 3.11 x 105, R =
6.24 x 1073), regulation of AB formation (p = 1.10 x 104, R? = 5.39 x 10%), protein-lipid
complex (p = 1.48 x 10%4, R? = 5.18 x 10®), regulation of amyloid precursor protein
catabolic process (p = 1.10 x 10, R?2 = 5.39 x 10-®), tau protein binding (p = 1.73 x 10-
4 R? =5.08 x 103), reverse cholesterol transport (p = 1.14 x 104, R? = 5.36 x 103),
protein-lipid complex subunit organization (p = 3.96 x 105, R? = 6.08 x 10%), plasma
lipoprotein particle assembly (p = 6.00 x 10-%, R2 = 5.80 x 10-%), genome-wide PRS (p
= 1.24 x 10%, R? = 5.30 x 10%). There was no association between CRP and the
activation of immune response PRS (p = 0.542, R? = 1.34 x 104). None of the PRS
were associated with CRP when the APOE region was excluded from the score,
although the direction of the effect was the same. See Table 7.1 and 7.2 for a summary
of results with those surviving FDR correction indicated. Figures 7.1-7.5 show the p
values, variance explained (R?) and direction of effect across p value thresholds.
Figure 7.6 shows a density plot of the correlation between genome-wide PRS and
CRP.

7.4.2 Blood Lipids

There were significant positive associations between the genome-wide PRS, LDL and
total cholesterol (p = 0.014, R?2 = 2.07 x 103 and p = 0.044, R? = 1.37 x 1073
respectively), although the result for total cholesterol was no longer significant after
correction for multiple comparisons. There were also significant positive correlations
between PRS for protein—lipid complex assembly, regulation of AB formation,
protein—lipid complex, regulation of amyloid precursor protein catabolic process, tau
protein binding, reverse cholesterol transport, protein—lipid complex subunit

organization, plasma lipoprotein particle assembly and LDL, vLDL and total
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cholesterol (p range = 0.014 - 6.0 x 107, R? range 2.15 - 8.56 x 10-%). None of these
positive correlations remained when the APOE region was removed from the PRS.
When the APOE region was excluded, the protein-lipid complex and tau protein
binding PRS showed a significant negative correlation with LDL (p = 0.012, R? =2.15
x 10 and p = 0.015, R? = 2.03 x 103 respectively) and total cholesterol (p = 0.004, R?
=2.73 x 10 and p = 0.008, R? = 2.34 x 107 respectively). See Table 7.1 and 7.2 for
a summary of results with those surviving FDR correction indicated. Figures 7.1-7.5

show the p values, variance explained (R?) and direction of effect across p value

thresholds.

Figure 7.1 Associations between genome-wide PRS, CRP and blood lipids across p
value thresholds. Serum phenotypes are shown on the X axis, the beta coefficients
(positive and negative) are shown on the Y axis. The heights of the bars indicate the
amount of variance explained (R?), and any nominally significant results are labelled
with their p value. Each bar represents a version of the polygenic risk score. The bars
are colour coded by the p value threshold used in the training data, shown on the

legend.
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Figure 7.2 Associations between genome wide PRS excluding APOE, CRP and blood
lipids across p value thresholds. Serum phenotypes are shown on the X axis, the beta
coefficients (positive and negative) are shown on the Y axis. The heights of the bars
indicate the amount of variance explained (R?), and any nominally significant results
are labelled with their p value. Each bar represents a version of the polygenic risk

score. The bars are colour coded by the p value threshold used in the training data,

shown on the legend.
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Figure 7.3 Associations between APOE region SNPs only, CRP and blood lipids
across p value thresholds. Serum phenotypes are shown on the X axis, the beta
coefficients (positive and negative) are shown on the Y axis. The heights of the bars
indicate the amount of variance explained (R?), and any nominally significant results
are labelled with their p value. Each bar represents a version of the polygenic risk
score. The bars are colour coded by the p value threshold used in the training data,

shown on the legend.
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Figure 7.4. Associations between tau protein-binding PRS, CRP and blood lipids
across p value thresholds. Serum phenotypes are shown on the X axis, the beta
coefficients (positive and negative) are shown on the Y axis. The heights of the bars
indicate the amount of variance explained (R?), and any nominally significant results
are labelled with their p value. Each bar represents a version of the polygenic risk

score. The bars are colour coded by the p value threshold used in the training data,

shown on the legend.
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Figure 7.5. Associations between tau protein-binding PRS excluding the APOE
region, CRP and blood lipids across p value thresholds. Serum phenotypes are shown
on the X axis, the beta coefficients (positive and negative) are shown on the Y axis.
The heights of the bars indicate the amount of variance explained (R?), and any
nominally significant results are labelled with their p value. Each bar represents a
version of the PRS. The bars are colour coded by the p value threshold used in the

training data, shown on the legend.
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Figure 7.6 A scatter plot showing the correlation between normalised genome-wide

PRS and normalised CRP. White circles indicate individual data points. Density

represents the number of data points in each area.
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7.5 Discussion

In line with the hypothesis, increased polygenic risk for AD was associated with
increased blood lipids, particularly LDL and total cholesterol. These results were
reflected across the genome-wide PRS and the pathway-specific PRS, and withstood
corrections for multiple comparisons. CRP was negatively associated with increased
genome-wide PRS and with most of the pathway PRS. The results attenuated when
SNPs in the APOE region were excluded from the PRS.

Previous studies have investigated pleiotropic genetic enrichment in AD as a function
of blood lipid profiles (Broce et al., 2018), and associations between genome-wide and
immune specific AD PRS and inflammatory markers (Morgan et al., 2017). This was
the first study to use AD pathway specific PRS to investigate blood lipid phenotypes.
Although Morgan et al took a similar approach to investigate inflammatory markers
including CRP, the findings can only be considered preliminary as the study had
limited statistical power (smaller discovery sample (Lambert et al., 2013); target
sample n = 93 AD cases (Morgan et al., 2017)).

The associations identified between AD polygenic profiles and blood lipids were
consistent with the previous literature. A previous study identified an association
between AD PRS and blood lipids, particularly LDL cholesterol, both in infancy and
longitudinally throughout childhood. However, there were no consistent associations
excluding variants in the APOE region (Korologou-Linden, O’Keeffe, et al., 2019). A
phenome-wide association study (PheWAS) by the same group found that higher PRS
for AD was associated with prescriptions of cholesterol-lowering medicines
(Korologou-Linden, Anderson, et al., 2019).

Significant genetic pleiotropy has been identified between plasma lipids and AD. Broce
and colleagues identified 90 SNPs on 19 different chromosomes excluding APOE that
jointly increased risk for AD and cardiovascular disease. There was significant
enrichment of the polygenic component of AD and blood lipids (Broce et al., 2019).
Desikan et al also demonstrated significant genetic overlap between AD, blood lipids
and CRP. By conditioning SNPs on the association with cardiovascular phenotypes,
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they also identified a number of novel loci conferring increased risk for AD (Desikan et
al., 2015).

Mendelian randomization (MR) is a novel method for determining causal relationships
between exposures and outcomes. MR estimates the causal association between an
exposure (e.g. hypercholeasterolaemia) and an outcome (e.g. dementia) using
genetic variants as proxies for exposures (Davey Smith and Ebrahim, 2003). Andrews
and colleagues used MR to demonstrate a causal relationship between serum
cholesterol levels and AD (Andrews, Marcora and Goate, 2019). A further study by
Andrews at al used both PRS and MR methods to identify a casual association
between total and LDL cholesterol and increased neuritic plaques, however the effects
were driven by SNPs in the APOE locus. In addition, total serum cholesterol was
associated with lower hippocampal volume (Andrews et al., 2021).

Although the link between aberrant lipid metabolism and AD is undisputed, the exact
molecular mechanisms by which altered blood lipids contribute to neurodegeneration
are not clear. Peripheral cholesterol concentrations do not reflect cholesterol levels
within the blood brain barrier. The brain synthesises cholesterol internally, in
astrocytes and microglia. The APOE gene codes for the ApoE protein, and ApoE
lipoprotein particles convey the cholesterol to neurons and oligodendrocytes, where it
is used for synaptogenesis, synapse repair and dendritic spine integrity. APOE4 is
less effective in this than APOES3 (Bu, 2009). Furthermore, ApoE protein and ApoE
receptors clear amyloid-g (AB) from the brain. APOE3 binds AB more effectively than
APOE4. Therefore, APOE3 mediates AP clearance more efficiently via ApoE
receptors (Bu, 2009). In serum, A is transported to the liver for elimination in HDL
cholesterol particles (Koudinov et al., 1998). It has been suggested that APOE may
also modulate AD susceptibility by affecting the systemic clearance of AB-HDL in the
liver (Jones et al., 2010).

Contrary to the hypothesis, this study found no association between CRP and the
immune response pathway PRS, as reported by an earlier study (Morgan et al., 2017).
In the present study, there was a significant negative association between CRP and
the genome-wide PRS. A trend toward significance remained at PT = 0.001 when
SNPs in the APOE locus were removed. Of note, the Morgan et al study was based
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on an earlier GWAS and a previous pathways analysis (Jones et al., 2010; Lambert et
al., 2013). Therefore, the immune response PRS used in that study did not contain
exactly the same SNPs as the equivalent PRS in the present study. Please see
Chapter 2 for a detailed description of the factors that can influence the selection of
SNPs in PRS studies.

CRP is an acute-phase reactant produced by the liver in response to inflammatory
stimuli such as acute infection or injury. A number of studies have reported links
between AD and CRP. Significant genetic pleiotropy has been reported between CRP
and AD risk loci (Desikan et al., 2015). Histological analyses have observed
associations between CRP, neurofibrillary tangles (Duong, Nikolaeva and Acton,
1997) and senile plaques (lwamoto et al., 1994) in the brain tissue of AD patients. One
study also found CRP was associated with cortical thinning (Corlier et al., 2018).

One might expect that elevated CRP would be associated with AD. However, the
literature is contradictory. CRP is not associated with cognitive decline in older people
(Dik et al., 2005). Whilst a longitudinal study reported an association between raised
CRP in midlife and increased risk for AD (Schmidt et al., 2002), and one case-control
study reported higher CRP in AD patients (Song et al., 2015), other studies find that
there is either no difference between cases and controls (Licastro et al., 2000;
Swardfager et al., 2010; Miwa et al., 2016; Ng et al., 2018) or that CRP is lower in AD
cases (Hu et al., 2012; O’Bryant et al., 2013; Yarchoan et al., 2013). Similarly, a study
of post-surgical neurodegeneration showed that lower CRP was associated with
greater atrophy in the post-operative period. This effect was only evident in APOE4
carriers (Kline and Cuadrado, 2014). A number of other studies have demonstrated
that APOE4 carriers (both AD cases and healthy controls) have significantly lower
CRP concentrations compared to non-carriers (Chasman et al., 2006; Haan et al.,
2008; Soares et al., 2012). The estimated variance in plasma CRP explained by
APOQOE alleles is around 3.5-4.1% (Chasman et al., 2006).

Studies exploring the effect of loci associated with the immune response are also
discrepant. Pro-inflammatory polymorphisms for CRP have no effect on brain atrophy
in healthy participants (Persson et al., 2014) and are not associated with incident
dementia (Miwa et al., 2016). Whilst a previous study reported some evidence of

198



association between CRP levels and an inflammatory-specific AD PRS (Morgan et al.,
2017) this study was limited by low statistical power. A more recent study reported that
a higher PRS comprising AD risk variants linked to immunity (besides APOE) was
associated with cortical thinning, however levels of CRP did not mediate the effect
(Corlier et al., 2018). A recent MR study investigating the effect of inflammatory
cytokines found no evidence of association with AD risk, however the authors noted
that systemic inflammatory regulators could be downstream effects of AD or
inflammation and AD could both result from common factors (Yeung and Schooling,
2020). Taken together, the literature supports the association between increased
polygenic risk for AD and decreased CRP observed in this experiment, suggesting
that other mechanisms, involving other inflammatory signals, may underlie the

relationship between immune-associated variants and elevated AD risk.

The molecular mechanisms through which APOE affects CRP are not well
understood. The effect of APOE genotype on LDL and total cholesterol appears to be
mediated by the level of ApoE protein produced from the €4 allele compared to €2
or €3 alleles (Chasman et al., 2006). Conversely, there is much less evidence of
association between CRP and ApoE protein levels (Chasman et al., 2006). Instead,
the effect of APOE on CRP may be mediated by functional differences such as the
amino acid substitution from cysteine to arginine at residue 112 present in APOE4
(Chasman et al., 2006).

This study found some evidence that polygenic risk for AD contributes to levels of
blood lipids and CRP beyond APOE alone. For example, the protein—lipid complex
subunit organization PRS was positively associated with total cholesterol, LDL, vLDL
and triglycerides with APOE included. Whilst the associations were no longer
significant when APOE was omitted, some of the PRS, the protein-lipid complex
subunit organization PRS for example, showed slightly more evidence of association
with these phenotypes than APOE alone (greater explained variance and smaller p
values). This is in keeping with the findings of a previous study that reported
enrichment of the polygenic AD serum lipids besides APOE (Broce et al., 2019),
although in contrast to findings in children (Korologou-Linden, O’Keeffe, et al., 2019).
Similarly, the genome-wide PRS was significantly negatively associated with

decreased CRP with APOE, and when APOE was excluded the association remained
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at PT = 0.001. However, it was not significant at other PT, and did not withstand
correction for multiple comparisons. In line with the results of other experiments
reported in this thesis, and in contrast to the findings of one previous study (Caspers
et al., 2020), there was a similar pattern of association between pathway PRS
associated with different areas of pathophysiology.

7.5.1 Strengths and limitations

This study has a number of advantages, many of which are similar to those described
in Chapters 5 and 6. For example, this study used a large target sample size and
summary statistics from the largest clinically confirmed AD GWAS available (Kunkle
et al., 2019). PRS and R? are heavily influenced by the size of the discovery sample
(Schizophrenia Working Group of the Psychiatric Genomics, 2014).

There are a number of limitations which must be taken into account. For example, the
use of lipid lowering medications is not allowed for in this analysis. Possible autosomal
dominant familial hypercholesterolaemia cases were removed by phenotype rather
than genotype. It is possible that some may have remained if they had particularly
well-controlled disease. Participants in ALSPAC tend to be slightly healthier and from
higher socio-economic backgrounds than the general UK population (Abigail Fraser et
al., 2013). Those who had a genetic predisposition toward high blood lipids may have
made lifestyle modifications to address their cardiovascular risk. Socioeconomic and
lifestyle factors were also not accounted for in this analysis. All of these factors would
reduce the likelihood of detecting a significant effect of polygenic burden on serum
lipid levels. As discussed in previous Chapters, PRS combines risk variants, making it
impossible to draw conclusions regarding the exact molecular mechanisms relating to

alterations in phenotype.

The potential therapeutic implications of these findings are not clear. The association
between raised cholesterol and AD has led a number of groups to investigate whether
the cholesterol lowering drugs statins might have a role in prevention or slowing
progression of AD (Jick et al., 2000; Santos et al., 2017). Similarly, epidemiological
studies suggesting non-steroidal anti-inflammatory drugs (NSAIDs) were associated
with decreased risk of AD also raised hopes that they may prove useful for AD
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prevention (Szekely et al., 2004). However, large-scale randomized controlled
trials found little evidence of clinical benefit for either treatment (McGuinness et al.,
2009; Pasqualetti et al., 2009; Imbimbo, Solfrizzi and Panza, 2010), showing that an

improved understanding of the disease processes mediating these effects is required.

Future studies would benefit from longitudinal follow-up, assessment of other relevant
biomarkers such as CSF and neuroimaging changes, detailed modelling of potential
socioeconomic, lifestyle and treatment confounders, and use of techniques such as
MR to assess causality. Such studies will also require large sample sizes to allow

further pathway-based analyses.

7.5.2 Conclusion

Increased polygenic risk for AD was associated with increased blood lipids, particularly
LDL and total cholesterol, and decreased CRP. This is in keeping with the findings of
previous investigations. Although none of the PRS were significant when APOE was
omitted, some of the PRS explained greater variance in phenotypes than APOE alone.
The pattern of associations was similar across all versions of PRS. The contribution
of the polygenic component of AD to these phenotypes (besides APOE) will need to
be confirmed by further studies. Additional investigations into the exact biological
mechanisms through by they contribute to AD pathophysiology is also needed.
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CHAPTER 8: DISCUSSION

In this thesis, volumetric and diffusion MRI and serum lipid and inflammatory markers
were used to investigate manifestations of AD polygenic risk. Specifically, these
analyses sought to determine 1) whether AD polygenic risk scores (PRS) were
associated with neuroimaging and blood marker phenotypes linked to
neurodegeneration in younger and older adult cohorts; and 2) whether PRS informed
by disease pathways were associated with different patterns of alteration in brain

structure, serum lipids or inflammatory markers.

Two systematic reviews were conducted to assess the current literature on 1) the
association between AD PRS and dementia-relevant phenotypes and 2) the effect of
AD risk genes on white matter microstructure assessed with diffusion MRI. Three
experiments were conducted to address the above questions. First, as described in
Chapter 5, volumetric MRI, specifically surface-based analysis of T1 MRI data, was
used to investigate grey matter structure. Second, as described in Chapter 6, both
region-of-interest and tract-skeleton based diffusion MRI analyses were used to
assess white matter microstructure. Finally, as described in Chapter 7, serum lipid and
inflammatory markers, specifically low density lipoprotein (LDL), high density
lipoprotein (HDL), total cholesterol, triglycerides and C-Reactive Protein (CRP), were
used to determine how polygenic risk for AD manifested in the metabolome.

8.1 Summary of findings

Findings from the analyses described in this thesis contribute to our understanding of
how polygenic risk for AD manifests in brain structure and serum markers of lipids and
inflammation. Furthermore, it demonstrated how sets of SNPs involved in disease

pathway groups can be used to inform polygenic analyses.

Chapter 2 systematically reviewed the literature that used PRS to study phenotypes
relevant to AD. This chapter presented a narrative synthesis of 57 published studies
found to meet the criteria for inclusion in the ten years sampled (2008-2018). Many of
the studies were published toward the end of this period, showing the increasing

popularity of the method. The evidence suggests that PRS can predict AD relatively
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accurately (AUC 70-75%) (Escott-Price, Sims, Bannister, et al., 2015; Altmann et al.,
2020). A number of studies demonstrate evidence of association with cognitive
problems, and other phenotypes associated with dementia. The PRS approach has
also been used to study neuroimaging changes and biomarkers in cerebrospinal fluid
(CSF). A few more recent studies have also attempted to create gene sets based on
evidence of enrichment in functional categories. However, none of the studies
included in the review had been sufficiently powered to combine this pathway-based

approach with selecting SNPs using p-value cut offs, as undertaken in this thesis.

Chapter 3 presented a systematic review of studies that explored the effect of genetic
risks for AD on white matter using diffusion MRI (dMRI). It comprised a narrative
synthesis of the 37 studies that met criteria for inclusion (2000-2019) and gave a
detailed review of dAMRI methods and their pitfalls. There was evidence that individuals
with increased genetic risk for AD show increased diffusivity and reduced anisotropy
throughout the white matter of the brain, particularly in temporal and frontal areas, the
cingulum and the corpus callosum. Those with established disease showed more
changes than pre-clinical individuals. Although dMRI lacks specificity to disease
pathology, as the field develops it may prove useful in early diagnosis or disease
staging.

In the first experiment, described in Chapter 5, it was demonstrated that the effect of
AD polygenic risk is evident in grey matter changes even in young adults. Higher
polygenic risk was associated with cortical thinning and changes in subcortical
volumes. In older adults, reduced volume was particularly marked in the left
accumbens and the left hippocampus. In younger adults, increased subcortical
volumes was observed, particularly in the left amygdala, left hippocampus and left
caudate. This is in keeping with the previous literature suggesting that genetic risk for
AD may be associated with increased subcortical volume in young adults and
decreased hippocampal volume in older adults. For cortical surface area, some
regions showing a positive association with polygenic risk and other regions showed
negative associations without a consistent pattern. Results for the cortical thickness
and surface area generally did not withstand correction for multiple testing, although
there was a consistent pattern of association with cortical thickness. Whilst the cortical
thickness association in older adults was independent of APOE, in younger adults it
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attenuated with APOE excluded. Excepting the immune response PRS, the pathway
specific PRS explained a greater amount of variance than the genome-wide polygenic
score in most phenotypes. The amount of variance (and significance of the p values)
between most of the pathway-specific polygenic scores was comparable with that of
APOE. However, there was no evidence of distinct patterns of grey matter alterations
with different functional groups, as had been suggested by a previous study (Caspers
et al., 2020). Thus, the results of this experiment suggest that changes in grey matter
occur very early in the life course of those at high genetic risk of AD, and that
delineating SNPs sets into pathway groups enhances their association with
phenotypes when compared to a standard genome-wide approach.

In the second experiment, discussed in Chapter 6, it was demonstrated that AD
polygenic risk also manifests in the white matter microstructure of older adults. In
keeping with the previous literature, summarised in Chapter 3, it was shown that those
with increased polygenic risk for AD have reduced anisotropy and increased diffusivity
in white matter tracts that are known to be affected by AD pathology, in particular the
hippocampal cingulum. There was less evidence of association between polygenic
risk scores and changes in white matter in younger adults, apart from some nominal
associations with increased diffusivity in the left cingulum. As mentioned in Chapter 6,
there were differences in the diffusion analysis frameworks implemented in the two
cohorts. The patterns of association between the different PRS and white matter
phenotypes were similar to the grey matter. The pathway specific PRS showed greater
evidence of association and explained more of the variance than the genome wide
PRS except the immune response PRS, which showed little association. The pathway
specific effects were also independent of APOE and explained greater variance than
APOQOE alone. In the older cohort, many of the associations with changes in the white
matter measures remained significant after correction for multiple testing. Thus, the
results of this experiment suggest that polygenic risk for AD is evident in white matter
changes in mature individuals, and less so in younger people. It provides further
evidence that informing the PRS using SNPs associated with functional categories is
helpful to reduce noise inherent in the PRS method.

In the final experiment, described in Chapter 7, it was demonstrated that there are
associations between PRS for AD, blood lipids and CRP in adults in mid-life. There
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was particular evidence of association between increased PRS and increased LDL
and total cholesterol. There was also evidence of a negative association between the
PRS and CRP. Unlike the neuroimaging phenotypes, the pathway-specific PRS did
not show greater evidence of association than the genome-wide score. The results
were driven by APOE to a great extent, with few remaining even nominally significant
when APOE was excluded from the polygenic score. The effect of APOE on blood
lipids and CRP is already established. Thus, the results of this thesis suggest that
variation in serum lipids is primarily influenced by APOE, with little effect from other
AD susceptibility loci, even those implicated in pathway groups related to lipids.
Similarly, there was no evidence of association between SNPs in the immune
response PRS (besides the APOE region) and CRP.

8.2 Implications of this research

The results discussed in this thesis build on our understanding of how AD polygenic
risk affects the brain and body metabolism. To my knowledge, no previous study has
used a threshold based PRS delineated by sets of SNPs in functional categories to
explore brain structure phenotypes. Although one previous study took this approach
to assess blood inflammatory markers, it was significantly underpowered (Morgan et
al., 2017). This series of analyses therefore brings novel insights into imaging and
serum markers of AD polygenic burden in healthy adults. Here, the wider implications

of these findings for translational research and clinical practice are discussed.

8.2.1 How should we use AD polygenic scores?

Genetic testing is an established part of clinical care. It is possible to test for thousands
of monogenic diseases (NCBI Genetic Testing Registry, 2020). Specific services exist
for the diagnosis and counselling of patients and family members affected by
conditions such as Huntington’s Disease and Cystic Fibrosis. As discussed in Chapter
2, PRS for AD have been shown to accurately predict disease (Escott-Price, Sims,
Harold, et al., 2015; Sleegers et al., 2015; Xiao et al., 2015; Yokoyama, Bonham, et
al., 2015; Escott-Price et al., 2017; Chaudhury et al., 2018). Therefore, some have
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discussed how the information might be used in clinical practice (Khoury, Janssens
and Ransohoff, 2013; Wray et al., 2020).

Currently, risk stratification based on phenotypic and lifestyle risk factors is used to
prevent conditions such as cardiovascular disease (D’Agostino et al., 2008). These
prediction tools combine multiple clinical risk factors including age, sex, blood
pressure, smoking status, family history, cholesterol levels and diabetes into a total
risk score. Individually, none of these risk factors are useful in predicting disease risk.
However, on aggregate, they indicate the need for interventions such as the
prescription of lipid lowering drugs and preventative lifestyle changes. A study using
data from UK Biobank (Inouye et al., 2018) found that a combined clinical risk score
was more effective at predicating coronary artery disease than a PRS for coronary
heart disease. However, when the PRS and clinical risk score were combined, they
were more accurate than either alone (Inouye et al., 2018) (Figure 8.1A). If these
findings extrapolate to the wider UK population in the same age group, this might
change the risk category of thousands of people (Wray et al., 2020). Those with high
PRS may move upward to a risk category where pharmacological treatment is
advised, whereas those in a lower PRS group others may move downwards to a
category in which intervention can be avoided (Wray et al., 2020).

Incorporating polygenic profiles into existing screening protocols could be particularly
useful where the screening tests are particularly invasive or have significant side-
effects. It might be possible to focus screening on those at highest risk of disease.
Screening frequency could be tailored to the individual’s risk profile, with those at
greatest risk receiving more frequent assessment (Wray et al., 2020). At the population
level, this could lower the risks relating to screening programmes and could be more
cost-efficient (Autier and Boniol, 2018). Polygenic profiles could also be combined with
information about rare variants to improve prediction. For example, high PRS for
breast cancer in BRCA1/2 carriers is associated with younger age of cancer diagnosis
(Kuchenbaecker et al., 2017) (Figure 8.1B). Similarly, polygenic risk for Huntingdon’s
has been shown to accelerate disease onset (Lee ef al., 2015).
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Figure 8.1 Examples of PRS Applications in Heart Disease and Breast Cancer.
Reproduced with permission from Wray NR, Lin T, Austin J, et al. From Basic Science
to Clinical Application of Polygenic Risk Scores: A  Primer. JAMA
Psychiatry. Published online September 30, 2020.

m Relative importance of conventional and PRS risk factors associated Predicted breast cancer risk by percentile of breast cancer PRS and
with coronary artery disease risk by age within women who have BRCA1 mutations
Smoking | @ 1.0+
Diabetes . | 5%' 95%
§ ggl | ———10%90%
Family history o % Average | e
~ ! -
BMI o S
o
@
Hypertension = £
High cholesterol o q:)
£
PRS Fe- S
2
Conventional L
risk factors Fe @
Conventional
risk factors +PRS I | | | ! ! ! '_._!
0.54 056 058 060 062 064 066 068 0.70
Cindex (95% Cl) Age,y

A) Conventional and polygenic risk factors for coronary heart disease. Increasing prediction
accuracy is shown on the Y axis (Inouye et al., 2018).

B) Breast cancer risk predicted using percentile of breast cancer polygenic risk and age
in BRCA1 mutation carriers (Kuchenbaecker et al., 2017).

The principles of screening have been reviewed by many organizations, particularly
the World Health Organization (Wilson JMG, 1968), and the European Council
(Council of Europe. Recommendation N R (94) 11 on screening as a tool of preventive
medicine, 1994). These codes are designed to ensure that the benefits of screening
programmes are greater than the potential harms, at the level of the population and
the individual. A summary of the four key principles outlined by the Council of Europe
is shown in Table 8.1. Screening is often an attractive idea, as it offers the possibility
of reducing morbidity and mortality by early intervention. However, the potential for
harm is often under estimated (Hoffmann and Del Mar, 2017). Screening tests will
always produce some false positives, which can lead to overdiagnosis and
inappropriate medical treatment, and cause significant anxiety. Similarly, harm can
result from negative tests if patients are falsely reassured and treatment is delayed
(Harris, 2011).
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Table 8.1 Council of Europe, Committee of Ministers, Recommendation No. R (94) 11
on Screening as a Tool of Preventive Medicine (Oct. 10, 1994) (Council of Europe.

Recommendation N R (94) 11 on screening as a tool of preventive medicine, 1994)

Council of Europe criteria for selecting diseases suitable for screening

1 The disease should be an obvious burden for the individual and/or the community in terms of
death, suffering, economic or social costs.

2 The natural course of the disease should be well known and the disease should go through an
initial latent stage or be determined by risk factors, which can be detected by appropriate tests.
An appropriate test is highly sensitive and specific for the disease as well as being acceptable
to the person screened.

3 Adequate treatment or other intervention possibilities are indispensable. Adequacy is
determined both by proven medical effect and ethical and legal acceptability.

4 Screening followed by diagnosis and intervention in an early stage of the disease should

provide a better prognosis than intervention after spontaneously sought treatment.

Irrespective of the accuracy of AD polygenic prediction, including or excluding other
risk factors, the clinical application of AD PRS is limited until disease modifying
treatments are identified. Even when therapies are available, there will still be a
number of crucial questions to answer. For example, it is not clear if a given therapy
would have the same effects on the disease course for those at high and low PRS. A
drug may target a pathway that is not responsible for neurodegeneration in all patients.
Pathway-specific polygenic profiling, as implemented in this thesis, will therefore be
needed to facilitate personalised medicine. Randomized controlled trials, the gold
standard assessment, are costly, need large samples, and require a long period of
implementation and follow-up. It has been suggested that quasi-experimental,
observational or comparative effectiveness designs might be used to assess
population stratification in addition to RCTs (Goddard et al., 2012; Khoury, Janssens
and Ransohoff, 2013).

8.2.2 The role of AD biomarkers in translational research and clinical practice

In this thesis, a number of potential biomarkers were investigated. A biomarker is any
biological metric that can be used to measure physiological states or disease (Atkinson
et al., 2001). Biomarkers, or tests, as they are more commonly referred to in clinical
practice, are used for diagnosis, to measure disease progression, or to monitor
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treatment response (Strimbu and Tavel, 2010). They must be sufficiently accurate,
sensitive and specific, with good inter-assessment and test-retest reliability (Hooper,
Lovestone and Sainz-Fuertes, 2008).

Biomarkers may also be used as a ‘surrogate endpoint’ during clinical trials, in lieu of
a ‘clinical endpoint’ (Atkinson et al., 2001). A clinical endpoint is a defined patient
outcome, such as morbidity or mortality. Surrogate endpoints are used to evaluate the
effect of an intervention over a shorter period. An example of a surrogate endpoint is
tumour shrinkage in chemotherapy trials. This should be strongly associated with
clinical endpoints, e.g., survival and quality of life (Atkinson et al., 2001).

Cognitive assessments can be considered an AD biomarker. There are many psycho-
metric tests available that are used for diagnosis and staging of AD (Behl, Stefurak
and Black, 2005). Such tools are reliable and low cost. However, they cannot
discriminate between dementias and are unable to detect pre-symptomatic AD.
Neuroimaging techniques are more sensitive to pathology and early-stage disease, as
demonstrated in this thesis. As discussed above, a number of advanced MRI
techniques and nuclear imaging methods can be employed in the assessment of AD
pathology. However, all such methods are expensive, and some are invasive, which

make them unsuitable for use at scale in pre-symptomatic populations.

The cerebrospinal fluid (CSF) allows access to the central nervous system. Total tau
and phosphorylated are elevated in the CSF in AD. Levels of AB1-42 are also reduced
(Jack Jr. etal., 2010). A combination of CSF tau and AR measurements is considered
the gold standard biomarker of AD to date, (Hooper, Lovestone and Sainz-Fuertes,
2008). However, CSF sampling, by lumbar puncture, is also too invasive for
widespread use in cognitively healthy individuals and can be unsafe to perform in
those with advanced cognitive impairment. As a substitute for CSF, peripheral blood
is easily accessible and provides abundant samples for testing. There is some
evidence to suggest that the integrity of the blood brain barrier is impaired in diseases
like AD, therefore metabolic changes associated with AD might be evident in
peripheral blood (Hawkins and Davis, 2005). For example, blood plasma AB1-42 is
up-regulated in carriers of APP and PS1/2 (Scheuner et al., 1996), but not sporadic
AD cases. A number of other blood-based measures have been proposed, including:
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the glycogen synthase kinase 3 (GSK3) enzyme in peripheral white blood cells (Hye
et al., 2004); the lipid oxidation products isoprostanes (Pratico et al., 2000); the
metabolic intermediate homocysteine (Seshadri et al. 2002); an iron transport protein
p97 (Feldman et al.,, 2001); cytokines interleukin 1 and 6; the acute phase
protein/protease inhibitors a-1 antichymotrypsin (Licastro et al., 2000) and a-2-
macroglobulin; and complement factor H (Hye et al., 2006). However, the only blood
marker that can reasonably separate cases from controls is plasma T-tau (Olsson et
al., 2016), and this still requires verification in larger samples. The experiments
presented in this thesis found little evidence for associations between AD PRS and
blood and inflammatory markers beyond what can be explained by the function of
APOE in the periphery. This supports the hypothesis that plasma lipid and
inflammatory marker levels may reflect peripheral physiology more than AD

pathology.

Chapters 5 and 6 demonstrated that increased PRS for AD was associated with
changes in brain structure even in very young adults. Given the lack of other suitable
non-invasive biomarkers, advanced neuroimaging techniques have the potential to
help identify those at risk of developing AD before significant pathology develops.
Further research would be required to identify those neuroimaging measures which
are the most sensitive to very early alterations. Longitudinal studies will be needed to

establish how well they correlate with other established biomarkers.

Current clinical trials rely on CSF and PET biomarkers markers for amyloid and tau to
identify those with detectable pre-clinical disease. However, this assumes that the
stage where there is detectable amyloid and tau load is the optimum time to intervene.
Given the failure of drug trials targeting amyloid and tau, discussed in Chapter 1, they
may not be driving the disease process. It is possible that neurodegeneration results
from earlier pathological events, which would be in keeping with the findings of this
thesis; some changes relating to AD genetic risk were evident even in very young
adults. An added challenge is how to assess the impact of experimental treatments in
trial participants who are pre-symptomatic. Further studies are required to investigate
the most appropriate biomarkers to monitor disease progression very early in the AD
prodrome. This is being assessed by proof-of-concept biomarker studies such as the
Deep and Frequent Phenotyping study (Koychev et al., 2019).
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8.2.3 Value of the pathway PRS approach in AD

One important implication of this thesis is the viability of the pathway specific PRS
approach. Although one previous study reported evidence of associations between
the different disease pathway groups and different patterns of cortical thinning
(Caspers et al., 2020), this thesis finds no evidence of distinct patterns of changes with
different pathway groups. In addition, the systematic review of AD genetic risks and
white matter microstructure identified similar patterns of changes in diffusion
measures associated with all the known genetic risks for AD. This suggests that further
down the pathological cascade, the implicated biological pathways converge to
produce the same neurodegenerative biomarker and clinical phenotypes. This is in
accordance with studies of AD pathology (Naj and Schellenberg, 2017).

At the outset, it was uncertain whether subdividing the PRS signal by disease pathway
groups, thereby reducing the number of loci included in each score, would simply
reduce the variance explained. However, the pathway-specific PRS generally showed
more evidence of association with phenotypes and explained greater variance than
the genome-wide PRS. This suggests that in focusing on SNPs involved in disease
pathways, we reduce the noise inherent in the PRS signal or enhance statistical
power. This is concordant with the findings of Desikan and colleagues, who found that
triangulating information from AD, lipid and inflammatory marker GWAS increased
their statistical power for gene discovery (Desikan et al., 2015). Although the pathway
specific effects often attenuated when the APOE region was excluded, the pathway
PRS generally explained more variance than APOE alone. For some phenotypes,
notably cortical thickness in older adults, the association with pathway PRS appeared
to be independent of APOE.

8.3 Methodological considerations
8.3.1 Participant selection and sample size

The data used for experiments in this thesis came from two distinct samples. Both
were large population cohorts with rich phenotypic data. Both have strengths and
limitations. ALSPAC is a longitudinal cohort study, with the participants and their
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offspring followed up for decades. UK Biobank is a cross-sectional sample which
allows for follow-up of participants through their medical records.

As described in Chapter 4, there is evidence that the population of mothers and
children in ALSPAC does not reflect the typical characteristics of the population of the
Avon region or the wider British population (Abigail Fraser et al., 2013). Similarly, UK
Biobank also shows evidence of selection bias towards healthy volunteers. In
particular they appear to be wealthier and have healthier lifestyles than the general
population (Fry et al., 2017). As ALSPAC is a longitudinal cohort, it is affected by
attrition bias. Whilst much of UK Biobank’s phenotyping was conducted at the point of
recruitment, participants were recalled for the imaging study. This introduced another
opportunity for selection bias in responses to this invitation. These biases would favour
the inclusion of participants without significant disease, making it more difficult for this
study to find significant effects. Although higher genetic burden for neuropsychiatric
conditions such as schizophrenia and depression are associated with participant drop
out in ALSPAC, there is no evidence that polygenic risk for AD affects participation or
dropout (Taylor et al., 2018).

The ALSPAC imaging sub-studies, described in Chapter 4, recalled participants on
the basis of specific inclusion criteria. The largest sub-study recruited only healthy
males who had attended sufficient research clinics to have serial testosterone
measurements (Sharp et al., 2020). The cohort analysed in this thesis had unbalanced
gender ratios as a result. The smaller study recruited male and female participants. In
addition to healthy controls, they specifically included some participants who reported
psychotic experiences, a small number of which may have met criteria for a
neuropsychiatric disorder. This thesis aimed to study the effect of AD polygenic risk in
healthy individuals. Whilst ‘healthy volunteer’ bias and attrition bias operating in
ALSPAC will tend to overrepresent those who are well, it is possible that a small
number of individuals with emergent psychosis could have been included, which is
known to affect brain structure (Lawrie et al., 2001).
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8.3.2 Imaging considerations

Grey matter volumetric measurements are reliable and reproducible (Fischl, 2012).
However, artifacts can result from a number of factors including intensity
inhomogeneity, head movement, reduced signal to noise ratio, or partial volume
effects (McCarthy et al., 2015). These can all reduce image quality, resulting in altered
intensity values and segmentation errors. Manual quality control of these issues could
have introduced some error, although this was not likely to have affected the results
(McCarthy et al., 2015).

As discussed in Chapter 3, assessing white matter using dMRI is much less
straightforward. Unlike grey matter volumetric measurements, dMRI is not a measure
of neuroanatomy. As mentioned in Chapters 3 and 6, there are some significant
limitations (Jones and Cercignani, 2010; Jones, Knosche and Turner, 2013).
Specifically, dMRI is inherently noise-sensitive and low-resolution (Jones, Kndsche
and Turner, 2013). dMRI signals also show degeneracy. Decreased FA can represent
fibres crossing within voxels, axonal loss, axonal growth, oedema or demyelination
(Harrison et al., 2020). This lack of specificity leads some to describe signal changes
as altered ‘white matter integrity’ (Wheeler-Kingshott and Cercignani, 2009). As

discussed in previous chapters, this is inappropriate.

Most studies of white matter microstructure in those at high genetic risk of AD have
reported more marked changes closer to the expected age of onset (Harrison et al.,
2020). Therefore, it is not surprising that younger adults showed less evidence of
changes compared to the older adults. As discussed in Chapter 6, different diffusion
MRI analysis methods, such as tract skeleton-based analyses and region-of-interest
analyses, can lead to distinctly different results (Seo et al., 2013; Ji et al., 2015). As a
region-of-interest analysis was completed for ALSPAC and a tract skeleton-based
analysis was conducted by UK Biobank, it is difficult to determine whether differences
seen between the two cohorts reflect their respective white matter microstructure or
are the result of different analysis frameworks.

213



8.3.3 Genetic considerations

The genetic analyses in this thesis have focused on additive effects of common AD
susceptibility loci. Rare variants were not investigated. The role of rare genes in early
onset AD is well established. It is likely that some rare variants of moderate effect size
also play a role in the development of late-onset AD (Escott-Price, Sims, Bannister, et
al., 2015).

As described in Chapters 5, 6, and 7, GWAS for AD has identified a number of
individual SNPs that are significantly associated with AD (Lambert et al., 2013; Kunkle
etal., 2019), and PRS analyses appear to detect further weakly-associated risk alleles
that explain a greater amount of variance cumulatively (Escott-Price, Sims, Bannister,
et al., 2015; Escott-Price et al., 2017). Notwithstanding the power of large AD GWAS
for detecting true risk loci, the variance explained by the PRS and the effect sizes

remain low.

There are a number of important issues around PRS methodology. As described in
Chapter 2, polygenic score analyses have three key steps: 1) selection of SNPs within
linkage disequilibrium (LD) blocks; 2) selection of SNPs a p-value selection threshold;
3) weighting each SNPs by its effect size (the risk allele odds ratio in the discovery
GWAS) and summing the risk alleles for each participant in the target dataset (Wray
et al., 2014). First, there are different approaches to SNPs in LD blocks. For example,
linkage-disequilibrium pruning (LD-pruning) involves randomly removing (or pruning)
those SNPs that are in high LD with others within a sliding window of 200kb. The
method used is this thesis, known as clumping, selects SNPs within LD blocks that
are more strongly associated with case control status (Wray et al., 2014). A study
comparing LD-pruning and clumping in Attention Deficit Hyperactivity data found that
LD- pruning was associated with greater explained variance than clumping (Groen-
Blokhuis et al., 2014). However, clumping may increase the chance of including true
susceptibility loci in the set of SNPs used for polygenic analysis (Wray et al., 2014).
Second, a considerable proportion of the SNPs reaching the most liberal p-value
threshold for polygenic risk analysis (p<0.5) are probably false positives.
Consequently, the risk scores have a high degree of noise. It is standard practice to
use several different thresholds to compute polygenic scores (Purcell et al., 2009) to
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address this. This allows investigators to capture true risk loci that are weakly-
associated, and including a significant number of false positives, and then use more
conservative threshold to check the sensitivity of the results. By repeating analyses at
different p value thresholds, a robust pattern can be observed, as seen in Chapters 5,
6 and 7. This strengthens the conclusions that can be drawn from them (Wray et al.,
2014).

It is not possible to identify causal relationships using PRS because there is no way to
formally test for pleiotropic effects. Therefore, associations between the AD PRS with
lipids, for example, could reflect: i) changes in lipids resulting from AD pathology,
preceding or downstream processes; ii) loci associated with AD with an independent
effect on increasing lipids, i.e., pleiotropic effects; iii) detection of genetic loci
associated with lipids in the AD GWAS if they are strong risk factors for AD (Davey
Smith and Hemani, 2014). The relationship between these factors could be tested with
Mendelian Randomisation (MR) and associated sensitivity analyses to identify

pleiotropic effects.

This thesis attempted to combine the standard approach to selecting SNPs based on
p-value threshold with also selecting sets of SNPs based on functional significance.
The pathway analysis that informed the scores used a genome-wide approach,
allowing all available genomic data to be used with no a priori hypotheses (Kunkle et
al., 2019). Genome-wide pathway analyses also benefit from systemic follow-up to
address the high degree of overlap often present across pathways (Ramanan et al.,
2012). In this thesis, it was demonstrated that narrowing the set of SNPs to loci which
are involved with specific biological pathways may have improved the proportion of
alleles in the polygenic score that were truly associated with the disease. Although the
number of SNPs selected in this way was smaller, compared to the genome-wide
polygenic score, it often explained more of the variance in phenotypes. Of note, a
pathway analysis can only be as good as the functional information used for its
pathway definitions. There are several different pathway annotation databases, all with
different characteristics (Ramanan et al., 2012). Methods of pathway curation can also
affect analyses. Whilst most databases use expert reviews for pathway curation, they

may not be updated regularly, and databases may apply different criteria to determine
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what is sufficient evidence for a gene to be included in a pathway (Ramanan et al.,
2012).

A further consideration with polygenic score analysis methods are the nature of control
participants in the discovery AD GWAS. The prevalence of AD is high, affecting one
in ten people over the age of 65 (Alzheimer’s Association, 2019). Even those who
have not yet manifested symptoms could still have a significant degree of pathology
(Jack Jr.etal., 2010). If even 5% of controls actually have incipient disease, this would
have a detrimental effect statistical power akin to reducing the GWAS sample size by
approximately 10% (The Wellcome Trust Case Control Consortium, 2007). Therefore
this could have reduced the power of the genetic discovery sample (Kunkle et al.,

2019) used for the polygenic analyses in Chapters 5, 6 and 7 of this thesis.

8.3.4 Summary of strengths and limitations

The main strength of the analyses in this thesis is the use of the two large populations
cohorts. A further key advantage was the use of a large AD GWAS as our discovery
data for polygenic analysis (Kunkle et al., 2019). This provided the most accurate
estimates of SNP effects on disease risk. These factors combined to make this the
most powerful AD genetic imaging study risk to date. The samples included
complementary ages, allowing us to identify some of the earliest changes in the
disease process. The samples are both well-phenotyped, with clearly described
imaging and serum measures. The chief limitations of the methodology have already
been described above and in detail in each results chapter. The main limitations of the

analyses are summarised below.

As discussed above, there were some disadvantages to the cohorts included in this
study. As described above, both ALSPAC and UK Biobank analyses have shown
participants to be generally healthier and from higher socio-economic backgrounds
(Abigail Fraser et al., 2013; Fry et al., 2017). This may have served to underestimate
the observed effect sizes and may affect the generalisability of the results. Males were
over-represented in the ALSPAC imaging cohort, although sex was controlled for in
the analyses, and a minority of participants reported psychotic experiences which

might have represented incipient psychiatric disorders.
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As mentioned above, the use of different analysis frameworks for diffusion MRI data
between ALSPAC and UK Biobank made it more difficult to compare findings between
the cohorts. Although the results showed some similar trends in increasing diffusivity,
it is not possible to determine whether divergent results reflected actual differences in
white matter microstructure or were simply due to differences in measurement. A
further limitation of the thesis is that the use of lipid lowering drugs, socioeconomic
and lifestyle factors were not taken into account in the analyses in Chapter 7. Given
that these factors are likely to affect levels of the markers measured, particularly
cholesterol, this is a limitation of the analyses.

A number of statistical tests were conducted, requiring correction for multiple testing.
This was done using the False Discovery Rate (FDR) in the R statistical computing
package (R Development Core Team 3.0.1., 2013). Correction was applied for 21
scores (nine pathway polygenic scores and the genome-wide polygenic score
including APOE, nine pathway polygenic scores excluding APOE and the genome-
wide score excluding APOE plus the APOE SNPs score) and for the number of
phenotypes tested in each analysis. The PRS were closely correlated as they
contained a significant number of overlapping SNPs. The phenotypes (such as cortical
thickness in adjacent brain regions) are also likely to be correlated. Therefore, this
approach to adjusting for multiple comparisons was probably too stringent, and some
true associations may have been overlooked. Despite these limitations, the findings
of this thesis have valuable implications for the understanding of how polygenic risk
for AD is manifest in early adulthood and mid-life.

8.4 Future research directions

There are a number of possible analyses linked to those described in this thesis which
could further our understanding of how genetic susceptibility for AD affects brain

function, as outlined below.

8.4.1 AD polygenic risk and brain function

This thesis presented experiments that focussed on the associations between AD

polygenic risk in disease pathways and brain structure. No assessments were made
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of how AD polygenic risk manifests in brain function. There are a number of possible
approaches to this, which are outlined below.

Functional MRI (fMRI) interprets blood oxygen level dependence (BOLD) signal to
estimate brain activity in specific brain regions (Logothetis, 2003). Activity in a brain
region is indicated by an increase in the ratio of oxygenated to deoxygenated blood,
which have different magnetic properties. Magnetoencephalography (MEG) also
detects changes in neuronal activity. It uses superconducting quantum interference
devices (SQUIDs) to detect small magnetic fields produced by synchronous
postsynaptic currents from groups of pyramidal neurons. It is most sensitive to those
currents that are perpendicular to the cortical surface (Hari and Salmelin, 2012).
Diffusion MRI, fMRI and MEG signals can be used to study brain network organisation.
Complex maps of brain connectivity can be constructed, and techniques such as graph
theory can be used to provide a representation of the elements and interactions within
the system (E. T. Bullmore and Sporns, 2009). fMRI (Xu et al., 2009) and MEG
(Cuesta et al., 2015) have already been applied to study the effect of APOE in healthy
participants. Similarly, some studies have already explored the effect of APOE on
brain networks derived using functional (J. Wang et al., 2015) and structural (Ma et
al., 2017) data. The relationship between polygenic risk for AD and brain function

assessed in these ways has yet to be investigated.

Other imaging techniques provide more direct methods of assessing neurobiological
activity. Magnetic resonance spectroscopy (MRS) is a non-invasive technique that
measures endogenous brain metabolites. Hydrogen nuclear spins emit specific
frequencies depending on the chemical environment of the nuclei. MRS detects the
radiofrequency signals that arise from these (Agarwal and Renshaw, 2012). Nuclear
imaging techniques such as positron emission tomography (PET) and single photon
emission computed tomography (SPECT) use radioactive tracers joined to biologically
active molecules, which are given intravenously. Nuclear imaging methods can be
used to investigate brain metabolism (such as [18F] fluorodeoxyglucose) (Mosconi et
al., 2008) and neurotransmitters (such as [11]C-flumazenil which binds
benzodiazepine receptors) (Pascual et al., 2012). A number of radioligands have also
been developed for amyloid and tau, the abnormal proteins that accumulate in AD
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(Femminella et al., 2018). As with the other advanced neuroimaging techniques, how
polygenic risk for AD affects these markers of neurobiology is unclear.

8.4.2 Longitudinal studies

This thesis presented evidence that changes in brain structure similar to those seen
in early AD neurodegeneration were associated with AD PRS in older and younger
cognitively healthy adults. These younger participants would not be expected to show
significant amyloid deposition for many years. Therefore, how these alterations in
brain structure fit with progressive biomarker abnormalities seen in pre-clinical AD is
uncertain. A number of studies have incorporated serial measurements from multi-
modal biomarker studies in an effort to map out the sequence of biomarker changes
that occur before the onset of symptoms (Jack Jr. et al., 2010; Villain et al., 2010;
Chételat et al., 2012; Jack et al., 2013). However, these studies have focused on
participants in mid-life or later life. Further studies should seek to replicate and extend
the findings of this thesis across the life course and clarify their relationship to other

biomarker abnormalities.

A further point that can be addressed by future cohort studies is the relationship
between grey matter atrophy and white matter changes. Assuming they form part of a
cascade of consecutive pathological events, there are a number of possible
mechanisms. Grey matter hypometabolism or atrophy (Braak & Braak, 1997) could
cause disruption in distant associated white matter tracts. Alternatively, white matter
tract disruption could be responsible for hypometabolism and grey matter atrophy in
connected brain regions as a result of retrograde (Reisberg et al., 2002; Bartzokis,
2004) or Wallerian degeneration (Coleman, 2005). Serial imaging is required to

investigate dynamic changes in grey matter relative to white matter.

In recent years, some have argued that AD is a disconnection syndrome, with changes
preferentially affecting regions of the same brain network (Seeley et al., 2009). fMRI
studies have identified changes in functional connectivity in AD (Wang et al., 2007,
Zhang et al., 2009). There are also inconsistencies between regions affected by

functional and structural changes. For example, early hypometabolism has been
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observed in the posterior cingulate cortex but it is not the earliest to atrophy (Chetelat
et al., 2009). However, such network alterations could occur in tandem with structural
changes as a result of a common disease process, and disruption could result from
distant pathology. In a sequential pathological cascade, determining events that drive
subsequent neurodegeneration is important as it could help target therapeutic
interventions. As discussed in Chapter 3, the neuroimaging changes in autosomal
dominant AD parallel those with polygenic risk for AD. Therefore, these groups provide

a useful model for longitudinal studies with shorter follow-up periods.

8.4.3 Improving and augmenting pathways analyses

Pathway analysis methods development is a particularly dynamic field, as it applies to
a variety of disciplines and subject areas. Future studies would benefit from improved
annotation of genes within pathways, consistent pathway names and classifications
between databases, and methods for defining pathway overlap. There is also the
potential to integrate other types of association signal, using multi-omics data. For
example, it may be possible to integrate gene expression data such as expression
quantitative trait loci (eQTLs) (Ramanan et al., 2012). Although genetic associations
do not always reveal therapeutic targets, pathways and networks indicated by
analyses of multiple signals would be key targets for drug therapies. As such, the role
of biological networks and pathways as a nucleus for multi-omics integration will be

fundamental for future research.

8.5 Conclusions

The work presented in this thesis adds to the emerging body of literature showing
evidence of association between AD polygenic risk and evidence of alterations in brain
structure in older and younger adults. Results show that pathway specific polygenic
scores showed greater evidence of association with brain structure phenotypes than
the genome-wide polygenic score, and some brain structure measures were not
dependent on APOE. There was little evidence of association between AD polygenic

risk and peripheral blood biomarkers beyond what APOE explained. These results
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indicate that neuroimaging changes may be useful biomarkers for the earliest changes
associated with AD.
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APPENDIX A

Supplementary materials for the AD PRS systematic review

Table 1. Search strategy terms used for searching Embase, Medline via Ovid and
PsychINFO.

Key word
1. Polygenic risk score.mp
. Risk profile score.mp
. Polygenic variation.mp
. Genome-wide association study/
GWAS2.mp
. Gene score.mp
. Genetic score.mp
. Allele score.mp
9. Polygenic.mp
10. exp Polymorphism, single nucleotide/
11. SNP® score.mp
12. or/1-10
13. exp Alzheimer disease/
14. Alzheimer*.mp
15. or/13-14
16. 12 and 15
17. limit 16 to:
- English language
- Humans
- Yr="2009-3" August 2018”

a. GWAS; Genome Wide Association Studies, b. SNP; Single Nucleotide
Polymorphism

o|N|o|o|slwlN
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Table 2. List of data extracted from all studies

Details
* Author
* Year
* Discovery sample
* Target sample
* Outcome measure(s)
*N
* P value thresholds
* Phenotypes/correlates
* 3, odds ratio or hazard ratio
 Confidence intervals
P
* R2 (%)

Table 3. Studies examining associations with threshold-based PRS, principle results.
(Excel file)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242840/bin/jad-74-jad191233-
s002.xlsx

Table 4. Studies examining associations with Bonferroni-significant SNP PRS,
principle results. (Excel file)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242840/bin/jad-74-jad191233-
s003.xIsx
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APPENDIX B

Supplementary Material for the dMRI Alzheimer’s genetics systematic review

Table 1: Literature Search Methodology

Search | Inclusion Exp. Alzheimer*

Terms: | Criteria: Alzheimer’s Disease

Mild Cognitive Impairment, MCI
Familial  Alzheimer’s Disease
(autosomal-dominant AD)
Apolipoprotein E type 4, ApoE4
Presenilin 1 and 2 (PS1 and PS2)
Amyloid beta-Protein Precursor,
(APP)

Cognitive Performance

Cognitive Disorder

Cognitive Dysfunction

Dementia

AND Exp. Diffusion Tensor Imaging*
Diffusion Tensor Imaging

DTI

Diffusion  Magnetic Resonance
Imaging

dMRI

White Matter Microstructure

White Matter

White Matter Integrity

Connectome

Connectomics

Selection: English Language

Humans

Year: 2000 — 2019

Exclusion Dementia (unspecified)

Criteria: Vascular dementia

Lewy Body dementia

Other dementia

Huntington’s

Unspecified memory decline

Other Neuropsychiatric disorder
Cognitive function — unrelated to
Alzheimer’s pathology

Other Imaging modalities
Acquisition method - FMRI,
volumetric studies
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Table 2. List of data extracted

Paper Title

Author

Year

Population Group (i.e. MCI, AD patients, APOE carriers)

Abstract

N

Participant Age

Gene type (e.g. APOE, polygenic, familial, etc)

Study design (e.g. Case-control, etc)

Quality Assessment Score (e.g. Newcastle Ottawa Score)

Country of Origin

Diffusion Method (i.e. ROI, TBSS)

Field Strength (T)

B value (s/mm2)

Acquisition Voxel Size

Number of Directions

NEX

Pre-processing

Model Estimation

Anisotropy Measure

Diffusivity Measure

Other Metric Brain Region(s)

AD Associated Symptoms

Key Results

Methods Text

266



Table 3. PRISMA Checklist

4 PRISMA 2009 Checklist

Section/topic Checklist item Reported on
page #

TITLE

Title 1 | Identify the report as a sy ic review, met: lysis, or both. 1

ABSTRACT

Structured summary 2 | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility 2
criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions
and implications of key findings; systematic review registration number.

INTRODUCTION

Rationale 3 | Describe the rationale for the review in the context of what is already known. 3-5

Objectives 4 | Provide an explicit statement of questions being addressed with reference to participants, interventions, 6,7
comparisons, outcomes, and study design (PICOS).

METHODS

Protocol and registration 5 | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, NA
provide registration information including registration number.

Eligibility criteria 6 | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years 6,7
considered, language, publication status) used as criteria for eligibility, giving rationale.

Information sources 7 | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify 6
additional studies) in the search and date last searched.

Search 8 | Present full electronic search strategy for at least one database, including any limits used, such that it could be Supplementary
repeated. Materials

Study selection 9 | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if 6,7
applicable, included in the meta-analysis).

Data collection process 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any 6,7
processes for obtaining and confirming data from investigators.

Data items 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions Supplementary
and simplifications made. Materials

Risk of bias in individual 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this 7

studies was done at the study or outcome level), and how this information is to be used in any data synthesis.

Summary measures 13 | State the principal summary measures (e.g., risk ratio, difference in means). NA

Synthesis of results 14 | Describe the methods of handling data and combining results of studies, if done, including measures of NA

consistency (e.g., 12)for each meta-analysis.

& PRISMA 2009 Checklist

Page 1 of 2

Section/topic

Checklist item

Reported on

page #

Risk of bias across studies 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective NA
reporting within studies).

Additional analyses 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, NA
indicating which were pre-specified.

RESULTS

Study selection 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 7-16
exclusions at each stage, ideally with a flow diagram.

Study characteristics 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) Supplementary
and provide the citations. Materials

Risk of bias within studies 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). 21

Results of individual studies 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each NA
intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.

Synthesis of results 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency. NA

Risk of bias across studies 22 | Present results of any assessment of risk of bias across studies (see Item 15). NA

Additional analysis 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item NA
16]).

DISCUSSION

Summary of evidence 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their 17-23
relevance to key groups (e.g., healthcare providers, users, and policy makers).

Limitations 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval 17-23
of identified research, reporting bias).

Conclusions 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future 23
research.

FUNDING

Funding Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders 23|

for the systematic review.
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Table 4.

Table 3.4 Significant ions (p <0.05) of AD risk variants and TBSS i i h in the UK Biobank GWAS.
Variant Chr. Position Closest gene ROl FA P-value Beta ROl MD P-value Beta
rs4844610 1 207802552 CR1 Body of corpus callosum 3.30E-04 0.073 Body of corpus callosum 1.70E-04 0.069
Superior corona radiata L 3.30E-04 -0.073 Splenium of corpus callosum 3.90E-04 0.066
Posterior thalamic radiation R 5.90E-04 -0.068 Posterior corona radiata R 8.70E-04 0.06
Posterior thalamic radiation L 6.80E-04 -0.067 Superior longitudinal fasciculus L 9.10E-04 0.064
Posterior corona radiata L 7.00E-04 0.07 Superior corona radiata L 1.50E-03 0.055
Sagittal stratum L 1.90E-03 -0.064 Superior corona radiata R 2.00E-03 0.053
Superior corona radiata R 2.50E-03 -0.062 Posterior corona radiata L 2.40E03 0.056
Anterior corona radiata R 2.60E-03 -0.059 Anterior corona radiata R 3.60E-03 0.054
Posterior corona radiata R 2.60E03 -0.063 Sagittal stratumL 5.40E-03 0.053
Superior longitudinal fasciculus L 2.60E-03 0.062 Posteror thalamic radiation R 5.60E-03 0.053
Sph of corpus cak 3.00E-03 0.062 Cingulum cingulate gyrus L 5.60E-03 0.049
Superior longitudinal fasciculus R 6.80E-03 -0.056 Anterior corona radiata L 7.10E03 0.049
Ant fimb of & | le R 9.80E-03 -0.053 Cingulum cingulate gyrus R 8.30E-03 0.045
Genu of corpus callosum 1.10E-02 0.05 Posterior thalamic radiation L 9.30E03 0.05
Anterior corona radiata L 1.50E-02 -0.047 Genu of corpus callosum 1.30E-02 0.044
Anterior limb of internal capsule L 4.20E-02 0.041 Cingulum hippocampus R 1.30E-02 0.049
Middle cerebellar peduncle 4.70E-02 0.039 Fomix cres+Stria terminalis L 1.60E-02 0.046
Sagittal stratum R 1.80E-02 0.045
Ant limb of int | cap L 2.00E-02 0.041
Fomix cres+Stria terminalis R 2.00E-02 0.044
Superior longitudinal fasciculus R 2.00E-02 0.043
R icular part of i capsule L 2.40E-02 0.044
Middle cerebellar peduncle 2.50E-02 0.042
Anterior limb of intemnal capsule R 2.80E-02 0.038
Superior fronto-occipital fasciculus R 4.70E-02 0.034
R icular part of i capsule R 4.80E-02 0.039
rs6733839 2 127892810 BINT Uncinate fasciculus L 4.60E-03 0.046 No significant associations
Uncinate fasciculus R 4.80E-03 0.046
Cingulum cingulate gyrus R 9.20E-03 0.042
Anterior corona radiata L 9.50E-03 0.039
Cingulum cingulate gyrus L 9.70E-03 0.041
External capsule R 1.10E-02 0.04
Anterior limb of internal capsule R 3.70E-02 0.033
Anterior corona radiata R 4.80E-02 0.031
rs10933431 2 233981912 INPP5D Uncinate fasciculus L 3.60E-02 0.04 No significant associations
rs9271058 6 32575406 HLA -DRB1 Not included in analysis
rs75932628 6 41129252 TREM2 Carebral paduncle L 2.40E-02 0.35 Cersbral peduncle L 3.30E02 0.32
P: jor limb of i psule R 2.70E02 0.37 R icular part of i capsule R 4.30E-02 0.33
Post limb of int | capsule L 2.70E02 0.36
rs9473117 6 47431284 CDZAP Cingulum cingulate gyrus L 6.30E-03 -0.047 No significant associations
Cingulum cingulate gyrus R 2.70E-02 0.038
rs12539172 7 100091795 NYAPT Fomix cres+Stria terminalis R 2.30E-04 0.054 Fomix cres+Stria terminalis R 4.60E-03 0.043
Ratrolenti part of int | cap L 2.90E-04 0.059 Fomix cres+Stria terminalis L 5.30E-03 -0.044
Fomix cres+Stria terminalis L 1.00E-03 0.048
Medial lemniscus L 8.00E-03 0.043
Superior carebellar peduncle L 9.10E-03 0.042
Superior fronto-occipital fasciculus L 1.30E-02 0.041
Genu of corpus callosum 1.40E-02 0.039
R C part of i p R 1.70E-02 0.04
Anterior limb of internal capsule L 2.30E-02 0.038
Cingulum cingulate gyrus L 2.70E02 0.036
Inferior cerebellar peduncle L 2.80E-02 0.036
P jor limb of i psule R 3.90E-02 0.034
Posterior thalamic radiation R 4.70E-02 0.032
rs10808026 7 143099133 EPHAT Pontine crossing tract 3.20E02 0.04 No significant associations
rs73223431 8 27219987 PTK2B Fomix 7.90E-04 0.047 Fomix 5.50E-04 -0.048
Cingulum cingulate gyrus R 1.20E-02 0.04 Cingulum cingulate gyrus R 1.00E-02 0.034
rs9331896 8 27467686 CLU Superior cerebellar peduncle R 2.40E-02 0.035 No significant associations
Retrolenti part of i lcapsule L 3.40E-02 0.033

Continued >>
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rs3740688 1

rs7933202 1

rs3851179 1

rs11218343 11

rs17125924 14
rs12881735 14
rs3752246 19
rs429358 19
rs6024870 20
rs7920721 10

rs138190086 17

rs190982 5
rs190983 7

47380340

59936926

85868640

121435587

53391680

92932828

1056492
45411941

54997568
11720308

61538148

88223420
37844263

SPI1

MS4A2

PICALM

SORL1

FERMT2

SLC24A4

ABCA7
APOE

CASS4
ECHDC3

ACE

MEF2C
NMES

Sagittal stratum L 3.00E-03
External capsule L 2.30E-02
Uncinate fasciculus L 2.60E-02
Inferior carebellar paduncle R 3.20E-02
Sagittal stratum R 3.30E-02
Uncinate fasciculus R 3.40E-02
Medial lemniscus R 3.60E-02
Posterior corona radiata L 4.60E-02
Cingulum cingulate gyrus R 7.20E-03
Middle cerebellar peduncle 7.70E-03
Caerebral peduncle R 1.40E-02
Cingulum cingulate gyrus L 2.20E-02
Anterior corona radiata R 2.50E-02
Cerebral peduncle L 2.90E-02
Inferior carebellar paduncle L 2.00E-02
Medial lemniscus R 2.60E-02
Fomix 2.00E-02
External capsule L 3.90E-02

No significant associations
Uncinate fasciculus R 1.90E-03
Splenium of corpus 1.60E-02
No significant associations

Middle cerebellar peduncle 9.60E-04
Cingulum hippocampus R 1.40E-03
Carebral peduncle L 7.50E-03

of corpus 1.60E-02
Superior longitudinal fasci R 1.80E-02
Cingulum hippocampus L 2.10E-02
Corticospinal tract R 2.50E-02
Genu of corpus callosum 4.10E-02
Posterior thalamic radiation R 4.50E-02
Body of corpus callosum 4.90E-02
Genu of corpus callosum 4.10E-02
Posterior thalamic radiation R 4.50E-02
Body of corpus callosum 4.90E-02

Retrolenticular part of i I capsule R 4.90E-02
No significant associations
Post limb of i e L 5.20E-03
Ratrok part of i | capsule R 7.90E-03
Caerebral paduncle R 8.80E-03
Superior corona radiata R 8.80E-03
Cerebral peduncle L 3.50E-02
External capsule L 4.80E-02
R c part of i p L 4.30E-02
Sagittal stratum L 4.50E-02

No significant associations
No significant associations

0.047
0.034
0.036
0.033
0.034
0.034
0.032
0.032
-0.043
-0.041
0.037
-0.036
-0.035
-0.032

0.036
0.035
0.083
0.08

-0.058
-0.045

-0.069
0.07

-0.054
-0.054
-0.052
0.05

-0.048
-0.043
-0.042
0.043
-0.043
-0.042
-0.043
-0.043

0.044
0.043
0.039
0.042
0.031
0.03
0.1
0.1

Genu of corpus callosum 6.00E-03
Medial lemniscus R 4.20E-02
Cingulum cingulate gyrus L 4.80E-03
Superior corona radiata L 6.10E-03
Posterior corona radiata L 1.10E-02
TapetumL 1.10E-02
Genu of corpus callosum 1.80E-02
Body of corpus callosum 1.80E-02
Superior corona radiata R 2.10E-02
Posterior thalamic radiation R 3.10E-02
Posterior corona radiata R 3.20E-02
Sagittal stratum L 3.30E-02
Posterior thalamic radiation L 4.30E-02
Sagittal stratum R 5.20E-03
External capsule R 3.70E-02
Fomix 7.80E-03
Uncinate fasciculus R 2.40E-02

p fronto-occipital fasciculus R 3.50E-02
TapetumR 2.10E-02
Cingulum cingulate gyrus R 1.20E-02
Splenium of corpus callosum 1.60E-02

No significant associations

Cingulum hippocampus R 6.50E-05
Posterior thalamic radiation R 3.20E-04
Posterior thalamic radiation L 1.30E-03
Cingulum hippocampus L 1.80E-03
Sagittal stratum L 3.60E-03
Superior longitudinal fasciculus L 4.40E-03
Sagittal stratum R 5.80E-03
per itudinal fasciculus R 1.00E-02
Body of corpus callosum 2.20E02
Cingulum cingulate gyrus L 2.60E-02
Splenium of corpus callosum 2.70E-02
Anterior corona radiata L 3.50E-02
icular part of int lcapsule L 3.90E-02

No significant associations

R icular part of i psule R 4.40E-02
Anterior limb of internal capsule L 1.70E-02
External capsule L 4.10E-02

No significant associations

Uncinate fasciculus R 3.70E-02
Ant limb of i p R 4.00E-02
Anterior limb of internal capsule L 4.50E-02

-0.038
-0.031

0.039
0.037
0.037
0.04
0.034
0.034
0.031
0.032
0.031
0.032
0.031
0.042
0.03
-0.093
-0.083
0.072
0.06
0.038
0.04

0.084
0.074
0.066
0.068
0.059
0.058
0.056
0.051
0.045
0.042
0.044
0.041
0.043

-0.031

0.12
0.098

0.14
0.13
0.13

The assouabons between AD nsk loci identified by Kunkle at al and TBSS imaging phenotypes from the UK Biobank website. These are based on Elliott et al. (2018)

multiple comparisons. Acronyms: Chr. = Chromosome; TBSS = Tract-Based Spatial Statistics; ROl = Region of |

of brain i

gng p P
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FA= A

in UK Biobank and other sources. See hitp://big.stats.ox.ac. uk Pleass nole they are not corrected for
e py; MD = Mean Diffusivity.



